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Abstract

We show that, by taking normalizations over certain auxiliary good reduction integral models, one
obtains integral models of toroidal and minimal compactifications of PEL-type Shimura varieties
which enjoy many features of the good reduction theory studied as in the earlier works of Faltings
and Chai’s and the author’s. We treat all PEL-type cases uniformly, with no assumption on the level,
ramifications, and residue characteristics involved.
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1. Introduction

In recent years, we have witnessed a rapid development in the arithmetic
applications of noncompact Shimura varieties, in which the integral models of
toroidal and minimal compactifications have played important roles. So far, such
applications have almost always assumed that there are some bottom levels at
which the integral models have good reductions, which is the case when the
residue characteristics are unramified in all linear algebraic data involved, so
that the Shimura varieties in question have smooth integral models which can be
constructed and compactified using the theories of deformation and degeneration
as in [10] and [30].

Nevertheless, as remarked in the introduction of [31], since the theory of
degeneration developed in [42], [10], and [30] works as long as the generic
characteristic is good (and as long as the base of degenerations are noetherian

© The Author 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2015.31 Published online by Cambridge University Press


http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:kwlan@math.umn.edu
https://doi.org/10.1017/fms.2015.31

K.-W. Lan 2

normal), there is, a priori, no reason that we cannot consider integral models
of Shimura varieties and their compactifications with bad reductions. Also,
recent breakthroughs in the theory of local models have shown that, even when
allowing rather deep ramifications, it is not so unreasonable to consider integral
models of Shimura varieties defined by taking normalizations of the (schematic)
closures of the images of characteristic zero Shimura varieties in certain auxiliary
good reduction integral models (for simplicity, we shall just say that such
integral models are constructed ‘by taking normalizations of certain auxiliary
good reduction integral models’, or just ‘by normalization’). This is because
a large class of useful models defined by representing moduli problems can
be shown to be normal, or close to being so, in the sense that the closures
of their characteristic zero fibers are normal. Since the theory of degeneration
works well over noetherian normal base schemes, the time seems ripe for
systematically studying the construction of integral models of compactifications
by normalization.

Let us be more precise about the integral models we will consider (without
explicit definitions, to be given later in the main text). Consider any PEL moduli
problem My, over Fy (the reflex field of the PEL datum defining My), as in
[30, Section 1.4.1] (with O = @ there), parameterizing tuples (A, A, i, ay),
where A is an abelian scheme over some base scheme, A : A — AY is a
polarization, i is an endomorphism structure, and ay is a level-H structure.
Here H is an open compact subgroup of G(Z), where the group functor G over
Spec(Z) is defined as in [30, Definition 1.2.1.6]. Let p > 0 be any rational
prime number. For technical simplicity, let us assume that the image H? of
‘H under the canonical homomorphism G(Z) — G(Z”) is neat. Consider a
collection of auxiliary moduli problems {My;, , }je1» Where each My, is a good
reduction moduli problem over Op. . (» (the ring of p-integers in the reflex field

Fo j,aux of the PEL datum defining MHJ._W), defined as in [30, Section 1.4.1] (with
U = {p} there), parameterizing tuples (Aj aux Ajauxs Lj.aux ¥, ,,,)> With morphisms
My — My, ®z Q between moduli problems defined by assigning (Aj aux,
Ajauss Gaux @3,,) 10 (A, A, 1, a3) (in a way that will be made explicit), where
(Aj auo Ajaux) 15 @ prime-to-p polarized abelian scheme defined by (A, A), using
Zarhin’s trick when A is not prime to p, where i, is the restriction of i to a
subalgebra unramified at p, and where ay,, ,, is a (possibly lower) level structure
away frgm p induced by a4 (up to Hecke twist). Then we construct a p-integral
model My ; of My as the normalization of [],;My;,, under the canonical
morphism My, — [],;; My, (the use of a collection {My;,, }ies takes care
of the consideration of multichains of isogenies as in [51, Ch. 3], or of more
general collections of quasiisogenous polarized abelian schemes). We similarly
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define p-integral models of toroidal and minimal compactifications of My, using
the toroidal and minimal compactifications of the auxiliary moduli problems
constructed as in [30, Chs. 6 and 7]. For simplicity, we shall call these integral
models rather than p-integral models (we obtain models over the whole integer
ring, or any localizations of it, by similar considerations).

For example, if My, is the modular curve (over Q) of principal level n, where
n = nop” for some integer ny > 3 prime to p and for some integer r > 0, then
we can take M, ..x (Where J is a singleton {jo}) to be the modular curve (over
Zy)) of principal level m for any integer m > 3 dividing n, (this is essentially
the same approach taken in [9, III, Definition 3.3]). For another example, if
My, is the Siegel moduli (over QQ) of genus g, degree dj2 (possibly divisible by
p), and principal level n for some integer n = ngp” as above, then we can
take M; .ux (Where J is a singleton {jo}) to be the principally polarized Siegel
moduli (over Z,)) of genus 8¢ and principal level m, for any integer m > 3
dividing ny. For yet another example, if My is a unitary Shimura variety with
endomorphisms by a maximal order of a CM field totally ramified at p, and with
Iwabhori level structures (at p) realized by chains of (p-power-degree) isogenies
A=Ay—> A — ---— A, = A of abelian schemes with compatible additional
structures, then we can take J to be any subset of {0, 1, ..., m}, and {M; .u}jes
to be a collection of principally polarized Siegel moduli, with the morphism
My, — M.« given by applying Zarhin’s trick to A; (and its polarization), by
forgetting the endomorphism structure, and by retaining only the level structure
away from p, for each j € J. Different choices of the subset J generally define
different My, ;’s by normalization (it might be helpful to take a quick look at
Examples 2.3, 2.4, 13.11, and 13.12, without studying them in detail).

This article aims at showing that many features of the good reduction theory as
in [30] extend to the integral models of toroidal and minimal compactifications
constructed by normalization, despite the fact that the constructions (as explained
above) are rather crude. We will justify the folklore belief that ‘the toroidal
boundary should be no more singular than the interior’, without studying the
interior.

We will show that, by taking normalizations over certain auxiliary good
reduction integral models of toroidal compactifications (as above), we obtain
integral models of toroidal compactifications associated with certain compatible
collections of (possibly nonsmooth) induced cone decompositions, whose local
properties in terms of geometric normality of fibers and Cohen—Macaulayness
are nevertheless as nice as the integral models of Shimura varieties defined
by normalization. Moreover, these integral models of toroidal and minimal
compactifications admit boundary stratifications analogous to the ones in good
characteristics (including zero), and the completions of the integral models of
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toroidal compactifications along their strata can be explicitly compared with the
completions of certain putative boundary charts parameterizing degeneration data
of PEL structures. These assertions will be proved with essentially no assumption
on the integral PEL data defining the moduli problems (we will only need [30,
Condition 1.4.3.10] to hold, which can always be achieved by slightly modifying
the choices of integral PEL data).

As examples of applications of our results, we will combine our results with
related results in the theory of local models in the ramified case, and show that
certain integral models of toroidal and minimal compactifications have the same
number of geometric irreducible components in their generic and special fibers.
We also show the density of ordinary loci in certain deeply ramified cases, by
combining the above with the technique for showing nonemptiness as in [31,
Section 6.3.3].

Here is an outline of the article.

In Section 2, we review the basic setting for the definition of our PEL-type
moduli problems in characteristic zero, which will be called PEL-type Shimura
varieties for the sake of simplicity, despite the well-known issue of the failure
of Hasse’s principle (this is harmless because the canonical models as in [18]
and [49], which are based on the construction in [2], are open and closed in the
complex fibers of our models; see [28]). For the sake of completeness, we also
consider collections of lattices twisted by group actions, which define moduli
problems for collections of abelian schemes with PEL structures related to each
other by (Q*-isogenies (that is, quasiisogenies; see [30, Definitions 1.3.1.16 and
1.3.1.17]) (our theory applies, in particular, to the parahoric setting in [51] and in
later works built on it).

In Section 3, we explain how the association of degeneration data behaves
under Q*-isogenies defined by the collections of lattices introduced in Section 2.
The assertions in this section are perhaps unsurprising, but the explanations for
them are quite elaborate. Since the technical difficulties in this section are rather
different from those in later sections, we suggest that first-time readers skip this
section.

In Sections 4 and 5, we introduce certain auxiliary choices of good reduction
integral models of PEL-type Shimura varieties, together with their toroidal
and minimal compactifications. In Section 6, we define integral models of the
Shimura varieties in question, together with their minimal compactifications, by
taking normalizations of (products of) such auxiliary good reduction integral
models (Propositions 6.1 and 6.4). For the integral models of Shimura varieties
thus defined, we can easily show that they are independent of the auxiliary
choices in Sections 4 and 5. However, for the integral models of the minimal
compactifications, our argument is rather indirect, and we will have to wait until
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many other results are proved; see Section 12 below. The materials in these three
sections follow closely those in [31, Sections 2.1.1, 2.1.2, and 2.2.1], except that
we have to consider auxiliary choices compatibly associated with the collections
of lattices.

In Section 7, we define certain toroidal compactifications of the integral models
of Shimura varieties, with compatible collections of cone decompositions induced
by those of the auxiliary toroidal compactifications, and show that they satisfy
certain universal property generalizing the one in [30, Theorem 6.4.1.1(6)] (see
Theorem 7.14). Such a universal property is the foundation for all our later
arguments.

In Section 8, we construct putative boundary charts, and show that certain
formal schemes defined by them admit canonical morphisms to the toroidal
compactifications defined by normalization. In Section 9, we show that the
images of the underlying topological maps of such morphisms are locally
closed and define stratifications of the toroidal compactifications defined by
normalization, with properties as in characteristic zero as in [30, Theorem
6.4.1.1(2)] (see Theorem 9.13). In Section 10, we show that the canonical
morphisms from the formal schemes defined by putative boundary charts to the
toroidal compactifications defined by normalization induce isomorphisms from
the former to the formal completions of the latter along the (locally closed)
image strata (see Theorem 10.13). Such isomorphisms will play important roles
in subsequent sections. It follows that the special fibers of integral models
defined by normalization are dense in the corresponding special fibers of toroidal
compactifications defined by normalization (see Corollary 10.18).

In Section 11, we show that the tautological objects over our moduli
problems in characteristic zero, which are collections of abelian schemes
with PEL structures related to each other by Q*-isogenies, uniquely extends to
collections of semiabelian schemes equipped with similar structures over the
toroidal compactifications in mixed characteristics defined by normalization (see
Theorem 11.2). We also improve the universal property in Theorem 7.14 and show
that the toroidal compactifications defined by normalization are independent of
the auxiliary choices in Sections 4 and 5 (see Theorem 11.4 and Corollary 11.7).

In Section 12, we show that the minimal compactifications defined by
normalization admit stratifications with properties as in characteristic zero as
in [30, Theorem 7.2.4.1 (4) and (5)] (see Theorems 12.1 and 12.16). It follows
that the special fibers of integral models defined by normalization are dense
in the corresponding special fibers of minimal compactifications defined by
normalization (see Corollary 12.5 and Remark 12.6). Consequently, we can
finally show that the integral models of minimal compactifications defined by
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normalization are also independent of the auxiliary choices in Sections 4 and 5
(see Corollary 12.7).

In Section 13, we study the morphisms induced functorially by varying
the levels, collections of lattices, and cone decompositions, and work out
some examples. In particular, we obtain morphisms extending the ones in
characteristic zero defining Hecke correspondences among Shimura varieties (see
Proposition 13.15).

In Section 14, we show that the local properties of the toroidal compacti-
fications defined by normalization are as nice as the integral models of Shimura
varieties themselves, when it comes to the geometric normality of fibers and
Cohen—Macaulayness (and also the regularity and geometric regularity of fibers
when the cone decompositions are smooth) (see Propositions 14.1 and 14.2; see
also Corollary 14.4 for some well-known application). We also work out some
examples, based on the theory of local models, where such results apply (see
Lemmas 14.6 and 14.7). In Section 15, we show the density of ordinary loci in
some of such examples (see Proposition 15.1 and Corollary 15.2).

In Section 16, we conclude the article with some remarks comparing the results
in this article with other known results, including our own earlier ones.

The arguments in this article will be built on the theory developed in [30],
and some familiarity with the theory there will be necessary. The readers may
find the summaries, explanations, and reformulations in [29, Section 1] and [31,
Sections 1.1, 1.2, 1.3.1, and 1.3.2] helpful. The notation system in this article
is probably more complicated than it absolutely has to be, but we have chosen to
make it consistent with most of those in [30] and [31] (and other works dependent
on them), so that readers already familiar with them will not have to learn a
completely new notation system. We will make it clear when we occasionally
do introduce some simplifications.

We shall follow [30, Notation and Conventions] unless otherwise specified.
While for practical reasons we are unable to review all notions we have inherited
from [30] and [31], we recommend that the readers make use of the reasonably
detailed indices and tables of contents of these works when looking for the
numerous definitions.

2. Basic setting

Suppose we have an integral PEL datum (O, %, L, (-, -), ho), where O is an
order in a semisimple algebra finite-dimensional over @, together with a positive
involution *, and where (L, (-, -), ho) is a PEL-type O-lattice as in [30, Definition
1.2.1.3], where (-, -) : L x L — Z(1) is an alternating pairing satisfying (bx, y) =
(x,b*y) forany x, y € L and b € O, together with an R-algebra homomorphism
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ho : C — Endpg,r(L ®z R) satisfying (ho(z)x, y) = (x, ho(z°)y) for any x,
y € L and z € C, and satisfying 27 V=D "Yx, ho(+/=1)x) > 0 for any nonzero
x € L (in [30, Definition 1.2.1.3] ho was denoted by /). Such a tuple (O, x, L,
(-, ), ho) is an integral version of the PEL datum (B, x, V, (-, -), ho) in [26] and
related works.

The datum of (O, «, L, (-, -), ho) defines a group functor G over Spec(Z) (as
in [30, Definition 1.2.1.6]), and defines the reflex field F{ (as in [30, Definition
1.2.5.4]). In what follows, we will allow Fj to be any finite extension field of the
reflex field (the theory works for any such extension field).

Let H be an open compact subgroup of G(2). By [30, Definition 1.4.1.4] (with
O = @ there), the data of (L, (-, -), hy) and H define a moduli problem My
over Sy = Spec(Fp), parameterizing tuples (A, A, i, @y;) over schemes S over
Sy, where:

(1) A — S is an abelian scheme;
(2) A: A — AYis apolarization;

(3) i : O < Endg(A) is an O-endomorphism structure as in [30, Definition
1.3.3.1];

(4) Lie, ¢ withits O®z;Q-module structure given by 7 satisfies the determinantal
condition in [30, Definition 1.3.4.1] given by (L ®z R, (-, -), ho); and

(5) ay is an (integral) level-H structure of (A, A, i) of type (L ®z Z, (-,-)) as
in [30, Definition 1.3.7.6].

By [30, Theorem 1.4.1.11 and Corollary 7.2.3.10], My, is an algebraic stack
separated, smooth, and of finite type over Sy, which is representable by a scheme
quasiprojective (and smooth) over Sy when H is neat (see [49, Section 0.6] or
[30, Definition 1.4.1.8] for the definition of neatness). .

Given the above (O, %, L, {-, ), hy) and H C G(Z), suppose moreover that
we have a nonempty collection {(gj, Lj, (-, -);)}jes, where for each j € J the triple
(gj, Lj, (-, -);) consists of the following data.

(1) g € G(A™);
(2) Lj C L ®; Qs a O-lattice;

(3) (-,-)j: Lj x Lj — Z(1) is an alternating pairing such that (-, -); ®7 Q is a
QZ,-multiple of (-, -}®zQ (when both are viewed as Q(1)-valued pairings on
L ®7Q), which defines a group functor G; over Spec(Z) (as in [30, Definition
1.2.1.6]), equipped with a canonical isomorphism

GReQ=G6Q;
Z Z
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(4) by also viewing hy as a polarization of (L;, (-, -);, Z(1)), as in [30, Definition
1.2.1.2], (Lj, (-, -)j. ho) is also a PEL-type O-lattice as in [30, Definition
1.2.1.3]; and

(5) letus denote by #; the preimage of gjfl’ng under the canonical isomorphism
G;j(A*) = G(A™). Then we require that H; C G; (Z), or equivalently that the
action of gjfl’ng stabilizes the submodule L; ®; Z of L @7 A™.

Moreover, as in [30, Condition 1.4.3.10], we shall assume that there exists some
maximal order O’ in O ®; Q containing O such that, for every j € J, the action
of O on L; extends to an action of (0'.

For each j € J, we have a moduli problem My, defined by the integral PEL
datum (O, *, L;, (-, -)j, ho) as in [30, Definition 1.4.1.4] (with O = { there),
parameterizing tuples (4A;, A;, ij, aHj) over schemes S over S, as above (but with

A A

(L ®z Z, (-, -)) replaced with (L; ®z Z, (-, -);) in the definition of level-H;
structures), and where

Mz, = My, 2.1)
is a canonical isomorphism given by [30, Proposition 1.4.3.4 and Corollary

1.4.3.8], realized by sending objects parameterized by My to their isogeny twists
(a special case of this will be spelled out in Section 3).

REMARK 2.2. While M3, and My, are canonically isomorphic to each other, their
tautological abelian schemes differ by a Q*-isogeny, which is generally not a Z(Xp)-
isogeny. We will see in the next few sections that different M, ’s are associated
with naturally different auxiliary integral models.

EXAMPLE 2.3 (Simplest case). Suppose J = {jo} is a singleton, with the simplest
choice (gj,, Lj,» (-, )j)) = (1, L,{-,-)). In this case, we will study (mixed
characteristics) degenerations of objects parameterized by My,.

EXAMPLE 2.4 (Parahoric levels at p). Suppose that p > 0 is a rational prime
number, that O ®;Q,, is simple, and that O ®Z,, is a maximal order in O ®7Q,.
Suppose J = {jo, j1, - - -+ jm} 1S a finite totally ordered set, with

jO <j1 < - <jm7

such that gi = 1 for all j € J, and such that
L=Lj,CL; C---CLj

Jo = m

are proper sublattices of I{L which are representatives of some self-dual periodic
lattice chain considered in [51, Ch. 3] (we can allow general O®7Q, and consider
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multichains—we focus on the special case here only for the sake of simplicity
of exposition). Suppose that H = HPH,, where H? is a neat open compact
subgroup of G(Z”), and where H,, := () G;(Z,), with G;(Z,) abusively denoting
the image of G;(Z,) in G(Q,) under the canonical isomorphism G;(Q,) =
G(Q,). Then My, with its additional structures given by the isomorphisms (2.1),
for all j € J, parameterizes chains of isogenies

A=A, = A, — =>4, —> A

Jm

(whose composition is the multiplication by p on A) s_)atisfying certain additional
conditions, and extends to a moduli problem over S, := Spec(Op, () given
by the moduli scheme of chains of isogenies between abelian schemes (with
additional PEL structures) as in [51] and later works built on it. In this case, we
will study (mixed characteristics) degenerations of such chains of isogenies.
While this enriched moduli problem in characteristic zero is canonically
isomorphic to My and is finite over My z,) for each j € J, the extended
moduli problem in mixed characteristics is in general not finite over any mixed
characteristics moduli problem extending My;rg,z,)-

EXAMPLE 2.5 (Hecke twists). Suppose J = {jo,ji;} has two elements, and
suppose (gj» Lip (5 )jg) = (1, L, (-, ) and (g;;, Ly, (-, -)jy) = (8, L, (-, -)) for
some g € G(Z). In this case, we will study (mixed characteristics) degenerations
of Q*-isogenies

Fo(Ah i o) — (AL X0 e,

realizing the Hecke twists of (A, A, 7, ay) by g (see [30, Section 6.4.3]). More
generally, given any collection {(gj, Lj, {-, -);) }jer,» We can introduce a twice-
larger collection {(g€gj, Lj, (-, -)j) }e.jet0.13xyr» provided that both g;'?-[gj and
gjflg_nggj stabilize the submodule L; ®, 7 of L ®z A>, for each j € J'. In
this case, we will study (mixed characteristics) degenerations of Q*-isogenies

f:i : (A_]’ )\'_]7 i_]’ aHJ) - (Aj/v )\'ja ij/v a;*"f-ﬂjg)

realizing the Hecke twists of (4, A;, ij, o), for all j € J', which are related to
each other via Q*-isogenies.

In what follows, we shall fix the choice of a rational prime number p > O,
and we shall assume that the image H” of H under the canonical homomorphism
G(Z) — G(Z”) is neat (which means, a fortiori, that H is also neat). Then #;
and its image Hj” under the canonical morphism G; (Z) - G (Z”) are also neat,
for every j € J.
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We suggest that first-time readers take, for simplicity, J = {jo} (a singleton)
and (gj,, Li,, (-, )j) = (1, L,{-,-)) (with no nontrivial Hecke twist) as in
Example 2.3, and ignore all the indices j (and products indexed by them) in the
exposition. Furthermore, they might assume that the pairing (-, -) is self-dual at
p, so that Zarhin’s trick is not needed. The key points are already novel under
these two simplifying assumptions.

3. Quasiisogeny twists of degenerations

In this section, let us fix the choice of an index j € J.
Let V be a complete discrete valuation ring with fraction field K and
algebraically closed residue field k. Suppose that there exists a morphism

n := Spec(K) — My.

By abuse of notation, let us denote by (G,, A,, i;, ot3,,) the pullback of the
tautological object over My under this morphism. By the semistable reduction
theorem (see, for example, [30, Theorem 3.3.2.4]), up to replacing K with a finite
extension field and replacing V accordingly, we may assume that G, extends
to a semiabelian scheme G over Spec(V). By the theory of Néron models (see
[4]; cf. [52, IX, 1.4], [10, Ch. I, Proposition 2.7], or [30, Proposition 3.3.1.5]),
(G, Ay, iy, 0t3,,) extends to a degenerating family (G, A, i, ay) of type My, over
Spec(V), where a4 is defined only over n = Spec(K), which defines an object
of DEGpg m,, (V) corresponding to a tuple

(Bs )\'B’ iB? Xv X? ¢7 c, va T, [a’i[])

in DDpgy m,, (V) under [30, Theorem 5.3.1.19]. Since the base ring V is strict
local, the étale sheaves X and Y are necessarily constant, which we shall denote
by X and Y, respectively.

Let n = My be any geometric point above n — My,. Then oy, can be
identified with the 77, (1, i)-invariant H-orbit of some symplectic isomorphism

&ﬁL@Z—N)TG;]
Z

(cf. [30, Lemma 1.3.6.5]), which induces the 7, (n, 7j)-invariant 7 -orbit of the
induced symplectic isomorphism

VA Z

The image of Lj ®z 7 under (@; ®; A®) 0 g : L ®; A® — V Gj is an open
compact subgroup of V G, which is m; (7, 17)-invariant because the preimage H;
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of gj*I”ng under the canonical isomorphism G;(A*) = G(A*) is contained in

G; (Z). Hence, by [30, Lemma 1.3.5.2], we have a Q*-isogeny
Jin 2 (G, Ay i) = (G, Ajys Gg)

over 7, together with the 7, (1, i)-invariant H;-orbit of a symplectic isomorphism
z
such that the induced symplectic isomorphism
OAlj,ﬁ ®AOO . Lj ®Aoo —~> VGJ";]
7 Z
satisfies the characterizing property
&j,f] @Aoo = V(fi) [e] (6[;] @Aoo) [¢] gj‘
Z Z

Up to replacing A; ; with a QX -multiple, the 7, (n, 77)-invariant #;-orbit of &; ;
induces a level-H; structure ayy, , for (Gj,, Aj,, ij,), which defines an object
(Gjs Ajps By @34,.9) of My () parameterized by a morphism n — Msy,. By
the proofs of [30, Proposition 1.4.3.4 and Corollary 1.4.3.8], this is just the
composition of n — My, with (2.1).

By the theory of Néron models again, the above Q*-isogeny f;, extends to a
Q*-isogeny

fi 1 (G, A, i) — (Gj, A, §).

