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Abstract

This paper proposes a new typed lambda-encoding for inductive types which, for Peano

numerals, has the expected time complexities for basic operations like addition and multipli-

cation, has a constant-time predecessor function, and requires only quadratic space to encode

a numeral. This improves on the exponential space required by the Parigot encoding. Like the

Parigot encoding, the new encoding is typable in System F-omega plus positive-recursive type

definitions, a total type theory. The new encoding is compared with previous ones through

a significant case study: mergesort using Braun trees. The practical runtime efficiency of the

new encoding, and the Church and Parigot encodings, are compared by two translations, one

to Racket and one to Haskell, on a small suite of benchmarks.

1 Introduction

The idea of encoding data as functional terms in typed lambda calculus has

significant appeal, as it shows that primitive datatypes are, at least in principle,

unnecessary. The traditional objection to lambda-encoding data in typed lambda

calculi has been asymptotic inefficiencies for the encoded data or the operations

on them. The well-known Church encoding of standard datatypes and natural

operations on them can be typed in System F, a total type theory (all terms are

guaranteed to terminate). But operations to extract subdata from data – like the tail

from a list – take time linear in the size of the data. At least for Peano numerals, this

is a provable lower bound (Parigot, 1989). For practical functional programming,

destructors of inductive datatypes should be computed in constant time. Parigot

improved on this situation with an encoding which intrinsically supports recursion,

and has constant-time predecessor (Parigot, 1988). Parigot’s encoding is typable in

System F plus positive-recursive type definitions, which is also a total type theory.

It has one major drawback, however: the size of a numeral n is O(2n).

In this paper, we introduce a new lambda-encoding, called embedded iterators,

which has similar computational properties as Parigot’s, but which requires only

O(n2) space to represent the unary numeral n, while preserving all the expected
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time complexities for the basic arithmetic operations (Section 4). If one is willing to

accept an increase in the time complexity for successor from O(1) to O(log n), then

this requirement can be reduced to O(n log n) for numeral n (Section 4.3). Like the

Parigot encoding, the embedded-iterators encoding is typable in System F extended

with global positive-recursive type definitions. We will first review Church, Scott,

and Parigot encodings (Section 3), based on System Fω with global positive-recursive

type definitions (Section 2). Then, we will present the embedded-iterators encoding

(Section 4). We will also discuss how to encode some container datatypes, which,

unlike the situation for numeric data (for which using numeric representations native

to the computing hardware is mandatory for performance), could actually be useful

in practice (Section 5).

The paper’s final contribution is an empirical assessment of these different

encoding schemes. We give a performance comparison of these encodings, using

Racket and Haskell as platforms for efficient execution (Section 6). One interesting

finding is that the Parigot and embedded-iterators encodings perform well in practice,

despite the theoretical asymptotically greater size of their normal forms. This suggests

that typed lambda encodings may be more suitable for practical use than previously

believed.

2 Frec
ω : Fω with global positive-recursive type definitions

The Frec
ω type theory we will use in this paper is a version of the well-known Fω

system, which extends the impredicative polymorphism of System F with type-level

computation. Frec
ω system extends Fω with global recursive definitions of types at any

kind, where the defined type symbol can appear only positively in the definition. We

call these positive-recursive type definitions, and define an occurrence to be positive

iff it is in the domain part of an even number of arrow types, and not in the argument

part of a type-level application (see Definition 2.1 below). The latter restriction is to

avoid misjudging the second occurrence of X in (λY : ∗.Y → X) X, for example, as

positive. Using global recursive definitions of types instead of recursive types (μX.T )

we can more easily specify how to fold and unfold recursive types. The cost is that

nested datatypes, like the type of finitely branching trees, cannot be defined. This

limitation could be removed with polarized kinds, as used by Abel and Matthes

for their system Fixω (Abel & Matthes, 2004). Fixω uses a type-level fixed-point

operator instead of recursive type equations.

2.1 Syntax

The following definitions constitute a new formulation of a system in Fu & Stump

(2014). The syntax for kinds, types, terms, and contexts is

Term variables x

Type variables X

Kinds κ ::= ∗ | κ′ → κ

Types T ::= X | ∀X : κ. T | T1 → T2 | λX : κ1. T | T1 T2

Terms t ::= x | λx : T . t | λX : κ. t | t t′ | t T | [X!] | [X]

Contexts Γ ::= · | Γ, x : T | Γ, X : κ | Γ, X : κ �→ T .
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Fig. 1. Context formation and kinding for Frec
ω .

The term constructs [X!] and [X] are for the folding and unfolding, respectively, of

recursive type-definitions. The entry X : κ �→ T in contexts is for a recursive type

definition: X of kind κ is recursively defined to be T , where T may mention X.

2.2 Classification

Figure 1 gives rules inductively defining the judgments Γ ok, for well-formedness of

the context Γ, and Γ � T : κ, stating that type T has kind κ in context Γ. We use

the following adaptation of the notion of polarity to restrict type definitions to be

positive-recursive.

Definition 2.1 (Polarity)

Let b ∈ {0, 1}, and define ¬0 := 1,¬1 := 0. We define relation Pol(X,T , b) by the

rules of Figure 2. Informally, this means all occurrences of X in T have polarity

b. We say X occurs only positively in T if Pol(X,T , 0), and only negatively if

Pol(X,T , 1).

Figure 3 gives rules defining the judgment Γ � t : T , stating that term t has type

T in context Γ. One of the rules uses ∼= for the least congruence relation satisfying

the standard equation for type-level β-equivalence:

(λX : κ.T ) T ′ ∼= [T ′/X]T .

Figure 3 has specialized rules for folding and unfolding recursive type-definitions of

symbols X to be types T of kind κ. Because such definitions can be at kinds higher

than ∗, we need to handle arguments to the recursively defined type. We do this by

quantifying over the types which are inputs to X, in the types for [X!] and [X]. We

use κ̄ to denote a finite, possibly empty sequence of kinds κ1, . . . , κn. We then use the

notation κ̄ → κ′ for the right-nested function type κ1 → · · · → κn → κ′, which is just

κ′ if κ̄ is empty. Finally, we write X X̄ for the left-nested application ((X X1) · · ·) Xn,

which is just X if X̄ is empty. Also, assuming X̄ is a sequence of distinct type

variables of the same length as κ̄, ∀X̄ : κ̄. T denotes ∀X1 : κ1. · · · ∀Xn : κn. T –

again, just T if X̄ is empty. Incorporating this sequence κ̄ into the typing rules for

[X!] and [X] generalizes the simple case where X has kind ∗, and [X!] and [X]

simply witness the isomorphism between X and T .
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Fig. 2. Definition of polarity in Frec
ω .

Fig. 3. Typing for Frec
ω .

