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SECANT SPACES TO CURVES 

JOACHIM VON ZUR GATHEN 

Introduction. A classical question in algebraic geometry is whether a 
given projection of a projective space induces an isomorphism on a given 
closed subvariety. To answer it, one investigates secant lines to the 
subvariety. There has been a lot of recent activity in this field ([12], [14], 
[18], [21], [23]): see [14] and [12] for references). 

An obvious generalization of the secant lines is provided by the secant 
r-planes, which intersect a given closed subvariety in r + 1 linearly 
independent points. The closure of the set of these secant r-planes is the 
secant variety, and the aim of this paper is to determine its rational 
equivalence class in the case of curves. There is an extensive classical 
literature about this problem. 

In Section 1, we introduce the class of curves that we consider in this 
paper, namely the "r-twisted" curves, on which any r + 1 points are 
linearly independent. It turns out that this condition is generically 
satisfied, at least if the degree of the curve and the dimension of the 
ambient space are large enough. In Section 2, we consider for an r-twisted 
curve X Q Pn the natural morphism from Xr+] to the Grassmannian 
mapping an (r + l)-tuple to the corresponding r-plane. This morphism is 
separable of degree (r + 1)!, as expected. 

For the computation of the rational equivalence class of the secant 
variety we consider in Section 3 the inverse image of the Chern class of the 
tautological bundle under this morphism. Using an exact sequence, 
similarly as in [23], we express this inverse image by diagonal divisors and 
the hyperplane section. In Section 4, we give a recipe for computing the 
degree of products of such divisors, and thus obtain an algorithm for 
determining the rational equivalence class. In particular, it follows that 
this class depends only on the degree and genus of the curve, a statement 
that was classically assumed to be true for any curve under consideration. 
We give an example in Section 5.2 where this statement is not true 
(involving a curve that is not 2-twisted). 

In Section 5, we consider curves in P3 that are projections of r-twisted 
curves. Again, this is a generic condition for large enough degree. We 
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590 JOACHIM VON ZUR GATHEN 

obtain a host of enumerative formulas for such curves, which were all 
classically known ([3], [4], [5], [25], [26], [27], [28], [31], [32]). 

Acknowledgement. This paper contains essentially the author's Ph.D 
thesis which was done at the University of Zurich. Many thanks go to my 
advisor Volker Strassen, who suggested the problem and contributed 
many ideas. I also thank Vreni Schkôlziger for her efficient typing of the 
manuscript. 

1. Twisted curves. We fix some notation. V is a vector space of finite 
dimension n -f 1 over an algebraically closed field k, and the 
corresponding projective space P = Proj(F) consists of the lines in 
V. G(r, P) is the Grassmann variety of r-planes ( = r-dimensional linear 
subspaces) in P. A choice of basis for V gives a vector space isomorphism 
T:V-> A"+ 1 and homo geneous coordinates 7Q, . . , Tn on P. 

Definition 1.1. Let X Q P be a curve, x e X smooth, 0 ^ p ^ n with 
Tp(x)--£ 0, /G £)x^x a local parameter, 2o^ / / / / ^ t n e Taylor series of 
(Tj/Tp Ï X) <E £)x ^, and W Q An + l the linear subspace spanned by the 
r + 1 vectors (f00, . . . , / w 0 ) , . . . , (/0r, • . . Jnr\ Then 

I K j r = ?ro}(T-\W)) Q P 

is the r-th osculating space of X at x. 

Thus Ylx x i s a subspace of P of dimension ^ r, and one checks that 
it is independent of the choices of 7, /?, and /. Obviously, Ylxx

 = {x} 
and Tlxx

 iS t n e projective tangent line of X at x. (Piene [24] calls 
"osculating m-space" the I I ^ with dim 1 1 ^ = m- These spaces have 
the nice property of being the projective fibers of a vector bundle, if the 
characteristic is zero or large enough.) 

It is not hard to show that 1 1 ^ is the intersection of all hyperplanes 
that meet X at x with multiplicity ^ r -f 1. This property could serve as a 
definition of osculating spaces also for singular points x on X. 
Furthermore, it shows that I I ^ = P, where d = degX and X is 
non-degenerate. 

If dim YLxx
 = r f° r a ^ t>ut finitely many x G X, one obtains a 

morphism 8/.X —» G(r, P). This hypothesis is always satisfied in 
characteristic zero, and we get the usual definition of osculating spaces 
([7], Chapter 2). 

Let p(r, X)(XQ9 . . . , xr) denote the linear span of XQ, . . . , xr G X, taking 
into account multiplicities, i.e., if 
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R = x0 + . . . + xr = (a0 + 1) y0 + . . . + (as + 1)^ e Div,.+ 1 

is an effective divisor with y$, . . . , ys pairwise distinct, then p(r, X) 

(x0, . . . , xr) is the linear span of 11"° *, • • • * 11"*,* ^ ' p* 2 4 ^ ' 

Definition 1.2. X is called twisted at R (with respect to the given 
embedding) if dim p(r, A^X^Q, . . . , x r) = r. U X is twisted at every R e 
Div,.+ ], then X is called r-twisted. 

Thus an embedded curve is r-twisted if any r -f 1 distinct (possibly 
infinitely near) points are linearly independent. We shall write p for 
p(r, X) if no confusion is possible. If a linear system S resp. a complete 
linear system |Z>| on X induces an r-twisted embedding, we also call S resp. 
D r-twisted. 