Together with the level-H; structure a3, , defined only over 1, which we abusively
denote by a3, we obtain a degenerating family (Gj, A;, ij, a3;) of type My, over
Spec(V), which defines an object of DEGPEL,MHJ_ (V) corresponding to a tuple

. b
(Bj, Ay, in, X5, Y s ¢y ¢ 1y, [agy D)

in DDPEL,MHj (V) under [30, Theorem 5.3.1.19]. Again, the étale sheaves X. ; and
Y, are necessarily constant, which we shall denote by X; and Y;, respectively.
Using the canonical isomorphism (2.1), and using the equivalences of
categories given by [30, Theorem 5.3.1.19] as above, we know that the object
(B, Ap,ig, X, Y, ¢,c,c¥, T, [ozs_[]) in DDpgy, m,, (V') determines and is determined
by the object (Bj, As,, ix, Xj, Y, by, ¢;, ¢)', 5, [@3, 1) in DDperw,, (V). For our
purpose, we will need a more explicit relation between these objects. Let

q ~ ~ \2
Qq = (2, D220 P-1,H> Po, 2> 81, CHs Cyy» )

be any representative of [ocgi].
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By construction, Z4, is the H-orbit of the pullback Z of the geometric filtration
0CTT; C TG, C TG; under &; : L ®; Z — TGj. Since &;; ®; A® =
V(fi7) o (&; ®; A%) o g;, the pullback Z; of the geometric filtration 0 C T T; C
TG: C TGjunder &; : L ®; Z — T Gy is related to Z by

= (s (2reav)) 0 (192)

for all i, whose H;-orbit is independent of the choices, which we abusively denote
by Z; (this notation is abusive because Z; is the H;-orbit of Z;, not ). Thus,
we have a well-defined assignment

Zy > ZHJ., (31)

which is bijective because Z4, is also determined by Z3;. By construction, we
have isomorphisms

8- Z_; ®Aoo —N> ij,,’ ®Aoo
7 7
for all i/, which induce isomorphisms

Gr_i(g) : Gr’, @ A™ = Gr/_, @ A™.
7 Z

With such an isomorphism for i = —1, by the analogs of [30, Proposition 1.4.3.4
and Corollary 1.4.3.8] for the abelian parts of the objects, we obtain a canonical
isomorphism

~ L3

M3 S My, (3.2)

(over Sy = Spec(Fp)) such that the tautological object (B, A, ip, ¢_1.%) over
2

M3 and the pullback of the tautological object (Bj, Ap, ip,, ¢-1.2;) Over M,}_ZJ
are related via a Q*-isogeny fips : (B, Ap,ig) — (B, A, ip) (canonically
induced by the above Q*-isogeny f; : (G, A,i) — (Gj, Aj, ij), or rather by the
corresponding Q*-isogeny f; : (G, A%, i*) — (Gj”, AJF, ij”) induced by taking
Raynaud extensions), where ¢_; 3, (respectively ¢_; 3;,) is induced by the m;(n,
n)-invariant H-orbit of ¢_; := Gr_,(&;) : Gr’, ST B; = (T Gf-])/(T T;)
(respectively H;-orbit of ¢; _; := Gr_;(&;;) : Grzj'1 S TB;; =(T Giﬁ)/(T Ti.7).
By construction, X and Y are the character groups of the torus parts 7 and T
of G* and G"%, respectively. Consider the submodule (v(gj)‘1 Gr,z(gj))(GrZ_j2) of
Gr*, ®;A>. By [30, Lemmas 5.4.3.6 and 5.4.3.7], there exists a unique O-lattice

Xj in X ®7Q, together with the canonical isomorphism f x : Xj®zQ S5 X ®zQ
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and a canonically induced isomorphism ¢; _» : Grij2 > Hom,, (X; ® Z Z(l))
such that

028A% = (fix®A%) 0 (02 847) 0 (v(g) ™ Gralg))

Similarly, there exists a unique O-lattice Y; in ¥ ®7 Q, together with the canonical
isomorphism fiy : ¥ ®z Q = Y; ®z Q and a canonically induced isomorphism
910 : Gry = Y, ®; 7 such that

®i.0 ? A* = (ij %Am) ° ((00 % AOO) o (Gro(g;)).-

Then X; and Y, are canonically isomorphic to the character groups of the torus
parts 7; and ;" of Gju and ij " respectively, such that the morphisms f;,x and
Jfiv are induced by the Q*-isogenies fir : T — Tjand firv: T, — T" induced
by fi: G — Gjand f : G/ — G, respectively. By abuse of notation, let
(9-2.24;> %0.2;) be induced by the H;-orbit of (¢j 2, ¢;0), and let ((pjzﬂj, D124
<p(;Hj) be induced by the H;-orbit of (¢; >, @j —1, @j.0)-

Consider the unique r; € QX such that v(g)({-, -) @z A®) = rju((-, -); ®2 A>)
for some u € 7. Then there is a unique homomorphism ¢; : ¥; < X; such that
9®2Q = rj_lfj}lo(¢®z(@)ofj}l, which is induced by the pairing Grij2 X Grgj —
Z(1) induced by (-, -); : Lj x Lj — Z(1).

Thus we have obtained well-defined assignments of torus arguments

Py =X, Y, 02n, 0o1) = Pu; = (X5, Yy, &y, 029, P0.24) (3.3)

and of the orbits above the abelian parts

P = (XY, 0, 0700 030 = Py = X3, Y58y, i), BA)

where the latter induces the former. By the above construction and by the
definition of Iy, and F(p,Hj as the respective automorphism groups of @3, and P,

(see [30, Definitions 6.2.4.1 and 5.4.1.6]), we also obtain a canonical isomorphism

Ty = Toy, - (3.5)

Accordingly, we have a canonical isomorphism

H

M%7 5 My, (3.6)

(over Sy = Spec(Fy)) compatible with (3.2) and equivariant with (3.5), which

matches the object (97, 4, ¢, 4,) parameterized by MZ“ — M3}* with the object

Dy, 2
(975,3,» P0.,) Parameterized by MHT’ — MH’?J.
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If we take any splitting §; of Z;, and abusively denote its H;-orbit by d3,;, then
we obtain a cusp label [(Z4y;, D3y, 62;,)]. Thus we have a well-defined assignment

[(Z3, P3, 630)] = [(Zayy, Py, S34) - (3.7)
Let us fix once and for all the choices of §; for all pairs (Z;, ®;), which determine

the choices of 8y, for all pairs (Z3;, @3;). Then the assignment (3.7) is induced
by an assignment of representatives of cusp labels

(Z3, Py S3¢) = (Zgys Poyys Oyy). (3-8)

By the definition of the group Se,, (see [30, (6.2.3.5), Convention 6.2.3.20,
Lemma 6.2.4.4]) and by [28, Corollary 3.6.10], we can identify elements of
Hom(S,,,, Z:(1)) with maps in ¥ ®,Z — Homy, (X ®,7Z, Z(1)) (satisfying certain
additional conditions), and we can identify elements H € Hom(Ss,,, Z(1)) with
elements & € H which induce maps

8—1

)
Gr’, ®Gr’, @ Grl = Gr* > L@Z-’& L%ZQ Gr* = Gr*, ® Gr’, & Gr’

given by ( ' hj”) in block-matrix form (acting on column vectors from the left)

with Ay : Gry — Gr”, induced by

-1
90 N L)

Gri > v ®2"%" Homi(X@)Z, 2(1)) 5 Gr,.
Z Z

This identification depends not on the choice of §, but on the choices of Z and
(¢_2, ¢o), which is canonical (only) up to the action of Iy,,. Similarly, we have
an identification between elements H; € Hom(Sq,Hj, Z(1)) and elements h; € H;,
depending not on the choice of §j, but on the choices of z; and (¢; _», ¢j0), which
is canonical (only) up to the action of Epﬂj. Nevertheless, if z; and (¢; 2, ¢j0)
are determined by Z and (¢_,, ¢y) as above, then the above identifications are
compatible with the isomorphisms H — gj_ngj — H; (by definition of H,),
and we have a canonical isomorphism Hom(S4,,, Z(1)) > Hom(quHj , Z(1)) of
abelian groups equivariant with (3.5), which induces canonical isomorphisms

Sas, = Says (3.9)

(8a,,)2 = Sa,, ®Q = (8o, = S0, BQ, (3.10)
Sa,)g = Say)gs 3.11)

Say)z = Sos)xs (3.12)
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and
Eg,, =Hom(Ss,, Gn) = Eq,, =Hom(Ss, , Gn), (3.13)

which are compatible with each other and compatibly equivariant with (3.5). If we
identify elements of (Sg,, )¢, (respectively (S%j)é) with Hermitian pairings on
Y ®7 Q (respectively Y; ®z Q) as in [30, Section 6.2.5], then (3.11) is defined by
pullback under the inverse of fjy : ¥ ®2Q - Y;®7Q. Hence (3.12) preserves the
positive definiteness and semidefiniteness of pairings, and maps Py, (respectively
P, )to Py, (respectively P;Hj ).

By [30, Lemma 5.4.2.11], the representative (Z4;,, @y, d;) of the cusp label
[(Z3, P35 094;)] uniquely determines a representative
a’n}-[j = (Z’Hj’ @:Q,Hj ’ (p—l,Hj9 QD(IHI ’ (SHJ' ’ C’Hj, C’;—Lja 'L"Hj)
of [as_[j], where 23 gojz’?_[j, Y1245 qoa o and SHJ. are as above. It remains
to relate (cy;, citj, T3;) to (¢, ¢y, T#). For this purpose, let us also fix some
representatives Z, @ = (X, Y, ¢, ¢_», @), and ¢_; in their H-orbits, which induce
Zj, D = (Xj, Yj, ¢, 9.2, ¢j0), and ¢; _; by the procedures explained above.

By comparing the universal properties (as in [31, Lemma 1.3.2.11 and

" Py .
Proposition 1.3.2.12]) of Cy,, s, — Mfl“ and Cq)Hj,,;Hj — MH?J, there is a
canonical isomorphism
Cossn = Casyin, (3.14)

(over Sy = Spec(Fy)) compatible with (3.6) and equivariant with (3.5), which
matches the object (cy,c;,) parameterized by CQ,H 571 — M;Z” with the

object (cyy, cH) parameterized by C(pH — M . Concretely, by [31,
Lemma 1.3.2.11 and Proposition 1.3.2. 12] the pair (cH, c;,) is equivalent to a
tuple

b . b b
(Gi MGl — GY'il By )

over 1, where the subtuple (G}, A} : G} — G* i) is determined by two

n’

homomorphisms ¢, : ¥ — B/ and ¢, © X — B, compatible with each other

under the homomorphisms ¢ : ¥ < X and A, : B, — B/, and where ,35_“7 is
equivalent to the (1, 1)-invariant H-orbit of a triple

Bi= (B2 S TG B 28 S TG 05 2(1) S TGy,
where z* is the filtration on the dual lattice L* ®; Z defined by

ARRES (z,i ®A°°) N (L# ®Z>
7 Z
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for each i, such that Bg,o and Bg,#,o are compatible with each other under the
canonical morphisms induced by z_; — z*, and A, inducing the above-chosen

©_2, ¢_1, and ¢y on the graded pieces, and such that f); = v(p_1). Under the
homomorphism (,BA,%’O ®; A®) o g : g7 '(Z_1 ®; A®) > VG, the image of
Zio = (g ' (221 ®; A®))N(L; @z 7) is a m(n, 7)-invariant open compact
subgroup of V GE-], which induces a Q*-isogeny fjt,7 : GE; — Gj”,n. Similarly, under
the homomorphism (32‘#’0 ®; A®) o (v(gj)‘lgj) : gj*](Z_l ®5 A®) > VG;‘t,
the image of fol = (gj*I(Z 1 ®; A®))N (L?t’L ®z 7) is a 7, (y, 7)-invariant open
compact subgroup of VG , which induces a Q*-isogeny (f;, S t) ! G;’” —

ij,,’]”. Here Gin and GJv ;]J are determined by two homomorphisms ¢;, : ¥; — By,
and ¢, : X — B;, compatible with each other under the homomorphisms
¢ Y; — Xjand Ap, : B, — B}, which induce a homomorphism

b .t A
A , Gj_,7 — Gm.

Let
25,0 . ~ b
ﬁj,r‘] N Zj,—l —> TG_]T_]
and
B0zt | S TGHY

7 J—l

denote the induced isomorphisms, and let

D= v(@j1).

Then the H;-orbit of

Blo= (Bl 2 = TG B c 2t | S TG, Z(1) = TGy)

j,—1

is 7y (n, n7)-invariant and induces the ,BE{M such that the tuple

f N -t i
(G 2t Gy = Gl By )

i J’I J’I’JJI’

over 7 corresponds to the pair (¢, cﬁitj) (note that the choices of § and §; play no
role in the comparison between ,35 and ,éﬁﬁ).

Similarly, by comparing the universal properties (as in [31, Lemma 1.3.2.28
and Proposition 1.3.2.31]) of &4,, 5,, = Co,, s, and Ed’va‘SHi — Cq;HJ_,(;HJ_, there
is a canonical isomorphism '

Ear 510 = Eor i (3.15)
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(over Sy = Spec(Fy)) compatible with (3.14) and equivariant with (3.5) and
(3.13), which matches the object 3, parameterized by Zg¢,, s, — Co,,.s,, With
the object 73;, parameterized by ij,g,{j — C¢Hj,5,{j. Concretely, by [31, Lemma
1.3.2.28 and Proposition 1.3.2.31], the triple (cy, ¢}, T3) is equivalent to a tuple
(G} M, 2 Gy — GFLik Ty, Bay)

over 7). Here the subtuple (G}, A%, i) is as in the previous paragraph, and T, :
Tyxx.y = (c: X c,,)*P?;(fl) is a trivialization of biextensions which induces two
homomorphisms ¢, : ¥ — GE7 and () @ X — GX’“ compatible with each other
under the homomorphisms ¢ : ¥ < X and )\,t? : GE7 — GX’”, which allow us
to recover the modules T G; and T G,Y] as extensions of ¥ ®z 7 and X K7 7 by
TG and T G;*, respectively, together with the morphism T(;) : T G; — T Gy
inducing ¢ ®z 7 and T(AE-]) on the graded pieces, without having to recover Gy,
G;, and A; : G; — G} themselves. Based on these, By, is equivalent to the
m1(n, n)-invariant H-orbit of a triple

By = (ﬁg : L@Z—chﬁ,ﬁgﬁ : L’*%Z—X TGY, by 2(1) > TGm,,-,)

such that ,32 and 33,0 are compatible with each other under the canonical
morphisms induced by L — L* and T(};), which induce the above-chosen
¢-25 P15 and ¢, on the graded pieces, and such that J; = v(¢_;). Such a
trlple ,3,, induces a triple ,3] as above; in partlcular it induces the Q*-isogenies
fJ . GD — GJ , and (fjv u) ! : G T G ® in the previous paragraph. Together
with the isomorphisms f; x : X; ®2 Q = X ®zQand fiy : Y ®2,Q = Y, ®zQ,
they induce a trivialization 7, : 1y,xx;.» - (" cj,n)*’P,?jﬁTI) of biextensions
which induces two homomorphisms ¢, : ¥ — G? and ¢}/, : X — G,"* compatible
with each other under the homomorphisms ¢; : ¥; < X; and )\j”, Gu — GJv nt,
which allows us to recover the modules T G; ; and T G;’; as extensions of Yi®z Z

and X; ®z Z by TG-n and TGJv nq, respectively, together with the morphism
T3 : TGy — TGvf inducing ¢; ®z Z and T(k 7) on the graded pieces,
without having to recover Gij, G5, and 455 : Gj; > GY themselves; and to
recover the canonical isomorphisms V(f;;) : VG; — V Gj; and V( jyﬁ)‘l :
V G} — V Gy, without having to recover the Q*-isogenies f;; : G; — Gj; and

(fi)~': Gy — Gy; themselves. Let

B % TGj;
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denote the restriction of

V(i e (Rea¥)os: LOA™ S VG,

to Lj ®z Z, and let
A0 . T # A
ﬂj,ﬁ : Lj %)Z — TG;

denote the restriction of

VU™ (B 94%) o e ey LT @A™ S VG,

to Lf ®z 7 (the images of these restrictions are T Gj ; and T ijﬁ, respectively, by
checking the images on the graded pieces). Let

ﬁj’,—] = l)((qu_l).

Then the H;-orbit of

A

R R ~ A0 A~ v oA 5 ~
Biai= (Bl Li®L > TGy B LI®L = TGy 0y 2(1) > TGy
is 71 (n, n)-invariant and induces the B4, , such that the tuple

i ho. b v,0o.
(Gjp Ay 2 Gy = Gy By Ty Brn)

over 7 corresponds to the triple (¢, cf,Y_Lj, T3)-

LEMMA 3.16. If v : Inv(V) — Z is the homomorphism induced by the discrete
valuation of V, where Inv(V') denotes the group of invertible V -submodules of K,
and if we denote by B : S¢,, — Inv(V) (respectively B; : Sq;,Hj — Inv(V)) the
homomorphism defined by Ty, (respectively T;), or rather t, (respectively tj,), as
in [30, Construction 6.3.1.1], then (3.11) maps the element v o B : S¢,, — Z of
S¢,, to a QZ-multiple of the element v o B; : S(p,Hj — 7 ofS;Hi.

Proof. This follows from the above argument. Alternatively, it suffices to note
that the collection of all multiples of ¢, : ¥, — G determines the collection of
all multiples of ¢, : ¥, — G;n, via the isomorphism fjy : ¥ @ Q = Y, ®zQ
and the Q*-isogeny fjun G, — Gj”’n. (|

The Eg4, -torsor structure of Zg,, 5, — Cg,, .5, allows us to identify the

pushforward of ﬁg@%m (under the structural morphism Zg,, 5,, = Co,, s, ) With
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an Oc,, ,, -algebra given by the direct sum @Zes% Yy, .55, (£), and allows us to

define, for each nondegenerate rational polyhedral cone o C (S4,,), an affine
toroidal embedding

Bor i > By, (0) = Spec, (@ W, 50, (@)) (3.17)
@H Sy

leoV
where
={leSy, :{£,y) 20Vyeo}

as usual (see [30, Definition 6.1.1.8]). Similarly, for each nondegenerate rational
polyhedral cone oj C (S¢,, )k, we have an affine toroidal embedding

D o 00, & )) (3.18)

— — L
Eryon, > oo, (07) = Spec o s <
T Moy

Since (3.15) is equivariant with (3.13), it induces a canonical isomorphism from
the pushforward of @ks@ W50, (1) 10 D, San, (¢;), which maps the

pushforward of ¥y, 5, (£) to qu,H S (¢;) when E is mapped to £ under (3.9).
Consequently, if 0j is the image of o under (3.12), in which case ¢ is the image

of ch under (3.9), then the isomorphism (3.15) (necessarily uniquely) extends to
an isomorphism

‘D’H %

Eq:m,s% (o) - Eqbﬂj,s;{j (Uj) (3.19)
compatible with (3.14), (3.15), (3.17), and (3.18).
Let
={ €Sy, :{{,y) =0Vy co}

as usual (see [30, Definition 6.1.2.5]) and let X4,, s, . denote the formal
completion of Z¢,, 5, (o) along the o-stratum

By omue = Specﬁcqw (ED W 50, (f))

leot

Similarly, let %(pﬂj,gﬂj,oj denote the formal completion of E(ij,aHj (07) along the

oj-stratum
Edbu»,én.,aj = SpCC @ lp@ﬂ-,ﬁn»(zj) .
P07 OCos 5. | P
] 1 YMeo:
L

If oy is the image of o under (3.12), then (3.19) maps &g¢,, s,,.0 10 &g,
induces an isomorphism

w01 and

Xoysro = Loy om0 (3.20)
compatible with (3.14) and (3.19).
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By the theory of two-step degenerations (see [10, Ch. III, Section 10] and
[30, Section 4.5.6]), the above argument also shows that the assignments (3.7)
and (3.8) are compatible with the formation of surjections as in [30, Definitions
5.4.2.12 and 5.4.2.13].

LEMMA 3.21. Suppose X = {X¢,, }(@4,.5,,)1 iS a compatible choice of admissible
smooth rational polyhedral cone decomposition data for My as in [30,
Condition 6.3.3.2 and Definition 6.3.3.4]. Then there exists a unique compatible
choice Xj = {qu,Hj}[(quj’g%j)J of admissible smooth rational polyhedral cone
decomposition data for My, such that, for each representative (Z3;, @+, %)
of cusp label for My, which induces a representative (Z4y;, @y, 814;) of cusp
label for My, via (3.8), the cone decomposition Eq)Hj of S(p,Hj is the image of
the cone decomposition X¢,, of Se,, under any isomorphism (3.12) as above. In
this case, we say that X is induced by X. Consequently, we also have canonical

isomorphisms
M3 s = M3 5, (3.22)
and o ‘
MY" — M‘;_[“J“ (3.23)

(over Sy = Spec(Fy)) between the toroidal and minimal compactifications for
My, and My, (see [30, Theorems 6.4.1.1 and 7.2.4.1]), which are compatible with
each other under the canonical morphisms

. tor min
7& MY, > M

and
. tor min
% ) MHJvE.i - MHJ ’
H;

and with the canonical isomorphism (2.1). When (Zq,, @3, 8%) and (Zyy;, Py,
8%,) are as above such that oj is the image of o under (3.12), the morphism
(3.22) maps the [(Z4, 83, 0)]-stratum Z;(z,, s,, . ofMt;_’[’)D to the [(Z4y;, 834, 07)]-
stratum Z[(Zﬁj,gﬂj,gj)] of Mflrj, 5, and induces a canonical isomorphism

Ziri 0.0 > Lizag s0;00)-
Moreover, under the canonical isomorphisms

(Mtor )A ~x
Ho %) Zi(25, 83001 Pi,09,0
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and

(Mtor )/\ ~ ¥
Hj. X Z[(ij‘aHi.ajn = P80

given by [30, Theorem 6.4.1.1(5)], the canonical isomorphism

tor A ~ tor A
(MH,E)ZKZH.&,H,J)] - (MHJ’EJ)Z[(ZHFj,BHj,Gj)]
induced by (3.22) can be identified with the canonical isomorphism (3.20).
Accordingly, the morphism (3.23) maps the [(Z3, 83)]-stratum Zyz,, 5,y of
M3 1o the [(Zay;, S3)))-stratum Zyz,, 5,5 of My, and induces a canonical
isomorphism

Zizy. 01 = Z[(ij,stjn-

Proof. The canonical isomorphism (3.22) exists and satisfies the desired
properties by comparing the universal properties of M;‘f 5 and M‘,‘fj’ 5, @s in [30,
Theorem 6.4.1.1(6)], by comparing the induced degeneration data over complete
discrete valuation rings, as explained in this section thus far, and by comparing the
Mumford families as in the proof of [30, Theorem 6.4.1.1(5)]. Consequently, the
canonical isomorphism (3.23) exists and satisfies the desired properties because
the minimal compactifications are isomorphic to the respective projective
spectra of rings of global sections of powers of Hodge invertible sheaves, as
in [30, Theorem 7.2.4.1(3)], and because the stratifications of the minimal
compactifications are compatible with those of the toroidal compactifications as
in [30, Theorem 7.2.4.1(5)]. O

4. Auxiliary choices of smooth moduli problems

For each j € J, let Lf denote the dual lattice of Lj in L; @2 Q = L ®; Q with
respect to the pairing (-, -); valued in Z(1) (as in [30, Definition 1.1.4.11]).

LEMMA 4.1. Suppose j € J. For each integer d; > 1, there exist integers a;; > 0
and a;, > 0, and a positive definite symmetric bilinear pairing

(,’ ‘)j . Z@(aj.l+aj,2) % Z@(aj,|+aj.z) /4 (4_2)
satisfying the following properties.

(1) Suppose [L;*e (L] = dj2. Under the canonical embedding

Lj@(aj.l+uj2) N quauX:: LjEBHjAl @(Lf)eajl (43)
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induced by L; — Lf, the alternating pairing (-, -); ® (-, -)j on

L@(aj,|+aj.2)

o~ Lj ® Z@(aj.l-Faj,z)
J Z

extends to an alternating pairing (-, )J ax 0N Lj i valued in Z(1) that is
self-dual at p in the sense that p { [LJ aux - Lijaux]-

(2) Let W be a (relative) abelian scheme over an algebraic stack S, and let Ay :
W — WY be a polarization such that deg(Ay) = djz. Let
wa .— W><(aj,1+aj,2)

aux

and
WV - W><a]| X (W\/)Xaj2

which are fiber products over S; and let

fr=1dy" x A, WE — WY
S

Then Ay : W — WY and the morphism
(_ , )J* . Z$(aj‘l+aj’2) _N> Z®(a.i»1+aj.2) (44)
canonical induced by (-, -)j induce a polarization

AL e WA — WA

aux aux

(cf- [29, Lemmas 2.5, 2.6, and 2.9, and their proofs]), and

- A v,V
W aux ° (f ) o )"W aux © f aux Waux

is a polarization (not just a Q* -polarization) of degree prime to p. Moreover,
we can arrange that deg(Ay, ,.,) depends only on d; and the choices of (a1,
aj») and (-, -);, but not on W and Ay .

If p 1 d,, then we take (a; 1, aj») = (1,0) and take (-, -); : Z X Z — Z to be the
pairing sending (1, 1) to 1. Otherwise, we take (a; 1, a;2) = (4, 4), and take (-, -);
to be defined by some 2 x 2 matrix ( . ézz) over My(Z) such that xx = d} — 1.

Proof. The statement is obvious when p { d;. Otherwise, we can arrange that
(-, *)jaux is self-dual (at every prime) by the proof of Zarhin’s trick (as in [61,

X| —X2 —X3 —X4
Section 2] and [39, IX, 1.1]), by taking x = <ﬁ: N sz) for any integers xi,
X4 —X3 X2 X|
X2, X3, X4 such that x7 + x7 + x3 + x] = dj2 — 1, which exist by the fact (due to
Lagrange) that every nonnegative integer can be written as the sum of four squares

of integers. O
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LEMMA 4.5. Let (Z, A7) be any polarized abelian scheme over a scheme S.
Given any integer d; > 1, let us fix the choices of (a;,, a;>) and (-, -); as in
Lemma 4.1. Then the functor that assigns to each scheme T over S the set of
isomorphism classes of polarized abelian schemes (W, Ly) over T such that
deghw) = d} and (Z,rz) xs T = (W, Ay ) over T, where (Wi, Ay, .0)
is defined by (W Aw) as in (2) of Lemma 4.1, is representable by a scheme finite
over S.
Proof. By [41, Section 16], deg(Az) = dJ wx for some integer dj .. > 1. The
assertion to prove is trivially true unless the construction in (2) of Lemma 4 1
ass1gns to each pair (W, Ay ) of genus g and polarization degree d2 a pair (W,
Ay.awo) O genus gj .ux = (aj,1+a;2)g and polarization degree d2 Hence it suffices
to treat the universal case, which we explain as follows.

Consider the Siegel moduli A, , (respectively A, . 4.0 of genus g
(respectively gj..0) and polarization degree dJ2 (respectively dfaux) which is
an algebraic stack separated and of finite type over Spec(Z) (see [39 VII, 4.3]
or [6, Definition 1.1 and Remark 1.2]). The assignment of pairs (W, Ay, ) to
pairs (W, Ay) parameterized by A, , as in (2) of Lemma 4.1 is functorial, and
defines (by universal property) a morphism

.Agd —>.A

aux’

(4.6)

&j.aux, J aux*

In order to prove the lemma, it suffices to show that (4.6) is finite.

