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Abstract

In this article, we determine all the totally positive integers of Q(
√

m) which can be represented as sums
of distinct integral squares, where m = 2, 3, 6.
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1. Introduction

The research on sums of integral squares has a long history going back to Lagrange’s
four squares theorem [7], that is, every positive rational integer is a sum of four
squares of rational integers. In 1902, Hilbert asked whether every totally positive
integer of a real quadratic field can be represented as a sum of four integral squares
as a generalization of Lagrange’s theorem. In 1928, Götzky [5] answered startlingly
that every totally positive integer in the field Q(

√
5) is representable as a sum of

four integral squares and Maass [8] proved that three squares suffice instead of four.
Furthermore, Siegel [11] proved that if F is a totally real number field, representability
as a sum of integral squares in F holds if and only if F is either Q or Q(

√
5). However,

Cohn and Pall asserted alternative results for some real quadratic fields Q(
√

2), Q(
√

3)
and Q(

√
6) in the consecutive articles [1, 2, 4]: every totally positive integer of Q(

√
2)

and Q(
√

3) is representable as a sum of at most four squares if it is represented as a
sum of squares. At most five squares are needed for every totally positive integer of
Q(
√

6). Cohn [3] and Scharlau [10] proved that three squares suffice in the field Q(
√

2)
and Q(

√
3).

However, one can ask which numbers are representable as a sum of distinct integral
squares. For the case of rational integers, in 1948, Sprague [12] showed that every
positive rational integer bigger than 128 can be represented as a sum of distinct
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integral squares. He also found all the 31 positive integers which cannot be represented
as sums of distinct integral squares are as follows: 2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22,
23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112 and 128.
Recently, for totally positive algebraic integers in real quadratic number fields, Park [9]
classified all the totally positive integers ofQ(

√
5) which cannot be represented as sums

of distinct integral squares.
Let m = 2, 3, 6. Our main result is that, in the quadratic ring Z[

√
m], all totally

positive integers of the form a + 2b
√

m are sums of distinct squares, except finitely
many ones up to equivalence. We will describe the exceptions explicitly.

2. Preliminary

Throughout this article, m = 2, 3 or 6. Let F be a real quadratic field Q(
√

m)
with involution ‘ · ’ whose fixed field is Q and let O = Z[

√
m] = {a + b

√
m | a, b ∈ Z}

be the ring of algebraic integers of F. We know immediately that any totally positive
algebraic integer of the form a + b

√
m cannot be represented as a sum of squares if b

is odd. Let
S = S(

√
m) = {a + 2b

√
m ∈ O | a > 2|b|

√
m},

which is a subset of totally positive integers in O. Two algebraic integers α, β ∈ O
are called equivalent if there exists an integer n such that β = ε2nα where ε = εm is a
fundamental unit in Q(

√
m). We choose fundamental units ε2 = 1 +

√
2, ε3 = 2 +

√
3

and ε6 = 5 + 2
√

6. If there is no confusion, we will use ε instead of εm. The
characterization of S can be obtained as in Lemma 2.1. The characterization of S(

√
6)

was suggested by Kim [6] and we give a simpler proof here.

L 2.1. Every element of S(
√

m) is equivalent to

p + qε2
2 or p + qε2

2 if m = 2,
p + q(ε3 − 1)2 or p + q(ε3 − 1)2 if m = 3,
p + qε6 or p + qε6 if m = 6,

for some nonnegative integers p and q.

P. For any a + 2b
√

3 ∈ S(
√

3), we may assume that b ≥ 0 without loss of
generality. Define rational integer sequences {an} and {bn} by

an+1 + 2bn+1

√
3 = ε2(an + 2bn

√
3)

= (7an − 24bn) + 2(7bn − 2an)
√

3

and a0 = a, b0 = b. Since ε is totally positive, an + 2bn

√
3 is totally positive for all

n ≥ 0. Then

bn+1 − bn = 6bn − 2an <
6an

2
√

3
− 2an < 0.