2.3 Strong normalization

In Appendix C of Fu & Stump (2014), the following theorem is proved for a more

declarative formulation of Frec
ω : folding and unfolding of recursive types take place

as part of a non-algorithmic definitional equality, and the system is a type-assignment

system (so the only term constructs are those of pure untyped lambda calculus).

Similarly to the proof in Abel & Matthes (2004), a complete lattice (�κ�,⊆κ,∩κ) is

defined, for each kind κ. For the base case, (�∗�,⊆∗,∩∗) is the set of reducibility

candidates ordered by inclusion, with intersection for the meet operation. These

lattices allow the interpretation of positive-recursive type definitions via fixed points.

The erasure |t| is defined in Figure 4. Erasure eliminates [X!] and [X], so Frec
ω does

not need reduction or equivalence rules relating these constructs.

Theorem 2.1

Γ � t : T implies that |t| is strongly normalizing (no infinite reduction sequence

from |t|).

2.4 Implementation

We have implemented Frec
ω in a tool called fore, available from the Software

section of the first author’s web page. fore is written in the dependently typed func-

tional programming language Agda, version 2.4.2.2 (Norrell & the Agda Develop-

ment Team, 2014). Agda compiles to Haskell, which enables fore to execute reason-

ably efficiently. fore includes support for non-recursive term- and type-definitions,

Fig. 4. Erasure to untyped lambda calculus.
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with the latter unfolded automatically as needed during type checking. Types can be

positively recursively defined with the keyword rec. fore also uses Unicode symbols

for λ, ∀, and →. The distinction between term and type variables is implemented by

consulting the context to see whether the variable is declared to have a type or a

kind. So a lexical distinction between term and type variables is not required.

fore includes a type checker for an algorithmic adaptation of Frec
ω . In particular,

one has to eliminate the otherwise non-deterministically applicable conversion rule,

in favor of sometimes reducing computed types to head normal form. This is possible,

thanks to confluence and strong normalization of type-level reduction (which is just

that of simply typed lambda calculus). The examples in the rest of the paper have all

been type-checked with fore. The fore tool can translate input programs written

in the fore input syntax to either Haskell or Racket.

Agda supports verification of pure functional programs via dependent types

and the Curry–Howard isomorphism. While we have not attempted to verify deep

properties like type preservation for our type checker with respect to the operational

semantics of Racket or Haskell – which would be a major undertaking – we have

used Agda’s verification capabilities in the course of our development to improve

the quality of our tool. One example theorem, we have proved is correctness of an

algorithm for inserting a minimal set of disambiguating parentheses into terms to

be printed back to the user. We have also expressed some simple data structure

invariants using dependent types.

3 Previous lambda encodings

In this section, we recall the Church, Scott, and Parigot encodings of natural numbers

in Frec
ω . The Church encoding, of course, requires only System F (a subsystem of

Frec
ω ), while the other two do require positive-recursive type definitions. Type-level

λ-abstraction is not needed for these encodings, but is required for container types

(see Section 5). This section will consider just unary (aka Peano) natural numbers,

via their fore input sources. We elide the definitions of basic non-recursive datatypes

for pair types, sum types, booleans, the unit type, and a maybe type. Because these

are not recursive, the different lambda-encodings all agree for them.

3.1 The Church encoding

The Church encoding represents each natural number n as its own iterator λs.λz.sn z,

where sn z is meta-notation for (s · · · (s z)), with n copies of s (Church, 1941). Böhm

and Berarducci showed how to type these in System F (Böhm & Berarducci, 1985).

In the notation of fore, the (non-recursive) definitions for the type CNat of Church

numerals and the constructors CZero (for 0) and CSuc (for successor) are these,

where each definition lists the defined symbol, its classifier (type or kind), and then

the term or type it is defined to equal.

CNat : * =

∀ X : * , (X → X) → X → X .
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Czero : CNat =

λ X : * , λ s : X → X , λ z : X , z .

Csuc : CNat → CNat =

λ n : CNat , λ X : * , λ s : X → X , λ z : X , s (n X s z) .

It is convenient also to define Cone for 1:

Cone : CNat =

λ X : * , λ s : X → X , λ z : X , s z .

Iterative versions of addition, multiplication, and exponentiation are defined this

way:

Cadd : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , n CNat Csuc m .

Cmult : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , n CNat (Cadd m) Czero .

Cexp : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , n CNat (Cmult m) Cone .

Alternative clever definitions of these are attributed to Rosser (Barendregt, 1985):

CaddR : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , λ X : * , λ s : X → X , λ z : X ,

n X s (m X s z).

CmultR : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , λ X : * , λ s : X → X , λ z : X ,

n X (m X s) z .

CexpR : CNat → CNat → CNat =

λ n : CNat , λ m : CNat , λ X : * ,

n (X → X) (m X) .

We will evaluate both sets of definitions in Section 6. See Hinze (2005) for a study

of how the different definitions can be derived from alternative specifications of the

operations.

The definition of predecessor in the Church encoding provably requires linear

time (Parigot, 1989). The standard algorithm is due to Kleene. Informally, one

iterates the function (x, m) �→ (m,m + 1) starting from (0, 0). After n + 1 iterations,

the result is (n, n + 1), and hence the predecessor is available as the first component

of the pair (and after 0 iterations 0 is still the cut-off predecessor). Subtraction is

then just iterated predecessor.

3.2 The Scott encoding

In a total type theory, the Scott encoding is of limited use, because unlike the Church

encoding, Scott-encoded data do not intrinsically support iteration or recursion. So

the operations on Scott-encoded data do not appear to be definable without a more

general recursion operator, which is not available in a total type theory. Nevertheless,
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the Scott encoding is a stepping stone to the Parigot encoding, so we include the

definitions here. See page 504 of Curry et al. (1972) for the attribution to Scott.

rec SNat : * =

∀ X : * , (SNat → X) → X → X .

Szero : SNat =

[SNat] λ X : * , λ s : SNat → X , λ z : X , z .

Ssuc : SNat → SNat =

λ n : SNat , [SNat] λ X : * , λ s : SNat → X , λ z : X , s n .

Note the use of the fold operator [SNat] to map terms of the following type to

SNat:

∀ X : * , (SNat → X) → X → X

The essential difference with the Church encoding is that the abstracted successor

s takes in not the type parameter X as its input, but rather SNat. This necessitates

the use of a recursive type definition for SNat, since SNat appears on the right-hand

side of the definition. That occurrence is positive, though, and so is allowed in

Frec
ω . We see from the definition of Ssuc (successor) that each non-zero numeral

n + 1 is represented in the encoding by applying the abstracted successor s to the

predecessor n.