Example 1.3. The rational norm curve of degree n in Pn is «-twisted. 
In order to see this, we can consider the affine curve given by 

cp:A] - > A" 

y h-> (y,y2, . . . , / ) , 

and assume y0, . . . , ys e A1, a$, • • • > ^ = 0 and 

The linear span in P'7 of the corresponding osculating spaces is given by 
the rows of the (n + 1) X (n + l)-matrix with entries 

y)'J (0 ^ / ^ j , 0 ë y ^ Û/; 0 ^ / ^ w). 

If a linear combination of the columns of this matrix is 0, say with 
coefficients UQ9 . . ., un e k, then 2o^/^« w/ ^ *s a polynomial with an 
{ai + l)-fold zero at yi for every 0 ^ / ^ ,̂ and hence the zero polynomial. 
Thus the curve is twisted at R. (We will see in Section 5.4 that this is the 
only «-twisted curve in Pw.) 

The results of Sections 2, 3, 4 are technically independent of the rest of 
this section, where we now show that a generic embedding X ^ P" is 
r-twisted if 2r < n. The following proposition reduces this question to 
embeddings given by complete linear systems, and provides a criterion in 
this case. 

PROPOSITION 1.4. Let 0 = r = d, D e Div^ a very ample divisor, and 
2r < m ^ n = dim\D\. Then 

(i) there exists a proper closed subvariety Z Q G(m, \D\) such that any very 
ample linear system S G G(m, \D\) is r-twisted if and only if D is r-twisted 
and S £ Z, 
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(ii) D is r-twisted if and only if l(D-R) = 1(D)- r-\ for all R G 
Div/ + 1. 

Proof Let S Q \D\ be a very ample linear system of dimension ra, X^Pm 

and X^P" the embeddings given by S and |Z>|, resp. Let 
R = (a0 + 1) x0 -f . . . + (as -f 1) xs G Div,.+ 1 

with pairwise distinct JC0, . . . , xs, L the linear span in Pm of 

nt, • • • - mA 
and 

Y(R) = {E G \D\: E-R â 0} 

which is isomorphic to |Z) —/?|. Then 

{H G G(m - 1, F") : L Q H) 
= {H G G(m - 1, P'"): * . / / - R ^ 0} 

= { £ e 5 , : £ , - / ? ^ 0 } = 5 n Y(/?) 

with dimension 

^ m + dim |J0 —/î| - dim \D\ ^ m - r - 1. 

Thus we have 

S is twisted at R <=> dim L = r 
<^ dim 5 n Y(i?) â m - r - 1 
<=> £ and 1XR) intersect properly in |Z)|, 
and /(Z) - /*) = 1(D) - r - 1. 

This proves (ii) (taking S = |Z>|), and (i) follows from the fact that 

Z = {S G G(ra, |D|):3 # G Div/ + 1 such that 
dim S H Y(tf) ^ m - r] 

is closed and has only components of dimension 

ê 2r - m + dim G(m, |Z>|) < dim G(w, \D\). 

THEOREM 1.5. Let X be an irreducible smooth projective curve of genus g, 
and r = 0. 

(i) If 2g -\- r = d, then any divisor in Divj is r-twisted. 
(ii) If g + 2r < d, then a generic divisor in Divj is r-twisted. 

(iii) Lef g = 2. The canonical divisor is r-twisted if and only if 

dim \R\ = Ofor all R G Div,. + {. 

Proof (i) follows from the fact that for any D G Div^, R G Div,.+1 both 
D and D — R are non-special, and hence l(D — R) = /(D) — r — 1. Also 
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(iii) follows immediately from Proposition 1.4 (ii) and Riemann-Roch. 
For (ii), we note that for any m~ 0 all components of 

C r * + 1 = {D <= Divm:dim \D\ g m - g + 1} 

have dimension ^ g — 1. For a general curve over C, this would follow 
from the solution to the Brill-Noether-problem ([8]). One can see our 
simple case directly by taking a canonical divisor K, and 

T = { (£, F) e |*1 X Div2 g_2_w : £ - F ^ 0}, 
^:r->Divw 
(£, F)h^ E - F. 

Then C™~*+1 = ^(7) and dim T â g - 1. In particular, £/ = Divj \ 
Cd

 g is open and non-empty, and C = C^_J._f has dimension 
= g — 1. For any w, let 

/w:Divm -> Picw 

denote the Abel map. Consider the commutative diagram 

a 
C X Div r + 1 >Divj 

fd-r-\ X id 

Pic^-r-i X Div r+i •Pic,/ 

where the horizontal morphisms are induced by addition of divisors. The 
fibers offj-r-\ \ C have dimension ^ d — r — g, and the fibers of/ j f £/ 
have dimension d — g. Hence 

^ = f/xcy^1 ° / / °«(c x DIV,+1)) 

is non-empty and open in Div^. Now one checks that every divisor in U is 
/--twisted. 

Remarks 1.6. The same proof will show that if r(s + g — d + 2) < s, 
then the r-twisted divisors are dense in Cs

d, provided that C^_^_j has 
the Brill-Noether-dimension. This is true for a general curve over C by 
[8]. 

1.7. Very ample is equivalent to 1-twisted, and our statements generalize 
well-known facts for this case. Compare e.g. [9], Chapter IV, 3.1(b), 3.2(b), 
6.1, and 5.2. 

1.8. Let g, r ^ 0, n â 2 r + 1 and d ^ min {2 g 4- r, g + 2 r + 1}. We 
have shown that for any (abstract) curve of genus g, almost all very ample 
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linear systems of degree d and dimension n are r-twisted, and will refer to 
this fact by saying that "a generic curve is r-twisted". It is not hard to see 
that 2 r -f 1 is the minimal value for n with this property, generalizing the 
minimal embedding dimension in the case r = 1. 

For a partial converse, namely a condition on g, J, r, n under which no 
r-twisted curve in Vn of degree d and genus g exists, see Theorem 4.2. 