Suppose V is the spectrum of a discrete valuation ring V with fraction
field K. Suppose (Wk, Ay, K) is an object of Ag,dj(Spec(K)), and suppose
the correspondlng object (W s A axk) OF Agidn(SPec(K)) extends to
an object (W, v, Ay ) Of AgJ andiax(SPEC(V)). By the semistable reduction
theorem (see, for example, [30, Theorem 3.3.2.4]), up to replacing K with a finite
extension field and replacing V accordingly, we may assume that Wy extends to
a semiabelian scheme Wy over Spec(V). By the theory of Néron models (see [4];
cf. [52, IX, 1.4], [10, Ch. I, Proposition 2.7], or [30, Proposition 3.3.1.5]), the
isogeny

fK . auxK - WX(qu+a]2) WV

aux, K
extends to an iSOgCHy
x(aj,14a;j2)
“IV 17452 WV

aux, V>

and (since a;; + aj, > 0) this is possible only when Wy is an abelian
scheme; also, the polarization Ay g extends to a polarization Ay .y of Wy.
Consequently, we have an object (WV, Aw.y) of Agd(SpeC(V)), which must
correspond to the unique extension (W, v, Ay, . ) Of (Wi 0 Ay e k) (Up to
unique isomorphism, by the theory of Néron models again, or by the separateness
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of Ay, ..a..)- Hence (4.6) is proper by the valuative criterion (and the fact that
Agq and Ay | 4 . are separated and of finite type over Spec(%Z)).
In order to show that (4.6) is finite, it suffices to show that the induced proper
morphism
1 1
Agvdj ® Z[_] - 'Agj,aux«deaux ® Z[_] (47)
z |n z |n
is finite for at least two integers n prime to each other. For each n > 3, the
algebraic stack Ay 4. ®z Z[ﬁ] admits a finite étale cover by the quasi
projective scheme A defined as in [43, Ch. 7], parameterizing

8j.auxo @, aux, 12
isomorphisms Z®2=» = Z[n] for each object (Z, A7) of Ay . a4 ®z Z[1] (in
order to avoid confusion with our later terminologies, we refrain from calling
such isomorphisms level structures, because they are not required to respect
the pairings on both sides). Similarly, the algebraic stack A, 4 ®z Z[%] admits
a finite étale cover by the quasiprojective scheme A, 4 .., parameterizing two
isomorphisms y, : Z®% = W[n] and AR AS S WVY[n] for each object
(W, Aw) of Ag,dj (this is even more naive—the two isomorphisms y, and y,’
are not required to be related to each other under Ay ). By assigning to each
object (W, A, Vu. %) of Ag g nn the object (W, AT, o ¥ - X (1)) *42) of
Ay s > WE Obtain a proper morphism

Aggnn = A (4.8)

8j.auxs dj Jauxs1

lifting (4.7). Then it suffices to show that (4.8) is finite, or rather just quasiaffine,
by [14, 1II-1, 4.4.2].

Let Agdnn and o At e denote the Hodge invertible sheaves over Ay 4 .
and Ay, . & ..n» Tespectively, defined by the top exterior powers of the duals of
the relative Lie algebras of the tautological abelian schemes, which are ample by
[39, IX, 3.1]. By [39, IX, 2.4] and by the construction of (4.8), the pullback of
a positive power of w A oty O Ay d.n.n is isomorphic to a positive power of
WAy nn BY [14, I, 5.1.6], these show that (4.8) is quasiaffine, as desired. O

Any choices of (g; 1, a;») and (-, -); as in Lemma 4.1, for all j € J, allow us to
define the following auxiliary data.

(1) O, is any subring of O stabilized by *, with induced involution *»=, such
that O, ®z Q is a semisimple algebra (finite-dimensional) over Q; and

(2) for each j € J, we have L; . and (-, -)jux as in Lemma 4.1, which defines a
group functor Gj .« over Spec(Z). Moreover, we have the polarization /g j aux
of (Lj aux {5 *)j,aux Z(1)) (as in [30, Definition 1.2.1.2]) canonically induced
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by h by the isomorphism

Lia®R = L7V @R = 0@+ @ R
J 7 i > X

induced by (4.3), which defines an integral PEL datum

(Oaum *auxs Lj,aum ( ) ')j,auxv h(),j,aux)
as in the beginning of Section 2.

Suppose moreover that, for every j € J, the prime p is good for the integral
PEL datum (Oyux, *auxs Lijauxs {+ + )j,aux 10,j.au0) as in [30, Definition 1.4.1.1], which
is possible because we already know that p { [Ljfaux i Lj aux]. Moreover, suppose
that there exists a maximal order O, in O,y ®z Q containing O, such that,
for every j € J, the action of O, on Lj .. extends to an action of O, (see [30,
Condition 1.4.3.10] and the definition of {(g;j, Lj, (-, -)j)}jes in Section 2). These
are possible, for example, by taking O, = Z with trivial involution *»*. From
now on, we shall fix the auxiliary choices of {(a; 1, j2)}ies, {(-, *)j}jer, and {(Opuxs

*auxs Ljawo (5 *)j.auxs 70,j.au Jjer-
LEMMA 4.9. With the assumptions as above, for each j € ], the assignment
(8, 7) > (87 x (r'g™) ™2, 1)
defines an injective homomorphism
Gj — Gjux (4.10)

of algebraic group functors over Spec(Z), which is compatible with the similitude
characters and induces an injective homomorphism Gj(Z) — Gj aux(Z).

Proof. The assignment is injective because a; ; > 0, and defines a homomorphism
as asserted because O, is a subring of O, because *» is the restriction of *, and
because (x,rg~'y) = (gx, y) = (x, ‘gy). O

LEMMA 4.11. For each j € J, the reflex field Fyj . defined by the integral
PEL datum (Oaum Kauxs Lj,auxa (- ')j,auxv hO,j,au)J (see [26, page 389] or [30,
Definition 1.2.5.4]) is contained in Fy (as subfields of C).

Proof. In this proof, we may and we shall assume that Fj is exactly the reflex

field defined by (O, %, L, (-, -), hg). Since hg ;. is canonically induced by h,
by the isomorphism L . ®7 R = L®“1742 @, R induced by (4.3), we have
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a canonical isomorphism V .ux = Voea(aj"ﬂjl) as O, ®z C-modules, where V,
(respectively Vj a0 is the maximal submodule of L®7C (respectively L; ,,®7zC)
on which h(z) (respectively hy j .ux(z)) acts by 1®z. By [30, Corollary 1.2.5.6], Fy
(respectively Fo ;. 1s the subfield of C generated over QQ by the traces Trc (5| Vp)
for b € O (respectively Tre(b| Vo jaw) for b € Oyy). Hence Fy j ax is contained in
Fy, as desired. O

For each j € J, suppose that H; .. is an open compact subgroup of Gj,aux(ZP).
Then we have the moduli problem My, defined by the integral PEL datum
(Oauxv *auxs Lj,aux: < ) ')j,aux’ hO,j,aux) and Hj,aux over SpeC(OFOAj,aux»([’))’ as in [30’
Definition 1.4.1.4] (with O = {p} there). By [30, Theorem 1.4.1.11 and Corollary
7.2.3.10] again, My, is an algebraic stack separated, smooth, and of finite type
over Spec(Op,, ,..(»)> Which is representable by a scheme quasiprojective (and
smooth) over Spec(Op,, ..c»») When H; .,y is neat (our notation system here is
slightly different from the one in [31, Ch. 2]: for simplicity, we dropped the

superscripts ‘p’ in the notation of auxiliary objects).

PROPOSITION 4.12. With assumptions as above, for each j € J, suppose H; ux
is an open compact subgroup of G;.(Z") containing the image of H; under
the homomorphism Gij(Z) — Gj.u(Z") given by (4.10). Then there is a finite

morphism
My — My, ® Q, (4.13)
g

which is the composition of (2.1) with a morphism

M’Hj — M'vaaux (% Q (4]4)
under which the pullback (A, M i @3,,) ©f the tautological object
(Aj auo Ajaux Tjaue ayj‘m) over MHJ:aux to MHJ. satisfies the following properties (in
terms of the tautological object (A;, Aj, ij, azy;) over Myy).

(1) AY

j,aux
as in Lemma 4.1, which is equipped with an isogeny

. . . Xaj, 1 . .
is isomorphic to A; " XMy, (AjV)X"L2 for the same integers (a;,, a; )
]

-
fi: AjAaux = AT BT A

] j,aux
induced by 1; : Aj — A/

(2) The polarization A/, = Al — Afé:x coincides with the composition

(f)7" o Al o f (as Q*-isogenies), where M, : AL, — Al is induced

by At Aj — Ajv and (-, -)j as in (2) of Lemma 4.1.
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(3) The isogeny fi above is compatible with the O, -actions defined by the Oy
structure i, - Oux — Endw,, (A7) induced by the restriction of i; : O —
EndMH (Aj) 10 Opy and by i, : Opx — EndMH (A

j.aux * B dux)

(4) At each geometric point 5 of My, the level structure ay,; induces an H;-orbit
of isomorphisms
Li®Z—>T
z

JEa

which in turn induces an H; ,.-orbit of isomorphisms

~ ®D(aj,1+4j,2) %o.p . 00, p
o @A _]aux®A _)VAJauxv
Y/
(Which makes sense because, by assumption, H; is mapped into H; ..x under

the homomorphism G; (Z) — Gj,aux(Zp ) given by (4.10)). On the other hand,
the level structure a%j_m induces an H; yux-orbit of isomorphisms

AVP®Aoop Ljaux®AOOP—>VAv

j,aux,s -
ZF

These two H; aux-orbits of isomorphisms coincide.

Suppose we replace H; .. with an open compact subgroup ’HJ/ STl containing

the image of ‘H; under the homomorphism G; (Z) — Gj,aux(Z”) given by (4.10).
Then the morphism My, — Mg.y ®z Q thus obtained is compatible with (4.13)
and the canonical morphism MH ®zQ— My, ®2Q.

The morphisms (4.13), for all J € J, induce a morphism

MH—arlMHMM§Q. (4.15)

jel

Proof. Let us first construct the morphism (4.14). Let (Aj, A;, ij, a3;) be the
tautologlcal object over My, as in the statement of the proposition. Let A e
Ao Moo Mo and f be defined by (A;, ) as in (2) of Lemma 4.1 (w1th
S = My, there). Since O, C O and since the involution *»x is the restriction of
*, the O-structure ij : O — EndMH (A;j) of (Aj, A;) induces an O,y-structure

1 Oy — EndMH (A2 )

] aux * j.aux

of (A0 Afan)> Which in turn induces an O, ®7z Q-structure

ijvaux : Oaux® Q e EndMH. (Ajvaux) ® Q
! Z J ’ Z
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of (AY as in [30, Definition 1.3.3.1] by

Jaux(b) - f o l] aux(b) ° f71

jraux’ 7, aux)

for each b € O,y A
At each geometric point 5 of My j, the level structure a4, lifts to some O ®z, Z-
equivariant isomorphism

‘w

Li®Z > TA,
Z
which induces an O, Q7 Z—equivariant isomorphism

A ®(aj1+aj ®(4j 144
2= gF e (L) ®L = TA,

o j,aux s

and an O, ®z A*-equivariant isomorphism

GE@A% (LYY QA S VAL,
7 Z
(all matching similitudes, implicitly). By [30, Lemma 1.3.5.2], under the
isomorphism &5 ®; A® : L; ®; A® > V A, the polarization (as an O-
equivariant isogeny) A;; : Aj; — Av corresponds to the open compact subgroup
LJ# Ry, 7, of L; ®7 A™. Hence the restriction of &* ®; A* induces an O, ®7, 7-
equivariant isomorphism

Since the choices of § and @; are arbitrary, by [30, Lemma 1.3.5.2] again, the

Oux ®z Q-structure i, above induces an Oyyc-structure

$ Opux = EndMH (AY

] aux * j,aux

of (AY
Oaux Rz, 7p- -equivariant isomorphism

juaue A AY..0- Moreover, by forgetting the factor at p, the & above induces an

qvr Jaux®z S TP AY

§ j.aux,s*

Since the H;-orbit of &; is 7;(Myy;, §)-invariant, and since H; is mapped to a
subgroup of H, ,ux under the homomorphism G; (Z) — Gj,aux(ZP ) given by (4.10),
the H; auc-orbit [&7 7 1%, e of al? is 71 (M, 5)-invariant. By [30, Proposition
1.4.3.4], the tuple (AY iv Ly 124, ..,) defines an object

j,aux? Jaux’ j.aux?
(AT s M s s @57 )

joaux’ Mjauxe j,aux a'Hj,aux
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of My, . over My, which satisfies the properties described in the proposition by
its very construction.
We would like to show that Lie Lie, s, with its O ®7, Q-module structure given

by i}",, satisfies the determinantal condltlon given by
<Lj,aux§ R’ ( 5 ')j.aum hO,j.aux)

as in [30, Definition 1.3.4.1]. Since this condition is closed by definition, and
is open in characteristic zero by [30, Lemma 1.2.5.11], it suffices to verify it at
each C-point t of M. Let (Aj,, A;;, ij,) and (AJ anr Maucr aue,,) denote the
respective pullbacks of (Aj, A;, ij) and (A, AMaue i) t0 such a C-point z. By

[30, Lemma 1.2.5.11] again, since Lie, ,,, Wwith its O ®z Q-module structure
given by i satisfies the determinantal condltlon given by

(@R ¢ho) = (LER ¢ k),

we have Liey,, =V} as O ®y C-modules, and it suffices to note that

EBqu ~ 1/9@1+42) ~
0

. aj, 1
LleAfau =~ Lie® A @ Lie = Voj,aux

as Oyux ®z C-modules (cf. the proof of Lemma 4.11).

Thus we have obtained the desired (4.14) by the moduli interpretation of M, .,
whose precomposition with (2.1) gives the desired (4.13). The morphism (4.14)
between algebraic stacks is schematic and finite by Lemma 4.5 (for the abelian
schemes and polarizations), by [30, Proposition 1.3.3.7] (for the endomorphism
structures), and by the fact that the level structures are defined by isomorphisms
between finite étale group schemes; hence so is the morphism (4.13). O

LEMMA 4.16. With assumptions as above, suppose the image H” of H under the
canonical homomorphism G(Z) — G(Z" ) is neat (which means, a fortiori, that
H is also neat). Then, for each j € J, there exists a neat open compact subgroup
H;aux Of Gj,aux(Zf’) such that H; is mapped to a subgroup of H,; . under the

homomorphism G; (Z) — GLaux(Z” ) given by (4.10).

Proof. Since H; is the preimage of gj_ngj under the canonical isomorphism
G;j(A*) = G(A™), the assumption implies that, for each j € J, the image ij of

‘H; under the canonical homomorphism G; (Z) — Gj (Z" ) is also neat. Let ny > 3
be an integer prime to p such that ’ij contains

U (no) = ker(Gy(Z") — Gy(Z" /noZ") = G{(Z/nyZ)),
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and let H; ..« be generated by
Ui aun(n0) = ker(Gyan(Z") = GyanZ" /1027 = Gij.a(Z/n0Z))

and the image of ?—[J” under the injective homomorphism G; (Z") — Gj,aux(Z”)
given by (4.10). Then every element of H; . is congruent modulo n, to the
image of some element of ’ij , which is neat as explained above; and so H; aux
is also neat, by definition (see [49, Section 0.6] or [30, Definition 1.4.1.8]), and
by Serre’s lemma that no nontrivial root of unity can be congruent to 1 modulo n
ifn > 3. ]

5. Auxiliary choices of toroidal and minimal compactifications

Let us fix a choice of j € J in the following paragraphs. Each symplectic
admissible filtration Z; = {Z; _;}; of L; ®z Z (see [30, Section 1.2.6]) induces
a symplectic admissible filtration Z; aux = {Zj aux,—i}i Of Ljaux @z 7p by setting

Zjax,—i = ((sz‘?"*“j*”) ® AW) N (Lj,m% ZP) .1)

as submodules of L; . ®z A**. If Z; is fully symplectic (see [30, Definition
5.2.7.1]), which means Z; extends to a symplectic filtration Z;, = {Zj_;a}:

of Lj ®z A, then Zj.x = {Zjax—i}; also extends to a filtration Zj,uxsr =

. ®(aj,1+aj2)
{Zj aux,—i,ar}i ON L aux @z AP, by setting Zj gy i ar = Zj,:ij,;% " @4 AP. These

definitions are compatible with the actions of G;(A”) and G; ..x(A”) (and with the
homomorphism G;j(A”) — G;j.u.(A”) given by (4.10)), and are compatible with
reductions modulo » for any integer n > 1 prime to p. Thus, there is a well-
defined assignment

Zj (e Zj,aux- (52)

If &; = (Xj,Y, ¢, ¢j,—2, ¢j0) is a torus argument of Z; (see [30, Definition
5.4.1.3]), then we define

. Daj1 @aj2
Xj,aux = Xj 57 YJ
and
. Daj Daj2
Yj.aux = YJ @ XJ .

LEMMA 5.3. With the setting as above, there exist canonically induced
morphisms

¢j,aux : Yj,aux — Xj,aux:

(pj,aux,—2 : Grij,zuux _N> HOII’IZ (XJ"QUX® Zp’ Zp(1)>’
Z
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and
. Zjaux " -
(pj,aux,O . Gro - Yj,aux§ZP

making
(pj,aux = (Xj,aux, Yj,auxa ¢j,auxy @j,aux,—25 (pj,aux,O)
a torus argument of Z; . and making the diagrams

Daj | ®daj

; ) Id, " @¢

Yjea(a'I’l-HIJ.Z)C i Yj’aux

¢7j ®( ;)T[ ¢j,aux (5'4)
D(aj,1+aj2) }

XJ ®aj | ®daj 2 J,aux

T
(Gr,)®@.i+a,2) » Gro
-2 -2

®(aj 1 +aj 2) .
(pj,—ZJI J ll Zl‘ﬂj,aux.Z (5 5)

(Homg, (X; ® 2, 27 (1)))®@ 142 ——» Homy, (X;.an® 27, 27 (1))
Z I, 7

Da;
(Idy] Mo )

and

Zj X . Zj, aux
(C}roJ )@(aj, 1+4,2) ;) GrOJ'

®(aj 1+4j2) .
‘pj.O 317G J{l ZJjoj,aux,O (5 6)

(YJ % ZP)GD(aj,Hraj,z) o Yj,aux% 7P

Da; o
i,
Id},j -

o9,

commutative, where (-, -)j* is canonically induced by (-, -); as in Lemma 4.1.

Proof. These follow from Lemma 4.1 and from the construction of the filtration
Zjaux,—i 10 (5.1) above. ]

Let us take any splitting 8; ,ux Of Zj .y and abusively denote its H,; ,.c-orbit by
834, .,- Since H; is mapped into H; ,,x under the homomorphism

Gi(Z) = Gjan(27)

given by (4.10), and since the above assignments are compatible with the
formations of orbits, we obtain a well-defined assignment of cusp labels

[(ZHJ" ¢'Hj7 87—[])] = [(Z'vaauxs ®Hj.aux’ 87'lj,aux)]‘ (57)
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Let us fix once and for all the choices of §; . for all pairs (Zj aux Djaux), Which
determine the choices of 84, for all pairs (Z4y, .. P,,,)- Then (5.7) is induced
by an assignment of representatives of cusp labels

(ZHj’ Q’HJ‘ ’ SHJ) = (ZHj,aux’ ¢Hj,aux’ (SHj,aux)' (58)
Moreover, by Lemma 5.3, tensor products with the symmetric bilinear pairing
(-, +)j in Lemma 4.1 induce an embedding

(Sdmj)é = (Soy, )oY Y ® () (5.9

,aux

(by forgetting the compatibility of the pairings with O, but retaining only the
compatibility of the pairings with O,,). Since (-, -); is positive definite, the

embedding
(So)z = oy, Ik (5.10)
induced by (5.9) maps Pquj (respectively Pg%) to P¢Hj (respectively PgH_ ).
i ,aux j,aux
The dual of (5.9) gives a surjection
(S@Hj,aux)Q = S‘pﬂj,ﬂux % Q - (SQ)HJ- )Qs (51 1)
which induces a homomorphism
S‘ij,aux —> S¢Hj . (512)

The composition of (3.8) and (5.8) gives an assignment

(231, Py 03) > (234 > P s> O3 au) (5.13)
of representatives of cusp labels, which induces the assignment
[(Z31, P, 63201 > (294 s Py O] (5.14)

of cusp labels, which is the composition of (3.7) and (5.7). Suppose (Z, @,
%) is mapped to (Zy;, P, 834) in (3.8). By pre- or postcomposition of the
maps (5.9), (5.10), (5.11), and (5.12) with (3.11), (3.12), (3.10), and (3.9),
respectively, we obtain the maps

(S(pﬁ)é — (S¢Hj,aux)(\é’ (5.15)
So,)p = (S¢vaaux)ﬂvg, (5.16)
Sosy, )0 = 8oy o (5.17)
and
S¢'H - S(D'Ha (5.18)
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which are compatible with each other, where (5.16) maps Pq,, (respectively P )
to Pdm (respectively P+ ‘ ) By taking products over the indices j € J, these
J

maps (5 15) (5.16), (5.17), and (5.18) induce the maps

So)5 = [ [Sen, )% (5.19)
jel
So,05 = [ [Ser, )% (5.20)
jel
[ S0, )0 = o), (5.21)
jel
and
[Sex,.. = Sou (5.22)
jel ’

respectively, which are compatible with each other, where (5.20) maps

Py, (respectively Py ) to [, Py, . (respectively [, P, ). Given a
Laux j,aux

nondegenerate rational polyhedral cone oj . in P%j (respectively Pgﬂ_ )

,aux j,aux

for each j € J, the pullback of ]_[J.EJ oj,aux under (5.20) is either empty or a

nondegenerate rational polyhedral cone o in Py, (respectively P;H) (however,
o might not be smooth even when g; . is for all j € J).

DEFINITION 5.23. Suppose j € J. Let X (respectively X ..) be a compatible
choice of admissible smooth rational polyhedral cone decomposition data for
My, (respectively My, ) as in [30, Condition 6.3.3.2 and Definition 6.3.3.4]. We
say that X and X ..« are compatible with each other if, for each representative
(234, Py, 83;) of cusp label of MH with assigned representative (Zqy,,,.» P2,
SHJ,M) of cusp label of My, as in (5.8), the image of each oj € X, under
the embedding (5.10) is contained in some cone 0j .. € Eq),_[ . In this case,
we say that (P, 82 4 Oj.aud 18 assigned to (Pyy;, 34, 07), and (since this is
compatible with the equivalence relations) we also say that [(457.[| a> O s Tjaud) ]
is assigned to [(Dyy, 834, 07)]. Suppose X is induced by X as in Lemma 3.21, and
thatoj € 2o, is the image of some o € Z’q)H under (3.12). Then we also say that
(P, > OH,au> Oj.anx) 18 assigned to (Pyy, 894, 0), and that [(Pyy, > 0%, 4y Tjaud] 18
assigned to [(@y, 6%, 0)].

PROPOSITION 5.24. With assumptions as in Proposition 4.12, for each j € J,
there exists compatible choices X (respectively X ..) of admissible smooth
rational polyhedral cone decomposition data for My, (respectively My, ) such
that X and X ..« are compatible with each other as in Definition 5.23, and such
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that the morphism (4.13) canonically extends to a morphism

M;("qux M;C'Z auxs E] aux ® @’ (525)

which is the composition of (3.22) with a morphism
M;(-)Z;’Ej - M;C"Ll;.am(a i aux % Q (526)

extending (4.14), where My ., M;‘Z x and M;‘fj’m Sy @re€ toroidal compacti-
fications of My, MHJ., and MHJ.M, respectively, as in [30, Theorem 6.4.1.1].
Under the morphism (5.25) (respectively (5.26)), the [(DPy, %, 0)]-stratum
Zi@.50.00 Of My, 5 (respectively the [(Pyy;, 8y, 07)]-stratum Z[@H,’SH_,GJ.)] of
,j,au) | of

Hi aune Ty €XGACHLY When the equivalence class [(Pry . 0, 0 Ojaux)] i assigned
to the equivalence class [(D3, 814, 0)] (respectively [(Pyy, 83, 07)]) as in
Definition 5.23.

Let (Gj, Aj, i, 034) (respectively (Gj aux Ajaux Ij,aux WZY)) denote the degene-

M;‘I ):) is mapped to the [(P;,,.» 514, > Ojawd) |-Stratum Zye,,

tor

j,aux’ (SHJ aux’

rating family of type My, (respectively My, ) over M;(_Z_, 5 (respectively
M;‘Z»auxqzjﬁux) as in [30, Theorem 6.4.1.1]. Then the pullback of Gjau to M;?trj,xj
(under (5.26)) is isomorphic to ijaj‘l Xper  (G}')*“2, and the pullback of (Gj
P2
Ajauxs F,auxs O 4) 10 M;(_’Lrj’ 5 satisfies analogs of the characterizing properties in
Proposition 4.12 (in fact, by [52, IX, 1.4], [10, Ch. 1, Proposition 2.7], or [30,
Proposition 3.3.1.5), the last pullback is determined up to unique isomorphism
by its restriction to My, which is then characterized by the properties stated in

Proposition 4.12).
The morphisms (5.25), for all j € J, induce a morphism

ME:;, l_[ ME:Z] auxs _| aux Q (527)

jel

extending (4.15).

