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Abstract

The purpose of this paper is to establish comparison criteria, by which the oscillatory and asymptotic
behavior of linear retarded differential equations of arbitrary order is inherited from the oscillation of
an associated second order linear ordinary differential equation. These criteria are new even in the
case of ordinary differential equations.

1980 Mathematics subject classification (Amer. Math. Soc): primary 34 C 10; secondary 34 K 25.

1. Introduction

Let us consider the nth order (n > 2) linear retarded differential equation

(E) x<"\t) + p(t)x[g(t)] = 0, t>t0,

where p is a nonnegative continuous function on the interval [t0, oo) and g is a
continuous function on [t0, oo) such that

lim g(t) = oo and g(t) < t for every t > t0.
t—(X>

It is supposed that p is not identically zero on any interval of the form [t'o, oo),
t'o > t0, and g is continuously differentiable on [/0, oo) with

g'(t)>0 for every t> to.

We consider only such solutions x(t) of (E) which are defined for all large /.
The oscillatory character is considered in the usual sense, that is a continuous
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real-valued function defined on an interval of the form [T, OO) is said to be
oscillatory if the set of its zeros is unbounded above, and otherwise it is said to be
nonoscillatory. The differential equation (E) is called oscillatory if all its solutions
are oscillatory and (E) is called nonoscillatory if all nontrivial solutions are
nonoscillatory. As it is well-known, if r is a positive continuous function on an
interval [T0, OO) and q is a continuous function on [T0, oo), then the second order
linear ordinary differential equation [r(t)y'(t)]' + q{t)y{t) = 0 is nonoscillatory
if it has at least one nonoscillatory solution.

The oscillatory and asymptotic behavior of the bounded solutions of (E) is well
described by the following theorem (see Staikos and Sficas (1975)).

THEOREM 0. Under the condition

(C) j°°t"-ip(t)dt=«>,

for n even all bounded solutions of (E) are oscillatory while for n odd every bounded
solution of (E) is either oscillatory or tending monotonically to zero at oo together
with its first n — \ derivatives.

It is an interesting problem to establish comparison criteria, by which the
oscillatory and asymptotic behavior of all solutions of the differential equation
(E) is inherited from the oscillation of an associated second order linear ordinary
differential equation. The results of the present paper are concerned with this
problem and are new even in the case of the ordinary differential equation

(E) x<"\t)+p(t)x(t) = 0.

By our comparison results, known oscillation criteria for second order linear
ordinary differential equations can be used to obtain sharp results for the
oscillatory and asymptotic behavior of differential equations of the form (E). An
application of our results to this direction will be given before closing the paper.
Note that there is a voluminous literature on oscillation in second order ordinary
equations (see, for example, Swanson (1968), Chapter 2). Some results of the same
nature but for the case of ordinary differential equations of the form (E) have
been given by Lovelady (1975, 1976) (see also Trench (1981)). Our results are not
comparable with the Lovelady's results.

The special case of the retarded differential equation

(A) x^(t)+p(t)x(\t)=0,

where t0 > 0 and X is a constant with 0 < X < 1, is discussed in particular.
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2. Lemmas

To obtain our results we need Lemmas 1, 2 and 3 below. Lemma 1 is an
adaptation (see Grammatikopoulos, Sficas and Staikos (1979)) of a well-known
lemma of Kiguradze (1964), while Lemma 2 is due to Staikos (1976) and partly to
the author (1981). Lemma 3 is an extension of a result of Wintner (1951) (see also
Swanson (1968), page 63).

LEMMA 1. Let u be a positive and k-times differentiable function on an interval
[T, OO) with its kth derivative M W nonpositive on [T, OO) and not identically zero on
any interval of the form [T ' , OO), T' > T.