2. The secant variety. 

Definition 2.1. Let X Q P be a curve. The secant variety Sec(r, X) is the 
closure in G(r, P) of 

{L G G(r, P):L n X contains r + 1 linearly independent points}. 

If X is irreducible and not contained in an r-plane of P, then this is an 
irreducible variety of dimension r -f 1. (Throughout the paper, we allow 
our (reduced) curves to be reducible.) In this section, we start with the 
computations that lead to the determination of its rational equivalence 
class in the Chow ring of G(r, P) for an r-twisted curve X. 

PROPOSITION 2.2. IfX ç p is r-twisted, then p(r, X):Xr+] -> G(r, P) is a 
morphism, and its image is Sec(r, X). 

Proof. The second statement is clear. For the first one, one reduces 
inductively to the claim that p is a morphism near y = (x, . . . , x) G Xr+ ]. 
Choose a local parameter / G £>X^X and coordinates on P so that II[x x 

is given by the first r + 1 unit vectors in A" + 1, and let 

// = (i-th projection)* (/) G £ ) V ^ M . 

The coordinates yield a morphism \i from a neighbourhood of y to 
A r + 1 A" + 1 which, composed with the map to projective space in which 
G(r, P) is embedded, is equal to p for linearly independent tuples in Xr+{. 
Dividing /x by Yll<:j(tl — /,-), one gets a morphism that also has this 
property, and moreover is defined at y with image p(y). Thus, p is a 
morphism. 

Example 2.3. Let char/: = p > 2 and 

cpiA1 -> A4 

U H* (M, W/>, i / , l / + 1 ) . 

A" = Im<p ç P4 is a smooth non-degenerate curve, and 

Il<p(w),X = Il^O),^ 
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has dimension 1 for all u e A . The secant 2-planes of .Yhave two limiting 
positions over every (<p(w), <p(u), <p(u) ), so there is no morphism p(2, X) as 
for 2-twisted curves. 

In the next lemma we state some geometrically obvious facts about 
the behaviour of osculating spaces and twistedness under linear projec
tions. For simplicity, we only consider a projection \p:P \ {z} —» H from 
a point z e X, where H Q P is a hyperplane not containing z. Let Y = 
^(X \ {z}) and (JP:X —» Y be the induced morphism. 

LEMMA 2.4. (i) <p z's unramified at x ^ X if and only if 

dim p(2, X)(x, -x, z) = 2. 

(ii) Le/ r ^ 1, I k r-twisted, and x0, . . . , .x,—i ^ X. Then 

p(r - 1, y)(ç(Ab), • • . , <P(*,- , ) ) = P(/; X)(x0, . . . , * ,_ , , z) n // . 

(iii) Le/ r = 2 <2/7<i I Z?e r-twisted. Then <p is an isomorphism, and Y is 
(r — 1)- twisted. 

Proof. We first prove (i) in the case x = z, the other case being clear. 
Choose homogeneous coordinates L0, . . . , Tn on P such that z = 
(0: . . . :0:1) and H = {L/7 = 0), and a local parameter f e. £>z X- Let 
^o^jfjtj be the Taylor series of/ = (Tt• / T„ \ X) e £),^. Then 

<KZ) = (fa\- • • • ^/o,/i-i)» 

and we can assume/QI ^ 0- Also, e =t/tQ e Oz ^ is a unit with Taylor 
series 

2 **f* = 1 /foi-{fo2/fîl)t + ... 

and locally around z, <p is given by the morphism (gi, . . . , g„_ j) to A/?~ \ 
where 

& = fi i fa = fi\eo + C//î i + y;2e0 )/ + ... 
Thus 

<]P is unramified at z <=> (^i(/n, . . . ,fn-\,i) + 

eo(f\2,--.Jn-h2))dzt * 0 

<=* (/oi> • • -jfn-u) a n d (/02, •••>/«-1,2) are linearly independent 
<=> dim I T 2 ^ = 2. 

This proves (i), and the first statement of (iii) follows e.g. from [29], 
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Chapter II, § 5.5. For the rest of the lemma, it suffices to prove (ii) in the 
case r ^ 2 and x{) = . . . = xr- \ = z. Denote by S0, . . . , S„_i the induced 
coordinates on //, and let s G £<p(-),r be a local parameter with <p* (5) = /. 
Then 

Ti/T0\X=fi/f0 = (f/ t)em£z^ 

and for the Taylor series 2 g ^ / of S//SQ \ Y we have 

gik = 2 Ay+l Â--y 

which implies (ii). 

We call a secant space L G Sec(r, X) with # L n A r ^ r + 2 a 
multiset* ant. 

THEOREM 2.5. Let X Q P be r-twisted, and such that no irreducible 
component oj X is contained in an P r + 1 . Then 

(i) a generic secant space in Sec(r, X) is not a multisecant, 
(ii) p(r, X) induces a finite separable surjective morphism of degree 

(r + ly.from Xr+] to Sec(r, X). 

Proof For (i), we first consider the case r = 1, and modify the proof of 
the statement which is well-known for irreducible curves ([21], see e.g; [9], 
IV. 3.8 + 3.9) to include reducible curves. So we can assume that there are 
three components Xh X2, X3 of X (at least two distinct) such that 

V*! G Xh x2 G X2 3 x3 G X3 \ {xh x2}:x3 G p(xh x2). 

