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A CLASS OF FUNCTIONAL EQUATIONS
WHICH HAVE ENTIRE SOLUTIONS

PETER L. WALKER

We consider the Abelian functional equation
9(¢(z)) = g(z) +1

where ¢ is a given entire function and g is to be found. The inverse function f = g~ (if
one exists) must satisfy

f(w+1) = ¢(f(w))-

We show that for a wide class of entire functions, which includes ¢(z) = e* — 1, the latter
equation has a non-constant entire solution.

1. INTRODUCTION

A functional equation of the form
(1) 9(#(2)) = 9(2) +1

where ¢ is given, and ¢ is to be found, is said to be of Abelian type, following the
paper of Abel [1].

The inverse function f =g~

(2) f(w +1) = ¢(f(w))

1 satisfies

where we have put w = g(z).
Solutions of these equations are of importance in studying the flow in a set X
determined by a map ¢ of X to itself, since the family of functions

¢e(2) = f(9(z) +1), tER,
satisfies the formal identities
$o(2) = 2, $1(2) = #(2), and de(Pu(2)) = br4u(z)-

When X = C and ¢ is entire, there are obvious difficulties in the analytic con-
tinuation of solutions of (1) because of the complicated nature of the singularities of ¢
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which occur near any fixed point of ¢. By contrast we show in this paper that for a
reasonably wide class of entire functions ¢, the equation (2) has an entire solution: the
result is stated as Theorem 2 below.

An important special case is given by ¢y(z) = e* — 1. Solutions go(z) of (1) are
constructed in [3] for real positive argument, and in [4] for certain regions in C. Some
other special cases where one can give explicit solutions of (2) are given for constants
a,c>1, by ¢(z) = cz, f(z) = ¢*, and by ¢(2) = z°, f(z) = a" . These illustrate the
general situation in which solutions of (2) tend to increase much more rapidly than ¢
itself.

2. CONSTRUCTION OF SOLUTIONS

We begin by stating the following important theorem of Fatou.

THEOREM A. (Fatou [2]) Let ¢(z) = z + Z ¢.z™*1 be an entire function with
¢y > 0, and let N be a neighbourhood of 0 on quch ¢ is invertible.
Then there is an open subset § of N with the following properties:

(i) the origin is a boundary point of S, and (0,t) C S for some t > 0;
i) ¢7'(S)cS;
(iii) if for any z € S, we put z9 = z, zp41 = ¢~ (2,), n > 0, then we have
the asymptotic expansion

(3) -l=an+blogn—ag(z)+0(loin).

Zn

In (3) we have a = ¢, b= %(Cz - c?) , and g is an analytic function on S which
satisfies g(¢~'(z)) = g(2) — 1 for all z € S. The order term is uniform on compact
subsets of S.

Note:. Fatou proves the result in much greater generality: the above is sufficient for
our needs. One can be more explicit about the set S, whose boundary is the image of
a parabolic arc z +y* = constant(> 0) under the inversion mapping z — 1; thus the
boundary of S is tangent to the negative real axis at the origin.

We can now state our method for constructing solutions of (2). Equation (3) defines

g(2) as a limit

w=g(z)= lim[n+ glogn —(aza)™Y

b n
lim [n + = logn — {a(¢*)""(2)} 7]

= lim gn(z) say.
n—o0
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(For any function, we use fI™ to denote the n-fold iterate of f.)

We invert this relation to get
4 z=fw)=g¢gYw)= nan;o 9. (w) = nILI]go o™ ({a(n — w) + blogn}~1).

Thus our aim is to show the existence of the limit in (4) for all w € C, which then
defines a non-constant entire solution of (2).
We begin with the following result.

o0
THEOREM 1. Let ¢ be an entire function of the form ¢(z) = 2+ 3 ¢,z" 1!, with
1

¢y >0and e, 20 forn >2. Put a=¢;, b= &(cz—cf), r,,=n+§logn,and
define
fa(w) = ¢l ({a(n —w) + blogn}~).

Then fn is analytic on C\ {rn}, and for any M > 0, the sequence (f,), sps is
uniformly bounded on 5(0, M) = {z: |z} < M}, provided that either (i) c; # ¢%, or
(11) c3 < C:]; .

PROOF: Since ¢, > 0 for all n, the Maclaurin coefficients of f,, are also non-
negative. In particular for |w| < r,, we have |fn(w)| < fa(Jw|). Thus it will be
sufficient to show that the sequence (f,(w)) is convergent for w > 0. In fact we shall
show, subject to either of the conditions (i) or (ii), that for w > 0 the sequence (fn(w))
is eventually decreasing. Since ¢ is monotone increasing on [0, co) it is sufficient to

prove, for w > 0 and sufficiently large n, that
(8) $lan) < an-1

where we have put a,, = {a(n — w) + blogn}~1.

To prove (5), we expand both sides asymptotically and compare terms. For ease
of calculation, we put k = %, and w, = w — klogn, so that a, = Hn—l—w,, , and the
result to be proved is that

an-1/an > $(an)/a, =1+ Z er(an)” or
1

n—w
id >1+clan+c2a3,+....