Hence bn is decreasing. Choose k satisfying bk ≥ 0, bk+1 < 0. If |bk| < |bk+1|, then
ak > 4bk, so

ak + 2bk

√
3 = (ak − 4bk) + bk(ε − 1)2.
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If |bk| ≥ |bk+1|, then ak+1 ≥ −4bk+1. Thus

ak+1 + 2bk+1

√
3 = (ak+1 + 4bk+1) + (−bk+1)(ε − 1)2.

This means a + 2b
√

3 ∈ S(
√

3) is equivalent to p + q(ε − 1)2 or p + q(ε − 1)2 for
some nonnegative integers p and q. Essentially the same argument shows that any
a + 2b

√
2 ∈ S(

√
2) is equivalent to p + qε2

2 or p + qε2
2 for some nonnegative integers p

and q.
Now we characterize S(

√
6). Let

T = {a`ε
` + a`+1ε

`+1 + · · · + akε
k | `, k ∈ Z, ` ≤ k and a`, a`+1, . . . , ak ∈ Z≥0}.

Note that 1 ∈ T and T ⊆ S(
√

6) since ε t are totally positive integers for all t ∈ Z. If
S(
√

6) , T , then there is an element α = a + 2b
√

6 ∈ S(
√

6) \ T such that b ≥ 0 and
Tr(α) ≤ Tr(β) for all β ∈ S(

√
6) \ T . If α − 1 is totally positive, then

α − 1 ∈ S(
√

6) \ T and Tr(α − 1) < Tr(α),

which is a contradiction. Suppose α − 1 is not totally positive and b > 0. Then
a − 1 < 2b

√
6. If b ≤ 9,

a > 2b
√

6 = 5b − (5 − 2
√

6)b > 5b − 1
9 b ≥ 5b − 1,

since 5 − 2
√

6 < 1
9 . So a ≥ 5b and hence α = a − 5b + bε ∈ T , which contradicts the

assumption. If b ≥ 10, then

a < 2b
√

6 + 1 ≤ 5b − (5 − 2
√

6)b +
b
10
≤ 5b,

since 5 − 2
√

6 > 1
10 . Since

αε2
= (49a − 240b) + (98b − 20a)

√
6 ∈ S(

√
6) \ T

and
Tr(αε2) = 98a − 480b ≤ 2a + 96(a − 5b) < 2a = Tr(α),

we obtain a contradiction. Thus we have S(
√

6) = T . For each α ∈ S(
√

6), suppose

α = a`ε
` + a`+1ε

`+1 + · · · + akε
k

for some `, k ∈ Z and a`, a`+1, . . . , ak ∈ Z≥0 such that ` ≤ k and k − ` is minimal.
Therefore, if

α = brε
r + br+1ε

r+1 + · · · + bsε
s

for some r, s ∈ Z and br, br+1, . . . , bk ∈ Z≥0 such that r ≤ s, then k − ` ≤ s − r holds.
Note that ε2 = 10ε − 1 and hence

εk = 9εk−1 + 8εk−2 + · · · + 8ε`+2 + 9ε`+1 − ε`.

If k − ` ≥ 2 and a` ≥ ak, then

α = (a` − ak)ε` + (a`+1 + 9ak)ε`+1 + · · · + (ak−1 + 9ak)εk−1.

This gives a contradiction. When k − ` ≥ 2 and a` ≤ ak, we get a contradiction with a
similar argument. Hence k − ` ≤ 1 and a + 2b

√
6 ∈ S(

√
6) is equivalent to pεn + qεn+1
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for some nonnegative integers p, q and n ∈ Z. Therefore a + 2b
√

6 ∈ S(
√

6) is
equivalent to p + qε or p + qε−1 = p + qε for some nonnegative integers p and q. �

R 2.2. Let U be the set of all rational integers which can be represented as a
sum of distinct squares in Z. By [12], we know that

Z≥0 \ U =

{
2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 27, 28, 31, 32,
33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 108, 112, 128

}
.