Then the corresponding condition also holds for any permutation of {1, 2, 
3}. For any x\ G Xh the images of X2 and X3 under the projection <pVl 

from x\ are equal. If two points x2 and x3 have the same image and this is 
smooth on <pX](X2), then the tangent lines YLx^x2

 anc* n ^ , ^ intersect. 
Since for a generic (x2, x3) such an x\ exists, it follows that any two 

tangent lines to X2 and X3 intersect. By symmetry, this also holds for X\ 
and X2. Now let L\ resp. L2 be distinct tangent lines to X\ resp. X2. Then 
every tangent line to X3 either passes through their intersection point or is 
contained in their plane. In either case (using [9], IV. 3.9, for the first one) 
it follows that X3 is a plane curve, contradicting the hypothesis. 

Now the general statement follows by induction on r, choosing a 
projection center z G X on a multisecant and using Lemma 2.4 (iii). 

By (i), it suffices for (ii) to find y G Xr+] such that the differential dvp is 
injective. The complement U of 
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p~> (Sing(Sec(r, X) ) U p ( U Dif) ) 

is open and dense in Xr+\ where Dy = {XJ = xy} is a diagonal. 
Choose a y = (x0, . . . , x r) e £/ and homogeneous coordinates 

r0, . . . , r„ on P such that 

V/ ^ r n.l-,x U {Tfl = 0}, A:,- = (1:0: . . . :0:1:0: . . . :0) 

with a 1 in the /-th position. The Plùcker coordinates Ta on G(t\ P) are 
indexed by the nationalities a = (<2Q, . . . ,# , - ) with 0 = a0 < . . . < #,. — /?. 
Letting L = p(y), we consider the following functions 

Vy, 0 ^ y S r, g, = ( % ^ - ^ T Sec(r, X) ) e £ ^ sec<r. A> 

V /,y, 0 ^ / ' ^ r, 0 ^ 7 ' ^ /7, /y = (/-th projection) * 
( 7 } / 7b r ^ ) e C.r,r '• 

For all /, (Tn I T0 \ X) <E £>A .J is a local parameter, and hence f{)ir . . . ,/7? 

G Oj x ' is a system of local parameters. The bilinear relations describing 
the incidence of a point with an r-plane yield in particular the following 
equations in £>X ' 

V / ^ r p * ( g 0 ) + 2 (-VJfijP*(gf) + ( - l ) r + , / / i = 0. 

Taking differentials gives the following equations in flvx ' 

V /, 1 S / S r, 0 = p* (rfL(g0) ) + ( - \y p* (^(g,-) ) + 

o = P*(^(go)) + (-\y+l dy(f0n). 

Q^y+i is generated over /c by dv(f0n), . . . , dv(frn), and hence 

P * : ^ L , Sec(r^) " ^ ^ v X + ] 

is surjective, and dvp injective (even an isomorphism). 

Theorem 2.5 shows that an r-twisted embedding X Q P gives an 
embedding of the symmetric product A^ + 1) = Sec(r, X) Q G(r, P) Q Q 
into some projective space Q. 

3. An exact sequence. Let 1 = r ^ dimP, and 

V = {(jt0, . . . ,x r , L, M) <= P r + 1 X G(r - 1, P) X G(r, P): 
x0, . . . , xr-\ ^ L Q M and x,. e M}. 
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Y is an irreducible smooth closed subvariety. The product projections 
induce morphisms <p0, . . . , <pr, \pr-\, \pr. For 0 ^ / = r, denote by J{ the 
incidence bundle (tautological bundle) over G(z, P), a subbundle of 
G(L P) X Kof rank / + 1. Let 

F = <p* (7()), F, = ^f{Ji) for /' = r — 1, r, and 
H/ = { (x0, . . . , xn F, M) G Y:x, G F } . 

H7 is an irreducible divisor on Y, and we denote by G the corresponding 
line bundle. The following lemma generalizes an exact sequence from 
[23]. 

LEMMA 3.1 There is an exact sequence on Y 

0 -> F,._! -> / v - > £ ® G - * 0 . 

Proof. We have a natural exact sequence on U = Y\W 

0 -> /v_ ! T (7 -» F, \ U -* E \ U -> 0. 

Since PKis irreducible, there exists an m <= Z such that the cokernel of the 
embedding Fr-\ <=• Fr is isomorphic to E ® Gm. Choose y0, . . . ,y{ e P 
linearly independent, let M0 be their linear span, and 

Z = { (JC0, . . . , v,, L, M) G Y: M = M() and V / ^ r - 1 JC,-

= • > > / } • 

Z is isomorphic to M{) via <pr In the exact sequence 

o -> /v_ j r z -» /v r z -> (F f z ) ® (G r z r -> o 
the left and middle terms are trivial, E \ Z corresponds to the incidence 
bundle on A/0, and G \ Z corresponds to the hyperplane bundle (F \ Z)~ \ 
Hence m = 1. 

In the sequel we denote for a smooth projective variety Z by 

A{Z) = © v4' (Z) 

the Chow ring of Z, graduated by the codimension. A morphism <p:Z —> Z' 
induces the inverse image morphism <p* and the Gysin morphism <^. If 
F —» Z is a vector bundle, then c(E) = 1 + ^ ( F ) + . . . G -4(Z) is its 
Chern class. The projection formula says that for the degree of a 
0-dimensional class z we have 
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Let X Q P be an r-twisted curve, and 0 ^ / < j ^ r. We denote by du the 
class in Al(Xr+]) of the diagonal Dy = {x{ = Xj). For 0 ^ i ^ r, let 
7Tl:X

r+] —» P be the i-th projection composed with the embedding X Q P, 
and 

dtl = IT? (c\(Jo)) = —*T (hyperplane class) e A](Xr+]). 