Then there exist a T* > T and an integer 1,0 < I ̂  k — 1, with k + I odd so that

| ( - 1 ) / + V > > 0 on [T*, OO) (j = I,... ,k - 1),

[ K ( 0 > 0 on [ T * , O O ) ( / = 1 , . . . , / - 1), when I > 1.

LEMMA 2. Let u be as in Lemma 1 and T* ~> T be assigned to u by Lemma 1.

Moreover, let 0 be a number with 0 < 6 < 1. Then there exists ar> T*/6 such that

(1) u{0t) > ^}~Ji], tk-xu(k-x\t) forallt>f.
(k I).

In addition, when l i m ^ ^ u(t) ¥= 0,for some r > T we have

(2) u{t)^ 9_ n ,f*~'"(*-'>(0 for every t^ f.
\k I).

PROOF. The proof given here is that of Staikos (1976). Let /, 0 < / < k - 1, be
the integer assigned to the function u as in Lemma 1. Then, for any s, t with
T* «£ s < / we get

(3) »(6(')>(
(fclJ

1
)l)),'»

(*~')(0-
This is obvious for / = k — 1 and, when / < k — 1, it can be derived by applying
the Taylor formula. Thus,

(4) u(l\0t) ^ fk~_°i_ A, '*~'~/«(*-|>(/) forallr»T*/0,

which proves (1) with f = r*/0 in the case where / = 0. Hence, we suppose that
/ > 0 and by using the Taylor formula with integral remainder we obtain

«(') > (7Z1)7S'^ - s)'-lu(l)(s)ds, t > T*
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and then, by (3),

So, there exists a T, > T* such that

« ( 0 > i ^ ) r ' * - I « ( * - I ) ( 0 ^ every ? > T l ,

and consequently for all t > f = T, /0 we have

which proves (1) when / > 0.
Now, suppose that lim,j00 u(t) ¥= 0. If / > 0, then from (5) it follows that for

some f > T* the inequality (2) holds. This fact has also proved by the author
(1981). In the case / = 0, by applying (4) with 1 - #»/2(*-i) m piaCe of 6, we get

tk-lulk-l\t), t > T2,

where T2 = T*/(1 - 0'/2(*-i)) But, because of the fact that limMKK(O ^ 0,
there exists a f > T2 so that

^ > ^ 0 ' / * for ,>f .

So, we get again

! i ( 0 > * 1 / 2 « [ ( i - « I / 2 ( * " O ' J * ^ _ , ) , ' * '«(A: ° ( 0

for all r > f.

LEMMA 3. Le/ /i be a positive continuous function on an interval [T, oo), T > /0. / /
r/iere exw/5 a continuously differentiable function w on [T, oo) such that

p(t) <-w'(t) - h(t)w2(t) for every t>T,

then the second order linear ordinary differential equation

[y'(t)/h(t)]'+p(t)y(t) = O

is nonoscillatory.
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PROOF. The differential equation

[y'(t)Mt)]'+[-w'(t) - h{t)w\t)]y{t) = 0

is nonoscillatory, since it has the positive solution

yo(t) = exp\£h(s)w(s) <fc], t > T.

Thus, the lemma follows by the Sturm comparison principle.

3. Main results

THEOREM 1. Suppose that for some 6, 0 < 0 < 1, the second order ordinary
differential equation

is oscillatory. Then for the differential equation (E) we have:
(i) For n even every nonoscillatory solution x satisfies

lim x(t) = Lx monotonically for some Lx 6E R* — {0},
r->oo

lim x ( 1 ) ( / ) = 0 monotonically (/ = 1,. . . ,« — 1).
t->(X>

(ii) For n odd all unbounded solutions are oscillatory. Moreover, if in addition (C)
holds, then for the equation (E) we have:

(I) For n even every nonoscillatory solution x satisfies

lim x(t) = ±oo monotonically,
1—00

lim x ( / ) ( f ) = 0 monotonically (i = \,...,n — 1).
t—oo

(II) For n odd every solution is either oscillatory or tending monotonically to zero
at oo together with its first n — 1 derivatives.

