Precipitate Evolution In Zry-4 Oxidation P.B.Bozzano, M. Ipohorski, R.A. Versaci Departamento Materiales, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (1650) San Martín, Buenos Aires, Argentina. The microstructure of Zr alloys has been a subject of study during the last decades due to its influence on the manufacturing of fuel elements sheaths for power reactors. In particular, Zircaloy - 4 (% wt Sn 1.45 - 1.5, Fe 0.18 - 0.24, Cr 0.07 - 0.13, O 1400ppm, Zr to balance), is widely used as fuel cladding material. Of all the alloying elements only Sn is in solid solution. For low temperatures (T<600°C) Fe and Cr are present in the form of second phase particles. These intermetallic precipitates are about 10 - 1000 nm in diameter, depending on the fabrication conditions. The structure, composition, average size and morphology of the second phase precipitates are closely related to the corrosion behavior of Zry-4. It is known that during the initial oxidation of zirconium alloys thin coherent oxide films of ZrO₂ form over the whole surface, including the intermetallic particles lying on the surface. The precipitates are accommodated in the oxide film in a non-oxidized state, and then the zirconium present inside the precipitates is gradually oxidized to either cubic or tetragonal ZrO₂. The precipitates in the oxide layer are subjected to a delayed oxidation as compared to the matrix, accompanied by the rejection of a significant proportion of their iron content. Previous works showed that precipitates undergo chemical composition changes after open furnace oxidation: EDS (Energy Dispersive Spectroscopy) showed the presence of Zr, Cr and Fe within both non-oxidized and partially oxidized precipitates, but no Fe was detected within the oxidized ones. Then, it was suggested that a progressive Fe rejection towards the oxidized Zr (Cr, Fe)₂ precipitate / oxidized matrix frontier takes place. In the present work, as- received commercial Zircaloy- 4 furnished by Teledyne Wah Chang was characterised by Analytical Electron Microscopy (AEM) techniques, before and after an oxidation treatment in open furnace at 650°C. AEM analysis was carried out in a CM 200 Philips microscope with and EDAX- DX4 system operated at 160 kV. Figure 1 shows a BF- TEM image of Zry-4 and of a non- oxidised precipitate with its corresponding EDS spectrum. The Fe / Cr atomic ratio was found to be \cong 1.5. Inside the Zry-4 `s oxide layer non- oxidised precipitates (i.e. original intermetallic precipitates) with a nominal Fe / Cr ratio of 1.5 were found as well as oxidized precipitates with an Fe / Cr ratio decreased to 0.5. (Figure 2). Figure 1 : BF- TEM image of non- oxidized Zry-4. The EDS spectrum corresponds to a precipitate with a Fe / Cr atomic ratio \cong 1.5. Figure 2: BF- TEM image of an oxidized precipitate and its corresponding EDS spectrum . The Fe / Cr atomic ratio was found to be \cong 0.5.