The next theorem describes the inverse image of c(Jr) along p(r, X) in 
terms of the "simple" divisors diy 

THEOREM 3.2. Let 0 ^ r = dimP, tfrcd X Q P be an r-twisted curve. 
Then 

P(r, X)* (c(Jr) ) = (1 + rfooXl + 4)1 + 4 i ) • • • 
(1 + dbr+ ...+d„). 

Proof. Consider the morphism 

(x0, xr)h^ (x0, xr, p(r - 1, X)(x0 , xr-\), 
p(r, X)(x(h ...,xr) ). 

We prove the theorem by induction on r, the case r = 0 being clear. Let w 
G A{(Y) be the class of W. We claim that 

ri*(W) = D0 + ... + Z>r_,,r. 

Then 

p(r, X)* (c(Jr) ) = T,* (c(Fr) ) = r (cifr-i) c(E0G)) 

= WV-l o V)* (c(Jr-\)) ' 0 + V* (W) + (Vr o V)* (C](J0))) 

= (1 + dbo) • • • (1 + 4>, r - l + • • • + 4 - l , , - l ) ( l + rfor + • • • 

+ 4--1,,. + drr). 
Since set-theoretically the claim is clear, it is sufficient to find a v <j>f(Dor) 
and to G Qv>y such that <o vanishes on r v ^ , but not on Ty^y^y thus 
showing that rf(Xr+]) and W intersect transversally at T)(D0r). Choose 
homogeneous coordinates TQ, . . . , Tn such that the unit points 
eo, . . . , er-1 are in A", and ^ G I I I O I J . Let 

y = Ti(e0, ...,er-\, e0), 

and consider the following functions in £)vy. 

(tf (Tt / Tj) for 0 ^ 1 ^ r, 0 ^ j : ^ r - 1 
/y = (<*v* (rf- / T0) for 0 ^ / ë r,y = r 
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/ = det( (fii)o^i^r). 

Then/vanishes on W, (Tr/T0 \ X) e €JX^X is a local parameter, and co = 
dy(f) has the required properties. 

4. The rational equivalence class of the secant variety. We now want to 
give a method for computing the rational equivalence class in A (G(r, P) ) 
of Sec(r, X) for an r-twisted curve X Q P of degree d and genus g. That is, 
we want to determine the integer coefficients (Schubert: "Gradzahlen") of 
this class, when written as a linear combination of Schubert classes 
Q(a\ P), where a runs through the nationalities a = (CIQ, . . . , tfr) with 0 = 
#o < . . . < ar = n = dimP. We will call them the Schubert coefficients of 
this class. If we set 

sec(r, X) = * p(r, X) , (1) 
(r + 1)! 

then by Theorem 2.5 (ii) this is the class of Sec(r, X). (Unless some 
component of X is contained in a P'"+1. If X is a rational norm curve of 
degree r, then sec(r, X) = 0.) By Poincaré duality, we have to compute the 
degree 

j G ( r P ) sec(r, X) Qib; P) 

for all nationalities b. We denote by 

ft(r, P) = B(« - r - 1, . . . , « - r + / - 2, « - A- + /, . . . , w; P) 

the "Giambelli class" of codimension /', usually leaving away (r, P) when 
there is no confusion. Thus 

2 ( - i ) % = c(j r) 

is the total Chern class of Jn and ?i, . . . , fr+i are ring generators for 
,4 (G(r, P) ). (For the facts from Schubert calculus, see [11], [16], [17] ). It is 
sufficient to compute 

for all products/» of f i, . . . , fr+1 with codimension r + 1. p* (/?) is a sum 
of products q of the d,y with r + 1 factors, and we first determine the 
degree of such a product q. We associate to q a graph h(q) on {0, . . . , r} 
by connecting node / to node y as many times as dl} appears in q. The 
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graphs that we get in this way are undirected, and possibly have loops or 
multiple edges. 

Let Gr be the set of all such graphs with the additional property that 
every connected component has as many edges as nodes. For h e Gn we 
set 

/ h = (-dY(-k)', 

where s + Ms the number of connected components of /z, s the number of 
those with a loop, and k = 2g — 2 the degree of the canonical divisor class 
on X. 

LEMMA 4.1. For every product q of the dy with r 4- 1 factors, we have 

jh(q) ifh(q) G Gr 

• 0 otherwise. / * - • '« - { ; 
Proof We use induction on r. There are two basic cases: 
Case 1: r = 0, q = <i0o- Then 

jq = -d = Jh(q). 

Case 2: r = 1, q = d$\. Let A:X—» Z be the diagonal embedding. The 
normal bundle 7V̂  is isomorphic to the tangent bundle Tx, and by the 
self-intersection formula we have 

fx2q= fx2A*(\)2 = JXA*(A*(\)) 
= /c,(tfA) = f cx(Tx) = -k. 

Now for the induction step, by splitting q into two factors, each 
corresponding to a similar product on some Xll+] with u < /*, we first 
reduce to the case where h(q) is in Gr and connected. Then there is either a 
node with degree (= number of edges issuing from it) one, or else all 
nodes have degree two. Unless we are in case 1 or case 2 above, we leave 
away one node (with degree one if the first possibility happens) and there 
is an obvious product q' on Xr with jq = jq' and 

jh{q) = / , h(q'). 

THEOREM 4.2. There are polynomials fa G Z [Z>, G], where a runs through 
all a = (ao, . . . , ar) with 0 ^ a§ < . . . < an such that for any r-twisted 
curve X Q P of degree d and genus g, and n = dimP 
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/ sec(r, X) Q(n ~ an . . . , n - aQ\P)= ' ,,,/<,(</, g). J (r + 1)! 

In particular, this number is an integer, and iffa(d, g) ¥= 0 and n < a,, for 
some a, then there is no such curve X. If 

</<) + . . . + ar *(r + l)(r + 2) /2, 

thenfa = 0. 