Proof. Let us fix the choice of j € J. As in (2) of Lemma 4.1 and as in the

x(aj,1+aj,2) Cda
proof of Proposition 4.12, consider G{,,, := G; "%, Gian = (G}) <@+,
_ Xaj 1 V' Xdi 2 v,V . VA Xdi | Xdj 2 .
G/ = G, X (G)*42, and G, i = (Gj) X G; ", which are

fiber products over M;‘f[ 5 whose pullbacks to My, can be canonically identified
with A2 A%V AV _and AY:" respectively. Consider

J,aux’ “ 7j,aux’ © 7j,aux’ J,aux’
N, N A v
f T Ide X GJ aux - GJ aux
M(Or
Hj,E
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and
R aj,1 aj.2 v,V AV
fv T Id(;JV M‘g 5 )"jj G] aux G] aux’
whose pullbacks to M are dual isogenies of each other. Let A, be defined by

A;j and the morphism (-, )* as in Lemma 4.1, and let

Oaux - EndMlor (GA )

] aux * jraux

be induced by the restriction of i; to O, By (2) of Lemma 4.1, and by [52,
IX, 1.4], [10, Ch. I, Proposition 2.7], or [30, Proposition 3.3.1.5],
= (") oMo f 1 Glux = Gilam

] aux * j,aux jraux j,aux

is an isogeny (not just a Q*-isogeny) of degree prime to p whose pullback to My,
is a polarization, and we have an

Oaux - Ender (Gv )

] aux ° j.aux

uniquely extending its pullback to My,. Together with the oeH over My,
constructed 1n the proof of Proposition 4. 12, we obtain a degeneratmg fam11y
(GY ) of type My, over My .

To show that (G i aH ) — M;‘fi. 5 is canonically isomorphic to

j.aux? _] aux’ j,aux?  anx

j,aux’ _] aux’ J dUX’ aHJ aux

lor

the pullback of (Gjaue Ajauo fjaux X2 0) — MHJ e S aun under a canonically
determined morphism (5.26), we need to verify the condition as in [30,
Theorem 6.4.1.1(6)].

In the association of degeneration data, over any Spec(V) — ME;Z 5 such that
V is a complete discrete valuation ring with algebraically closed residue field k
and valuation v : Inv(V) — Z, and such that Spec(Frac(V)) is mapped to a point
s of My, and for any lifting &; : Lj ®z 75T G5 at a geometric point § above
s, the (noncanonical) filtration Z; is defined to be the pullback of the geometric

filration0 C TT;5 C T GiE C T Gj 5, whose H;-orbit Z4,, is uniquely determined
by ay;. If we define &Ev’p  Ljax ®z Y/ Vi ijdux - by &5 as in the proof of

Proposition 4.12, then the filtration Z; .. defined by Z; as in (5.1) agrees with
the pullback of the geometric filtration 0 ¢ T* .Y, - C T? G}, . € T? GY

Jraux,s j,aux,s Jauxs’
because this last geometric filtration on T” G, _ . is induced by the geometric

j,aux,§
filtration 0 C VP T.Y, . C VP G.2 . c VP GY, .on VP GY, ., whose pullback

j,aux,s j.aux,s j.aux,s j,aux,s?

under the isomorphism V(f) : VP G2 . — V? G”___ agrees with the geometric

j.aux,s j.aux,§

filtration 0 C VP T2, . C VP Gl . C VP G2, .on VP G2, . (which naturally

j.aux,s j.aux,s Jj,aux, s j,aux, s
agrees with the geometric filtration induced by O CVT; CV GJ”S C VGj;
onV GJ;)
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Suppose, under the equivalence of categories in [30, Theorem 5.3.1.19],
(Bja)"BjaiBJ"Xj’ ij?q&jacjacj\/arj’ [a’nHJ]) (528)

is the object in DDPEL,MHJ,(V) associated with the object in DEGpg Mo, V)

defined by the pullback of the degenerating family (Gj, A;, ij, azy;) over M“’r
under some morphism Spec(V) — M‘;fj’ 5, as above, and suppose

. Vv b
(Bj,au)u )"Bj,aux’ lBj,ﬂux’ Xj,auxa Yj,auxv Cj,aum cj,aux’ Tj,aux’ [aHj,aux]) (529)

is the object in DDpg; M, (V) associated with the object in DEGPEL M, (V)

defined by the pullback of the degenerating family (G, A i au aH ) over

M3, .5, under the same Spec(V) — er 5~ Then (5.29) is induced by (5.28)
ina precise sense (whose details we omlt), and we have the following. Under
the assignment (5.7), the cusp label [(Z3;, P, = (Xj, Y], ¢, 2215 Po.x;)» S31)]
determined by (5.28) gives the cusp label [(Z#;,,,» P, > O%,.,)] determined
by (5.29). Given any representative (Z3;, Py, 8%;) of [(Za;, Py, 0x;)], the
assignment (5.8) gives a representative (Zay; .., P, e ;) OF [(Z 40 P o
8% .01 With such choices of (23, Dy, 03;) and (2, s P > O30 1

B; : Sdmj — Inv(V)

and

Bj aux i So — Inv(V)

7'tj.aux

are determined by (5.28) and (5.29), respectively, then (5.9) maps
vij:Sq>Hj —7Z = Q

to

Vo Bjux:Se - 7Z = Q

Hj,aux
because A, is induced by A; and (-, -);. Consequently, if vo B defines an element
of oj € E%j, and if the image of o; under (5.10) is contained in some 0j . €
Z‘¢H , then v o Bj . defines an element of o5 4y

Thus if X and % ..« are compatible with each other as in Definition 5.23,
by con51der1ng all morphlsms Spec(V) — M“’r 5, as above, we see that the

degenerating family (G{,. A Iane oeH ) satisfies the condition as in [30,

Theorem 6.4.1.1(6)], as des1red L]
Consider the invertible sheaves

wper = AP Liej g
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over M;‘f’ 5 and, foreachj € J,

top
omg; . = =A Lleaj/MmHr 5
tor
over My 5. and
— Atop
D\ ptor /\ Ll
Mvaaux'Zjvﬂux GJ aux/ [U?'Z_] aux’ Jaux

over M;‘Z S We shall denote the pullback of wm (respectively Omgy s

respectively wyg ) to My (respectively My, respectively My, ) by wwm,,
j,aux

(respectively DMy, » respectively DMy, ...)» Which is independent of the choice of

X (respectively Xj, respectively X ...

LEMMA 5.30. Suppose j € J. The pullback of wwy . under the canonical
.l J
isomorphism (3.22) is isomorphic 10 Wy .- . There exists an integer 1 < a;o < 2

such that the pullback of me to M;‘f 5. (respectively M;oj, xj) under the
5 ,

Hjaux Zj,aux

morphism (5.25) (respectively (5.26)) is isomorphic to a)?;l,or (respectively
® aj
) pror ), where

a; = (ljy()(aj’] + aj_g).

We may take ajo = 1 when a; , is even.

We shall henceforth fix a choice of g;y (for each j € J).

Proof of Lemma 5.30. The first assertion is because the pullback of G;
under (3.22) is Q*-isogenous to G. As for the second assertion, consider
also the invertible sheaf

a)MlorJ 5 - /\IO]I) Ller/Mmr
By Proposition 5.24, the pullback of wye = to M;‘Z 5 is canonically
Jaux ‘j,aux ’
isomorphic to
®aj1 ® a2
O)er ® (leur ) L
_] _] M[Of N

By [39, IX, 2.4, and its proof], there exists an integer 1 < g < 2 such that

Rajo ~ ’ ® ai o
tor = (w tor ) .
M’HjAEj M’Hj.Zj
,u ing a; o wi w a; 5 1S even, WS.
Hence, up to replacing a; o with 1 when g, is even, the lemma follows O
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For each j € J, let ng'_‘aux denote the minimal compactification of My, as
in [30, Theorem 7.2.4.1], which is by construction a projective variety over
Spec(OF; () containing My, as an open subscheme, under the assumption
that H; . is neat. By [30, Theorem 7.2.4.1(3)], opg and wM‘%"j.zj descend to

ample invertible sheaves wymn and wymn over M3," and M;'j", respectively, and we
i

have
Mj," & Proj (@ MG 5. )) (5.31)
k=0
and
Mg{nﬂ = Proj <@ ry s, Mmr _))’ (5.32)
k>0 !

which are compatible with the canonical isomorphisms (3.22) and (3.23), and

with the canonical isomorphism in Lemma 5.30 between wye . and the pullback

of omg; . under (3.22). Similarly, oy | descends to an ample invertible
i

Hj,aux Zj, aux

sheaf wymn  over M3, and we have
j.aux

j.aux

v, = proi( I oo ) 63

X
k=0

Hj,aux X, aux

PROPOSITION 5.34. With assumptions as in Proposition 4.12, for each j € ],
there exists a morphism
Mmln M%‘J"m RQ (5.35)

extending (4.13) and compatible with (5.25), which is the composition of (3.23)
with a morphism '
M — M ©Q (536

extending (4.14) and compatible with (5.26). Under the morphism (5.35)
(respectively (5.36)), the [(Py, 83)]-stratum Zq,, s,y of M3" (respectively
(P2, Sp)]-stratum Zya,, 5, of My is mapped to the [(Pry,,. 03,01

stratum Z[((pH n 1 of M7, j"m exactly when the cusp label [(Py;,,.» 514, ,,)]

’H| dux

is assigned to the cusp label [(®4, 0%)] (respectively [(Py;, 53,)]) as in (5.14)
(respectively (5.7)) (with the filtrations Zy;, 744, and 74y, suppressed in the

j.aux

notation). If ajo = 1 and a; > 1 are integers as in Lemma 5.30, then the
pullback of w®,‘,11j;: to MH (respectively MH ) is canonically isomorphic to w.

_| aux

Mmm

(respectively a)Mmm
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The morphisms (5.35), for all j € J, induce a morphism

M3 — [TMs ®Q (5.37)

jel

extending (4.15) and compatible with (5.27).

Consequently, M™™ is the normalization o MI & Q in My under
q y H jel H_] aux H

the morphism My, — [1,, M;'Z“aux ®z Q induced by (4.13) and the canonical
morphisms My, ®7 Q — M?Z:ﬂux ®z Qforalljel.

Proof. The first two paragraphs follow from Proposition 5.24, from Lemma 5.30,
and from the universal properties of the projective spectra (5.3 1) and (5.33).

aj.o

Mmm
Hj,aux

dj

is ample over Mmln , since @, ..
M

For each j € J, since w. is ample over

Mmln and since the pullback of the former is canonically isomorphic to the latter,
the canonical morphism from M3;" to the normalization of [ M““‘J“dux ®z Q in
My, is finite. Since both of them are normal, and since they share an open dense
subscheme My, the third paragraph follows from Zariski’s main theorem (see [14,

III-1, 4.4.3, 4.4.11]), as desired. O

6. Minimal compactifications defined by normalization

PROPOSITION 6.1. Let My, denote the normalization of | |
the morphism

jer My, in My, under

My = [ [May.n (6.2)
jel
induced by (4.15). Then |\7|7.L is a normal algebraic stack flat over

So = Spec(Or, )

equipped with a canonical isomorphism MH X3§, So = My over So, and with a
canonical finite morphism

My — []Mig. (6.3)
jel
extending (4.15) and (6.2).
For each j € I, the tautological tuple (AJ,)»J,ZJ,OlHJ) over My, MH

(see (2.1)) extends to a degeneratmgfamlly (AJ, )»J, j, aH ) of type My, over MH
(see [30, Definition 5.3.2.1]), where (AJ, p¥ i) is a polarized abelian scheme with
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an O-structure i; such that L_ie/;j/,\-,wi with its O ®y L, -module structure given

by lj satisfies the determinantal condition in [30, Definition 1.3.4.1] given by
(Li®z R, (-,),hy) = (L ®z R, (-, "), ho), and where &;.[j is defined only over
Msy. If we denote by (Aj,aux, Xj,aux, Zj,aux, &Hjﬂaux) the pullback of the tautological
tuple (Ajauo Ajawo li.awo @1, 0ver My, under the morphism I\ﬁ/lf;_[j — My,
induced by (6.3), then (/_{J ey A Aj.au) IS isomorphic to the polarized abelian scheme
(AJ aue M) defined by (AJ, X i) as in (2) of Lemma 4.1, i is the unique extension
of ij over the noetherian normal base scheme MH (by [52, IX, 1.4], [10, Ch. ],
Proposition 2.7], or [30, Proposition 3.3.1.5]), and o O, is determined by oy,
in the sense that its further pullback to MHJ. = My is determined by oy as in
Proposition 4.12. Then the invertible sheaf wmy,, over Mj, = My extends to the
invertible sheaf

N top Voo
W, i = A LleAJ/MH

over MH For each j € 1, let ajp > 1 and a; > 1 be integers as in Lemma 5.30,

and let ay := ), a;. Then the invertible sheaf a)MH over My, extends to the ample
invertible sheaf
I @i
Oy 3 - = YR

jel
over |\7|H, where each a),\7| _is canonically isomorphic to the pullback of wy, o i
JduX
under the morphism My, — My, induced by (6.3), and where wy,, y is

canonically isomorphic to the pullback of &e]wM e under (6.3).

We obtain the same normalization MH (up to canonical isomorphism)
satisfying the analogous properties if, for each j € I, we replace H; .. with
any neat open compact subgroup of Gj,aux(Z”) still containing the image of H,
under the homomorphism G; (Z) — Gj,aux(Z” ) given by (4.10).

Up to canonical isomorphism, |\7|H depends only on the choices of linear
algebraic data in Section 2, but not on the auxiliary choices in Sections 4 and 5.

Proof. The first paragraph is self-explanatory. As for the second paragraph,
except for the ampleness of Oy, 1> it suffices to show that, for each j € J, the
tautologlcal (A Aj) over MH = My extends to some polarized abelian scheme

(AJ, Py i) over MH (once this is shown, the remainder of the paragraph will follow
from the uniqueness of extensions by [52, IX, 1.4], [10, Ch. I, Proposition 2.7],

or [30, Proposition 3.3.1.5]). Since the genus of A; and the polarization degree of
Aj is determined by the level structure o4, the tautological (Aj, A;) over My,
defines (by forgetting the additional structures) a morphism from M to the
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Siegel moduli Ag,dj of genus g = %rkZ(Lj) = %rkZ(L) and polarization degree
dj2 = [LJ# : L;], which induces a finite morphism

M’Hj - -Ag,dj % Q

by [30, Proposition 1.3.3.7, Corollary 2.2.2.8, and Proposition 2.2.2.9]. Similarly,
the tautological (A; aux Ajau) defines a morphism from MHJ..W to the Siegel moduli

Ay wndia OF genUS g = 31Kz (Ljau) and (prime-to-p) polarization degree
dfaux = [Lﬁaux : Lj aux], which induces a finite morphism

MHj,aux - Agjaumdj.aux % Z(P) °

As explained in the proof of Lemma 4.5, the construction as in (2) of Lemma 4.1
defines a finite morphism A, ., — Ay . 4., By comparing the universal
properties, the composition My, — My, ®2 Q — A, .. ®z Q of finite
morphisms coincides with the composition My, — A, 4 ®2Q — Ay 5., @2 Q
of finite morphisms. Since Aty = Agadin and My, — A O Zgy)
are finite, it follows that My, is canonically isomorphic to the normalization of
[l Ac.¢; ®z Zp) under the canonical morphism My, — [[i; A, oy ®2 Z(p). In
particular, for each j € J, the tautological object (A;, ;) over My, = My, extends
to an object (Aj, Xj) parameterized by the canonical morphism My, — A, 4

induced by the canonical morphism I\7IH — ]_[j o

Ag.q- This also shows, as in
the last paragraph of the statement of the proposition, that |\7|H is canonical and
independent of the auxiliary choices.

Except for the quasiprojectivity of [My] over Sy, and for the ampleness of
Ofp,, when 7 is neat, both of which will follow from Proposition 6.4 below, the

remaining statements of the proposition are self-explanatory. 0

Although Proposition 6.1 is stated without anyqreferenceﬁto compactifications,
the easiest way to show the quasiprojectivity of [My] over Sy, and the ampleness
of wy,, ; when H is neat, is to introduce the minimal compactifications (this is
a natural consideration because this is what the minimal compactifications in [3]

did over C).
- min . .
PROPOSITION 6.4. Let My, denote the normalization of ||, M“q::ﬂux in M"
under the morphism
My — T | mge (6.5)

j.aux

jel
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induced by (5.37). Then |\7|21_;n is a normal scheme projective and flat over

éo = Spec(Op, () equipped with a canonical isomorphism l\#/ll;_Llm xg, So = Mifz"
over Sy = Spec(Fy), and with a canonical finite morphism

My — M (6.6)
jel
extending (5.37) and (6.5).

By construction, MH is an open dense subscheme of MH , because My, is an
open dense subscheme of M?{Tﬂux (by [30, Theorem 7.2.4.1], under the assumption
that H and H; .. are neat), for all j € J.

For each j € J, let ajy > 1 and a; > 1 be the integers as in Lemma 5.30,
and let ay := Zjej a;j as in Proposition 6.1. Then, for each j € ], the'invertibl'e
sheaf wé,ajij over My, = My, and the invertible sheaf a)Mm'm over M"H“jn = M3"
compatibly extend to an invertible sheaf over l\_)ln?:n, which we denote by a)?/li{n by

H »)
abuse of notation, which is canonically isomorphic to the pullback of a)Mmm to
H;

jraux
-

min Y . . . ®qj
M., , whose pullback to My, is canonically isomorphic to a)M:j. Moreover, the

invertible sheaf %,”’ extends to the invertible sheaf

®11_|
M:_zn.] = ﬂmm‘

jel

over MH, which is canonically isomorphic to the pullback of @Jejwilzﬂ,f

Hj,aux

under (6.6). This wmin Jis ample and induces a canonical isomorphism
S

v
I\A/II;{11 _PI'O_]<@ F(MH s @i J)).

k=0

—

We obtain the same normalization Mim (up to canonical isomorphism)
satisfying the analogous properties if, for each j € 1, we replace H,; ..« with any
neat open compact subgroup of Gj.m(zp) still containing the image of H; under
the homomorphism G; (Z) — Gj,aux(zl’) given by (4.10).

As in the case of My in Proposition 6.1, it is also true that, up to canonical

isomorphism, I\ﬂ/ll;tlm depends only on the choices of the linear algebraic data in
Section 2, but not on the auxiliary choices in Sections 4 and 5. However, the proof
of this is somewhat indirect and will be postponed until Corollary 12.7 below.
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Proof of Proposition 6.4. By construction as a normalization, M:n is normal and

equipped with the finite morphlsm (6.6). Foreach j € J, let us deﬁne the common
® aj aj

extension of a)M and o°% to be the pullback of o’ iz under the

—min Mmm
H Hj,aux

. =, min min - o ®aq .
morphism M, — M3} Ho induced by (6.6), so that Dpjmin | = ®j o w“”;"i"d is the

pullback of &JEJa) under the finite morphism (6.6) (this is consistent with

Mmm

Hj,aux

Lemma 5.30). Since a)ﬁlmm is ample over MI"]:LTW for all j € J, the pullback

Hj,aux

Wpgmin of Xjeja) under (6.6) is also ample. This shows, in particular, that
H

] Mmm

|aux
- min - - min
M,, is projective over Sy. Since the structural sheaf of M,, is normal and

hence has no p-torsion, it is also flat over SO Since the pullback of &em}?}lﬂf

Hj,aux

to [y My, is canonically isomorphic to @jejwﬁz‘o , its further pullback to
! j.aux

M,,, which is canonically isomorphic to the pullback of Wigmin by construction, is

canonically isomorphic to wy,, ; (by the part of Propositionﬂ6.1 we have proved).
The remaining statements of the proposition are self-explanatory. O

Now the proof of Proposition 6.1 is also complete.

REMARK 6.7. In our constructions (including ones to be give below), taking
normalizations will never introduce pathologies, either because we are talking
integral closures in (products of) separable field extensions (see [36, Section 33,
Lemma 1]), or because the schemes in questions are all excellent (being a
localization of a scheme of finite type over Z; see [35, Sections 31-34] for more
discussions).

For each stratum Z;4,, s,,) as in [30 Theorem 7. 2 4.1(4)], consider its closure

Zi@y,.5,01 in M3 and its closure Zj(g,, 4, in M . Then we define a locally
closed subscheme

Zi@w.s101 = Li@n.s0) ~ U Zy@}, 5,1 (6.8)

Zl(@y.ﬁn)ng[@’wa;{n
- min . .
of M,, . By definition, we have the following lemma.

LEMMA 6.9. If Z[(q>H 5301 is contained in the closure 2[(4;%{’5’7{)] Of Z[(qyé{.gﬁH)],
then Z[((p,H 5, 1S contained in Z[(d,r 5

of Z[(rb’ )

.1 and the latter agrees with the closure
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REMARK 6.10. We shall call 2[(4‘,%57{)] the [(Dy, 6% )]-stratum from now on,
although we will have to wait until Theorems 12.1 and 12.16 below to see that it
does satisfy the familiar properties as in [30, Theorem 7.2.4.1(4) and (5)].

7. Toroidal compactifications defined by normalization

For each j € J, and for each (Zy;, @4, 83;;) inducing (Zy; s P > O7.0) 8S
in (5.8), we have a boundary version

My’ = My ©Q (7.1)

of (4.14) (see [30, Definition 5.4.2.6 and the errata]), whose composition
with (3.2) gives the boundary version

M3 — Mo ®Q (12)
of (4.13). These morphisms (7.2), for all j € J, induce the boundary version

M3 — My ®Q (7.3)
J,aux 7
jel

of (4.15).

PROPOSITION 7.4. Let MH denote the normalization of [[;,; M HLJ::X in M3}¢
under the morphism

2 ZH',aux
M3 — T My (7.5)
jel
induced by (7.3), which is equipped with a canonical finite morphism
v Z j,aux
My, — [ My (7.6)
jel
compatible with (7.3) and (71.5). Then the tautological tuple (Bj, Ap,, ip;, ¥—134)
over MZHj = M3/ extends to a degenerating Sfamily (éj, Mg UG $_1.3;) over
- 73

M,, , where §¢_y 4 is deﬁned only over M R~ = M3} (c¢f. Proposition 6.1). Up to

canonical isomorphism, M,H does not depend on the precise choices of {H,; auljes
(we will omit such justifications for similar constructions later).

Proof. The proof is similar to the one for |\7|H in Proposition 6.1. O
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For each j € J, suppose X . = {Z]q)Hj.W}[((ij.mx,(g%vaux)J is a compatible choice
of admissible smooth rational polyhedral cone decomposition data for My, as
in [30, Definition 6.3.3.4], and suppose M, o S is the toroidal compactification
of MHJ . as1n [30, Theorem 6.4.1.1]. For s1mpl.101ty, we shall assume that X ..« is
projective as in [30, Definition 7.3.1.3], so that (under the assumption that H; ,ux is
neat) M;‘fjﬁum 5, 18 @ scheme projective and smooth over Spec(Or,; () (se€ [30,
Theorem 7.3.3.4)).

For each representative (Zy, @3, %) of cusp label of My, we define a
(possibly nonsmooth) rational polyhedral cone decomposition Xy, of Py, by
pulling back the cones {]_[jeJ Oj.aux * Ojaux € E%j_aux’ Vj € J} under the map (5.20),
which satisfies [30, Condition 6.2.5.25] with respect to Ip,, (so that the analog
of [30, Lemma 6.2.5.27] applies) when each 2¢H " satisfies [30, Condition
6.2.5.25] with respect to @3, .; and we define a compatlble choice X' of (possibly
nonsmooth) admissible rational polyhedral cone decomposition data for My, by
having (Z3, @, %) run through all such representatives (although we have only
considered smooth cone decompositions in [30, Definition 6.3.3.4], the definition
naturally generalizes to the case of nonsmooth cone decompositions). For each
j € 1, the compatible choice X for My, also induces a compatible choice X for
My, as in Lemma 3.21.

- tor . . tor
Let My, 5 denote the normalization of [[;,;Myz, - = in My under the
morphism
My — [IM5 . 5 (1.7)
jel

induced by (6.2) and by the canonical morphisms My, — Mt,(z e Sy fOT 21

j € J, which is naturally a scheme over éo = Spec(Op,.(») and equipped with a
canonical finite morphism

Y tor Mtor 78
- l_[ Hj.aumzj.aux ( : )

jel

compatible with (6.2) and (7.7) (this is similar to the considerations in, for
example, [37], [59], [38], [25], and [34], although they have not explicitly
considered a product of auxiliary toroidal compactifications as we do). A priori,
this is an abuse of notation, because the definition uses {X ,u}jes Tather than the
induced X' (nevertheless, we will justify this in Theorem 7.14 below).

= tor
LEMMA 7.9. With the setting as above, the scheme M, ; is proper and flat over

éo. Moreover, the morphisms (6.2) and (7.7) induce a canonical open immersion

-, tor

My, — M, ., (7.10)
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and the image of (7.10) is dense in I\A/It;r 5. and coincides with the preimage of
[jcs M3, ., under the canonical morphism (7.8). Consequently, we may and we

shall identify |\7|H with its image under (7.10), and view it as an open dense

- tor
subscheme of M, .

= tor g
Proof. The proper flatness of M,, . over Sj follows from the construction of
- tor

M,, » by normalization, and from the proper smoothness of M“’r T OVET
Spec(OFy; () for each j € J. The remaining statements of the lemma follow

from the construction of |\7|H by normalization (see Proposition 6.1) and from

Zariski’s main theorem (see [14, I1I-1, 4.4.3, 4.4.11]). ]
ProOPOSITION 7.11 (Cf. [30, Theorem 7.2.4.1(3)]). Consider the canonical
morphism
f My . — M (7.12)
2 ,
induced by the canonical morphism ij L Mff[] e Sy M’;_’Zfaux foralljel

- tor = Mmin
(by the constructions of My, 5 and My, as normalizations; see Proposition 6.4).
Let Wper ; denote the pullback of Wgyin ; (see Proposition 6.4). Then wgor | is

My 5.0
canonzcally isomorphic to the pullback of &ijw, under (7.8), and the
aux Zj,aux
canonical morphism .
- tor A
M,, 5 — Proj <@ F(MH 5 a)-m, J))
k>0 o
induces a canonical isomorphism
MH = Proj (@ F(MH 5 a)Mw J))
k>0 =
(compatible with the canonical morphism (7.12)).
®aj0

Proof. Since Dpin | is canonically isomorphic to the pullback of Nic;w

M Mg

jraux

under (6.6) (see Proposition 6.4), and since oMy is canonically isomorphic

Hjaux Zj,aux

for each j J € J, it follows that wper is
H.