PROOF. Let x be a positive solution on an interval [To, oo), To > max{/0,0}, of
the differential equation (E), which is unbounded if n is odd. Furthermore, let
T s* To be chosen so that

(6) g(t) > To for every / 3= T.
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Then from (E) it follows that x<n) is nonpositive on [T, OO) and not identically
zero on any interval of the form [T', OO), T' > T. Thus, by Lemma 1, there exist a
T* > T and an integer /, 0 =£ / *£ n — 1, with n + I odd so that

(?) j
{x(l '>>0on [T*,OO) (i= \,...,l- l ) ,when /> 1.

If n is even, we always have / > 1. Moreover, when n is odd, x is unbounded
and consequently we again have that / > 1. Thus, x' is positive on [T*, OO).

Furthermore, we observe that for n odd it holds / > 1 and hence lim( j 0 Ox'(0
> 0. Also, if n is even and ]imt_xx'(t) = 0, then lim(^oox(r) = Lx for some
Lx G R* - {0} and l i m , , x / » = 0 (/ = l,...,n - 1). So, for the case of even n
let us suppose that hm,JOOx'(0 > 0.

Now, by Lemma2, there exists a f > T * such that

* ' ( / ) > 7 — e —^- t n - 2 x ( " - x \ t ) for all / > T.
(n - 2)\

Thus, since x{n~l) is decreasing on [T, OO), we have

x'[g(t)] >7^r2)f[*(0]""2*(--I)(0 forevery/>r,

where T > f is chosen so that

(8) g ( 0 ^ T for all O 7 1 .

Furthermore, we set

Then for ? > T we obtain

That is,

p(t) < -w'(t) — -—_ -•., [ g ( 0 ] " g ' ( 0 w 2 ( 0 for every O 7 \

Hence, Lemma 3 ensures that the equation (D,[0]) is nonosciUatory.
Finally, by applying Theorem 0, we complete the proof of the theorem.
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COROLLARY 1. Suppose that for some 6, 0 < 6 < 1, the second order differential
equation

is oscillatory. Then for the differential equation (E) we have the conclusions (i) and
(ii) of Theorem 1 and, when in addition (C) holds, the conclusions (I) and (II) of
Theorem 1.

THEOREM 2. Let n be even. If the second order ordinary differential equation

(n,, { yv) r + ( - r ' ( . -»)-;,(,M(),0
l[*(')]""V(<)J ( » - 2 ) ! ( 2 » - 3 ) 1 - 1 " m '

is oscillatory, then (E) « a&o oscillatory.

PROOF. Let x be a positive solution on an interval [To, oo), To > max{fo,O}, of
the equation (E) and let r 3= To be such that (6) holds. Then x(n) is nonpositive on
[T, OO) and not identically zero on any interval of the form [T', OO), T' > T. SO,
Lemma 1 ensures the existence of an integer /, 0 < / =£ n — 1, with n + I odd and
such that (7) is satisfied for some T* > T. Since n is even we always have / > 1 and
consequently x' is positive on [T*, OO).

Now, let 6 be an arbitrary number with 0 < 0 < 1. By Lemma 2, for some
f ^ T * / 0 we have

s'(0r) > M,1 ~ **•]" f~2xl"-lKt) foraUr>f.(n - 2)!

Thus, if we choose a T > f so that (8) holds, then we obtain

x'[°g(')] ^^l^ly [g(0]"~2^(""')(0 for every/> T.

Next, we put

Then for ? > T we get

lfl-2

(n-2)!

https://doi.org/10.1017/S1446788700024630 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024630


[ 8 ] Comparison criteria in oscillation theory 183

and consequently

p(t) < -V(r) - 6" ^~2y [g(0]""V(0w2(/) for every t^T.