3. Q(
√

2) case

We characterize the set of totally positive algebraic integers of Q(
√

2) which can be
represented by sums of distinct integral squares.

T 3.1. The set of totally positive algebraic integers of Q(
√

2) which can be
represented as sums of distinct integral squares is S(

√
2).

P. By Lemma 2.1, every element in S(
√

2) is equivalent to p + qε2 or p + qε2 for
some nonnegative integers p, q. Because 2 = (ε − 1)2 is a square in Q(

√
2) and every

nonnegative integer can be represented in base 2, the result follows immediately. �

4. Q(
√

3) case

For the Q(
√

3) case, we start by giving a simple lemma.

L 4.1. Any nonnegative rational integer except 2 and 6 can be represented as a
sum of distinct integral squares in Q(

√
3).

P. Since 3 = (ε − 2)2,
a + 3b with a, b ∈ U

can be represented as a sum of distinct integral squares in Q(
√

3). Except for 2,
6, 11 and 18, all integers in Z≥0 \ U can be represented as a + 3b. For example,
128 = 42 + 102 + 3 · 22. On the other hand,

11 = (ε − 2)2 + (ε − 1)2 + (ε − 1)2 and 18 = 12 + ε2 + ε2
+ (ε − 2)2.

Thus we get the result. �

T 4.2. Let α be a totally positive algebraic integer of Q(
√

3). Then α is a sum
of distinct squares if and only if α belongs to S(

√
3) and is equivalent to an element in

S(
√

3) \
{

2, 2 + (ε − 1)2, 2 + (ε − 1)2, 1 + 2(ε − 1)2, 1 + 2(ε − 1)2,
6, 6 + (ε − 1)2, 6 + (ε − 1)2, 2 + 4(ε − 1)2, 2 + 4(ε − 1)2

}
.

P. Note that if α < S(
√

3), then α cannot be represented as a sum of squares, so
α ∈ S(

√
3). By Lemma 2.1, we may assume that α = p + q(ε − 1)2 or α = p + q(ε − 1)2

for some nonnegative integers p and q. Since p + q(ε − 1)2 = p + q(ε − 1)2, we may
assume that α = p + q(ε − 1)2 for some nonnegative integers p and q.
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If p ≥ 19 and q ≥ 19, then by the proof of Lemma 4.1 we are done. Suppose
0 ≤ p ≤ 18 and q ≥ 21. The cases p = 0 or 1 are obvious. So suppose 2 ≤ p ≤ 18.
Since both of p and p − 2 cannot be 2, 6, 11 or 18 and

p + q(ε − 1)2 = (p − 2) + (q − 2)(ε − 1)2 + ε2 + (ε − 2)2,

we are done, by the proof of Lemma 4.1. If p ≥ 21 and 0 ≤ q ≤ 18, then we can prove
that α can be represented as a sum of distinct integral squares with a similar argument.

Suppose 0 ≤ p ≤ 20 and 0 ≤ q ≤ 20. Let E = {2, 6, 11, 18}. The cases p, q < E are
obvious. If p ∈ E, then

α =



(p + 1) + (q − 2)(ε − 1)2 + ε2 if p ∈ E and 0 ≤ q − 2 < E,

(p + 3) + (q − 6)(ε − 1)2 + (1 + ε)2 if p ∈ E and 0 ≤ q − 6 < E,

(p − 8) + (ε − 1)2 + (ε − 1)2 if p = 11, 18 and q = 0,

4 + ε2 + (ε − 1)2 if p = 11 and q = 1,

5 + ε2 + (ε − 1)2 + (2ε − 3)2 if p = 18 and q = 1,

(p − 2) + (ε − 2)2 + (ε + 2)2 if p = 6, 11, 18 and q = 4,

(p − 2) + (2ε − 3)2 + (2ε − 1)2 if p ∈ E and q = 8.