3.3 The Parigot encoding

Parigot introduced an encoding of numerals which in a sense combines the Church

and Scott encodings (indeed, Parigot numerals are sometimes also called Church–

Scott numerals) (Parigot, 1988). Where the Church encoding represents numerals as

their own iterators, the Parigot encoding represents them as their own recursors. Here

are the basic definitions, which as for the Scott encoding require a positive-recursive

definition for the type for numerals:

rec PNat : * =

∀ X : * , (PNat → X → X) → X → X .

Pzero : PNat =

[ PNat ] λ X : * , λ s : PNat → X → X , λ z : X , z .

Psuc : PNat → PNat =

λ n : PNat , [ PNat ] λ X : * , λ s : PNat → X → X , λ z : X ,

s n ([PNat !] n X s z) .

In the definition of Psuc (successor), we see that the abstracted s is applied both to

the predecessor number n as in the Scott encoding, and also to an application of n

to X s z, as in the Church encoding. For this application of n, we first unfold the

type PNat of n using our unfold operator [PNat !]. The dual use of the predecessor

is the strength of the Parigot encoding, because numerals both intrinsically support

recursion and allow constant-time access to subdata. It is also the source of two

serious weaknesses:
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• Unlike in the Church and Scott encodings, the size of a numeral n in normal

form is exponential in n.

• The representation is not adequate, in the sense that there are closed normal

forms of type PNat which do not represent any unary number, because the

Scott part of the encoding and the Church part are out of sync. An example

is a term like

λ X : * , λ s : PNat → X → X , λ z : X , s Pzero (s Pzero z)

Here are the definitions of one, addition, multiplication, and exponentation:

Pone : PNat =

[ PNat ] λ X : * , λ s : PNat → X → X , λ z : X , s Pzero z .

Padd : PNat → PNat → PNat =

λ n : PNat , λ m : PNat , [PNat!] n PNat (λ P : PNat , Psuc) m .

Pmult : PNat → PNat → PNat =

λ n : PNat , λ m : PNat , [PNat!] n PNat (λ P : PNat , Padd m)

Pzero .

Pexp : PNat → PNat → PNat =

λ n : PNat , λ m : PNat , [PNat!] n PNat (λ P : PNat , Pmult m)

Pone .

Constant-time predecessor and subtraction by iterated predecessor are easily defined

(though see the next section for an important twist):

Ppred : PNat → PNat =

λ n : PNat , [PNat!] n PNat (λ P : PNat , λ d : PNat , P) Pzero .

Psubtract : PNat → PNat → PNat =

λ n : PNat , λ m : PNat , [PNat!] m PNat (λ P : PNat , Ppred) n .

3.4 The Parigot encoding for call-by-value reduction

Parigot designed the preceding encoding so that the predecessor operation would

take constant time. And so indeed it does, if one is using call-by-name or normal-

order reduction, for example. But if one uses call-by-value – the reduction strategy

employed by widely used functional programming languages like OCaml and Racket

– then predecessor is not a constant-time operation, because Ppred (defined just

above) still works by iterating with the number n of which the predecessor is desired.

The function that is being iterated, namely λ P : PNat , λ d : PNat , P, does

not need to use the result d of iteration; it just immediately returns the predecessor

P which the number n passes to it. But with call-by-value reduction, that result d

of iteration will still be computed before it is discarded by the iterated function.

So in call-by-value reduction, the Parigot encoding does not have constant-time

predecessor. Note that here we are speaking of call-by-value reduction for pure

untyped lambda (for the erasures of the terms), where the values are the λ-

abstractions. For an example: let us write ň for the erasure (to untyped lambda

calculus) of Parigot-encoded natural number n, and (ambiguously) Ppred for the
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erasure of Ppred as defined above. Then, we have this example call-by-value

reduction (writing �n for the n-fold composition of �):

Ppred 2̌ �3

(λP . λd. P ) 1̌ ((λP . λd. P ) 0̌ 0̌) �

(λd.1̌) ((λP . λd. P ) 0̌ 0̌) �3

1̌

The point is that the last shown step is reducing the argument ((λP . λd. P ) 0̌ 0̌) to a

value v before discarding it when reducing (λd. 1̌) v. This leads to O(n) call-by-value

steps to reduce Ppred ň, instead of O(1) steps.

This problem can be easily remedied, however, using the following alternative

definition for the type Pnat of Parigot-encoded numerals:

rec PNat : * = ∀ X : * , (PNat → (unit → X) → X) → X → X .

Compare this with the type from the previous section:

rec PNat : * = ∀ X : * , (PNat → X → X) → X → X .

The only difference is that we are specifying that the iterated function will be called

not with the result (of type X) of iteration with the predecessor, but with a function

of type unit → X. This is just a thunk which, when called with the trivial value

triv of type unit, will return the result of iteration with the predecessor. So if one

does not wish to use this result, as we do not in the case of Ppred, then it will

not be computed in call-by-value reduction. This change for more efficient call-by-

value reduction is easily accommodated in the definitions of the basic arithmetic

operations, which we omit for space reasons. It is also preferable to use the following

similarly modified definition for booleans:

Bool : * = ∀ X : * , (unit → X) → (unit → X) → X .

true : Bool = λ X:*, λx:unit → X, λy:unit → X, x triv.

false : Bool = λ X:*, λx:unit → X, λy:unit → X, y triv .

Note that this definition actually guards the cases, as one would if implementing an

if-then-else construct in a call-by-value language. It would also be reasonable to do

this for similar arguments in other datatypes, like the occurrence of X corresponding

to the zero case in the above definition of PNat. We have not found this necessary

for our examples.

3.5 Abstract comparison

We can compare the three previous encodings abstractly, by assuming that F is

a type-level function which uses its argument only in positive positions. Then, as

explained also by Wadler (1990), the Church encoding of μX.F X is the type μC F

defined by

μC F = ∀X : ∗, (F X → X) → X.

The Scott encoding is the type μS F positive-recursively defined by

μS F = ∀X : ∗, ((F (μS F)) → X) → X.
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Finally, the Parigot encoding is the type μP F positive-recursively defined by

μP F = ∀X : ∗, ((F ((μP F) × X)) → X) → X.

The examples considered above are intuitionistically equivalent versions of these

types. For example, according to the above abstract scheme, if we denote λX :

∗.(1 + X) as FNat, then the Church encoding for the type μX.1 + X of the natural

numbers is μC FNat defined as

∀X : ∗, (1 + X → X) → X.

This is intuitionistically equivalent to the type traditionally used, which we saw

above:

∀X : ∗, (X → X) → X → X.

This version is more convenient to use, because it does not contain an embedded

sum type.

4 The embedded iterators encoding for Peano numerals

Our new encoding, which we show first for Peano numerals, relies on the Church

encoding as defined in Section 3.1. Like the Parigot encoding, we combine Church

and Scott aspects of numerals: numerals should intrinsically support iteration

(Church), and also allow constant-time access to subdata (Scott). But we do this in

a different way from the Parigot encoding. The crude starting point for the idea is

to note that if we just had a pair of a Church numeral and a Scott numeral both

representing n, then we could both iterate with n and obtain the predecessor of n in

constant time. But this simple idea would not allow us to get the predecessor of the

predecessor of n in constant time.