(6)

n—1-—w,-1

Now wn_y = w — klog(n—1) = w — klogn — klog 2= = w, + ks,, say, where
= ~log (552) = 1 + ghr +...= 0(2).
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Hence on the left hand side of (6) we have

n— W, Wy, Wo+ 14 ks, \ 7!
_ (1o ) (1 BatLbken) ™
n—w, —1-—ks, n n

which we expand as far as terms in n™3, to get
P g

(*) (1—7) [1+ =(wn +1+ksp) + = ((w,,+1) +2ks,,(w,,+1))

+$(wn +1)° + 0((1(’%) )]

1 1 k
=1+—-+ —2{(wn + 1) —wn(wn + 1)} + —Sn

k 2k
—{(wn +1)° — wa(w, +1)%} - —58nWn + —n—zsn(wn +1)

+ O((logn) )
n
1 1 kw,

1 1 k 1 2
=1+;+§(wn+1)+;(——+—)+-n—3(wn+1) - —

n  2n? n3

+i_’:(wn+1)+0((loin)4)
~1+ + = (wn+1+k)+—((w"+1)+k(w"+g))
+0((loin> )

Similarly on the right hand of (6), we substitute a, = a—(m— and ¢; = a, ¢z =
a?(1+ k) to get

(**)
1+ cia, + czaf, + caaf, + O(ai)

=14 (n —wn) " + (1 4+ B)(n— wn)~?

1 W, 2 1+k 2w, logn)®
=1+—(1+—+w—;)+< i )(1+i>+ f“3+o<(°g4")
n n n n n a’n n

_1+ + — (wn+1+k) (w +2(1 + k)w,, + §)+o<(lo7g;)3>.

C - _
+ ;%(n—wn) 3 +0(n 4)
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If we compare (*) and (**) we see that (6) is equivalent (for sufficiently large n) to the
inequality
5 c
(wn +1)* + k(w,, + 5) > w? 4+ 2(1 + k)w, + a—z,

orto 14 5k/2 > k(w —klogn) + % .

But this inequality is evidently satisfied for all n sufficiently large, if either (i)
k # 0, (equivalently ¢; # c?), or (ii) if £ = 0, then ¢; < a® = ¢}. Hence either
condition (i) or (ii) is sufficient to establish (6), which completes the proof of Theorem
1. 1

The uniform boundedness which we have just proved enables us to deduce our main

theorem on existence of solutions of (2).

o0
THEOREM 2. Let ¢ be an entire function of the form ¢(z) = z+ Y, cnz™*?, where
1

¢1>0, cn >0 for all n, and either (i) ¢z # ¢ or (ii) ¢3 < 3.
Then the sequence (f,) defined in Theorem 1 converges uniformly on every
5(0, M) to a function f which is an entire non-constant solution of (2).

PROOF: Theorem 1 shows that the sequence (f,) forms a normal family on each
S5(0, M). In the course of the proof we also showed that for any M > 0 and sufficiently
large n, the restrictions of f,, to [—M, M| form a sequence of positive functions which
decreases with increasing n, and so converges on [-M, M] to a limit 7 say. Hence
any subsequence of (f,) which converges on S(0, M) must have a limit which agrees
with ¥ on the real axis, from which we deduce the convergence of the whole sequence
to an entire function f, whose restriction to [-M, M| is . Moreover, since f, is
defined as the inverse of the function g, for which g,(z) — ¢(z) for z € § (Fatou’s

1, on some open subset U, say, of g(S), (for instance a

Theorem A), f must equal g~
neighbourhood of ¢g($ N (0, 00))), so f cannot be constant. Again since f = g1, we
must have (2) at least on ¢(.5 N (0, 00)). But both sides of (2) are entire, and so the

equation must hold generally and the proof of Theorem 2 is complete. (]
To conclude, we mention some general properties of the function f which we have

constructed. Since fp(w) = ¢["](m), and ¢(t) = ¢t + icnt", n = 0,
it follows that f is a positive increasing function on R, whose Maclaurin coefficients
are again non-negative. We can deduce the asymptotic rate at which f(z) — 0 as
z — —oo, from the corresponding expansion for g(¢t) as t — 04, in the following
way. First simplify the asymptotic expansion (3) of Fatou’s Theorem to read % =
an + blogn — ag(t) + o(1), for t > 0, t € §. The functional equation satisfied by ¢
shows that g(¢,) = g(t) — n, and hence if we put z =t¢,, y = ¢g(¢,,) so that z — 0,
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y — —00 as n — oo, then we obtain
1
g(a:):g(t)—n:—;z—+klogn+o(1)
= -1 4 klog (= — klogn + t) + o(1)
=~z g (5 — klogn + g(0) + o
S ) (1 0
= T g | — o(l) as & — 0.

Similarly, we can show that lirgl z%g'(z) = 1, which is sufficient for the unique deter-
z— +
mination of a solution of (1) (up to an additive constant), as is pointed out by Szekeres
in [3, Lemma 1].

Then the get the asymptotic expansion of f(z) as ¢ — —oo, we invert the above

expansion for g to obtain
af(z) = 2L + —k-;-log lz| + o(z~?) :
z =z
in particular zf(z) —» —1 as z —» —o0.

In the special case when ¢(t) = e* — 1, the hypotheses of Theorem 2 are satisfied
and we can deduce the existence of an entire non-constant solution of the equation
f(w+1) = /¥ — 1. This function is inverse to the function g constructed in [4],
Theorem 2, which is analytic on § = C\(—o0, 0] and satisfies g(log(1l + z)) = g(z) -1
for all z in §. Hence the family of mappings ¢.(z) = f(g(z) —t), t > 0, determines
the flow of the map 2z — log(1+z2) in S.
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