Thus, by Lemma 3, the differential equation

tr'(i-ir

is nonoscil latory.
Finally, we observe that the m a x i m u m of the function

0 E ( O , I ) ,

is equal to

2""3(2n - 3)

COROLLARY 2. Let n be even. If the second order differential equation

i \ n — 1/ ^ \ n — 2

(D2)
( n - 2 ) ! ( 2 n - 3 )

« oscillatory, then (E) « a/so oscillatory.

THEOREM 3. Le/ « fee eue«. 7/r/ie second order ordinary differential equation

z'j oscillatory, then (A) « a/so oscillatory.

PROOF. Let x be a positive solution on an interval [To, oo), To > ?0 > 0, of (A).
Then x{n) is nonpositive on [T, OO), T = To/X, and not identically zero on any
interval of the form [T', OO), T' > T. Hence, by Lemma 1, (6) holds for some
T* s* T and some integer /, 0 < / < « — 1, with n + / odd. Obviously, / > 1 and
thus JC' > 0 on [T*, OO). Furthermore, Lemma 2 ensures that for some T > T * / X
we have

x'(\0 > ^1 _ X ^ r"-V"-'>(0 for every

So, if we set
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then we obtain

p(t) < -w'(t) - X" ^l ~~ V t"-2w2(t) for every t > T
(n - 2)\

and hence from Lemma 3 it follows that (B) is nonoscillatory.

REMARK 1. Theorems 1, 2 and 3 and Corollaries 1 and 2 remain valid with the
differential equations

(D2)*

(«- ir 2 (n-2)"- 2 / > [ g ( ^ ) ] =
W (« - 1)!(2« - 3)2"-3 /(--2)A-->V[-i(ri/(--D)] ^ > '

00* '"W + ^ L

in place of the equations (D,[0]), (D2), (B), (D,[tf]) and (D2) respectively. Indeed,
if p is a continuously differentiable function on [/0, oo) with

l imp( / ) = oo and p ' ( / ) > 0 for every t>t0
t—oo

and AT is a positive constant, then the substitution

transforms the differential equation

] f

+ Kp(t)y(t)=0
[p(t)]"-2p'(t)

into the equation
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REMARK 2. As it is easy to see, Theorems 1 and 2 can be stated, in a more
general way, with the differential equations

and

1 [ ( ) ] " - V ( ) J ( 2 ) > ( 2 3 ) 2 " -
in place of the equations (D,[0]) and (D2) respectively, where a is a continuously
differentiable function on [r0, oo) with

l i m a ( f ) = oo and a(t) < g{t),a'(t)>0 for every r > to.
r—oo

In this case the assumption that g is continuously differentiable with g' > 0 on
[t0, oo) is not needed.

REMARK 3. Let /be a continuous function on [t0, oo) X R such that

f(f,y)/y>p(t) foral l />/0andj '=^0.

Then Theorems 1, 2 and 3 and Corollaries 1 and 2 hold with the (not necessarily
linear) differential equations

(E*) x^(t)+f(t;x[g{t)]) = O,

(E*) *<">(0+/(f;*(0)=0
and

(A*) x^(t) + f(t; x(\t)) = 0

instead of the equations (E), (E) and (A) respectively.

Before closing the paper, we give an application of Theorems 1 and 2. Consider
the second order linear ordinary differential equation

where K is a positive constant and To > t0 is chosen so that g(t) > 0 for all
/ > To. By a criterion of Moore (1955), this equation is oscillatory if there exists a
P,O<fi< 1, such that
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that is,

The last condition holds for some /?, 0 < /? < 1, if

[g(t)]n~l~'p(t)dt= °° forsomee,

Furthermore, we observe that (*) implies (C). Thus, from Theorems 1 and 2 we
can derive the following known (see Sficas (1973)) result: Under the condition (*),
for n even all solutions of (E) are oscillatory while for n odd every solution of (E) is
either oscillatory or tending monotonically to zero at oo together with its first n — 1
derivatives.
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