We extend the above simplistic idea recursively as follows. Each encoded numeral

n will either be represented by a trivial value for zero or else by a n-deep right-

nesting of (Church-encoded) pairs, ending in the trivial value for zero. The first

component of the first pair is Church-encoded n, and for a pair k levels deep, the

first component will be Church-encoded n − k. So iterators for all the numbers

from n down to 0 are embedded in the representation of n, and embedded-iterators

numerals can be seen as lists of Church numerals (and this can be generalized to

other datatypes). Informally, a number like 3 will be represented as follows, where

here and subsequently, we use ṅ as mathematical notation for Church-encoded n:

(3̇, (2̇, (1̇, 0))).

The size of this term is quadratic in n, unlike the Parigot encoding, which is

exponential in n. But similarly to the Parigot encoding, with this representation one

always has access to an iterator ṁ for a successor number m = n+1, as well as to the

predecessor numeral (ṅ, (. . . , 0)). Accessing the components of a Church-encoded pair

takes constant time, so the predecessor can be obtained in constant time. Abstractly,

if F uses its argument only positively, and writing (as above) μC F for the type

∀X : ∗, (F X → X) → X of the Church encoding of μX.F X, then our encoding of
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μX.F X is the type μSF F positive-recursively defined by

μSF F = F((μC F) × (μSF F)).

As above, we will make use of types which are intuitionistically equivalent to those

prescribed by this abstract scheme. For the leading example of natural numbers,

which we will see in more detail in the next section, we have F(X) = 1 + X, and so

Nat = 1 + (CNat × Nat).

The embedded-iterators encoding bears a passing resemblance to a definition

of numerals due to Barendregt, where the interpretation of n + 1 is the pair

(False, n) (Barendregt, 1985). In the embedded-iterators encoding, this is (ṅ, n)

(although Barendregt’s encoding cleverly avoids the need for a sum type).

It is important to note that like the Parigot encoding, the embedded-iterators

encoding is not adequate: Frec
ω can assign the type μSF FNat to terms like (3̇, (3̇, (3̇, 0))),

which do not follow the intended structure for the encoding. This limitation could

possibly be resolved with dependent typing, though this remains to future work.

4.1 The type and constructors for numerals

The type we will use for numerals in our encoding is

rec SFNat : * = ∀ X : *, (CNat → SFNat → X) → X → X .

This is intuitionistically equivalent to the type which the abstract scheme above

dictates:

rec D : * = sum unit (pair CNat D) .

Informally, D requires that every number is either an inject-left of a unit value or

inject-right of a pair of a Church-encoded natural number and another D. Our

definition of SFNat accomplishes the same thing, since it requires one to provide an

X value for the case where the number is zero, and a function taking in a CNat and

a SFNat (equivalent to taking in a pair of the two) and returning an X. So SFNat is

just an optimized version of D.

The above definition of SFNat resembles the definition for the Scott encoding:

rec SNat : * = ∀ X : * , (SNat → X) → X → X .

The difference is that in the successor case, a value of type SFNat has access to

a CNat given the Church-encoding of the same number. This CNat can be used

to do iteration, something that is not possible intrinsically with the Scott-encoded

numeral.

The definition of zero erases to the same term as for the Church- and Parigot-

encodings:

SFzero : SFNat =

[SFNat] λ X : *, λ s : CNat → SFNat → X , λ z : X , z .

We can easily also define one:
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SFone : SFNat =

[SFNat] λ X : *, λ s : CNat → SFNat → X , λ z : X ,

s Cone SFzero .

Note that we are applying s to Cone as well as to SFZero. This fits with our plan

of having the encoding for non-zero n contain ṅ, as well as the encoding of the

predecessor of n. Subsequent numerals m = n + 1 have the form

λX : ∗, λs : CNat → SFNat → X, λz : X, s ṁ n̂,

where we are writing n̂ to indicate the embedded-iterators encoding of n. Each

numeral m is encoded by a term which contains the Church-encodings of m down

to 0. Hence, each encoding needs only quadratic space. Here is the definition of

successor:

SFsuc : SFNat → SFNat =

λ n : SFNat ,

[SFNat!] n SFNat

(λ c : CNat, λ p : SFNat,

[SFNat] λ X : *, λ s : CNat → SFNat → X, λ z : X ,

s (Csuc c) n)

SFone .

This term unfolds the definition of SFNat so that it can apply n to the result type

SFNat and a value for s (from the definition of the SFNat type) and a value for

z. The value for s is a function which takes in the Church-encoded version c of

n, and the predecessor numeral p. It returns a new numeral (starting from the fold

[SFnat]) where the s function is applied to the successor of c (which yields the

Church-encoding for the successor of the numeral represented by n) and also n itself,

which, of course, is the predecessor of the new numeral.

Constant-time predecessor is very easy to define, since we must just return the

predecessor number in the successor case, and zero in the zero case:

SFpred : SFNat → SFNat =

λ n : SFNat ,

[SFNat!] n SFNat (λ c : CNat, λ s : SFNat, s) SFzero.

Note that unlike with the Parigot encoding, this predecessor operation is constant-

time regardless of whether reduction is call-by-name (or normal-order) or call-by-

value. To see this, let us temporarily write SFpred for the erasure of SFpred as just

defined, and n̂ for the embedded-iterators encoding of natural number n. Then, all

β-reduction sequences for SFpred m̂, where m = n + 1, have length independent of

m. Here is one:

SFpred m̂ �

m̂ (λc. λs. s) 0̂ �

(λz.(λc. λs. s) ṁ n̂) 0̂ �3

n̂

O(1) reduction steps for predecessor regardless of strategy is a further benefit of the

embedded iterators encoding.
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4.2 Basic arithmetic operations

Armed with zero, one, successor, and predecessor, the other basic arithmetic

operations follow a simple pattern: there is a case for when the parameter of

iteration is zero, and then in the other case, we extract the embedded Church

numeral and use it to carry out the iteration. Here is the definition of addition:

SFadd : SFNat → SFNat → SFNat =

λ n : SFNat , λ m : SFNat ,

[SFNat!] n SFNat

(λ c : CNat, λ p : SFNat , c SFNat SFsuc m)

m.

The parameter of iteration is n. We must first unfold the type SFNat, and then

apply the result to result type SFNat, the case for when n is a successor number,

and the case for when it is zero. The case for the successor number takes in the

Church-encoded version c of n, together with the predecessor p. The latter is ignored,

since we just need to use c to iterate the successor function SFsuc starting from

the second input numeral m. The terms for multiplication and exponentiation follow

this pattern also, and using our constant-time predecessor function, subtraction is

defined similarly, by iterating SFpred (code omitted).