Hence these can be represented as sums of distinct integral squares. If q ∈ E, then

α =


(p + 1) + (q − 2)(ε − 1)2 + ε2 if 0 ≤ p + 1 < E and q ∈ E,

(p − 5) + (q − 2)(ε − 1)2 + (2ε − 3)2 if 0 ≤ p − 5 < E and q ∈ E,

4 + (q − 6)(ε − 1)2 + (2ε − 1)2 if p = 1 and q = 6, 11, 18.

Hence these can be represented as sums of distinct integral squares.
We can easily show that the remaining six elements,

2, 6, 2 + (ε − 1)2, 6 + (ε − 1)2, 1 + 2(ε − 1)2, 2 + 4(ε − 1)2,

cannot be represented by sums of distinct integral squares. For example, let us consider
2 + 4(ε − 1)2 whose trace is 36. If 2 + 4(ε − 1)2 = 18 + 8

√
3 can be represented by

sums of distinct integral squares, then

2 + 4(ε − 1)2 = 18 + 8
√

3 =

k∑
i=1

(ai + biε)2

=

k∑
i=1

{(ai + 2bi)2 + 3b2
i } + 2

k∑
i=1

(ai + 2bi)bi

√
3,

where ai, bi ∈ Z and ai + biε , a j + b jε if i , j. Therefore
∑k

i=1 b2
i ≤ 6 and hence

|bi| ≤ 2. This implies that 2 + 4(ε − 1)2 = 18 + 8
√

3 must have at least one square
summand among

1, 3 = (ε − 2)2, 4, 2ε = (−1 + ε)2, −1 + 4ε = ε2,

9, 6ε = (ε + 1)2, 12, 5 + 4ε = (−1 + 2ε)2, 8ε = 22(ε − 1)2, 16.
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Then, by considering traces, one can show that there is no solution for the above
summation. For 2, 6, 2 + (ε − 1)2, 6 + (ε − 1)2, 1 + 2(ε − 1)2, we can prove that these
elements cannot be represented by sums of distinct integral squares with a similar
argument. �

5. Q(
√

6) case

For the case Q(
√

6), the following remark and lemma are useful.

R 5.1. In Q(
√

6), the following are some square algebraic integers whose traces
are less than 100:

2 + ε = (1 +
√

6)2 =

(
ε − 3

2

)2

, 2ε = (2 +
√

6)2 =

(
ε − 1

2

)2

,

15 + 2ε = (1 + 2
√

6)2 = (ε − 4)2, 3ε = (3 +
√

6)2 =

(
ε + 1

2

)2

,

2 + 4ε = (4 +
√

6)2 =

(
ε + 3

2

)2

, 8 + 4ε = (2 + 2
√

6)2 = (ε − 3)2,

6 + 5ε = (5 +
√

6)2 =

(
ε + 5

2

)2

, 3 + 6ε = (3 + 2
√

6)2 = (ε − 2)2,

−1 + 10ε = (5 + 2
√

6)2 = ε2.

L 5.2. Any nonnegative rational integer except 2, 3, 8 and 12 can be represented
as a sum of distinct integral squares in Q(

√
6).

P. Since 6 =
√

6
2

= ((ε − 5)/2)2,

a + 6b with a, b ∈ U

can be represented as a sum of distinct integral squares in Q(
√

6). All integers in
Z≥0 \ U can be represented as a + 6b except 2, 3, 8, 12 and 18. On the other hand,
since