Proof. Writing out the determinantal formula, one gets integer 
coefficients cev . . . , cCr 1 not depending on n such that for any projective 
space P we have in A(G{r, P) ) 

2 ^ . . . , , . l w r , p r i . . . f , + , ( r , p r -
o ^ , < ? , . . , 

{ S2(« — <?,., . . . , « ~ ûf0; P ) if <?r = n 

0 otherwise. 

Let I Q ^ be an r-twisted curve. By Theorem 3.2 and Lemma 4.1, 

jp(r, *)*(f,(r, Pf>...f,+ 1(r, Pf'••') 

is a polynomial in J and g with "universal" integer coefficients. Summing 
these with coefficients ce ,?,..,> o n e g e t s A a s m t n e theorem. The fact 
that Sec(r, X) has dimension r -f 1 implies the last statement. 

Example 4.3. For an elliptic curve, there exist smooth embeddings in P3 

of degree 6 (see [9], Chapter IV, Corollary 6.2). But no such 2-twisted 
embedding exists, since /(o,4i5)(6, 1) = 2 ^ 0 and n = 3 < 5 = a2-

5. Examples and multisecants. 

5.1. The discussion of Section 4 has yielded an algorithm to compute 
sec(r, X). For r = 1, 2 and an r-twisted curve A' of degree d and genus g we 
have 

sec(l, X) = ( J fl(l, 2; P) + - (</(</ - 3) - 2g + 2) 12(0, 3; P) 

sec(2, X) = ( ^ ) 2(1, 2, 3; P) + (d - 2 ) ( ^ ~ 4 ) - g + l ) 

0(0, 2, 4; P) 

+ (d ~ 4 ) ( ^ 6~ 5 ) - g + l ) 2(0, 1, 5; P) . 
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5.2. A curve that is not 2-twisted. Let X Q P6 be an irreducible 
non-degenerate 2-twisted curve such that 

a = J sec(2, X) B(l, 5, 6;P6) 

There exists a non-empty open subset U Q G(l, P6) such that for all Z 
e £/, Sec(2, X) and o(Z\ = Q(Z, P5, P6; P6) intersect properly. Choose Z 
e £/, L G Sec(2, X) n cx(Z), z G LC\Z and a hyperplane HQ P6 not 
containing z. The projection from z induces an isomorphism <p\X —> F ç 
//. X and F have the same degree and genus, and 7 is not 2-twisted, the 
image of L being a trisecant line. {M e Sec(2, Y)\M n 7 does not span 
M} is contained in a proper closed subset T of Sec(2, 7), and we have a 
closed embedding i//:// —» G(l, P6) by mapping j to the line through y and 
z. We assume that there exists a non-empty open V Q H such that for all j 
G K we have: 

Sec(2, Y) n tt (y, H; H) is transversal, and 

T O fl(.y, / / ; / / ) = 0. 

In characteristic zero such a F exists by the transversality of a general 
translate [13]. Let 

y <= Vn^-\U), Z' = ^(y) and M G Sec(2, 7) n 
B(z, P4, / / ; / / ) . 

Let 

M' = p(2, Z)(JC0, JCI, x2) e Sec(2, X) n <x(Z'), 

where <p(x0), <JP(XI), <P(X2) span M. Since L G cr(Z'), there are at most a — 1 
many such M'. The association M M> Mf is injective, and hence 

J sec(2, 7) 12(0, 4, 5; H) < a 

and thus the number given by Theorem 4.2 is not correct for 7. Also, by 
varying z appropriately, one gets a family of curves which are all 2-twisted 
with one exception, and our intersection number is not constant in this 
family. 

Put the other way round, it seems that our definition of the intersection 
number via Sec(r, X) Q G(r, P) is not appropriate for the general case. See 
Section 5.7. 
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5.3. Let X Q P be an r-twisted curve, e = (e0, . . .,et) with e, ^ 0 and 
<?o H- . . . + et = r -f 1. 

(X0, . . . , X,) H* (X0, . . . , X0, • • • , * „ • • • , Xt) 

e<d et 

is the diagonal embedding of type e 

Sec(r, e, X) = p(r, X) O ke(X
t+v) 

is the closure of the set of those r-spaces in Sec(r, X) for which the 
(r + l)-fold intersection consists of erfold contacts, 0 ë z â /. Let 

f,• = # {y:e,- = /} and / = / , ! . . . / , + , ! . 

Using an appropriate analog of Theorem 2.4, we find for the rational 
equivalence class 

(1) sec(r, e, X) = | ( p ( a ) o U ( l ) 

and one gets integer polynomials in d, g as in Theorem 4.2 which, divided 
by/ , give the Schubert coefficients of sec(r, e, X). 

We can consider the analogous situation for a generic projection Y of X. 
So let Q resp. Z be generic w-resp. (n — m— l)-dimensional subspaces of P 
which do not meet. Let <p:P\Z —> g be the projection, and ip:Jf —» F = 
<p(X) be induced by <p. We assume m = 3, so that ^ is an isomorphism, 
and 0 = s ë m — 1. Since hyperplanes meet a curve in too many points, 
in the case s = m — 1 we also assume that e& . . . , et = 2. Let 

W = { (L, M) e G(s, g ) X G(r, P) : L Q M and cp(M\Z) ç L} 

with projections/? resp. g to G(s, Q) resp. G(r, P). p is locally trivial, and 
q is birational onto its image, which is a Schubert variety of codimension 
(r — s)(m — s). Thus 

S = p(q-* (Scc(r, e,X))) 

is either empty or has only components of dimension t + 1 ~ (r — s) 
(m — s). It contains those (r -f l)-secant s-spaces which have erfold 
contacts with Y, 0 ë z ë /. Also, p \ g_1(Sec(r, e, X) ) is generically (on 
every component) injective. S is the support of the class 

sec(r, s, e, Y) = p^(q*(sec(r, e, X) ) ). 
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For any tt(b; Q) £ A(G(S, Q) ) we have 

L,Q) ^ * e < y ) Q(b< Q) 

= lr p s e c ( r ' e ' ^0 ^ ( ^ ~~ m ~ r + si > • - , n — m — 1, 
n — m + /?o, . . . , « —m + ^ ; P). 