5
Mml under (7.8).

j,aux 7, aux

to the pullback of wymn to My

Hj aux ] aux, Ej au

canonically isomorphic to the pullback of &dw
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Since (7.12) is an isomorphism over I\7IH (see Lemma 7.9), the pullback of

o 1o My is ample, and hence we can identify M3, with an open subscheme
H XD

- tor =
of Proj(@B;o "M, 5., w%f‘ J)), which is necessarily dense because My, is
H.D

. ) t()r . . .
open and dense in M,, ;.. Since w ; descends to an ample invertible sheaf
’ X

- tor
My 5
= tor
over Proj (@ vso (Mg, 5, w‘%{fn J)), the induced canonical proper morphism (see
g ’ HE

Proposition 6.4)

. - tor Sk - min ~ . - min Sk
PrO](@ F(MHvE’wM‘fi)_—J)) - M, = Prq(@ My, ,a)W{mJ)> (7.13)
k>0 k>0
is finite (see [14, II, 5.1.6, and III-1, 4.4.2)), which induces the identity

morphism on I\_)IH by restriction. Since |\7|?_Zn is noetherian and normal, (7.13)
is an isomorphism by Zariski’s main theorem (see [14, I1I-1, 4.4.3, 4.4.11]), as
desired. O

THEOREM 7.14 (Cf. [30, Theorem 6.4.1.1(6)]). _With the setting as above, let S be
an irreducible noetherian normal scheme over Sy = Spec(Op, (), with generic
point n, which is equipped with a morphism

n— My,. (7.15)

Let (A, My, iy, agy,) denote the pullback of the tautological object of My, to n
under (7.15). Suppose that, for each j € J, we have a degenerating family

(N a;jvm)

j.aux’ “¥jaux’ “j,aux’

of type My, over S, whose pullback

(Gj,aux,na )\j,aux,m ij,aux,m Ol?‘-[_i,aux,n)
to n defines a morphism
n— My, (7.16)

by the universal property of My, .. These morphisms (7.16), for all j € J, induce
a morphism
n— [ [Mg. (7.17)
jel
Suppose moreover that (71.17) is the composition of (7.15) with the morphism (6.2)
induced by (4.15). Then (7.15) (necessarily uniquely) extends to a morphism

- tor

S — M, (7.18)

if and only if the following condition is satisfied at each geometric point s of S:
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Consider any dominant morphism Spec(V) — S centered at s, where V is
a complete discrete valuation ring with fraction field K, algebraically closed
residue field k, and discrete valuation v. By the semistable reduction theorem (see,
for example, [30, Theorem 3.3.2.4]), up to replacing K with a finite extension field
and replacing V accordingly, we may assume that the pullback of A, to Spec(K)
extends to a semiabelian scheme G* over Spec(V). By the theory of Néron models
(see [4]; cf. [52, IX, 1.4], [10, Ch. 1, Proposition 2.7], or [30, Proposition 3.3.1.5)),
the pullback of (A,, A, iy, a3,,) to Spec(K) extends to a degenerating family

(G*, 2%, i%, o)

of type My, over Spec(V), where a; is defined only over Spec(K), which defines
an object of DEGpgr m,, (V') corresponding to a tuple

(B, Aps, ige, X5, Y @F, ¢, eF, oF, [a5f])

in DDpgp m,, (V) under [30, Theorem 5.3.1.19].

Then we have a fully symplectic liftable admissible filtration Zg_[ determined by
[agf]. Moreover; the étale sheaves X* and Y* are necessarily constant, because
the base ring V is strict local. Hence it makes sense to say we also have a uniquely

determined torus argument @L at level H for Z;{
On the other hand, we have objects QH(Gi), SQH(Gi), and B(G?) (see [30,

Construction 6.3.1.1]), which define objects 45%, Sq,%{ , and, in particular,
B*: S<1>; — Inv(V)
over the special fiber. Then
voB*:S,: — 7
H

defines an element of S;i , where v : Inv(V) — Z is the homomorphism induced
H
by the discrete valuation of V.

Then the condition is that, for each Spec(V) — S as above (centered at §),
and for some (and hence every) choice of 85, there is a cone o* in the cone
decomposition Xy of Py such that G* contains all v o B* obtained in this
way (as explained in the proof of [30, Proposition 6.3.3.11], we may assume that
o* is minimal among such choices; also, it follows from the positivity of T+ that

E: +
o* C P¢¢ ).

H

In particular, since this condition involves only X, it follows that the scheme
= {

M;_)Z’ 5 depends (up to canonical isomorphism) only on X, but not the choice of
the { X wjer inducing X.
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Proof. Let Spec(V) — S be any morphism as in the statement of the proposition.

For each j € J, let (A;,, A, ij.,, @34,,) denote the pullback of the tautological
object of MHJ. to 1 under the composition of (7.15) with (2.1). Since (A,,
Ay Iy, Q3y) induces (Aj,, Ay, iy, 03;.,) via a Q*-isogeny, by the theory of
Néron models, the pullback of (A;,, A; ;. ij.;, @34.,) to Spec(K) also extends to a
degenerating family

(G, 3.}, a3y)
of type My, over Spec(V'), where aH is defined only over Spec(K ), which defines
an object of DEGepg,, Mo, V) correspondmg to a tuple

(B Agrign X Y1 6 ¢ e ol o))

in DDPEL,MHJ,(V) under [30, Theorem 5.3.1.19]; moreover, we may and we
shall assume that the cusp label determined by the object in DDPEL,MHJ(V)

is represented by the (Zi . i (Si ) assigned to (Z]t ,<1>L, SL) via (3.8), and
that the induced morphlsm v o Bi € Sv is a QZ,-multiple of the image of

voBfe SV]r under (3.12) (see Lemma 3. 16)
For each j € J, let (G} i aH ) denote the pullback of the

_] aux’ _] aux® “j, aux’

degenerating family (G il oeHj .,) under the Spec(V) — S above,

j,aux’ _] aux’ “j,aux’
which defines an object of DEGPEL,MHj aux(V). Under [30, Theorem 5.3.1.19], this
corresponds to an object of DDpgy Mg, (V) which, in particular, determines

+

a cusp label [(ZjIE QDHJ M,SHJ )l and an element v o BJ ax € Sv for

P2 aux
some representative (ZH QD;{ o H ) of [(ZJIE @i”u L V1. By the
construction of (4.15), the assumptlon that (7 17)1s the. composmon of (7.15) with
the morphism (6.2) induced by (4.15) means that (Gj aux.ys Aj.aux.n» Laux.ys €3, )
is induced by (Aj ;. Ay, ijy, 02,5) in the same way as (Al A Gawe @3, )

is induced by (Aj, A, ij, az;) in Propos1t10n 4.12. Therefore, by the theory of
Neron models again, (Gi, AT i aH ) is similarly induced by (Gi, A}

j,aux> “¥j,aux? _] aux’ i Mo
i i oij). By functoriality of the association of degeneration data, the above object
in DDpg; M, (V) is also induced by the object in DDpgy M, (V) determined

by (Gf, )»Ji, j aH ) in the statement of the proposmon Hence, up to modifying
¥

the choice of the representative (ZHJ,. QDHJ e HJ ) above, we may and we
shall assume that it is assigned to (Zg_[i, ¢Hi’ 8: J_) via (5.8), and that (5.10) maps
1)ij*eSv tovoB' €8,

al
’H J,aux ¢’H

J j,aux
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Thus, for each j € J, the representative (Zi'{j e QD;J " 't ) 1s assigned to
(z};, D3, 83,) via (5.13), and (5.16) maps v o B € 7. tovo VB €S
#Ho O p e

j.aux
H Hj.aux

Suppose there exists a morphism § — I\Q/I;(_)lr 5 extending (7.15). For each

. . ... . . . Jptor tor
j € J, its composition with the canonical morphism M, ; — M?—LJM e

induced by (7.8) defines a morphism S — My, e Sy XtENding (7.16). By [52,
1X, 1.4], [10, Ch. I, Proposrtlon 2 7], or [30 Proposition 3.3.1.5], this forces
the degenerating family (GJ aux> M auxo JTaux, ) Of type Ms, . over S to be

isomorphic to the pullback of the tautological degeneratrng family (Gj aux J au
By [30, Theorem 6.4.1.1(6)], there is some o;", =€

tor
. ;) OVEr My "

aux E_] aux
Xt - such that the closure crj aux OF aj aux 111 (S%j_m.x)n contains all v o deux Let
ot € Xy be the pullback of [T, O
all v o B* as in the statement of the proposition.

Conversely, suppose that there exist o+ € Z‘(p; such that * contains all v o B*

under the map (5.20). Then &* contains

as in the statement of the theorem. By definition, there exist 0", € X : , for

aux
J Hj,aux

all j € J, such that o* is the pullback of [].

jel j aux

under the map (5.20). Hence,

foreachjeJ,allvo Bf as above are contained in @, and it follows from [30,

aux j,aux

Theorem 6.4.1.1(6)] that there is a canonical morphism

M;('Z auxs E_] aux (7. 19)
under which the degenerating family (GJ A A}aux, 'J o a;{w) is the pullback

of the tautological degenerating family (G aux Ajauxs &j,aux Q2 4,) OVET Mtor
(although the universal property in [30, Theorem 6.4.1.1(6)] is defined usmg all
morphisms Spec(V) — S centered at a geometric point s of S, the condition that
there is some o°, € ¥,:  suchthat: _contains all v o B _can be verified

j,aux 259 j,aux j,aux
j,aux

up to replacing K with a finite extension field and replacing V' accordingly). The
morphisms (7.19), for all j € J, induce a canonical morphism

S — ]_[ M . (7.20)

Hjﬂu)o Ej,uux
jel

Since (7.17) is the composition of (7.15) with (6.2) by assumption, the

morphism (7.20) induced the desired morphism (7.18) by the definition of
- tor
M,, 5 as the normalization of ]_[J o M;"jj e S in My, under the morphism (7.7),

as desired. O
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8. Putative boundary charts

The goal of thls section is to construct the schemes MH , Cq;H by ung P

qu,H 5,(0), and & uq),H s,,.0- and the formal scheme %(pH 82,0 OVer M (whose
meanings will be explamed below) which will be useful for deﬁnmg a locally

closed subscheme Z[(qbH 83,00 Of MH 5, and for describing the formal completion

of MH, . along Z[@H,SH,G)], in the next two sections.

- 7 -
PROPOSITION 8.1. Let M " be as in Proposition 7.4. Let MHH denote the

normalization of [ [;c; M " j “* in M3}* under the morphism

ME* — ]_[ MHJ i (8.2)

jel

Dy
deﬁned by comparing the universal properties of M(D” = M, HJ (see (3.6))

and M i , for all j € J (see [30, Definition 5.4.2.6 and the errata] cf [31,
Lemma 1 3.2.5and the paragraph preceding it]). Then the morphism (8.2) induces
a finite morphism

M, — ]_[ MHJ i (8.3)

jel

compatible with (7.6), and the canonical morphzsm M — M;H extending the
canonical finite étale morphism M — M is also ﬁmte.

. . i TZH . .
Proof. The canonical morphism M,, —> M, is ﬁnlte because so are the

canonical morphisms M;Z“ — M3}* and M Vs M i forallj e T O
PROPOSITION 8.4. Let Cy,, 5,, denote the normalization of ]_[jEJ C@HJ IRC in
Cos,,.s,, under the morphism

C¢H’6H - 1_[C¢Hj.aux’aﬂj,aux (85)

jel

defined by comparing the universal properties of Ce,, s5,, = Cq)nj,z?nj (see (3.14))
and Cq)Hj T for all j € J (parameterizing the additional objects (c3y;,

[
\ v Py~ Hj Hj aux . .
Cyy) and (Cay 0 €3y, OVEr My = M?zj and M "7, respectively; cf. [31,
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Lemma 1.3.2.11 and Proposition 1.3.2.12]). Then the morphism (8.5) induces a
finite morphism
C_}(DH"S’H - 1_[C¢Hj,aux’87"j,aux (86)

jel

- - @
compatible with (8.3), and the canonical morphism Cg,, s,, — MHH extending
the canonical abelian scheme torsor Cg,, 5,, — M;Z“ is proper.

. . > AL
Proof. The canonical morphism Co,, 5,, — M,, is proper becalge so are the
. . q)H ’Hj.uux
.canomcal morphisms Co,, s, — My and Co, s, — My ", for all
jel O

PROPOSITION 8.7. Let Ey,, s, denote the normalization of ]_[jEJ Ep,. s

j.aux’ Hj,aux

B¢, s, under the morphism

— —
Hq)’H’aH - 1_[ Hq)’Hj,aux’aHj,aux (8.8)

jel

defined by comparing the universal properties of E¢,, 5,, = E¢Hj’5ﬂj (see (3.15))
and Ed)?—t»

j,aux’

524, e for all j € 1 (parameterizing the additional structures

Ty, and Ty, over Eo, s, = Ep,om, and E¢, s, , respectively,

Jaux’ @M aux
without their respective positive conditions; cf. [31, JLemrJna 1.3.2.28 and
Proposition 1.3.2.31]). Then the morphism (8.8) induces a finite morphism

&)

qu"(S’H - 1_[ L'-2quj,aux’aHj,aux (89)

jel

compatible with (8.6), and the canonical morphism §¢n,8n - C ®4,,6,, €Xtending
the canonical morphism E¢,, 5,, — Cas,,.s,, also admits a canonical extension of
the Eq,, -torsor structure of the latter (see [30, Theorem 6.4.1.1(5)]), where Ey.,
is the split torus with character group Se,,-

The Eg,,-torsor structure of B¢, s, defines a canonical homomorphism

So,, = Pic(Coyy ) i £ > Yo, 5, (), (8.10)

giving for each € € S4,, an invertible sheaf ifqb%,;ﬂ &) over ap%(;% (up to
isomorphism), together with isomorphisms

Ay s i Wansn () ® o 5, (0) > P, 5, (L+ 1)

Coqy.89
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for all £, 0" € So4,,, satisfying the necessary compatibilities with each other
making P, eSa,, Vor. (0) an 0¢,,, ., -algebra, such that

Bor .y = Spec, ( P o, (6)) (8.11)

PN N\ieS,,,

(cf- [30, Proposition 6.2.4.7 and (6.2.4.8); see also the erratal).
The canonical morphism

(pH'(SH - (1_[ Ed&H_i,aux’aHj.aUX) X 6¢HJSH (812)

jel l_[JEJ C‘PH

Gl

iR aux Hj,aux

induced by (8.6) and (8.9) is equivariant with the finite homomorphism

Egy = [ [ Eon, (8.13)
jel
dual to (5.22), which is finite becauseﬁ (5.21) is surjective. If (5.22) maps
(4 audijes € ]_[jEJ Sq)Hj L lole So,,, then Yy, 5, () is isomorphic to the pullback
of Wies¥s,, 514, oo (L) under (8.6).

j.aux’

Proof. By the universal properties of Z,, 5,, and E(ij . for all j € J, the
canonical morphism (8.8) is equivariant with the finite homomorphism (8.13).
Suppose that the Eg, -torsor Zg¢, 5, —> Co, s, extends to some Eg, -torsor

over Co,, 5, Which is finite over [ [, Ebry, odn 0 10N this extension must be

isomorphic to the .’;7%,5“ defined by normalization as in the statement of the
proposition, and the canonically induced morphism (8.12) must be equivariant
with the homomorphism (8.13). As usual, for each £ € Sg,,, we define ¥y, 5,, (£)
to be the subsheaf of (u% 5y — Cq)H N2 oy, OD which Eg4,, acts by the

character ¢; for ¢, £’ € So,,, we define A 1.65,.¢.¢ t0 be the isomorphism induced
by the O¢, oy, ~21ZebIA structure of (u¢>7_‘ Sy — Cq;H 5,)+C3, . Then the

.. u@—H.bH
remaining assertions of the proposition follow from the constructions.
It remains to show that the Eg, -torsor &g, s,, = Co,, s, extends to some

E g, -torsor over C¢H 5, that is finite over [],; & s, b1 Which we shall

M aux
abusively denote by = gy Take any jo € J, and take any integer n > 1 such
that U, (n) := ker(Gy,(Z) — Gy, (Z/nZ) = G;,(Z/nZ)) C H,,. Let H' be the
pullback of U, (n) under the canonical homomorphism G(A*) = Gj,(A*), and
let (@3, §%) be any cusp label for My, lifting (@4, §%). By the construction
in [30, Section 6.2.4 and the errata], andqby Zariski’g main theorem (see [14,
II-1, 4.4.3, 4.4.11]), we can construct Zg¢,, 5,, — Cas,, 5, as an equivariant
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quotient of §¢H,’5H, — apﬂ,,,;%,, as soon as the latter is known. Hence, we
may replace H with H'. Since 5¢H,5H can be alternatively constructed by
normalization over some product of naive moduli (cf. the proof of Proposition 6.1
and the construction of ap” in [30, Section 6.2.3]), we may assume that the

1 . \/ \/ 1
tautological structure (cmn : X — By,c., Y, = Bj) over Co, s,
= . v —’\/ L1 B
extends to some (cj,, : X — BO, on ~Y, — Bj,) over Cq,%(;ﬂ (cf.

Proposition 7.4). By the same construction of ff(p as in [30, Section 6.2.3], the
naive structures TJO » (without pairing and liftability conditions) are parameterlzed
by some & — C(pH b1 which factors as the composmon of a Eg,, -torsor 5 .
and a torsor 5 — C% s, under a finite group E of multiplicative type. By
comparing umversal properties, there is a canonical Eg, -equivariant morphism
Eg,.s,, —> &, which induces a morphism Cog,, 5, — Z'. On the other hand,
up to replacing the groups H; .. with finite index principal level subgroups,
for all j € J, and replacing n with a multiple if necessary, the pullback Zu
of ]_[J o udm 5. to Cg,, 5, can be embedded in some similar composition

j,aux’ j.aux
>

Eax = &, — Ca,,s, of torsors under [] Eq,ijau and a finite group of

jel
multiplicative type, respectively, together with a finite morphism Z — Z
equivariant with the finite homomorphlsm (8 13), whose precomposition with the

above morphism Zy, 5,, — £ lands in uaux Since qu,H s, 1S noetherian and
normal, the above morphlsm C% 52 > Z’ extends to a section Cq&H 5 = 5
of the above morphlsm g > C ®5,.5,» under which the pullback of the Eg4,, -
torsor 5 — 5 defines an E 4, -torsor extension é%,aﬂ over 6%,5%, with a
finite morphlsm 10 [ ey By, b0, 35 desired. O
PROPOSITION 8.14. Suppose that oj..x € Z‘(pﬂjyﬂux, for each j € J, and that
o € Xy, is the pullback of ]_[jEJ 0j,aux Under the map (5.20). Consider the affine
toroidal embedding as in (3.17), which extends to the affine toroidal embedding

)y

orin, > B 5 (0) = Spee,, (@ Po,, s, (E)) (8.15)
PH M

leoV

over 64,”,5”, where the invertible sheaves lﬁq)%(gn ®) are as in [30,
Proposition 6.2.4.7 and (6.2.4.8); see also the errata] as well. Then the canonical
morphism .

(0) = Coyy 5 (8.16)

>
=
=’

P01
is faithfully flat and has geometrically normal and Cohen—Macaulay fibers, and
Eg,, .55, 1S fiberwise dense in Ey,, 5, (0). If o is smooth, then (8.16) is smooth
and surjective. Moreover, whether o is smooth or not, Ey.,, s, (o) is normal
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and is canonically isomorphic to the normalization of Hje] E0ry; o8 (07,au0
in E¢,, s, under the composition
— (8.8) — can. —
S, g d¢Hj,aux’5Hj,aux - 1_[ H(D’Hj,aux’aﬂj,aux (O-:i’aUX) ’ (8' ] 7)
jel jel
which (necessarily uniquely) extends to a finite morphism
Eorn(0) = [ B o0, (G0 (8.18)

jel

under which Eg,, s, is the preimage of [] inducing the

same (8.9).

=
Loy
jeJ d)”"j,aux‘sﬂj,aux’

Proof. Over open subsets of é(p%,;ﬂ over which the invertible sheaves ‘f/qa,H’aH )
are free for all £ € Sq,, (Which is possible because So,, is finitely generated), the
global sections of the ﬁéqbwﬂ -algebra @zes% Wy, s, (£) 1s the localization of

the global sections of the 6’5%'5% -algebra @, lf/q;%(;ﬂ (£) at a multiplicative
subset generated by finitely many elements (which is possible because
o is finitely generated; cf. [24, Ch. I, Section 1, Lemma 2]). Hence the
morphism (8.15) is an open immersion. The canonical morphism (8.16) is flat

because the ﬁi’@n ,,, ~algebra Dco ‘i/am,an (£) is a direct sum of invertible

sheaves over Co,, 5,,. By [24, Ch. I, Section 1, Theorem 1’ and 2], the fibers
of (8.16) are geometrically normal, and contain the corresponding fibers
of ET'QDH’(;H as nonempty open dense subsets. By [22, Theorem 1] (cf. [23,
Theorem 4.1]), the fibers of (8.16) are Cohen—Macaulay. If o is smooth,
then (8.16) is smooth because it is flat and has geometrically regular fibers,
by [24, Ch. I, Section 1, Theorem 4]. Whetherﬁ o is smooth or not, since (8.16)
is faithfully flat and of finite type, and since Cy,, 5,, is noetherian and normal,
it follows from the normality of the fibers of (8.16) and from [35, 21.E] that
L:"q;%gH (o) is also normal.

By the definition of ::JQD%(;H (see Proposition 8.7), the normalization of

]_[jEJ Ebry, o8 (0jau0 In Eg, 5, under the composition (8.17) can be
identified with the normalization of ]_[j a .:@Hj{aux,gﬂjvm(crj,aux) in &4, s5,, under the

composition

~ (3_»2) | | — Cj;- | | - ( ) (8.19)

~ ~ ~ 2

S P30 H(I)Hj,aux"a”"j,aux H(D’Hj.aux’sﬂj,aux O—J'au : :
jel jel

Thus it suffices to show that .’::J@H,(;H (o) is canonically isomorphic to this
normalization, or that (8.19) extends to a finite morphism as in (8.18). Since the
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Q-o-span of o is the image of the Q.,-span of [];_, o;",,, under the map (5.21)

(see [18, Lemma 3.2]), this follows from the last paragraph of Proposition 8.7, as
desired. (|

Let o and {0j au}jes be as in Proposition 8.14. Let
={eSy, :(l,y)>0Vyeo}

and
Li={teSe, :(l,y)=0¥yco}=0"/a)

as usual (see [30, Deﬁnltlons 6.1.1.8 and 6.1.2.5]). Consider the formal
completion f{% 83,0 Of Eg,, 5, (0) along its closed subscheme

teol

ol

which extends the formal completion X4,, 5,0 Of Z¢,, s, (0) along its closed

subscheme Zs,, 5, = Spec, (EB,_,EUL Wy, 5,,(0)); and consider the
Coqy

formal completion X, 5, o X)Jd of [[icy oy,

» (0j.a00 along its
JduX j,aux’
closed subscheme []

I
j.aux’ j,aux
el "‘%J-,auxﬁﬁj,auxﬁjvaux‘ Consider the split torus Eg4,, , with
character group o+, which is the quotient of Eg,, dual to the subgroup o+ of
S&,,, as in [30, Theorem 7.2.4.1(5)]. By construction, the canonical morphisms

Eoy 800 = Coysy and B¢, 5, o = Co,, s, are (compatible) Eg,, ,-torsors.

LEMMA 8.20. The subscheme Eg,, s, o Of E, s, (0) is the preimage (with
its reduced structure) of ]_[jEJ IoF under the canonical finite
morphism (8.18) of schemes, and the induced canonical morphism

Hj.allx’(SHj,aux’ijaux

Xorom0 = X@ry 85 e iandics (8.21)

of formal schemes is finite (we cannot expect Eq.,, 5, - to be the schematic
preimage of ]_[jEJ EDr4, 9, o T because such a preimage is not reduced in
general).