18 =

(
ε − 3

2

)2

+

(
ε − 3

2

)2

+ 22,

this lemma follows. �

T 5.3. Let α be a totally positive algebraic integer of Q(
√

6). Then α is a sum
of distinct squares if and only if α belongs to S(

√
6) and is equivalent to an element in

S(
√

6) \



a where a = 2, 3, 8, 12,
b + ε, b + ε, ε where b = 1, 4, 5, 10, 14,
c + 2ε, c + 2ε where c = 2, 3, 8, 12,
d + 4ε, d + 4ε, 4ε where d = 1, 4, 5, 10,
e + 5ε, e + 5ε where e = 2, 3,
f + 6ε, f + 6ε where f = 1, 5,
1 + 7ε, 1 + 7ε, 7ε, 2 + 8ε, 2 + 8ε, 1 + 9ε, 1 + 9ε, 9ε,
2 + 10ε, 2 + 10ε, 16ε, 19ε, 2 + 20ε, 2 + 20ε


.
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P. Note that if α < S(
√

6), then α cannot be represented as a sum of squares, so
α ∈ S(

√
6). By Lemma 2.1, we may assume that α = p + qε or α = p + qε for some

nonnegative integers p and q. Since p + qε = p + qε, we give a proof only for the case
α = p + qε for some nonnegative integers p and q. Let E = {2, 3, 8, 12}.

First, we assume that q is even and let q = 2r for some nonnegative integer r. If
p ≥ 13 and r ≥ 13, then

α = p + r(2ε).

Since 2ε is square, we are done. Suppose 0 ≤ p ≤ 12 and r ≥ 13. Since α is
decomposed as the following, α can be represented as a sum of distinct integral squares
by Remark 5.1 and Lemma 5.2:

α =


p + r(2ε) if p < E,

(p − 2) + (2 + 4ε) + (r − 2)(2ε) if p ∈ E and r , 14,

(p − 2) + (2 + ε) + 32(3ε) if p ∈ E and r = 14.

If p ≥ 13 and 0 ≤ r ≤ 12, then α can be represented as a sum of distinct integral squares
in the following way, with a similar argument:

α =


p + r(2ε) if r < E,

(p − 2) + (2 + 4ε) + (r − 2)(2ε) if p , 14 and r ∈ E,

6 + 22(2 + ε) + (r − 2)(2ε) if p = 14 and r ∈ E.

Suppose 0 ≤ p ≤ 12 and 0 ≤ r ≤ 12. The cases p, r < E are obvious. If p ∈ E, then

α =


(p − 2) + (2 + 4ε) + (r − 2)(2ε) if p ∈ E and 0 ≤ r − 2 < E,

(p − 3) + (3 + 6ε) + 2ε if p = 3, 8, 12 and r = 4,

(p + 1) + (10ε − 1) + (r − 5)(2ε) if p = 3, 8, 12 and r = 5, 10.

Hence these can be represented as sums of distinct integral squares. If r ∈ E, then

α =



1 + (10ε − 1) + 14ε if p = 0 and r = 12,

(2 + 4ε) + (10ε − 1) + (r − 7)(2ε) if p = 1 and r = 8, 12,

(p − 2) + (2 + 4ε) + (r − 2)(2ε) if 0 ≤ p − 2 < E and r ∈ E,

(p − 3) + (3 + 6ε) + (r − 3)(2ε) if p = 4, 10 and r = 3, 8, 12,

(p − 1) + (10ε − 1) + (2 + 4ε) + (r − 7)(2ε) if p = 5 and r = 8, 12.

Hence these can be represented as sums of distinct integral squares. So far, by direct
calculation, we confirm that all α = p + 2rε ∈ S(

√
6) can be represented as sums of

distinct integral squares except 20 elements,

2, 3, 8, 12, 2 + 2ε, 3 + 2ε, 8 + 2ε, 12 + 2ε, 4ε, 1 + 4ε, 4 + 4ε,
5 + 4ε, 10 + 4ε, 6ε, 1 + 6ε, 5 + 6ε, 2 + 8ε, 2 + 10ε, 16ε, 2 + 20ε.
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Second, we assume that q is odd and let q = 2r + 1 for some nonnegative integer r.
If p ≥ 13 and r ≥ 14, then

α = p + (r − 1)(2ε) + 3ε.