4.3 Further reducing the space required

Instead of storing Church-encoded unary numerals throughout the SFNat, we can

store Church-encoded binary numerals, for significant space savings. Binary numerals

can be Church-encoded as proposed by Mogensen (2001). We think of binary numer-

als as having three constructors: for the empty binary numeral, for prepending a 0 bit

to a binary numeral, and for prepending a 1 bit to a binary numeral. So the type is

BNat : * = ∀ X : *, (X → X) → (X → X) → X → X.

It is a routine if tedious exercise to implement the operation Bsuc which, given a

binary numeral representing n, returns a new binary numeral representing n + 1.

To define iterative operations like addition, we also need a function BtoCNat

which can convert a binary number to a unary one, which can then be used for

iteration. Armed with these functions (code omitted), we can modify the definition

of SFNat from the previous section, so that each number n is represented as

(b(n), (b(n−1), . . . , b(0))), where b(x) is a binary number representing x. The required

space becomes O(ΣN
i=0(log2 i)), which is O(n log2(n)). Some crucial definitions are

rec SFNat : * = ∀ X : *, (BNat → SFNat → X) → X → X .

SFsuc : SFNat → SFNat =

λ n : SFNat ,

[SFNat!] n SFNat

(λ c : BNat, λ p : SFNat,

[SFNat] λ X : *, λ s : BNat → SFNat → X, λ z : X ,

s (Bsuc c) n)

SFone .
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Fig. 5. Comparison of sizes of normal forms for numerals with different encodings.

The cost of SFsuc is now O(log n) given an SFNat representing n, because we must

call Bsuc (successor on binary numbers) on the embedded binary numeral c. Our

previous iterative operations on SFNat are adapted to the version using binary

numerals, by calling BtoCNat on the embedded numeral. For example, here is the

code for addition:

SFadd : SFNat → SFNat → SFNat =

λ n : SFNat , λ m : SFNat ,

[SFNat!] n SFNat

(λ c : BNat, λ s : SFNat ,

BtoCNat c SFNat SFsuc m)

m.

4.4 Comparing the sizes of normal forms

Figure 5 shows the sizes of normal forms for the first few numerals. These sizes

were computed by normalizing the numerals and counting the number of subterms,

in fore. We see the predicted exponential blow-up for the sizes of Parigot-encoded

numerals, and the space savings obtained by using binary instead of unary embedded

iterators (‘Stump Fu versus Stump Fu (bnats) in the figure).

5 Lambda-encoding container datatypes

In this section, we consider lambda-encoding for polymorphic lists using the Church,

Parigot, and embedded-iterators encodings. We have chosen to implement mergesort

using a form of Braun tree (cf. (Okasaki, 1997)) as an intermediate data structure.

Braun trees provide a very simple form of balanced binary tree, which is a

convenient fit for the recursive subdivision of the input list which mergesort employs.

Furthermore, they constitute a second, non-linear, example of a container datatype.

In Section 6, we will evaluate the versions of mergesort on call-by-value Church-

and Parigot-encoded data structures, but for simplicity, we present here mergesort

on the standard versions of these encodings, from Sections 3.1 and 3.4 (which

do not augment types with unit → in various places). In all cases, we will be
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sorting lists of elements of type A using a given comparator function of type

A → A → bool, which returns true if the first element should be treated as less

than or equal to the second, and hence closer to the front of the sorted list; and false

otherwise.

Before we consider the different implementations based on lambda-encodings, let

us look at an implementation of the same algorithm in Agda. This will help make

the basic ideas of the algorithm clear, as the version in Agda is much more concise

and readable, due to Agda’s pattern matching and type inference. While the Frec
ω

code for these algorithms is much more complex, the reader is asked to bear in mind

that Frec
ω should not be directly compared to Agda: Frec

ω could serve as the core

language for a tool with similar features as Agda, where much of the information

could likewise be inferred and elided. Like Frec
ω , Agda statically enforces termination

of all programs.

5.1 Mergesort in Agda

The following code is included as a file mergeSort.agda in the fore distribution

(see the README file for instructions on how to check this with Agda). Here, we

will look at a simply typed version of the code, where the only property being

statically enforced by Agda is termination. For a version of Braun trees where the

balancing property is statically enforced, see lib/braun-tree.agda in the fore

distribution.

The module defined in mergeSort.agda is parametrized by a type A, and an

ordering _<A_ on that type. The definition of the Braun type, together with the

braunInsert function for inserting a node, is given in Figure 6. Inserting a node

uses the fundamental insight embodied in Braun trees, which is an elegant way

to maintain the balancing property of the tree. This property says that for every

node in the tree, the left and right subtrees have the same number of elements, or

else the left subtree has exactly one more element than the right. To maintain this

property when inserting into a braunNode, we insert into the right subtree, and then

swap right and left subtrees. If the sizes of the original left and right subtrees were

equal, then the size of the new left subtree will be one greater than the size of the

right. If the size of the original left was one greater than that of the original right,

the sizes of the new left and right will be equal. Thus, the balancing property is

maintained. (Again, in lib/braun-tree.agda, dependent types are used to enforce

this statically, but here we just use a simply typed version.) Figure 6 also includes

a function listToBraunTree for converting a list to a Braun tree by iterating

braunInsert. braunInsert runs in O(log2 n) time for a tree of size n, due to the

balancing property of Braun trees. listToBraunTree then runs in O(n log2 n) time.

The code for mergeSort is then given in Figure 7. This function first constructs a

Braun tree for the input list (using listToBraunTree), and then calls mergeSorth.

This function recursively sorts the subtrees of an input braunNode, and then calls

merge. As noted above, Agda is able to confirm statically that these functions are

terminating on all inputs.
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Fig. 6. Agda code for Braun trees.

Fig. 7. Agda code for merge sort using Braun trees.

5.2 Mergesort for Church-encoded lists

The fore code for Braun trees is shown in Figure 8. Recall from the previous

section that when inserting a value a into a Braun tree which is a node, we insert

a into the right subtree, but then reverse left and right subtrees. This means that

we need access to the unmodified left subtree of Braun tree b, during the course

of inserting an element into b. Since we cannot obtain subtrees in constant-time

with the Church encoding, the implementation in Figure 8 iteratively computes a

pair consisting of the modified and the unmodified versions of the input Braun tree.

The modified version has the element a inserted, while the unmodified one does

not. This approach takes O(n) time to insert an element into a Braun tree of size n,

instead of the O(log2(n)) required with constant-time access to the subtrees. So we

can certainly expect a performance penalty from this step, compared to the Parigot

and embedded-iterators encodings.