For the sequel, we fix the notation of this section (in particular, Y is a 
generic projection of the r-twisted curve X for an appropriate r), and will 
compute some of the above intersection numbers. By remark 1.8, for an 
abstract curve Y a generic embedding Y^P" has this property if n > 2r 
and the degree is ^ min{2g 4- r, g + 2r + 1}. 

5.4. Plùcker formulas. Let 

Sr = p ( a ) o V , ) : ^ G ( r , P ) 

be the r-//z associated map. The degree 

dr= fsrt(\)Si(r,P) 
of the r-th associated curve is, by the Plùcker formulas ( [24], [7] ), equal 
to 

dr = (r + \)(d + r(g - 1) ) + 2 (r - /) ft 
0^ /^ r -1 

where /?, is the total ramification of 8r We have 

dr = X(,,/>) SeC(r' (r + *>' X) f] '̂ P) 

= (r + 1)(</ + r(g - 1)), 

i.e., the Plùcker formulas hold without ramification. Now if the 
characteristic is zero or coprime to r, then 6r_i is in fact unramified. But, 
somewhat unexpectedly, if the characteristic/? is positive and//7 divides r, 
then Sr_j is purely inseparable of degree ^ pa. 

If X is «-twisted, we get 

0 = dn = {n + 1)(</ + «(g - 1)), 

hence g = 0 and d = n, and X is a rational norm curve. Thus these are the 
only «-twisted curves in P". 

We get the same Plucker formulas for our generic projection Y Q Q 
(r ^ m — 1). Canuto [1] has proved that for a generic non-special 
embedding Y Q Pni over C the morphisms 80, . . . , 8W_2 are unramified. 
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5.5. Hyperosculating points. A point y e F is called hyperosculating 
(also "stationary" or "singular") of order r if d i n i n g y < r. These points 
correspond to Sec(r, (r + 1), F) which is non-empty only for r = m. Thus 
there is only one non-zero "stationary index" [24], namely 

/ sec( (m, m — 1, (m + 1), F) = dn 

5.6. The table below gives an exhaustive list of numerical characters 
involving a single kind of secant space of a curve F ç P3, where F is a 
generic projection of an r-twisted curve as in 5.3. These characters are of 
the form / sec(r, s, e. F)- z where the additional condition z is either some 
£2(tf, P3) or the class of A*(1 0 0) (p) for some/? e Y. They are all easily 
computed using the method of Section 4. For example, the number of 
"doubly tangent planes" (i.e., planes containing two tangent lines to F) 
through a generic point of P3 is 

x ,C(2 p3) sec(3, 2, (2, 2), Y) H(0, 2, 3; P3) 

L , „ n sec(3, (2, 2), X) Q(n - 4, n - 3, n - 1, w; P) 
G(3,P) 

1 ^ 2 (p (3, X) o A(2i2))* (?2(3, />) ) 
2 

1 
2 ^ 
1L ° + 4o)(i ~ ̂  (^} + j°o) ( i + 2JQI + rf,i) 

(1 

= 2( (J + 2g - 2){d -• 3) + g(g -- 1)) 

= \ (</,(</, - 6) - 8(g -- D ) [3]. 

2d0l -irUkx) + du) 

Plûcker, [25], No. 63, gives this as the number of double tangents to a 
plane curve. 

We also include the degrees ô(ju,) of the double point cycles of ju„ where 

H:Y-»H 

y ^ Ill.Y n H, 

HÏ.Y-+G(l, H) 

y *-* n.v.y n //, 
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and / / ç p 3 is a generic plane. These are computed by the double point 
formula ([14], [18]). 

5.7. The classical results. Hilbert's [10] 15th problem asks "to establish 
rigorously and with an exact determination of the limits of their validity 
those geometrical numbers which Schubert especially had determined . . ." 
It is generally assumed that the classical numerical results are valid at least 
"in the general case", but e.g. Giambelli's [6] explicit formula for the 
Schubert coefficients of sec(r, X) is false for the curve considered in 5.2. 
The results of this paper prove validity of many formulas, e.g. those of this 
section, and "general case" meaning "generic projection of an r-twisted 
curve" for the appropriate r. 

All our computations agree with the classical results. With some 
additional work one can also obtain a proof (valid for r-twisted curves) of 
Giambelli's formula. 

We note that the classical counting methods may sometimes differ from 
ours. E. g. fi2 is ramified at the d3 hyperosculating points, and Cayley [3] 
gives the number of lines in a fixed plane contained in two osculating 
spaces as 

- (d2 (d2 - 3) - 2g + 2) - d3. 

The classical arguments, often involving degeneration, assume a priori 
that the numbers to be computed depend only on the degree and genus. 
The authors usually were aware that there was a lacuna; e.g. Castelnuovo 
[2] in a footnote justifies the assumption ". . . from the fact that in the 
plane and ordinary space these numbers can be computed by more direct 
methods as functions of the degree and genus only". 

Another ubiquitous (implicit) assumption in the classical work is that 
intersections are proper and transversal. Using this assumption and 
correspondences, Macdonald [22] gives a nice generalization and simplifi
cation of Giambelli's formula, stating a closed formula for the intersection 
of sec(r, s, e, Y) with any number of Schubert conditions. 