Hence we are done since 2ε and 3ε are square. Similarly, if 0 ≤ p ≤ 12 and r ≥ 14,
then

α =

p + (r − 1)(2ε) + 3ε if p < E,

(p − 2) + (2 + ε) + r(2ε) if p ∈ E,

and if p ≥ 13 and 0 ≤ r ≤ 13, then

α =


p + (r − 1)(2ε) + 3ε if 0 ≤ r − 1 < E,

(p − 2) + (2 + ε) if p , 14 and r = 0,

(p − 2) + (2 + 4ε) + 3ε + (r − 3)(2ε) if p , 14 and r − 1 ∈ E,

(p − 8) + 22(2 + ε) + (2r − 3)ε if p = 14 and r − 1 ∈ E,

and if 0 ≤ p ≤ 12 and 0 ≤ r ≤ 2, then

α =



(p − 2) + (2 + ε) if r = 0 and 0 ≤ p − 2 < E,

p + 3ε if r = 1 and p < E,

(p − 2) + (2 + ε) + 2ε if r = 1 and p ∈ E,

p + 3ε + 2ε if r = 2 and p < E,

4 + (2 + ε) + (2 + 4ε) if r = 2 and p = 8,

6 + (6 + 6ε) if r = 2 and p = 12.

Hence these can be represented as a sum of distinct integral squares. Suppose
0 ≤ p ≤ 12 and 3 ≤ r ≤ 13. If p < E and 0 ≤ r − 1 < E, then α can be represented as
sums of distinct squares since

α = p + (r − 1)(2ε) + 3ε.

If p ∈ E, then

α =



(p − 2) + (2 + 4ε) + (3ε) + (r − 3)(2ε) if p ∈ E and r − 3 < E,

(p + ε) + r(2ε) if p = 2 and r − 3 ∈ E,

(p − 6) + (6 + 5ε) if p = 12 and r = 2,

(p − 3) + (3 + 6ε) + (3ε) + (r − 4)(2ε) if p = 3, 8, 12 and r = 5,

(p + 1) + (10ε − 1) + (3ε) + (r − 6)(2ε) if p = 3, 8, 12 and r = 6, 11,
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and if r − 1 ∈ E, then

α =



32(3ε) if p = 0 and r = 13,

(2 + 4ε) + (10ε − 1) + (r − 8)(2ε) + 13ε if p = 1 and r = 9, 13,

(p − 2) + (2 + 4ε) + (3ε) + (r − 3)(2ε) if 0 ≤ p − 2 < E and r − 1 ∈ E,

(p − 4) + (2 + 4ε) + (2ε) + (ε + 2) if p = 4, 5 and r = 3,

(p − 3) + (3 + 6ε) + (3ε) + (r − 4)(2ε) if p = 4 and r = 4, 9, 13,

(2 + ε) + (2ε) + (3 + 6ε) + (r − 4)(2ε) if p = 5 and r = 4, 9, 13,

(p − 3) + (3 + 6ε) + (3ε) + (r − 4)(2ε) if p = 10 and r − 1 ∈ E.

Hence these can be represented as a sum of distinct integral squares. So far, by direct
calculation, we confirm that all α = p + (2r + 1)ε ∈ S(

√
6) can be represented as sums

of distinct integral squares except the following thirteen elements,

ε, 1 + ε, 4 + ε, 5 + ε, 10 + ε, 14 + ε, 2 + 5ε, 3 + 5ε, 7ε, 1 + 7ε, 9ε, 1 + 9ε and 19ε.

It is not hard to verify that the remaining elements cannot be represented as sums
of distinct integral squares. This verification can be done in a similar manner to
Theorem 4.2. For example, let us consider 3 + 5ε, which is of trace 56. If 3 + 5ε can
be represented as a sum of distinct squares, it must have at least a square summand
among the following irrational squares of trace less than 56, say, 2 + ε, 2ε, 3ε, 2 + 4ε,
and 15 + 2ε, as shown in Remark 5.1. However, this is impossible. �
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