The type for lists, the definitions of the constructors, and the definition of a

function to build a singleton list containing a given element a are as expected for

the Church encoding, so we elide the definitions. Additionally, we need a function

to convert a list to a Braun tree. Since Braun trees as we have defined them above
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Fig. 8. Church-encoded Braun trees.

are non-empty, listToBraunTree must be given an element a of type A, as well as

a list of As. We then iteratively call braunInsert, starting with a call to braunLeaf

as the base case:

listToBraunTree : ∀ A:*, A → List A → Braun A =

λ A:*, λ a:A, λ l:List A,

l (Braun A)

(λ a : A, λ r : Braun A, braunInsert A a r)

(braunLeaf A a).

If braunInsert had time complexity O(log2(n)) in the size n of the Braun tree, then

listToBraunTree would have complexity O(n log2(n)). But since braunInsert takes

O(n) with the Church encoding, this listToBraunTree function requires quadratic

time.

We need functions head and tail for obtaining the head and tail, respectively,

of a non-empty list. We elide these definitions for space reasons. As for predecessor

and indeed all functions returning immediate subdata, tail must be computed by

iteration with the Church encoding. For head, we use a maybe type to return just

the head of the list, if the list is not empty, and nothing otherwise.

Using tail, we can now define the crucial helper function merge, in Figure 9.

merge takes in the comparator function and two lists assumed to be sorted, and
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Fig. 9. Merge function for Church-encoded lists.

returns the merged sorted result. In some cases, merge will make recursive calls

with the first list decreased, when the head of the first list is less than or equal

to the head of the second; and in some cases, the first list will not decrease, but

the second will (when the head of the second list is less than the head of the

first). To do this in a terminating way, we follow the approach used in the Coq

standard library (Sorting/Mergesort.v) (The Coq development team, 2014), and

use a nested iteration. We have an outer iteration on the first list, for the cases where

the first list will be decreased; and an inner iteration on the second list for the cases

where the first list is unchanged but the second decreases. The code is rendered a

little more verbose by the need to analyze the maybe value returned by head. But

let us look at this code at the heart of the function:

cmp a b (List A)

(Cons A a (outer pa lb))

(Cons A b (inner pb))))

In the surrounding context, we have:

• outer : List A → List A → List A, for making the outer recursive call

when the first list will decrease,

• inner : List A → List A, for making the inner recursive call when the

first list will stay the same and the second will decrease,

• a : A, the head of the first list,

• b : A, the head of the second list,

• pa : List A, the tail of the first list,
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Fig. 10. Mergesort function for Church-encoded lists.

• lb : List A, the second list,

• pb : List A, the tail of the second list.

So the central code of merge, displayed above, is returning a as the head of the

result list with a call to outer as the tail, in case a is less than or equal to b; and b as

the head and a call to inner as the tail otherwise. Due to the repeated use of tail

in each iteration, merge takes quadratic time in the sum of the sizes of the input

lists. Thankfully, the code for mergeSort is then straightforward; see Figure 10.

5.3 Mergesort for Parigot-encoded lists

We now redo the work of the previous section, using the Parigot encoding. Braun

trees and the braunInsert function are defined in Figure 11. The type constructor

Braun is defined recursively, as always for Parigot-encoded recursive datatypes, so

that the subtrees (of type Braun A) can be input arguments to the second function

required by the definition of Braun. Fold and unfold operations [Braun] A and

[Braun!] A, respectively, are used in the constructors. The code for braunInsert

is much simpler than the version for Church-encoded Braun trees (Figure 8 above),

because we no longer need to compute the unmodified Braun tree along with the

modified one. The unmodified subtrees L and R are already available with the

Parigot encoding, and the modified subtrees iL and iR are available as the results

of iteration.

The definitions for lists, their constructors, and the listToBraunTree function are

then completely as expected for the Parigot encoding, so we elide the definitions. The

code in Figure 12 for merge is much more straightforward than for Church-encoded

lists. merge is greatly simplified by the fact that the Parigot encoding makes the

tails of the lists available while iterating. This allows us to simplify the types of

outer and inner, so that now outer just takes in the second list (instead of the

first and the second), and inner does not require any lists at all, but instead is just

the iterative result of merging the tail of the second list with the first list unchanged.

The code for mergeSort reveals no new matters of interest, so it is elided.
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Fig. 11. Parigot-encoded Braun trees.

Fig. 12. Mergesort with the Parigot encoding.

5.4 Mergesort for lists with the embedded-iterators encoding

Finally, let us consider mergesort for the embedded-iterators encoding. Our Braun

trees will embed Church numerals for the height of the node, at each node. This

is sufficient for iterating through both subtrees of the tree separately. Similarly, our

lists will embed Church numerals for the length of the list.

Braun trees are defined in Figure 13. We define a helper function getBraunCNat

to get the Church-encoded numeral for the height of the given Braun tree. The

braunInsert function requires some explanation. To insert an element into a Braun

tree, we will need to make a number of recursive calls, corresponding to the height

of the tree. So we use getBraunCNat to get this height, and then use it to iteratively

construct a function of type Braun A → Braun A. In each case of that iterative

construction, we must analyze the input Braun tree b. When we are in the successor

case of our iteration, b must be a proper node (not a leaf). Unfortunately, as
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Fig. 13. Braun trees with the embedded-iterators encoding.

we do not have any dependent typing in Frec
ω , the type system cannot discern

this invariant, and so we must include code for the impossible off-case (labeled

% should not happen), where b is a leaf. Something similar happens in the zero

case of our iteration on the height of the Braun tree. In the successor case, where

we have analyzed b and found it to be a node, we can call the function r which we

iteratively computed for the predecessor of the depth of the node. We call this on

the right subtree, which, as with the Scott and Parigot encodings, is available at this

point with our embedded-iterators encoding.

The definition of the List datatype using the embedded-iterators encoding is

rec List : * → * =

λ A:*, ∀ X:*, (CNat → A → List A → X) → X → X.

https://doi.org/10.1017/S0956796816000034 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000034


22 A. Stump and P. Fu

The first argument of a list as described by this definition is a function which will be

given the head and tail of the list (of types A and List A), but also a Church-encoded

natural number for the length of the list (i.e., one plus the length of the tail), which

can be obtained with an elided helper function getLen. We also elide definitions

of the list constructors and the listToBraunTree function, as these reveal no new

issues.

Finally, we can implement the merge and mergesort functions, shown in Fig-

ure 14. For merge, we get the embedded lengths of the input lists la and lb, and

sum them using the Rosser addition function CaddR on CNats. This will allow us to

recurse as deeply into the two input lists as might be necessary. Using the sum of

the lengths, we iteratively construct a function taking in two input lists la and lb,

analyzing them both, and performing the comparison with cmp on their heads as in

the previous implementations. We use r to make recursive calls with the tail pa of

la and lb, or else la and the tail pb of lb. For mergeSort, we use a beta-redex to

introduce a name b for the Braun tree we get from listToBraunTree A a laa. We

call getBraunCNat to get the embedded depth of this Braun tree, from which we

iteratively construct a function from Braun A to List A. In both the successor and

the step cases, the terms we are using to construct this function analyze the input

Braun tree x. Again, we have some off cases which cannot happen, but cannot be

statically ruled out. The code uses merge to combine the results r L and r R of

recursively sorting the left and right subtrees of x; and in the case where Braun tree

x has depth 0 and is hence a leaf, just returning a singleton list.