-

Proof. It suffices to show that Zy, 5, , is the preimage (with its reduced
structure) of [ [y oy, s under (8.18).

j.aux’ Hj,aux
By definition, the closed subscheme Zo, 5, , of &g, 5, (0) is
defined by the Op, 2y ©) -ideal corresponding to the ﬁé@ﬂ_m-submodule

Dieoy G, 5, (£) of the O¢,, ., -algebra P, Wy, 5, (0). Similarly, for

»0j,aux
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each j € J, the closed subscheme Zo,, e e O of Ed,H e (0,000 18
defined by the ﬁg‘pﬁj 74 i)™ -ideal correspondlng to the Oc,,, s
(bja) of the ﬁcmvam

submodule By, . cio;0t Pr st -algebra

@ij,auxeajﬁ %;HJ . (4;,a00- Since

\4
_ \%
(1_[ Uj,aux) - l_[ Uj,aux

'5Hj,aux

jel jel
and
(l_[ Gj,aux) <1_[ J dux) (l_[ _] dux)
jel 0 jel jel
13 b . ’:1
(where ‘—’ means set subtraction), the closed subscheme ]_[JEJ E D14 O O

of ]_[JGJ._@Hjaux #0(Tiaw) is  defined by the on., = B34 74 -ideal

éHj,aux

5., -submodule
j.aux’ Hj,uux

D (B¥or i)
((ejAaux)jEJ)E(nngUj.aux)o
-algebra

@ (Xl WKDH., ( s aux))
v JEJ J,duX |dUX
((szaux)jeJ)E(njEJ‘Tj.aux)
Since the Q.¢-span of o, (respectively o) is the image of the Q-¢-span of

(]_[jEJ Gj,aux)g (respectively (]_[jej Gj,aux)l) under the map (5.21) (cf. the proof
of Proposition 8.14), the desired assertion follows from the last paragraph of
Proposition 8.7. O

corresponding to the ﬁl'lj ,

Caoy.

of the ﬁn o C¢HI - BHj‘aux

As explained in [30, Section 6.2.5], using the language of relative schemes
(see [17]), for each j € J, the formal scheme X4, carries a
tautological tuple

j,aux’ 67“_] aux % d“X)JEJ

(Z'H}aux’ (Xj,auxv Yj,auxa d)j,auxv 90:2,7'11";,“;(’ (P()N,Hj.aux)v (8 22)
(ijaux’ )\'Bj,aux’ iBj.aux’ (p*LHj,aux)’ 6’7"[j.cmx’ (ch.aux’ C;/'[j,aux’ THj.aux))’

where (97, 5, ©03,,,,) induces the (924, . 0.7.,) I Pry .- Let us denote
the pullback of (8.22) to Xo,,.4,. by
(Z’Hj aux? (Xj,auxa Yj,aux: ¢j,auxa @:2 Hjaux’ 657{] aux)’

(8.23)

(BJ aux» )"BJ aux? BJ aux?® §0 1, HJ gux) 87{) aux? (CHJ aux? C’H THj,aux))'

j.aux’
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Similarly, for each j € J, the formal scheme X4, 5,0 = Z{%{j,(gﬂjﬁj (see (3.20))
carries a tautological tuple

(234 (X3, Y5, 85, 0730 G50,

. y (8.24)
(B_]7 )“ij lBj? q)—l,ij)9 87{j9 (C’Hj9 C’Hj7 T’Hj))v

where ((pjz’Hj,cpof Hj) induces the (¢_23;, ¢0,3;) in Py, which extends to a
tautological tuple
(Z’Hj? (Xy Yj? ¢J’ ¢j2,Hj’ QB(;_I’HJ-)’

S B (8.25)
(By, Agy» U5 91247 O350 (Cogyo Cpy Tyy))

over the formal scheme i‘%,g%a, where (95:2,7-11-’ @ ;) and @13 are defined
only over Xo,, 5,,.0 = %q)ﬂj,(;ijaj, and where (Cy;, ESY_[J,, Ty;) is defined only over
%4;% S0 = %4,” 83,01 but nevertheless induces a tuple (¢, ¢ 7, 7;) defined over all
of %45% s4,0- Which in turn induces the tuple (cJ auxs € A rJ ano) induced by (cHJ
H] aux’ HJ aux) .
By construction, (8.23) is induced by (8.25) in the following sense.
(1) (Z’Hj,auxy (pﬂjvaux = (Xj,auxa Yj,auxy ¢j.aux’ §0—2,’Hj,auxﬁ QDO,Hj,auX)a SHJ;MX) is induced by
(Z'va ®7-lj = (va Yjv ¢_]» ¢—2,'Hj’ ¢0,'Hj)v 8?—[]) via (58)

(2) (Bjaux )Léjvw, igjﬁm, b1 M. 18 induced by ( Agj, igj, Y-1.34)-

3) (P53 0 gD[; o) 18 induced.by (92534, 0.3, by forgetting the factors at p
and by forming the H,; ,u-orbits.

(4) (Crj o E{lj Tay.) 18 also induced by (¢, E;_Li, Ty,) by forgetting the
factors at p and by forming the H,; ,.-orbits. ’

As explained in [30, Section 6.2.5], the tautological tuples (8.22), (8.23), (8.24),
and (8.25) define the respective Mumford families

(OGJ' aux» O)\.j auxs QDl.j auxos Oaﬂj dux) x(d)ﬂj aux ‘SHJ s dux)Jd, (826)
( G] auxs J auxs Olj auxs Olq.[] aux) - xdﬁ{ 894,09 (827)
(O _], O)\ (X'H ) — xq;,_‘ Sp.0 — :{‘DHJ 834,05 (828)
and
©G;, %5, %, “dng) = Xorpon (8.29)

o= ~ ~
where Yy, is defined only over %(p%a%{, ®z Q= Xoy om0 = Xoo 80,0
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REMARK 8.30. Although ¢ was assumed to be smooth in [30, Section 6.2.5],
the argument there only requires the excellent normality of &4, s, (o) and
E¢,, s, (0), which we have shown in Proposition 8.14.

For all j € J, by the functoriality of Mumford’s construction, we know
that (8.27) is canonically isomorphic to the pullback of (8.26) under (8.21);
that (8.28) is canonically isomorphic to the pullback of (8.29); and that (8.27) is
induced by (8.29). By the universal property of M“’rJ i 3 in [30, Theorem
6.4.1.1(6)], the Mumford families (8.26), for all j € J, induce a canonical
morphism

%(¢Hj<aux‘(S’Hj.aux’o‘jvau’()jej - l_[ M‘,:[l:i,aumzj,aux' (831)
jel
Similarly, since (8.27) is canonically isomorphic to the pullback of (8.26) for each
j € J, the Mumford families (8.27), for all j € J, induce a morphism
Xopsno = | M5 500 (8.32)
jel

which coincides with the composition of (8.21) with (8.31). Since (8.27) is

= tor

induced by (8.29) for each j € J, by the universal property of M, ; as in
Proposition 7.14, the morphism (8.32) lifts to a morphism

— tor

Xy om0 = M, 5» (8.33)

whose composition with (7.8) is (8.32).

9. Stratifications of toroidal compactifications

The main goal of this section is to show that an analog of [30, Theorem
6.4.1.1(2)] is true for M .5 (see Theorem 9.13 below).

DEFINITION 9.1. For each (@H, 84, 0) as in [30, Definition 6 2.6.1] such that
o CPg ando € Xp,, let Z[(q)H 5,09 denote the subset of MH 5 con51st1ng of

all points t satisfying the follow property: for any morphism Spec(V) — MH’ 5
where V is a complete discrete valuation ring with fraction field K, algebraically
closed residue field k, and discrete valuation v, which maps the generic point
Spec(K) to some maximal point (see [15, 0, 2.1.2]) of M3, and maps the special
point Spec(k) to ¢, there exist some (Z%, q)?i, 8;) and some 0¥ € Eq)i as in
Theorem 7.14, where o* is minimal among all choices, such that [(QDH, 5;,

o¥)] = [(Py, 8%, 0)] (that is, (CD;, 8;, o*) and (D4, 8%, o) are equivalent as
in [30, Definition 6.2.6.1]).
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REMARK 9.2. As explained in the proof of [30, Proposition 6.3.3.11], the
requirement that o* is minimal among all choices implies that v o B¥ € o#, not
just in the closure 5+,

LEMMA 9.3. The underlying set ofm;jx is the disjoint union ofz[@%g%a)], with
[(®y, 6x, 0)] running through a complete set of equivalence classes of (P4, 534,
o) (as in [30, Definition 6.2.6.1]) with o C PgH ando € Xy, € X.

- tor
Proof. The fact that M, ;. is the union as in the statement of the lemma follows

= tor
from Theorem 7.14. Since M, ;. is noetherian and normal, given any point ¢ of
— tor

M., 5, all morphisms Spec(V) — I\Q/I;Zr 5 as in Definition 9.1 (for some V) that
map the special point to r must map the generic point to the same maximal
point n of My,. Let us denote by (A,, A,, i,, o3 ,) the object parameterized
by the canonical morphism n — My,. Since the assignment of [(QD;, 8;, oH]

to a morphism Spec(V) — I\Q/I;(_)Lr 5 as in Theorem 7.14 is determined by the
degeneration of the pullback of (A, A,, i,,, a3, ,) to Spec(K), which is unchanged
under faithfully flat extensions of discrete valuation rings V, it follows that [(cDi ,
8;, o*)] depends only on ¢. Hence the union in the statement of the lemma is
disjoint, as desired. O

LEMMA 9.4. For each (D4, 64, o) (as in [30, Definition 6.2.6.1]) such that ¢ C

d - tor
P, and o € Xy, € X, the subset Zyo,, s,.0) of My, 5 is the (set-theoretic)
image of the morphism
= - tor
:445%’5%,6 —> M'H,Z‘ (95)

induced by (8.33).

Proof. Since (8.33) is induced by the universal property of I\qlll:Lr 5, the image
of (9.5) lies in Zj,, 5,0y by definition. Conversely, let ¢ be any point of
Z(4,,.5,.01» also viewed as a point of My ;.. Let

Spec(V) — My & (9.6)

be as in Definition 9.1, which maps the special point to ¢, such that the pullback
of the tautological object over My, to the generic point of Spec(V) extends
to a degenerating family (G',A%,i%, a},) of type My over Spec(V), which
defines an object of DEGpg; m,, (V) corresponding to an object in DDpgy m,, (V)
under [30, Theorem 5.3.1.19]. For each j € J, as explained in the proof of
Theorem 7.14, the pullback of the tautological object over My, to the generic
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point of Spec(V) also extends to a degenerating family (G;', )»JT, ijT, aLj) of type
M;.Lj over Spec(V), which defines an object of DEGPEL,MHJ,(V) corresponding
to an object in DDPEL,MHJ_(V) under [30, Theorem 5.3.1.19]. Since ¢ is a

point of 2[@%3%”)], these objects in DDpELyMHj(V), for all j € J, induce

objects parameterized by :%dwén,o as in (8.25), so that the degenerating families
(GJT, )»JT, ijT, aLj) are isomorphic to the respective pullbacks of the Mumford
families (8.29), for all j € J, under a uniquely determined morphism

SPE(V) = Xoy 500 9.7)

Since (8.33) is induced by the universal property of M:—){r 5, its precomposition
with (9.7) is induced by (9.6). Therefore ¢ lies in the image of (9.5), as
desired. O

LEMMA 9.8. With the setting as above, suppose that X' is any compatible
choice of admissible smooth rational polyhedral cone decomposition data as in
[30, Definition 6.3.3.4], which defines a smooth toroidal compactification Mfflr’ 5
as in [30, Theorem 6.4.1.1], and suppose that X' is a refinement of X as in [30,
Definition 6.4.2.2] (with the roles of X and X’ there interchanged; such X" always

exists by compatibly refining the cone decompositions X¢,, as in the proof of [30,
- tor

Proposition 6.3.3.5]). Let My 5z := M, » ®; Q, which we view as an open

= tor
subscheme of My, ;. Then there exists a canonical proper surjective morphism

My 5 — My 5, (9.9)

mapping Zi(@,, s, 10

PR > tor
Zi(@2.53.001 = Li@y.50.001 My 5

whenever T € X, € X' is contained in 0 € Xy, € X in Py . Moreover,
each Zy(p,, 5,0 is the union of the images of all such Zy,, s,, 1y In particular,
the open dense stratum Z o (0} of Mtfz 5. is the isomorphic image of the open
dense stratum Zyo 0 10y = My of M3y 5., which must coincide with the open dense

subscheme My, = |\7|H ®z Q ofM‘;;"): = |\7|E:ZE ®7 Q (see Lemma 7.9).

Consequently, the subsets Zj,, s,,.0) Of M;(_)[‘E, with [(Dy, 6%, 0)] running
through all equivalence classes as in [30, Definition 6.2.6.1], are locally closed
and define a stratification of M;‘z 5 as in [30, Theorem 6.4.1.1(2)] (with incidence
relations described as in the second paragraph there, and with My, = Z(0.0.10p
being an open dense stratum). Then each Zs,, s,,.0y admits the structure of a
locally closed subscheme of M;(_’[’ 5 (with its reduced structure).
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Proof. The canonical morphism (9.9) exists by Proposition 5.24 (with the X
there given by the X’ here) and by comparing the universal properties of M;(flr’ 5
and M;‘_’Z 5 in [30, Theorem 6.4.1.1(6)] and Theorem 7.14, respectively, which is
proper because M;‘z 5 1S proper over Sy.

Suppose ¢ is any point of the subset Zyq,, s,,.)) of My, 5, which is mapped
to some point 7 of My .. Suppose Spec(V) — My 5, is any morphism, where
V is a complete discrete valuation ring with fraction field K, algebraically
closed residue field k, and discrete valuation v, which maps the generic point
Spec(K) to some maximal point of My, and maps the special point Spec(k) to

t'. Then its composition with (9.9) defines a morphism Spec(V) — ‘7‘_’[ 5 as

tor

in Definition 9.1, and it follows that ¢ lies on the subset Zyg,,.5,,.0y) of My 5,
by [30, Theorem 6.4.1.1 (5) and (6)] (and the property of the Mumford family
(“G, %%, i, Yay) carried by Xg,, 5, . for each representative (@4, 83, 7) of

(P2, 83, T)D.
On the other hand, suppose 7 is a point of Z(,, s,,.0)- By definition, there exist
some morphism Spec(V) — M;‘_’[. 5 as in the statement of Definition 9.1, for some

(ZiE , Q§L, 8;) and some o* € Ed,i as in Theorem 7.14, where o is minimal
among such choices, such that [(@;, 6;, oH] = [(Py, 81, 0)]. Since (9.9) is
proper, Spec(V) — Mjy; ¢ lifts to some morphism Spec(V) — My ;. Since o
is minimal among such ch01ces we have v o B € ¢* C PJ’L (not just in the
closure %), and hence v o B € t¥ C P+ for some ¥ € =, By [30, Theorem

6.4.1.1(6)] and its proof based on [30, Proposmon 6.3.3. 11] Spec(V) — Mf,ff[r 5

must map the special point Spec(k) of Spec(V) to the [(@f{, 8H, 7¥)]-stratum
tor
2y, 5%yt OF M3 -
Thus we have shown that each Zj,, s,,.0) is the union of the images of all
Z{(@y.50, oy WithT € X, € X' containedino € Xy, € ¥ in Py . The remaining
assertions of the lemma then follow from this and from Lemma 9.3. O

REMARK 9.10. The notation in Lemma 9.8 might be confusing, because M;‘fy 5
and My} ;. (and also Zj,,,5,.1)) and Zya,,.5,,,07)) are defined rather differently.
This will be justified in Corollary 11.8 below.

LEMMA 9.11. For each (D, 8%, 0) (as in [30, Deﬁnitign 6.2.6.1]) such that
o CP; ando € Ty, € X, the subset Z(4,,.5,,.01) Of Zi(@,.55.0)) is dense in

Z[@H 64,0)]

Proof. This follows from Lemma 9.4, because .’:?@H,(;H,U is smooth over 5’45%3“
and hence is flat over Spec(Z,)) (see Lemma 8.20). ]
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LEMMA 9.12. For each j € J, suppose that (Zs; .. P s O4;) 15 induced by
(Z3(, Py, 8y) as in (5.13), and that oj . € E(p,{j.aux and oj 4y C Pt , so that

(p’HjAaux
the locally closed stratum Z[(¢Hj_aux~SHj,aux’%auxﬂ of Mt?(-)Lrj.m.x., Sy 18 defined as in [30,

Theorem 6.4.1.1(2)]. Suppose o € Xy, is the pullback ofl_[jEJ 0j,aux Under (5.20),

-

which lies in Py, because 0. C Py, forall j € J. Then Z,,5,,.0)) is open
J

,aux

and closed in the preimage of the locally closed stratum [T Z[@Hj P e an)]

of]_[jGJ M;’[j‘aux_ T under the finite morphism (7.8). Consequently, Z4,, s,, o)) also

- (or
admits the structure of a reduced locally closed subscheme of MH, 5

Proof. By comparing the universal properties (as in Theorem 7.14 and
Definition 9.1 for Zj,,.s,,.0)> and as in [30, Theorem 6.4.1.1(6) and its proof
based on Proposition 6.3.3.11] for Z[@Hj b for all j € J), the canonical

, ’Hj_aquUj.aux)] 4

morphism (7.8) maps Zje,,.s,,.0)) tO ]—[j€J Zl(‘f’ﬂj,auxvsﬂj,aux
of the image of (7.8) with ]_[j a1 L@, 51 o) 18 the union of such images. If

j.aux’ Hj.aux

«o.a]> and the intersection

Zy(0},.8,,.0n) is also mapped t0 [T Zi@s, 53¢ .01 then the O-multiranks of
[(D3, 63)] and [(D,, 85,)] have the same magnitude (see [30, Definitions 5.4.2.7
and 6.3.3.7]), because they induce the same [(DP4; ., 63,,)] (for any j € J), and
hence none of [(®y, 83, )] and [(P},, 87,, 0')] can be a face of the other (as in
[30, Definition 6.3.2.14]), because o is assumed to be minimal among all choices
in Definition 9.1. By Lemma 9.8, this shows that Z;(¢,, s,, ) is open and closed in
the preimage (with its reduced structure) of [ [;; Zs,, i) Under (7.8).

j,aux‘(S’HjAaux
By Lemmas 9.3 and 9.11, it follows that Z;(¢., 5,y is also open and closed in
the preimage (with its reduced structure) of ]_[jEJ Zits, S o) Under (7.8),

j.aux’ Hj.aux

as desired. O

- tor

THEOREM 9.13 (Cf. [30, Theorem 6.4.1.1(2)]). With the setting as above, M,
has a stratification by locally closed subschemes

= tor =>
My s = ]_[ Zi(@s. 510015
[(@34.53.0)]

with [(®y, 6+, 0)] running through a complete set of equivalence classes of (P,
8%, 0) (as in [30, Definition 6.2.6.1]) with o C P;H and o € Yg, € X, where

each stratum Zp,, s,, o) is as in Definition 9.1 and Lemma 9.12 (here the notation
‘1" only means a set-theoretic disjoint union. The algebro-geometric structure is

— tor d
still that of My, ). In this stratification, the [(®},, 85, 0')]-stratum Z[(Q);_L,B;{,U’)]
lies in the closure of the [(Py, Sy, 0)]-stratum Zye,, 5,0y if and only if
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[(Dy, 83, 0)] is a face of [(PY,, 84, 0)] as in [30, Definition 6.3.2.14] (see also
[30, Remark 6.3.2.15)). The open dense subscheme MH of MZZ 5 (see Lemma 7.9)
coincides with the [(0, 0, {0})]-stratum Z[(o o.{op] in this stratification.

Proof. By Lemma 9.3, My, 5 = Ul g, 5,00 Zi@nsneons With (@, 83, )]
running through all equivalence classes, with o C P, ,ado € Yy, € X,
By definition, the assignment of [(Py,,,,, 0%, . Tjaud] 10 [(P3, 83, 0)] as in
Definition 5.23 respects the incidence relations as in [30, Definition 6.3.2.13],
for each j € J. Therefore, by Lemmas 9.11 and 9.12, in order to show that the

-, tor
above union defines a stratification of M,, ; with the desired incidence relation
described as in the second paragraph of this proposition, it suffices to note that, by

Lemma 9.8, its pullback to Mt;_’[ s = MH 5 ®z Q does. Slmllarly, in order to show
that the subscheme Z[(O,O,[O])] of MH 5. coincides with MH, it suffices to note that,

by Lemma 9.8, the subscheme Z; ¢ o)) = = Z0. 0.0p ®zQof My, ;. = MH s ®7Q
coincides with My, = My ®7 Q. O

REMARK 9.14. In Theorems 12.1 and 12.16 below, we will see that the
corresponding analogs of [30, Theorem 7.2.4.1 (4) and (5)] are also true for

- min

2 -
10. Comparison of formal completions

The main goal of this section is to show that an analog of [30, Theorem
6.4.1.1(5)] is true for Ml?j,): (see Theorem 10.13 below).

Let Zip,,.5,.01 be the [(@y, 83, 0)]-stratum of My, 5 as in Theorem 9.13.

. . S tor |\ A
Consider the formal completion (M, 2)2[@%5%0)]

(as in [30, Theorem 6.4.1.1(5)], to form the formal completion along a given
locally closed stratum, we first remove the other strata appearing in the closure
of this stratum from the total space, and then form the formal completion of the
remaining space along this stratum). Then the canonical finite morphism (7.8) of
schemes induces a canonical finite morphism

- tor fd
of My, 5 along Zya,, s,.0)1

AN
= tor A tor
(MH=E)Z[(¢H.5H,G>1 g ( MHI auxs uux) (10.1)
_]EJZ (D3

jel |

j,aux’(sHj.aux'Uj-a“

of formal schemes.
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By [30, Theorem 6.4.1.1(5)], the morphism (8.31) induces a canonical
isomorphism

A
~ tor
%(fl)ﬂj aux’ 5’}{_] aux’ %) aux)jel g ( MHj.auXij.aux) . (102)

jel [ier 1@, 4y 574, g a0

By Lemma 9.4, the morphism (8.33) induces a morphism

= tor A

:%d)nqtsﬂﬁ - (MH,E)’

Zi@gq.89.00°
which is compatible with (8.21) and (10.1) by construction. The pullback of (10.3)

to characteristic zero defines a morphism

Xopine = (MY 5), : (10.4)

Zi( 02,6940

(10.3)

Let X' be as in Lemma 9.8, so that we have the canonical proper surjective
morphism My, o, — My ;- as in (9.9). Consider

Bopin©@) = | Eopsn (), (10.5)

teXy ,1Co
@9, TC

the toroidal embedding of Zg,, s, defined by gluing the affine toroidal
embeddings Zg,, 5, () as in [30, Section 6.2.5], with v running through the
cones in Xy that are contained in o. Then there is a canonical proper morphism

Er1(0) = oy 8,,(0) (10.6)

(cf. [24, Ch. I, Section 2, Theorem 8]), which induces the identity morphism
on &g, s, by restriction. The preimage of the closed o-stratum Zg,, s, Of
E¢,, s, (0) under this proper morphism (with its reduced structure) is the union

=/ .
P890 T

teX) ,1Co
Dy

(1)

B30, 830,T+ (10.7)

Let X5, ;,, denote the formal completion of Zg, 5, (o) along its closed
subscheme Eg., 5,,.0- Lhen (10.6) induces a proper morphism
%/

‘P’H B'HU

— Xoy,.60.0- (10.8)

By the same argument as in [30, Section 6.2.5], we also have a Mumford family

“G,"1, %1, Yay) — X, (10.9)

Dy ,094,0°
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which is canonically isomorphic to the pullback of the above Mumford family
(8.28) under the morphism (10.8). Let us denote by Z[((p 0] the preimage (with
its reduced structure) of Z;(4,, s,,.0); under (9.9). By Lemma 9.8, Z} (0,600 1 the
union of Zy,, s,,.-) With the same 7’s as in (10.5). Then (9.9) mduces a proper
morphism
tor A tor A
(MH’E,)ZE@HJHJ)] - (MH-Z)Z[(oH,aH‘U)]' (10'10)
By the same argument as in the proofs of [30, Theorem 6.4.1.1(5)] and [29,
Proposition 4.3], which are based on [30, Theorem 6.4.1.1(6)], there is a canonical
isomorphism
%/

Dy, 89,0

= (M 5)5 (10.11)

203 534001

such that the Mumford family (10.9) is the pullback of the tautological

degenerating family (G, A, i, a3;) over M;‘_)[’ 5 under the composition of (10.11)

with the canonical morphism (M3 ;) — Mj/ .. Hence we have a

ZI@H 894.,0)]
commutative diagram
(10.11) or  \A
X! —_— (M . 10.12
D3¢,03,0 ~ ( H.X )Z/l(fpn«snvrfﬂ ( )
(l().S)l l(l().l())
A
% tor
P.030.0 (10.4) ( H’E)Z[@H,aﬂ.n)]

by the universal properties of the objects involved.

THEOREM 10.13 (Cf. [30, Theorem 6.4.1.1(5)]). With the setting as above, the
morphism (10.3) is an isomorphism.

Proof. Since (8.21) and (10.1) are finite, and since (10.2) is an isomorphism,
(10.3) is also finite; that is, under (10.3), the preimage of each affine open formal

subscheme Spf(R, I) of (M;(;rx)f in J;tfq)w;%,, is isomorphic to Spf(ﬁ,

Zi(@34.534.0)]
f) for some finite R-algebra Randfor [ :=I1-R C R (ctf. [14, III-1, 5.1.4)).
In order to show that (10.3) is an isomorphism it suffices to show that, over
each such Spf(R, I), the ﬁmte morphlsm Spec(R) — Spec(R) induced by (10.3)

is an isomorphism. Since MH s and Eg,, 5, (0) are flat over So and excellent
normal, R and R are flat over Z(p, and noetherian normal. Hence, by Zariski’s
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main theorem (see [14, 1II-1, 4.4.3, 4.4.11]), it suffices to show that the induced
finite homomorphism 3
RRQ - R®Q (10.14)
zZ Z

is an isomorphism.

Let il := Spf(R ®z Q, I ®z Q) and = Spf(ﬁ ®z Q, I ®; Q), the latter
being the preimage of the former under the (finite) morphism (10.4), so that
(10.14) can be identified with the canonical homomorphism I" (4, Oy) —> F(ﬂ,
Og). Let 4l (respectively I') denote the preimage of &l (respectively l) under
(10.10) (respectively (10.8)), with the induced structure of an open formal
subscheme of (M3 o)y (respectively X! ). By [14, 1II-1, 4.1.5]

Ziwyy 3.0
and by Zariski’s main tﬁegr§m>l(see [14, III-1, 4.4.3, 4.4.11]), since the proper
morphism (9.9) induces by restriction the identity morphism on the open dense
subscheme My, and since M}, ;. is noetherian and normal by construction, the
canonical morphism I'(U, Oy) — I'(W, Oy) is an isomorphism. Similarly,
since the proper morphism (10.6) induces by restriction the identity morphism
on the open dense subscheme Zg, s, , and since &g, s, (o) is noetherian and
normal by construction, the canonical morphism I” (il Oy — F(il/ Og) is
an isomorphism. Since the diagram (10.12) is commutative, the morphism

Q)’H 57.[(7

(10.11) induces an isomorphism fl/~—N> $I'. Combining all of these, the canonical
homomorphism I"(U, Oy) — (4, O) can be identified with the canonical

isomorphism I'(8(', Oy) — I'(i, Og), and it follows that (10.14) is an
isomorphism, as desired. O

COROLLARY 10.15. With the setting as above, Z[((pH s$:.0)] IS canonically
isomorphic to the scheme Eg¢,, s, - in Lemma 8.20, which is an Eg,, ,-torsor
over the scheme Cq&H s, Droper over MfH (see Propositions 8.1 and 84)
Consequently, Z[(q>H br0.0)] is smooth over C¢H s,,» and hence it is ﬂat over SO
and normal because C,pH s, 18. Moreover, Z[@H 5. a)] is proper over M ifois

top-dimensional in P, ., C (Se, ), in which case ot = {0} and the torus Ep, &
is trivial.