There are some invariants, e.g. the number of hyperosculating points of 
order r < m for Y Q Pm (see 5.5), that are always zero for the curves 
considered here, but may be nonzero for some special curves. It remains 
an open problem to extend the verification of the classical formulas to 
more general classes of curves, where also some of these special invariants 
would be allowed to be nonzero. The most ambitious goal would be to 
prove them for all curves. 
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A remarkable result by Le Barz [19, 20] achieves this goal for curves 
over C and three of our formulas (lines 6, 8, 11 of the table). He defines the 
numbers via the intersection of the two Hilbert schemes of tuples of points 
on Y and collinear tuples in P3. Using the Fulton-MacPherson intersec
tion theory, it turns out that the above polynomials in d and g give the 
correct number, even if the value is negative or there are infinitely many 
secants. Thus it seems that his definition is more appropriate for the 
general case than ours. In the same intersection theory, Vainsencher [30] 
proves various classical enumerative results concerning hypersurfaces in 
projective space. 

5.8. In this section we compute some numerical characters defined by 
imposing conditions on two kinds of secant spaces simultaneously. 

The degree of the surface consisting of secant lines that are contained in 
some osculating space of the curve is 

Jx3 (p(4, X) o A (1,U))* (f2(4, P) )(p(l, X) o A(U,0))* (?i0< P) ) 

= 3(d3 + 2d2g - U2 - \\dg- 2g2 + \9d + 14g - 12). 

Taking the osculating space to be at one of the two intersection points, the 
degree of the surface is 

Ad2 + 6dg - I6d - 12g + 12. 

Zeuthen [31], [32] computes these numbers, and most of the other ones of 
this section. Severi [28] gives generalizations to curves in P". 

The number a of pairs of points, each contained in the osculating space 
at the other one, is 

a = / (p(3, X) o A(3,i))* (f i(3, P) )(p(3, X) o A ( U ))* (f ,(3, P) ) 

= 2(5d2 + lidg + 18g2 - 30d - 63g + 45). 

Here we count the hyperosculating points and the "principal chords", i.e., 
secant lines contained in the two osculating planes at the intersection 
points. Severi [28] gives this latter number as xh(a — d^). 

The number of quadruples of points, three of which lie on a line that 
meets the tangent at the fourth and such that the plane spanned by them 
contains a fixed generic point of P3, is 

j8 = 4(d4 + d3 g - \0d3 - \\d2g - 6dg2 + 31d2 + 39dg + \0g2 

- 60d - 46g + 36). 
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Taking the tangent to be at one of the three points, we get the number 

y = 3d3 4 2d2g - 2\d2 - 20dg - 4g2 4 4M 4 40g - 36. 

Here we count the re-intersecting tangents, say 8 in number, and the 
planes through a generic point that contain a trisecant and one of the three 
tangents at the intersection points. Zeuthen gives the number of these 
planes as Vi(y — <5), and the number of planes through a generic point 
containing a trisecant and a tangent as Vi{fi — 2y), in agreement with our 
results. 

The number of quadruples of points, three of which are on a line and 
contained in the osculating plane at the fourth, is 

6(d4 4 2d3g - \2d3 - 2\d2g - 6dg2 4- 53d2 4 16dg 4 24g2 

- \02d - 96g 4 72). 

Taking the osculating plane to be at one of the three collinear points, the 
number is 

2(2d3 4 3d2g - \6d2 - 22dg - 6g2 + 42d + 42g - 36). 

5.9. We want to prove six of Cayley's [4] enumerative results involving 
more than one curve. Let X, X\ X"\ X'" Q P be curves of degrees 
J, . . . , d'" and genera g, . . . , g"' such that X - X U X' U X" U X'" is 
3-twisted, let Y, . . . ,Y"' ç p 3 be the images under a generic projection, 
and 

li:X XXX X" X X" -> X4 

the embedding. Since the results of Section 4 apply to reducible curves, the 
number of lines intersecting all four curves Y, . . . , Y'" is 

J (p(3, X) o ju )* (S2(H - 5, « - 4, « - 1, 2̂; F) ) 

= / ( ( ( d o o + du + d22)(d22 + J33) + « i ) 2 

- (J00 + (in + d22 + d33)((d{)0 + du) rf22 ^33 
4- JQO rfnfe + ^33))) 

= 2d df d" d'n 

(see [16]). 

For the number of lines meeting Y twice, and also intersecting Y' and 
Y", consider the embedding 

iu
/:X X XX X' X X" -* {X \J X' KJ X"f. 
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Then this number is 

J (p(3, X U X U X") O /*' )* (Q(n - 5, n - 4, n - 1, n\ P)) 

= (d2 - 2d - g 4- 1) rf'J". 

Similarly, one finds that the number of lines meeting Y three times and 
intersecting Y is 

and the number of common chords of Y and Y' is 

| ( ( ^ - 2 ^ - g 4 - 1)(</2 - 2d - g' + 1) 

+ (£/+ g - 1)(</' + g' - 1)). 

(see [15] ). 
As a particular case, two twisted cubics in general position have 10 

common chords [5]. 
For the degree of the surface consisting of lines meeting Y, Y' and Y", 

consider the embedding 

\L"\X X X' X X" -> (X U X U X")3. 

Then this degree is 

J (p(2, X U X' U Z") o /A" )* (Q(w - 4, « - 2, w; P) ) 

= 2ddf d'\ 

and the degree of the surface consisting of secant lines of Y that meet Y' is 
(d2 - 2d - g + 1)</'. 
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