5.5 Discussion

Of the three implementations above, the one using Church-encoded data structures

(Braun trees and lists) is the least satisfactory. We are forced into several inefficient

computations, which are also complicated to implement. The function for inserting

data into a Braun tree simultaneously computes the modifed (data inserted) and

unmodified Braun tree, so that it can rebuild the entire tree, including modified and

unmodified subtrees. This increases the asymptotic time complexity of this function

from logarithmic to linear – a serious performance penalty. Also, we have to use

an iterative tail function, which increases the asymptotic time-complexity of the

merge function from linear to quadratic.

The embedded-iterators encoding does not incur penalties in asymptotic time-

complexity. But it suffers from the fact that iteration and analysis of data are

separate, and so in several situations, we find we are in an analysis case (e.g., the

input list is empty) which cannot happen due to the iteration case we are in (e.g.,

the length of the input list is non-zero). This requires us to include dummy code

for those off cases. Dependent types (not available in Frec
ω ) might allow us to drop

them.

The implementation with Parigot-encoded data structures is superior. Since

analysis and iteration happen simultaneously with the Parigot encoding, we do

not have off cases as in the embedded-iterators encoding. The code is the simplest

of the three implementations, and has the expected asymptotic time-complexities.
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Fig. 14. Merge sort with the embedded-iterators encoding.

The only concern generally is the exponential size of normal forms for the Parigot

encoding. But as we will see next, this actually does not occur in practice with

efficient implementations of lambda calculus.

6 Performance comparison

In this section, we present empirical data obtained with Racket Version 6.0.1 (Flatt

& PLT, 2010) and the ghc implementation, version 7.6.3, of Haskell, to compare the
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Fig. 15. Comparison of different encodings for the exponentiation test, using Racket.

runtime performance of the above lambda encodings. We compare wallclock times

for the encodings on three families of benchmarks:

• computing 2n,

• computing x − x where x is defined to be 2n (in Racket this means 2n will be

computed once, not twice); since subtraction is defined as iterated predecessor,

this tests the cost of computing predecessor for an encoding,

• running merge sort on a list of length 2n, obtained by concatenating the list

of the first eight Parigot-encoded numerals, 2n−3 times.

All tests were run on a standard laptop computer with a 1.60 GHz Intel Core 2

Duo processor with 128 Kb L1 cache, 3072 Kb L2 cache, and 5 GB main memory,

running Ubuntu Linux version 12.04.

6.1 Experiments using Racket

Our fore implementation can emit erased Frec
ω terms in Racket syntax. The erasure

is a slightly optimized version of the function given earlier (Figure 4): the fold

and unfold operations are eliminated completely where they are applied. For one

example, the Racket definition emitted by fore for the basic version of addition on

Church-encoded numerals is

(define Cadd (lambda (n) (lambda (m) ((n Csuc) m))))

To run the tests, we invoke Racket on the Racket source files generated by fore.

Figure 15 shows the times in seconds required for computing 2n, for even values

of n from 10 to 22, for all different encodings we considered above. In this and

in all subsequent figures, we have shaded the first encoding in each group with

diagonal hatching, to help make the starting point of the group visually distinct.

Our benchmark families all increase exponentially in the difficulty required for a

standard implementation, as a function of a parameter n plotted on the x -axis. So

we will use a log scale for the y-axis.

In Figure 15, we see that the Rosser definition (Church R in the Figure)

of exponentiation on Church-encoded numerals is superior to the others by a

notable margin. There is some benefit to using the call-by-value version of the
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Fig. 16. Comparison of different encodings for the subtraction test (x − x where x is 2n),

using Racket.

Parigot encoding. Notice that as predicted above, Racket does not actually require

exponential space in practice to store Parigot-encoded numbers. If it did, the

memory required to store 222 would vastly exceed the physical memory of the

test computer (indeed, of all computers in existence), and the benchmarks would

not complete execution. We will consider this point further below (Section 6.4).

The embedded-iterators encoding is slightly slower, and embedded-iterators with

compressed iterators is much slower. We do not consider this last alternative in

subsequent tests, due to its poor performance here.

Figure 16 shows the results for the subtraction test (x − x where x is 2n, and we

perform that exponentiation only once). As expected, the Church and unmodified

Parigot encoding are very slow with respect to the call-by-value Parigot encoding

and to the embedded iterators (Stump-Fu) encoding.

Figure 17 shows the results for the mergesort test in Racket. We use a version

of the Church encoding modified for call-by-value reduction, similarly to the way

the Parigot encoding is modified as described in Section 3.4. Without a call-by-

value version of the booleans, for example, algorithms like merging two sorted lists

take exponential time, because using an unmodified Church boolean (the result of

comparing the two heads of the lists) to select between two alternatives will evaluate

both, with call-by-value reduction. Even so, the performance is much worse than for

call-by-value Parigot, which is much better than the embedded-iterators encoding on

this benchmark. We will see a different situation when we repeat this test in Haskell.

6.2 Experiments using Haskell

Using Haskell’s higher-rank polymorphism and its newtype mechanism for intro-

ducing recursive types with a sole constructor, we can type-check all the above

lambda-encodings in Haskell. Because Haskell’s directly supports only predicative

polymorphism, newtype must be used to wrap higher rank types for instantiation

of universally quantified type variables. A similar mechanism in Clean was used

in a recent similar study (Koopman et al., 2014). We must use newtype even

for the translations of non-recursive types like CNat, because of the restriction to

predicative polymorphism. So we use alternative versions of the fore source files for
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Fig. 17. Comparison of different encodings for the test with mergesort, using Racket.

Church-encoded data, where all types are recursively defined. We declare CNat as a

recursive type in fore:

rec CNat : * = ∀ x : * , (x → x) → x → x .

Then, fore compiles this to the following Haskell newtype declaration:

newtype CNat =

FoldCNat { unfoldCNat :: forall (x :: *) . (x -> x) -> x -> x}

Uses of fold and unfold operations in the fore code are then translated to calls

to FoldCNat and unfoldCNat, respectively. For example, the fore definition of

successor

csuc : CNat → CNat =

λ n : CNat ,

[CNat] λ x : * , λ s : x → x , λ z : x ,

s ([CNat!] n x s z) .

is translated to the following Haskell code:

csuc :: CNat -> CNat

csuc =

(\ n -> (FoldCNat (\ s -> (\ z -> (s ((((unfoldCNat n) s) z)))))))

We first use ghc to compile the Haskell source files generated by fore, and then

run the generated executables. Note that care must be taken to force Haskell’s

lazy evaluation to execute the test. We do this by printing a value which ensures

computation of the result.