Proof. The first assertion follows from Theorem 10.13, because the canonical
isomorphism (10 3) between formal schemes necessarily induces a canonical

isomorphism Zo,, s, .« > Z[((pH 8,0y between the supporting schemes (with
their reduced structures). The remaining assertions are self-explanatory. 0

. >, > 2 - =, or
COROLLARY 10.16. Foreachj € J, let (Gjau Ajauo lj.auo @34;,,) —> My, 5 denote
the pullback of the tautological tuple (Gj auxs Ajauxs baws €3, ,,) OVET Mtor .

J auxs
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- tor
under the canonical morphism M, M;(f o T induced by (7.8). Consider
any open immersion

> tor | A

Spf(R, 1) — (My, ;)5

2@y 870,001

(10.17)

where R is a noetherian domain which is complete with respect to some ideal
1. Then the preimage of |\7|H under the canonical morphism Spec(R) — I\#/It;_)[r 5
induced by (10.17) is the maximal open subscheme of Spec(R) over which the
pullback of Gj . is an abelian scheme for at least one (and hence for every)
j € J, which coincides with the preimage of Ze,, 5, under the canonical morphism
Spec(R) — Eo,,.5,(0) induced by the composition of (10.17) with the inverse

of (10.3).

Proof. This is because (10.3) is defined by the universal property of I\A/I;Zr 5 asin
Theorem 7.14, using the Mumford families (8.27), for all j € J; because a fiber
product of semiabelian schemes is isogenous to an abelian scheme exactly when
all the factors are abelian schemes; and because the Mumford families (8.29)
(whose self-fiber products induce (8.27) by isogeny) are abelian schemes exactly
over the preimage of 5y, s,,, by the last assertion in Proposition 8.14. O

COROLLARY 10.18. My, ®;, F, is dense in I\7I;:E ®z F,.

Proof. This follows from Proposition 8.14; Theorems 9.13 and 10.13; and
Corollary 10.16. O

11. Semiabelian extensions of tautological objects

The main goal of this section is to show that, for each j € J, the degenerating
family of type My, over My, in Proposition 6.1 further extends to a degenerating
family of the same type over I\#/Itﬁ,,(_)[r 5 (see Theorem 11.2 below). As a byproduct,
we will also improve Theorem 7.14 (see Theorem |1 l .4 below), and deduce from

this that, up to canonical isomorphism, the scheme MH 5 constructed in Section 7
is independent of the auxiliary choices in Sections 4 and 5 (see Corollary 11.7
below).

LEMMA 11.1. Suppose (D3, 83, 0), where 6 C Py, and 0 € Xo,, is as in
[30, Definition 6.2.6. 1] and suppose [(Py, 6y, 0)] # [(0 0, {OD)]. Let U be any

open subscheme of MH s that is a union of strata and contains Z[@H $2.0)] QS

a closed subscheme; and let U’ be the complement of Z[@H,g%aﬂ in U, which
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necessarily contains 2[(0,0,[0})] = |\7|H because [(DPy, 83, 0)] £ [(0, 0, {0})] (see
Theorem 9.13). By definition, the formal completion L of U along Zy(e,, s,,.0)

. N . . —, Lor A
can be canonically zdentzﬁefl with (MH’ E)Z[@MH.”)]
a canonical isomorphism X, s, .- = 4 given by (10.3). Supposej € J, and
suppose the tautological object (Aj, Aj, lJ,OtHJ) over MH = My (see (2.1))
extends to a degenerating family (G;u', Aju' v, Q%;.07) of type My, over U’
(see [30, Definition 5.3.2.1]), where a3, v is only reqmred to be defined over MH
Then this degenerating family further extends to a degenerating family (Gi .y, Aj.u,

i, ow;.v) of type My, over U.

. By Theorem 10.13, we have

Proof. By the construction of (10.3), and by the construction of the morphisms
involved in the commutative diagram (10.12), for each affine open subscheme
Spec(R) of U inducing an affine open subscheme Spf(R", I) of ffd,H sp.0 = 4,
with canonical morphisms Spec(R") — Spec(R) — U, there is a canonical
isomorphism over the preimage of My in Spec(R") between the pullbacks
of the tautological object (Aj, Aj, ij, az;) over My, = My, and the Mumford
family (Oéj, Q’Xj, Oij, ;) over %q,w;%g (see (8.29)). Since MZIZ is excellent
normal, both R and R” are noetherian normal (see [14, IV-2, 7.8.3.1]). By [52,
IX, 1.4], [10, Ch. I, Proposition 2.7], or [30, Proposition 3.3.1.5], the above
canonical isomorphism uniquely extends to a canonical isomorphism over the
preimage of U’ in Spec(RA) between the pullbacks of (Gj v, Ajv' v, A%;.07)
and (¥ GJ, Q?A aH) which induces a canonical isomorphism between the
pullbacks of the relative ample (IdevU,, JvU/)*PGj,(/’ and (IdoGj, OAJ) PoGj (see
[52, XI, 1.13] and [30, Theorem 3.4.3.2, Proposition 3.3.2.2, and Theorem
3.3.2.3]). Therefore, by the theory of fpqc descent (see [13, VIII, 7.8] and [40,
Theorem 1.1]), the pullback of (Gj .y, Ajv, ijv7, @34.07) to the preimage of U’
in Spec(R) extends to a degenerating family of type My, over Spec(R), whose
pullback to Spec(R") is canonically isomorphic to the pullback of (Oéj, ©

Oij, Q)&Hj). Since such extensions over affine open subschemes of U are unique
up to canonical isomorphism, they are compatible with each other and define a
degenerating family (Gj v, Aju, iju, @3,v) Of MHJ. over U, as in the statement of
the lemma. (|

THEOREM 11.2. For eachj € J, there is a degenerating family (éj, Xj, ij, &Hj) of

type My, over |\7|[:L[2 (see [30, Definition 5.3.2.1]), whose pullback to My = My,
(see (2.1)) is isomorphic to the tautological object (Aj, A;, i, aqy;) over MHJ., and

whose pullback to |\7|H is isomorphic to the degenerating family of type My, over
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|\7|7.[ which was denoted (Aj, Xj, ?j, &q.[j) in Proposition 6.1 (the notations for Xj,
ij, and &H.i have been, unfortunately, overloaded and dependent on the context).
For each (@4, 8%, 0), the pullback of (éj, Xj, ;j, &Hj) to Xop,, 5,0 via (10.3) (see
Theorem 10.13) is canonically isomorphic to the Mumford family (8.29).

Proof. Using the incidence relation among the locally closed strata of l\ﬁ/lt;_)[r 5 in

- tor

Theorem 9.13, we can write MH, 5 as a finite increasing union Uy C U, C - --

of open subschemes such that U, = |\7|H gnd such that, for each i > 0, the
complement of U; in U, is some stratum Z;(¢,, 5,,.0)) closed in U;;,. Then the
theorem follows by repeatedly applying Lemma 11.1, with (U, U’) = (U;44, U;)
for (finitely many) increasing i > 0. O

REMARK 11.3. The usual approximation and gluing arguments in [10, Ch. VI]
and [30, Section 6.3] play no role in the proofs of Lemma 11.1 and Theorem 11.2.
This is because we constructed the base scheme I\#/It;r 5 by taking normalizations
in certain auxiliary models of proper smooth toroidal compactifications, and the
approximation and gluing arguments are already used in the construction of such
auxiliary models. On the contrary, since the approximation and gluing arguments
require the extended Kodaira—Spencer morphisms to be defined, it is not even
clear how they should work for the generally very singular local charts constructed
in Section 8.

THEOREM 11.4 (Cf. [30, Theorem 6.4.1.1(6)] and Theorem 7.14). With the
setting as in Theorem 7.14, let S be an irreducible noetherian normal scheme over
Sy = Spec(OF, (), with generic point n, which is equipped with a morphism

n— My. (11.5)

Let (A,, Ay, iy, a3.,) denote the pullback of the tautological object of My to n
under (77.15). Suppose that, for each j € J, we have a degenerating family (G,
)»JT, iJT, “;{j) of type My, over S, whose pullback (G ), Aj.y» iy, @34;.y) to 1 defines
a morphism

0 — My, (11.6)

by the universal property of My, which we assume to coincide with the
composition of (11.5) with (2.1). Then (11.5) (necessarily uniquely) extends to

a morphism S — l\ﬁ/lt;_)[r 5 (over éo) if and only if the same condition in the second
last paragraph of Theorem 7.14 is satisfied at each geometric point s of S.
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Proof. Foreachj € J, by the same construction as in the proof of Proposition 5.24,
the degenerating family (GJT, )»Jr, j aH) of type M, over S induces
a degenerating family (GJ e Jaux, ifaux, aﬂjﬁm) of type My, over S, which
is determined up to unique isomorphism by its restriction to 7, by the
noetherian normality of S and by [52, IX, 1.4], [10, Ch. I, Proposition 2.7],
or [30, Proposition 3.3.1.5]. Hence this theorem follows from Theorems 7.14

and 11.2. 0

- tor
COROLLARY 11.7. Up to canonical isomorphism, the scheme MH’ 5 constructed
in Section 7 depends only on the choices of the linear algebraic data in Section 2,
but not on the auxiliary choices in Sections 4 and 5.

Proof. This is because the improved universal property of M 3.5 in Theorem 11.4
does not involve the auxiliary choices in Sections 4 and 5 at all. O

COROLLARY 11.8. In Lemma 9.8, if X is already smooth (and satisfies [30,
Condition 6.3.3.2]) as in [30, Definition 6.3.3.4], and if we take X’ = X there,
then the canonical morphism (9.9) is an isomorphism, identifying the subschemes
Z(04,.54,.0)) On both sides, so that the stratification of M;‘f’ s there coincides with
the one in [30, Theorem 6.4.1.1(2)] (this finally justifies the notation of M;f, 5 and
Z[(¢H,5’H,0)] there).

Proof. This is because, by Lemma 3.21, the universal properties of Mt;_’[’ 5 and

M;‘_’[’ 5 in [30, Theorem 6.4.1.1(6)] and Theorem 11.4, respectively, imply each
other. O

COROLLARY 11.9 (Generalization of Corollary 10.18). If [(®},, 8%, 0")] is a
face of [(Dy, 87.[, 0)] (see [30, Definition 6.3.2.14 and Theorem 6.4.1.1(2)]),

- tor
in which case Z[((pH 53,0y IS contained in the closure of Z[@/ Shon] N M, 5

then Z[(@H 1,00 ®z I, is also contained in the closure of Z[(@H 5.0 ®z Fp in
— tor

My, » ®zF,.

Proof. Suppose s is a point of 2[@%5%5)] ®z ). By Corollary 10.15, s can
be identified with a point ¢ of é¢u,8%a ®z F,, where (@4, 84, 0) is some
representative of [(®Py, 83, 0)]. Let (P4, 8,, ') be a representative of [(P,,
8%, 0")]. By assumption, there is a surjection from (®,, 8,) to (P4, §) such
that the induced morphism Py, — Pg, maps o’ to a face 7 of o. Let Spf(R, I)
be an affine open subscheme of %45%5%(, whose underlying topological space

https://doi.org/10.1017/fms.2015.31 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.31

K.-W. Lan 72

contains ¢. Let ¢/ be any point in the preimage of éq)wg%t ®z I, under the
canonical morphism Spec(R) — &y,, s5,,(0) such that ¢ is contained in the closure
of ¢'. By considering the pullback of the Mumford family to the localization
of Spec(R) at ¢/, by the theory of two-step degenerations (see [10, Ch. III,
Section 10] and [30, Section 4.5.6]), by the defining property of Z[@%M’H»"’)] as
in Definition 9.1, and by the universal property of I\Q/It;r 5. as in Theorems 7.14
and 11.4, the canonical morphism Spec(R) — M;(jtr s maps t' to a point s’ of
Z[(qbH 5,011 ®z [F ), so that s is contained in the closure of s". Since s is arbitrary,

Z[@H’M,a)] ®zF, is contained in the closure of Z[(qy 5,.0m®@zF,, as desired. [

12. Stratifications of minimal compactifications

The main goal of this section is to show that analogs of [30, Theorem 7.2.4.1
(4) and (5)] are true for M, (see Theorems 12.1 and 12.16 below).

THEOREM 12.1 (Cf. [30, Theorem 7.2.4.1 (4) and (5)]). With the setting as above,

the locally closed subschemes 2[@%5%)] of I\q/lnﬂlm (see (6.8); cf. Lemma 6.9 and
Remark 6.10), with [(®Py, §%)] running through a complete set of cusp labels,

form a stratification
- min d
M, = ]_[ VAT
[(P3,83)]

of K/li:n such that the [(®,, 83,)]-stratum 2[@;{,5;{” lies in the closure of the
[(Dy, 8y0)]-stratum Zyo,, s,y if and only if there is a surjection from the cusp
label [(®,, 83,)] to the cusp label [(P4, §)] as in [30, Definition 5.4.2.13] (the
notation ‘||’ only means a set-theoretic disjoint union. The algebro-geometric
structure is still that of |\7|;n;n). The open dense subscheme |\7|H of l\q/ll;llm (see

Proposition 6.4) coincides with the [(0, 0)]-stratum Z ¢ o).
For each representative (Zyy, @y, §v) of cusp label and for each o € X4, such

that o C PgH, the restriction of (7.12) to the [(Py, $u, 0)]-stratum Z; (e, 5,, )

- tor
of My, 5. as in Theorem 9.13 induces a canonical surjection

Zi(@3.52.001 — Li@2.53)1- (12.2)

- tor

Proof. The morphism (7.12) is proper and surjective because M,, . is proper over

éo, and because the restriction of (7.12) induces the identity morphism on I\7IH
By Lemma 9.8, for any smooth refinement X’ of X', and for each (Z4, @, dx)
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and o as in the statement of the proposition, Zj(s,, 5,,.0)] = Zi(@4,.6x.0)) @z Q is the
union of the images of the strata Z4,, s,,.r); under (9.9), with t running through
the cones in X, that are contained in o

Let opgr | denote the pullback of wymi. By Propositions 6.4 and 7.11, ‘3&1
is canonically isomorphic to the pullback of T where a; = Zjej aj is és

in Proposition 6.1. Moreover, since (9.9) is defined by the universal property of

M;‘_){ 5 (by Proposition 5.24 and Theorem 7.14), the invertible sheaf Q,aff,’, over
H,Z

f 2% . For the sake of clarity,

Omg;
letus denote by ¢,, . : Myj 5 — M2," the morphism induced by (7.12), and denote
by £, 5 ME:)[,E, — ML:Z" the morphism (for M, ;) in [30, Theorem 7.2.4.1(3)].
Then it follows from Proposition 7.11 and from [30, Theorem 7.2.4.1(3)] that
9%—[, 5 coincides with the composition of (9.9) with ny 5 Since the restriction of

Mt;_’{ 5 18 canonically isomorphic to the pullback o

ny 5 induces a surjective morphism from each Z;(¢,, s,,.)) as in the first paragraph

to the stratum Zj,, s,,) Of Mff;n (see [30, Theorem 7.2.4.1(5)]), it follows that
ﬁ%, 5 induces a surjective morphism from Ze,, s,,.0)1 t0 Z{(@5.550)1-

Since Z[((DH §4.0)] — 2[(¢H 844.0)] Rz Q is dense in 2[(4’?{ 844.0)] by Lemma 9.11,
and since (7.12) is proper and surjectlve it follows from the above (with

Z[@H 54,.0)] Tunning through all strata of MH ) that Zj4,, s,y is isomorphic to
Z[(qu’gH)] Rz @ and is dense in Z[(ng,gH)], that MfH is the union of Z[(d’HqSH)] with
[(Px, 6n)] running through all cusp labels of My, and that this union defines

a stratification of M (then the incidence relations as in the statement of the
proposition are forced by those of the stratification of M%‘" as in [30, Theorem
7.2.4.1(4))).

By combining all of these, the last paragraph of the theorem also follows. [

REMARK 12.3. Theorem 12.1 is rather incomplete compared with [30, Theorem
7.2.4.1 (4) and (5)]. It will be complemented by Theorem 12.16 below.

Nevertheless, there are already several useful consequences of Theorem 12.1.

COROLLARY 12.4 (Cf. Corollary 11.9). If there is a surjection from [(P, §11)]
to [(D4,, 8,)] (see [30, Definition 5.4.2.13 and Theorem 7.2.4.1(4)]), in which

case Z[@H 55, Is contained in the closure OfZ[(q)’ S in MH , then Z[@H 520)] Oz
- min

I, is also contained in the closure OfZ[(qs’ s ®zF,inMy, @, F

Proof. This follows from Corollary 11.9 and Theorem 12.1. O
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COROLLARY 12.5. My, ®;, F,, is dense in M, ®;F,.

Proof. This is a special case of Corollary 12.4. One can also deduce this more
directly from Corollary 10.18 and Theorem 12.1. O

REMARK 12.6. Corollary 12.5 can also be proved by constructing elevators as
in [27], which can be viewed as a minimalistic analog of the boundary charts
constructed in Section 8. See the proof of [31, Proposition 2.2.1.7] for the special
case where J = {jo} and (g;,, Lj,, (-, )j,) = (1, L, {-, -)) are as in Example 2.3.

- min
COROLLARY 12.7. Up to canonical isomorphism, the scheme My, constructed
in Proposition 6.4 depends only on the choices of the linear algebraic data in
Section 2, but not on the auxiliary choices in Sections 4 and 5.

Proof. By Proposition 6.4 and Corollary 12.5, l\7|2m is flat over Z,, and is

. v in . opmin . . .
noetherian normal, and the complement of My, U M3" in My, is of codimension
at least two. Hence the canonical restriction morphism

F(MH ) *mm ) - F(MH U Mzmv Mmm |MHUM'“‘") (12'8)

is an isomorphism for each k > 0. By Propositions 6.1 and 6.4, the right-hand
side of (12.8) depends only on the choices of linear algebraic data in Section 2.

Since MZ = Proj (@k>0 F(M,H , M“"" )) by Proposition 6.4, the corollary
H J

follows. O
By Proposition 7.11, D is canonically isomorphic to the pullback of
&deﬁlﬂo under (7.8). By [52, IX, 1.4], [10, Ch. I, Proposition 2.7], or

Hj aux ¥, aux
[30, Proposition 3.3.1.5], for each j € J, the degenerating family (éj, Xj, zj z)
in Theorem 11.2 induces (up to canonical isomorphism) the pullback of the
tautological tuple (Gj aux Ajaux L.awo 0%, ,,) OVEr M;‘_){J S 10 I\qll;ir 5., because it
is so over My,. Hence, by the same argument as in the proof of Lemma 5.30,

based on [39, IX, 2.4, and its proof], we have

® q
a)M[’zz = J " - tor 9

/M
P H,E
where
op 1 .V
o = AP Liel .
GJ/M’: z _G_i/M‘;:,):
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for each j € J. Thus, if we set

é] = 1_[ éjx aj,

jel
— tor
where the products are fiber products over M,, ., then we have

~ AP T iaV
Q) -, tor = A Lle I .
Ms 5. GJ/M::,):

LEMMA 12.9. The fibers of (7.12) are all geometrically connected. The

isomorphism class of the abelian part of Gy is constant on each geometric
fiber of (7.12).

Proof. The first assertion is because g is the pullback of the ample invertible

sheaf Wpgin | (see Propositions 6.4 and 7.11), so that (7.12) is its own Stein
H

factorization (see [14, III-1, 4.3.3 and 4.3.4]), by the normality of |\7|r;;m and by
Zariski’s main theorem (see [14, I1I-1, 4.4.3, 4.4.11]). The second assertion then
follows from [30, Proposition 7.2.1.2], by the same arguments as in the beginning
of [30, Section 7.2.3]. L]

In the remainder of this section, our goal is to prove Theorem 12.16, which
complements Theorem 12.1 and gives a more precise description of the strata.

For each (@4, §3, o) (as in [30, Definition 6.2.6.1]) such that o C P;H and
o€ Xy, €, let “wy denote the pullback of ey under (8.33). Let

E] = 1_[ EJX aj,

jel

= 7
where the products are fiber products over MHH. Consider the invertible sheaf

Owjh — <®(/\tzop Xj)®uj> ®(/\t0p L_ieé i )

) Z 1/, =
jel

over I\ﬁllj%H By the same argument as in the proof of [30, Lemma 7.1.2.1], “wy
is canonically isomorphic to the pullback of “w;. By considering the Fourier—
Jacobi expansions and by the same arguments as in [30, Section 7.1.2], we obtain
the following.
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PROPOSITION 12.10 (Cf. [30, Proposition 7.1.2.13]). For each k > 0, and for
each f € F(Mzryx,w%ﬁr J), the pullback of f to the [(®Py, 8%, 0)]-stratum
H.Z

= —_tor
Z(@5.55.01 of My, 5 is constant along the fibers of the structural morphism

Bopse — M (12.11)

~

Z[(¢7—t S#,0)]

(see Corollary 10.15 for the first isomorphism).

COROLLARY 12.12 (Cf. [30, Corollary 7.2.3.12]). The morphism (12.2) factors
through (12.11) and induces a canonical surjection

- 7 -

My = Ziowsmon (12.13)
This surjection is finite and induces a canonical isomorphism from M;H to the
normalization of Zj,, s,,))-

Proof. The first assertion follows from Proposition 12.10. Since the isomorphism
class of the abelian part of Gj is constant on each geometric fiber of (7.12) (see
Lemma 12.9), it follows from the finiteness of (7.6) that the induced morphism
(12.13) is quasifinite. Since (12.13) induces the canonical isomorphism M;” S
Z|(,, 5, in characteristic zero (see [30, Corollary 7.2.3.18]), the second assertion
follows from Zariski’s main theorem (see [14, III-1, 4.4.3, 4.4.11]). O

PROPOSITION 12.14 (Cf. [30, Proposition 7.2.3.16]). Let x be a geometric point
ofl\_)ll;un over the [(Dy, 8y )1-stratum Zy,, s,,))- Let (l\_}lizm)ﬁ denote the completion
of the strict localization of |\7|;m at x, let
Ziwnsn)i = Li@wsun x My )3,
M,

and let
ZH

-7 - -
M2 =My X Ciwns);-

Zi(@qy.590))

For each { € Sg,,, let @g; 5,,)% denote the pullback of

=100 >, =z -
o s = (Copnn — MHH)*(‘I’q)H,aH )
under the canonical morphism (M;H)Q — l\_)ljf Then we have a canonical
isomorphism
- (0) N Fq”H
ﬁ(h’ﬂ?i“)ﬁ - ( 1_[ (ﬂ%sﬂ);) ; (12.15)
lePéH
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where
PVH ={leSqe, : (£,y) >20Vy Py, }

as usual, which is adic if we interpret the product on the right-hand side as
the completion of the elements that are finite sums with respect to the ideal
generated by the elements without constant terms (that is, with trivial projection

to (ﬂg{’ ' )%). Then (12.15) induces a homomorphism
(g, 5,08) "% = O,

Py, 0n

whose source is canonically isomorphic to ﬁ('\aﬂiﬂ)@ (by Corollary 12.12 and
Zariski’s main theorem; see [14, 11I-1, 4.4.3, 4.4.11]). This defines a structural
morphism

M3, = (M2,

d - min
whose precomposition with the canonical morphism (Zyo,, 5,0 — (Mg, )%
defines a canonical morphism

- - 790
i@y 5000; = My )5,

which is an isomorphism because its precomposition with the completion
= 79 >
(M) = Ciapssn)s

of (12.13) is the identity morphism on (I\_)lj_[H )%. So, this last completion of (12.13)
is also an isomorphism.

Proof. The same argument as in the proof of [30, Proposition 7.2.3.16] works here
(we do not need to know a priori that (12.13) induces a bijection on geometric
points). O

THEOREM 12.16 (Cf. [30, Theorem 7.2.4.1 (4) and (5)]; continuation of
Theorem 12.1). In the first paragraph of Theorem 12.1, each [(DPy,dx)]-
stratum Z[((D,H 3,001 IS canonically isomorphic to MH In the second paragraph
of Theorem 12.1, the canonical surjection (12 2) can be zdentlﬁed with
the composition of the canonical lsomorphlsm Z[@H 500 — Bonsy.o in

Corollary 10.15, the structural morphism ¢, s, o —> MH , and the isomorphism
= 23 o~
M, — ZI(dm 0 mentioned above. In particular, it is proper if o is top-

dimensional in Pd> e (S, )%

https://doi.org/10.1017/fms.2015.31 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.31

K.-W. Lan 78

Proof. Since (12.2) is the composition of (12.11) with (12.13), it suffices to show
that (12.13) is an isomorphism. Since this assertion can be verified over formal
completions of strict local rings, it follows from Proposition 12.14. 0

13. Functorial properties and Hecke twists

In this section, for the sake of clarity, we shall abusively denote all objects
constructed using {(g;, L;, (-, -);)}jes by an additional subscript J, such as My, ;.