Figure 18 compares the wallclock time for the different encodings, for the

exponentiation test. The times for computing small powers, like 210, are measured

at 0 seconds. For larger powers, we see Church, Church with Rosser definitions,

and Parigot at about the same times. Embedded iterators and embedded iterators

with compressed iterators are slower and much slower, respectively. The results are

consistent with those from Racket.

Figure 19 shows the rest of the subtraction test. As expected, Parigot and

embedded iterators are much faster than the asymptotically less efficient Church
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Fig. 18. Comparison of different encodings for the exponentiation test, using Haskell.

Fig. 19. Comparison of different encodings for the subtraction test, using Haskell.

version. Similar results appear for the sorting test, in Figure 20. Interestingly, here

embedded iterators does not lag behind Parigot, as we saw it did with Racket. This

suggests embedded iterators may be more performant with lazy evaluation than

with eager evaluation.

6.3 Comparing with native implementations

Having compared the different encodings using two different efficient implemen-

tations of lambda calculus, we cannot help but be curious: how do the lambda

encodings compare against native sorting functions in Racket and Haskell? For

Racket, we will compare with the native sort function provided by Racket, running

(of course) on native Racket lists. For Haskell, we will use Data.List.sort, from the

Fig. 20. Comparison of different encodings for the sorting test, using Haskell.
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Fig. 21. Comparison of call-by-value Parigot in Racket (P Racket), native Racket (N Racket),

Parigot in Haskell (P Haskell), and native Haskell (N Haskell), on the first sorting test (long

list of small numbers).

base package that ships with ghc, again operating on native Haskell lists. The data

are still Parigot-encoded natural numbers, and the comparator function is the same

as above, except wrapped to produce results of the type expected by the native sorting

function. The rather surprising results is shown in Figure 21. For the larger list sizes

(e.g., 222 = 4194304), the sorting function using call-by-value (CBV) Parigot-encoded

lists is significantly faster, by two or three times, compared to the native Racket

implementation. Parigot lags native Haskell by roughly an order of magnitude.

It has been observed in practice that for lists with many repeated elements, the

widely used quicksort algorithm can suffer performance degradation.1 Figure 22

shows the wallclock times for a second sorting test, for Racket only, where the

lists to be sorted consist of pseudo-randomly generated native numbers, and the

maximum number requested from the pseudo-random generator is twice the length

of the list. Here, we see Racket’s sorting function on native Racket lists pulling

far ahead of mergesort with Braun trees on lists encoded with CBV Parigot (e.g.,

20 times faster for the largest test, 22, that could be completed by the lambda-

encodings implementation, without exceeding 4 GB memory). Thus, the positive

results of Figure 21 compared to Racket may be an artifact of the particular form

of lists to sort, or sorting algorithm.

6.4 Discussion of performance of Parigot encoding

It may be surprising that both Racket and Haskell have no problem computing

with Parigot-encoded data whose normal forms would be, if computed out in full in

pure lambda calculus, of beyond astronomical size. But neither Racket nor Haskell

implements β-reduction in a strict sense. They implement optimized versions of β-

reduction, in both cases using sharing of common subterms (Jones, 1987; Felleisen

et al., 2009). It is interesting to contrast these results with normal-order (i.e., leftmost)

reduction, for example, for terms of the form Padd N Pzero, where N is a Parigot-

encoded natural number. Consider the case where N is Parigot-encoded two (let us

1 Thanks to Algorithms colleague Kasturi Varadarajan for pointing this out.
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Fig. 22. Comparison of call-by-value Parigot and native Racket on the second sorting test

(native integers from a range twice the length of the list).

call it Ptwo). Then, we have this normal-order reduction sequence for the erased

terms, where we introduce definitions for certain terms as we go, with equality steps:

Padd Ptwo Pzero �2

Ptwo (λP . Psuc) Pzero =

Ptwo S Pzero �2

S Pone (S Pzero Pzero) �
Psuc (S Pzero Pzero) =

Psuc Q �
λs.λz.s Q (Q s z) �4

λs.λz.s Pone (Q s z) �4

λs.λz.s Pone (Pone s z) �2

λs.λz.s Pone (s Pzero z)

This is a total of 16 steps, and indeed, with the normal-order evaluator include

in fore, we have observed that the number of steps to normalize Padd N Pzero

using normal-order reduction is exactly 2n+2, where N is the Parigot representation

of n. The offending step is the one shown above where redex Q is duplicated. This

will not happen in either Racket or Haskell. In Racket, call-by-value reduction will

first reduce Q to a value. In Haskell, call-by-need reduction will share Q, and only

compute its normal form once.

7 Conclusion

This paper has introduced a new lambda encoding, called the embedded-iterators

encoding, which has the expected asymptotic complexities for all basic operations

on Peano numbers – including constant time for predecessor – but requires only

quadratic space to represent each number. This improves substantially on the Parigot

encoding, which requires exponential space for each numeral. Like the Parigot

encoding, the embedded-iterators encoding is typable in Frec
ω , an extension of

System Fω with global positive-recursive type definitions. This extension preserves

strong normalization of the type theory, so all operations defined in this paper are

statically confirmed by our fore implementation of Frec
ω to be terminating. We also
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considered in detail how to implement a non-trivial algorithm – mergesort using

Braun trees – with the Church, Parigot, and embedded-iterators encodings.

Finally, these encodings were evaluated using both eager (Racket) and lazy

(Haskell) evaluation on a small suite of non-trivial benchmarks. The results generally

have the Parigot encoding as the most performant with both eager and lazy

evaluation, except for the exponentiation benchmark, where the Church encoding,

particularly with Rosser’s clever definitions of the basic operations, is significantly

faster. The embedded-iterators encoding lags far behind the Parigot encoding on the

mergesort benchmark with eager evaluation, but with lazy evaluation in Haskell,

it scales similarly. Thus, if the size of normal forms is an important consideration,

and if one is using lazy evaluation, we have seen empirical evidence that the new

embedded-iterators encoding is currently the best lambda encoding available in total

type theory.

If one wishes to use lambda-encoded data structures in practice, then designing

optimizations specifically for improving runtime performance of lambda-encoded

data is important future work. Another important direction is to improve depen-

dently typed programming with lambda encodings. Previous work showed how to

define types like the natural numbers as their own dependent iterators (i.e., induction

principles) (Fu & Stump, 2014). The next step is to extend the type theory to allow

lifting term-level lambda-encoded data to the type level, for type-level computation

and generic programming.
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