PROPOSITION 13.1. Suppose that H C H' andY C J, and that the subcollection
{(gi, Lj, (-, ) lier of {(gj, Lj, (-, -)i)}jes satisfies the analogous conditions defined
by H’' as in Section 2. Then there is a canonical morphism

My — My (13.2)
extending the canonical morphism
My — My, (13.3)

Proof. This follows from the proof of Proposition 6.1, because I\Q/IH. j (respectively
M3 ) is the normalization of [[;.; A, 4 ®z Z(, (respectively [[ic; Agq ®z
Z ) under the canonical morphism My — [[i.; Ae sy ®z Z,) (respectively
My — [y Ag.i; ®2z Z(p), and because My, — [ [y Ag 4 ®2 Zgp) and Mgy —
[lier Ac.qy ®z Zp) are compatible with the canonical morphisms (13.3) and

[lies Acq ®2 Zipy = [y Agt; ®z L. O
PROPOSITION 13.4. With the setting as in Proposition 13.1, there is a canonical
morphism

M, ; — My, (13.5)

extending the canonical morphisms (13.2) and
M3 — My (13.6)

Proof. This is because, by Corollary 12.7, we may assume that H; .« C H!

j,aux
: min min min min .
and that the morphisms M3," — [;.; M3, and My," — [Ty Mﬂj,aux used in the

. - min - min .. . .
constructions of M, ; and M,,, , (see Proposition 6.4) are compatible with the

min min
jel M’Hj.aux g l_[jeJ’ H [

jaux

canonical morphisms (13.6) and [ |
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PROPOSITION 13.7. With the setting as in Proposition 13.1, suppose moreover
that X and X' are compatible choices of admissible rational polyhedral cone
decomposition data for My, and My, respectively, which are induced by certain
auxiliary collections { X ..}iey and {Z‘jﬁaux}jey, as in Section 7, such that X is a
1-refinement of X’ as in [30, Definition 6.4.3.3] (the definition there naturally
generalizes to the case of nonsmooth cone decompositions). Then there is a
canonical morphism

- tor - tor

My, 5 — My 5y (13.8)

extending the canonical morphlsms (13.2) and is compattble with (13.5) under
— tor — tor - min
the canonical morphisms fH My s~ M, Jana’ fH, My sy = My

Proof. The morphism (13.8) exists because, by Theorem 11.2, I\q/l;ir 5 carries
the collection of degenerating families {(éj,Xj, ij,&;{j)}jej, which induces a
collection {(éj, Xj, zj &’,L[J{)}jey satisfying the universal property of I\ﬁ/I;(;r sy @sin
Theorems 7.14 and 11.4. To show that (13.8) is compatible with (13.5), it suffices

to note that, by Corollary 11.7, we may assume that H,; ,,x C ’H’ auxand that X5 ,is
a l-refinement of X! , for eachj € J', so that (13.8) and (13. 5) together with the

Joaux

morphisms 99 4,y and f 40> are compatibly induced by the canonical morphisms
tor tor min min
Hje] M?—LJ ae D Hje]’ H] e 5 and HJEJ MHJ w7 Hje]’ H [

Laux’ “j,aux jraux

PROPOSITION 13.9. Under (13.8), the [(Dy, §, 0)]-stratum 2[(¢H 82,000 Of
- tor - tor

M,, 5 is mapped to the [(®3,, 83y, 0")]-stratum Z[@/ Saponny of My 5y if
and only if there are representatives (P, 8y, 0) and (P4, 8y,,0") of the
equivalence classes [(®y, 0y, 0)] and [(QDH,, 8;{,, o')], respectively, such that
(P, 83, 0) is a 1-refinement of (P4, 8,,0") as in [30, Definition 6.4.3.1].
Accordingly (cf. Theorem 12.1), under (13.5), the [(@y, 6x)]-stratum 2[@%5%)],]

of MH 1 is mapped to the [(®,,, 87,)]-stratum 2[@;{,,5;{,)],]/ of Mr;::fj, if and only if
there are representatives (P4, 8%) and (D}, 8%,) of the cusp labels [(Dy, 51,)]
and [(D4,, 8%,)], respectively, such that (@4, 8%,) is 1-assigned to (P, 5%)
as in [30, Definition 5.4.3.9]. Consequently, the morphism (13.2) is projective,
because it is the pullback of the projective morphism (13.5) to the [(0, 0)]-stratum

- min

Z[(() 0,y = Mq.[/ 7 OfMH/ ’e

Proof. The statement for the morphism (13.8) follows from the defining property
= tor

of the strata in Definition 9.1, by comparing the universal properties of M, ; ;

and I\ﬁllf,(;r sy as in Theorems 7.14 and 11.4. By Theorem 12.1, the statement for
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the morphism (13.5) then follows from the one for (13.8). The statement for the
morphism (13.2) is self-explanatory. O

REMARK 13.10. Although the morphisms (13.3) and (13.6) in characteristic
zero are always finite, the extended morphisms (13.2) and (13.5) in mixed
characteristics are projective but not finite in general (even when H = H).

EXAMPLE 13.11 (Simplest case; continuation of Example 2.3). Suppose J = {jo}
and (gj,, Lj,, (-, *)j,) = (1, L, (-, -)) are as in Example 2.3 (we shall suppress
the subscript J for simplicity). Let H? be the image of # under the canonical
homomorphism G(Z) — G(Z” ) as usual. Consider the naive moduli problem
Mw parameterizing tuples (A, X, i, ay») over schemes S over Spec(Op, (),
where:

(I) A — S is an abelian scheme of relative dimension g := %rkZ(L).
(2) A: A — AV isapolarization of degree d” := [L* : L].

(3) i : O < Endg(A) is an O-endomorphism structure as in [30, Definition
1.3.3.1].

(4) Lie, ¢ with its O ®z Z,-module structure given by i satisfies the
determinantal condition in [30, Definition 1.3.4.1] given by (L ®z R,

(' ) ')7 hO)

(5) gy is an (integral) level-H? structure of (A, A, i) of type (L ®z ZP, (-,)
as in [30, Definition 1.3.7.6], except that we do not require the degree of X to
be prime to p (see [31, Definition 3.3.1.4] for a similar consideration).

We consider this moduli problem naive, because there is no level structure at p,
and so there is little control on the finite locally free group scheme ker(1)[p*]
beyond its rank. Nevertheless, the canonical morphism My, — A, ; ®7 Z(,, as in
the proof of Proposition 6.1 factors as a composition My, — M’H,I) — A i ®2Z )
of canonical forgetful morphisms, where the second one is schematic and finite
by [30, Proposition 1.3.3.7] (for the endomorphism structures), and by the fact
that the level structures (away from p) are defined by isomorphisms between
finite étale group schemes. Therefore, |\7I7.[ is canonically isomorphic to the
normalization of MH,; under the canonical morphism My — Mw Moreover,
the tautological tuple (A A z) over MH (see Proposition 6.1) is canonically
isomorphic to the pullback of the tautological tuple (A, A, i) over MW under the
induced morphism MH — My IfH = ‘H?G(Z,), then the canonical morphism
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My — MH}? ®z,,, Q is open and closed by the same argument as in the proof of
[30, Lemma 1.4.4.2]. In this case, if My, is flat over Spec(Z,)) and normal, or
if the schematic closure M;, of MH, ®z Q in MH, is normal, then the induced
morphism I\7IH — M;, is also an open and closed immersion, which implies that
|\7I7.L is just the schematic closure oquH in MH, (or rather M;,) In this case, we
can deduce the local properties of My (in additional to normality) from those of
the local model of M;,, (for example, see the proofs of Lemmas 14.6 and 14.7
below). Then I\7|:;m and I\QII;O{r 5. give compactifications of the largest ‘relevant’ open

et
and closed subscheme of M., ,, enjoying the various good features we have shown
in this article.

EXAMPLE 13.12 (Parahoric levels at p; continuation of Example 2.4). Let us
resume the context of Example 2.4. For each 0 < i < m, let J; := {j;}, and
let H; := H’G;,(Z,). By Proposmons 13.1 and 13.9, for each such i, we

have a canomcal projective morphism MH 7 —> MH i (Wthh is not finite in
general). As explained in Example 13.11, the target space MH“ 5; 1s canonically

isomorphic to the normalization of some naive moduli problem My, 5, under the
canonical morphism My, — M;LL/; 5> and the argument there also 1mphes that
I\/IH 1 is canonically isomorphic to the normalization of [[,¢;,, M. 5, under

o = To<icm My 5, (we introduce
the subscript J; to emphasize that its definition uses the lattice L; ). Therefore,

the canonical morphism My — []oc;c,, M,

we have canonical finire morphlsms MH ;] — ]_[O<l<m MHJ 5 = Ho<,<m MHp I
Moreover, for each 0 < i < m, the tautological tuple (A zJL) over MH i
(see Proposmon 6.1)1s canomcally isomorphic to the pullback 0f the tautologlcal
tuple (Aj, A, i) over M’Hp 5; under the induced morphism MH I MHp Tis
whose further pullback to MH j is canonically isomorphic to the tautologlcal
tuple (AJ, )»J, zJ,) (abusively denoted by the same symbols) over MHJ On the

other hand, by considering (periodic) isogeny chains of polarized abelian schemes
(with compatible additional structures) as in [51, Definition 6.9], we obtain a

naive moduli problem MW,J, which carries (up to periodicity) a tautological
isogeny chain

A=A, —> A — =>4, —> A
(with compatible additional structures) and admits a canonical forgetful
morphism I.\'/'IH,;, ;] — M’HP’JI., for each 0 < i < m, under which the tautological
(Aj,, Ay, 15,) over MH,;,J is canonically isomorphic to the pullback of the
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tautological (Aj, A;,, i;;) over M'Hp_' 5. Since My, ; is noetherian normal, the
tautological isogeny chain over My (see Example 2.4) canonically extends to an
isogeny chain

-

A=A —> A — ... > A A

jo Ji Jm

(with compatible additional structures) over |\7IH,J (see [52, IX,ﬁl.4ﬁ], [10, Ch. I,
Proposition 2.7], or [30 Proposition 3.3.1.5]), where each (Aj , A, 13;) is the
tautological one over MH J- By the universal property of M;.UJ j, we obtain a
canonical morphism MHJ — MHP ; under which the above extended isogeny
chain (with its compatible additional structures) over MH y is canonically
isomorphic to the pullback of the tautolog1cal one over Mw 5. Now, consider
the composition Myy; — Mgy — [Tocicm My, of the morph1sms we have

just defined. By definition, the tautological tuple (A zJ) over MH,J is
canonlcally isomorphic to the pullback of the taut010g1cal tuple (Aj;, Ay, ;) over

MHp 5; under the induced morphism MH ;= MHp 5;- Hence, the last composition
coincides with the earlier composition M, ; — [To<icm MHJ 5= [ocicm l\/IHp,J[,
which is finite (it is crucial that the product runs over all indices 0 < i < m).
Consequently, the above canonical morphism MHJ — MH” is finite, and
o} MH j is canonically 1s0m0rphlc to the normalization of MH,; y under the
canonical morphism My — Mw . Moreover, since H = H?H,, where

= ﬂogigm i, (Z,), the canonical morphism My, — MHU ®z Q is open
and closed by the same argument as in the proof of [30, Lemma 1.4.4.2] (cf.
Example 13.11). If MHP ; is flat over Spec(Z,)) and normal (see, for example
[12, Theorem 2.1] and [33, Lemma 4.1.18]), or if the schematic closure MH/, J

of MH“ ®z Q in MHP y is normal (see, for example, [45, Theorem B], [46,
Theorem 12.2], and [47, Theorems 1.1 and 1.2]), then the induced morphism

+
MH ] = Mw ; is also an open and closed immersion. In particular, we can
deduce the local propert1es of MH J (1n additional to normality) from those of the

local model of Mw ;- Therefore, MH ; and M,H 5. give compactifications of the

o
largest ‘relevant’ open and closed subscheme of Mw ; (cf. Example 13.11).

LEMMA 13.13. Given any collection {(gj, L;, (-, -);) }jes satisfying the conditions

imposed by an open compact subgroup H C G(Z) as in Section 2, suppose
g € G(A®) satisfies g7'Hg C G(Z). Let us formally set V' := 1, so that
{(g7! 8> Lj, (-, )j}jey is a collection with respect to g~ '"Hg as in Section 2. Then
we have a canonical isomorphism MH s M 1940,y extending the canonical
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isomorphism My, — M, -1, realized by sending objects parameterized by My, to
their Hecke twists by g (see [30, Section 6.4.3]; cf. [30, Proposition 1.4.3.4 and
Remark 1.4.3.11]).

Proof. This is because both I\_)IH’ ;y and '\_)Ig—lf;.[g’y are constructed by normalization
using the same collection of auxiliary models My, for My, forje J=J. O

EXAMPLE 13.14 (Hecke twists; continuation of Example 2.5). First let us
suppose J = {jo, i} has two elements, with (gj,, Lj,, (-, )j,)) = (1, L, {-,-))
and (g;,, Lj,, {-,)j,)) = (g, L, (-,)) for some g € G(Z), as in the first half of
Example 2.5. Let Jy := {jo} and J; := {j;}. Suppose H' C G(Z) contains both H
and g~'Hg. By Proposition 13.1, we have two canonical morphisms

MH,J - M’H,Jo
and . . .
M'H,J —> MH.J] = Mg’l'Hg,Jo

(where the last isomorphism uses Lemma 13.13, since g7'g;, = 1 = g;,), which
induce two canonical morphisms

[11, 18] : Mg — My,
extending the two finite morphisms
[17: My — My
and ~
[g]: My — M1g, = My

defining the Hecke correspondence defined by g in characteristic zero. By
Proposition 13.9, the two morphisms [1] and [g] are projective, but they are
not finite in general (nevertheless, they are finite when g € G(A*"?) x G(Z,).
See Proposition 13.19 below). By Propositions 13.4 and 13.7, they extend to two
canonical morphisms

min _-_min ~ min

[T] . [g] MH e MH/ o>

which lift to two canonical morphisms

- _tor - tor - tor

117, 1817 My 5y — Moy 50

(Part of the assertion is that there do exist the compatible choices ¥ and X’ of
cone decompositions. This is because we can just take X' to be induced by X’
and the twist of X’ by g. Therefore, up to refinements, we always have enough
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compatible choices of cone decompositions for defining morphisms extending
the Hecke correspondence defined by g in characteristic zero.) More generally,
for any collection {(ggj, Lj, (-, )i) }e.peio.iyxy attached to a collection {(g;, L;,
(-, -)))}jer as in the second half of Example 2.5, we also have similar morphisms
extending the Hecke correspondence defined by g in characteristic zero. Given
the importance of these morphisms, let us spell out the precise statements, with
some minor modifications of notation:

PROPOSITION 13.15. Given any collection {(gj, L;, (-, ‘)j)}jes satisfying the
conditions imposed by an open compact subgroup H C G(Z) as in Section 2,
suppose that H' C G(Z) contains both H and g~'Hg, and that gj_l?’—l’gj stabilizes
L; ®ZZfor allj €], sothat {(g;, Li, -, -)j) }jer also satisfies the condition imposed
by H' as in Section 2. Then the collection {(g°g;, Li, (-, -)i)}c.jjeio,1)xs Satisfies
the condition imposed by H as well, and we have two canonical projective
morphisms

(11, [g] : M?—[,{O,I}XJ — ’\7'7-[’,] (13.16)

extending the two canonical finite morphisms
[17: My — My,

and ~
[g]: My — M1g, = My

defining the Hecke correspondence defined by g in characteristic zero, which
extend to two canonical projective morphisms

-_min _-_min =,min - min

[1] ) [g] : MH,[O.I}XJ d MH’,J' (1317)

= tor
Given any X' such that My, . ; is defined, there also exist some X such that
-, tor

M,, 5 is defined, and such that the two canonical projective morphisms (13.16)
extend to two canonical projective morphisms

- _tor - _tor - tor - tor
(11,181 My 5 0.yx5 = My 5 (13.18)
compatible with the two canonical projective morphisms (13.17).
The morphzsm [1] (respectively [g]mr) in (13.18) maps the [(Dy, Sy,

= tor

o)]-stratum Z[((pH 59_‘ oo x1 of My ¢ o<1 fo the (D3, 83y, 0')]-stratum

Z[@;{UM,JNJ of MH,.E,’J if and only if there are representatives (P, Sy, 0)
and (4, 8}, 0') of the equivalence classes [(Py, 83, 0)] and [(D},, 84, 0")],
respectively, such that (P, 61, 0) is a 1-refinement (respectively g-refinement)
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of (P4, 84,,0") as in [30, Definition 6.4.3.1]. Accordingly (cf. Theorem 12.1),
the morphism [1]™" (respectlvely [g]™™) in (13.17) maps the [(P, 83;)]-stratum

- min

Z[(qbH sl 0.1y <1 Of MH 0.1y f0 the [(Dy,, 85,)]-stratum Z[(q:;’ 8,01 of My, ;

if and only if there are representatives (P4, 83) and (P}, 8;{,) of the cusp
labels [(Dy, 84)] and [(Dy,, 8,)], respectively, such that (P},,8%,) is 1-
assigned (respectively g-assigned) to (@, d%) as in [30, Definition 5.4.3.9].
Consequently, the morphism [T] (respectively [§]) in (13.16) is the pullback of the

projective morphism [_1']min (respectively [§]mi“) in (13.17) to the [(0, 0)]-stratum

Z[(o 0] = MH’ ] OfMH/ .

Proof. These follow from Propositions 13.1, 13.4, 13.7, and 13.9, by the same
arguments as in Example 13.14 (with (J, Jy) there replaced with ({0, 1} xJ,J)
here). I

PROPOSITION 13.19. In Proposition 13.15, if g € G(A*>?) X(ﬂogigm G, (Z))),
then the morphisms in (13.16) and (13.17) are finite.

Proof. Under the morphism [T] (respectively [é]) in (13.16), the pullback of
the tautological tuple (Aj, Aj, ij, &Hj) over My, 5 is canonically isomorphic to
the tautological tuples (A'(E,j),X(s.j),zie,j),&q{(é_j)) over MH,{O,I}XJ, where € = 0
(respectively € = 1), for each j € J, and where the level structures are only

required to be defined over the characteristic zero fibers. Since My (0.1)x5 1S
noetherian normal, for each j € J, the Q*-isogeny

f (A_li)\'_]sl_]?a'}-[]) — (A(Oj)i)"(o_])al(OJ)aaH(OJ)) - (A_;a)"Jal —I'Hg)

over My, = My, = My, realizing the Hecke twists of by g (see Example 2.5)
canonically extends to a Q*-isogeny

f (Aja )\y lp Ol';.[ ) - (A(Oj)a )\‘(0_])7 l(OJ)7 a?—t(o,)) - (A;, )\J,a /, _”—Ing)
= (A A i G y)

over '\7'7-[ 0.1y %1 (see [52, IX, 1.4], [10, Ch. I, Proposition 2.7], or [30, Proposition
3 3.1.5]) (so far we have not used the assumptlon on g. In this generality,
MH j carries the degenerating family (A i Bj, aH ) of type MH extending the
tautological tuple (Aj, Aj, ij, az;) over MH = MH, for each j € J, but not
necessarily any extension of the Hecke twist (A;, A, 'J/, 1ng))-

For each j € J, under the assumption that g € G(Aoo Py x G;, (Z,), the Q-
isogeny f; is in fact a ZX) isogeny. Hence, there exists an integer N; prime to p
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such that N; f; is an isogeny prime to p. Let us fix the choice of such an Nj, and
consider Kj := ker(; f;), which is contained in A; [N ] for some integer N prime
to p. Since MH 7 1s noetherian normal, the schematic closure K of Kjin the finite
étale group scheme A [N ] is also finite etale and so the isogeny N, f; : Aj — A]
extends to an 1sogeny A — A = A / i, whose multlphcatlon by N deﬁnes
a Z,-isogeny fJ A — A/ extendmg fJ Moreover, A/ is equlpped with the
170 OVET MH,J (see [52, IX, 1.4], [10, Ch. I,

Proposition 2.7], or [30, Proposition 3.3.1.5]), where the level structure &gq;{j 18
only required to be defined over the characteristic zero fiber. By the construction
of My, (1) x 1, there is a canonical morphism

-
'/

additional structures )J ,and o’

S '\7'7-[,] = M?—L,{O}XJ - MH,{]]XJ

such that the tuple (Af,ijf,?j’,&;_lﬂjg) over |\7IH,J is canonically isomorphic
to the pullback of (A(]J),)\,(]_’j),l.(lyj),&’;.[“‘j)) over My (1) Since the induced
morphlsm (Id, s) : MHJ = |\7|H b xJ —> |\7|H 0} xJ X |\7|H }xJ 1s trivially finite,
MH j is canonically isomorphic to the normalization of MH ) x 1 X N’/IH,{ 1} xy under
the canonical morphism MH — MH w1 X MH 11, and hence the canonical
morphlsm MH 011x] —> MHJ is an 1somorphlsm Therefore, the morphism
[ ]: MH 01y x1 —> MH/J in (13 16) is finite, because it is the composition
of the canonical 1somorphlsm MH 00y x] —> MHJ with the canonical finite
morphism MH ;= MH/ ;- A similar argument also shows that the morphism
[g] MH 0.1y %1 = MH/J in (13.16) is finite.

For each j € J, consider the degenerating family (GJ, )\J, zJ, 0i3;) over l\q/l;ir 1
(see Theorem 11.2), which extends the tautological tuple (Aj, Aj, zj, oeHj) over

I\7IH,J, where X denotes (temporarily) any compatible collection of cone
decompositions that is a 1-refinement of X’. Since g € G(A>?) x Gj, (Z,),
by essentially the same argument as above, the Z, (p-isogeny

f : (A_]’ )"Ja l]a a_]) - (AJ/a )\‘_;7 l_;a ag_lng)
over M’H ] extends to a Z([)) lsogeny
Ztor . T - 20 % T -
f:jor . (GJ7 )\'Jv ljv a_]) - (GJ/’ }‘-_],9 lj/’ ag’l/}'[jg)

= tor
over My, 5 ;. By Theorem 11.4, up to replacing X' with a further refinement, there
exists a canonical morphism

tor - tor - tor - tor

s My s =My s 060 = My sy«
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/ -

(extending the morphism s above) such that the tuple (G/ P i /*17-1 ) over

it
) tor . . . .
M,, 5 is canonically isomorphic to the pullback of the tautological degenerating
N N > N - tor . . .
family (G j, Aajs iaj> O2,) over My, ;. This morphism s* then induces a
canonical morphism

. - min - min - min
min

s™ My, = MH,{O}XJ g M”H.{I}XJ

(also extending the morphism s above). Hence, by essentially the same

min
normalization argument as before, the canomcal morphism M (o xg = My, s

an isomorphism, and the morphlsm [1] 1n (13.17) is finite. A similar argument

also shows that the morphism [g]" My 0.1y x5 = MH, ;in (13.17) is finite. [

14. Local properties

PROPOSITION 14.1. Suppose X is smooth as in [30, Definition 6.3.3.4]. Then
My, is regular if and only ifM;jE is.

Proof. Suppose 0 € Yy, and 0 C P;;H for some representative (Zy, @y,

8% ) of cusp label. Since I\q/ll;_)lr 5 and 5¢H s,, (0) are excellent, by Theorems 9.13
and 10.13, by Corollary 10.16, and by [14, IV-2, 7.8.3.1], it suffices to show
that, if o is smooth, then Z¢,, 5, (o) is regular if and only if &4, s, 1. By
Proposition 8.14, under the assumption that o is smooth, Z¢., 5, (0) — C‘p%a%
is smooth and surjective, which is faithfully flat and has geometrically regular
fibers by definition. In this case, by [35, 21.D], the open subscheme Zo,, 5,, of
éq)%aﬂ (o) is regular if and only if the base scheme Cy,, 5,, is, and if and only if
the whole scheme éqp%aﬂ (o) 1is. I

The argument above can be slightly improved and show much more:

PROPOSITION 14.2. Let P be the property of being one of the following: reduced,
geometrically reduced, normal, geometrically normal, Cohen—Macaulay, (Ry),
geometric (Ry), (R)), geometric (R;), and (S;), one property for each i > 0

(see [14, IV-2, 5.7.2 and 5.8.2]). Then the fiber of MH 5 = SO = Spec(Or,.»)

over some point s of So sanfﬁes property P if and only if the corresponding
fiber of the open subscheme My, — S, over s does. If X is smooth as in [30,
Definition 6.3.3.4], then P can also be the property of being one of the following:
regular, geometrically regular, (R;), and geometrically (R;), one property for
eachi > 0.
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Proof. Suppose 0 € X4, and o C P} ,, for some representative (Zs;, @,
83) of cusp label. Since I\ﬁ/I;Zr 5 and 54"% s,, (0) are excellent, by Theorems 9.13
and 10.13, by Corollary 10.16, and by [14, IV-2, 7.8.3.1], it suffices to show
that the fiber of Z¢., o — SO above s satisfies property P if and only if the
corresponding fiber of 5o, o (o) — SO above s does. By [35, 21.C, 21.D, and
21.E], since the torus torsor &, 5,, — Cd,H s,, 18 smooth and surjective, and since
Eo,, 8,,(0) = C #,,.5,, 18 flat and has geometrically normal and Cohen—Macaulay
fibers by Pr0p0s1t10n 8.14, which is smooth when X' (or rather o) is smooth, the
fiber of & Er.n — So above s satisfies property P if and only if the fiber of
Cq>H 5y = So above s does, and so if and only if the fiber of &y, 5, (0) — SO
over s also does, as desired. O

REMARK 14.3. By [35, 21.C], since I\7IH is noetherian and since éo =
Spec(Op, () is Cohen—Macaulay, the flat morphism My, — S; has Cohen—
Macaulay fibers if and only if the scheme My, is Cohen—Macaulay.

COROLLARY 14.4. Suppose that I\7IH — éo has geometrically normal fibers.
- tor -

Then all geometric fibers of M?(-)t., s — Sy have the same number of connected

components, and the same is true for |\7IH — éo and M;:m — éo (the analogous

statements are true if we consider irreducible components instead of connected
components).

Proof. By the analog of Zariski’s connectedness theorem in [8, Theorem 4.17], the
assertions for M:fz 5. follow from Lemma 7.9 and Proposition 14.2. Then the

assertions for |\7|H follow by Corollary 10.18. The assertions for I\ﬁlln;{m follow

from those for I\ﬂ/lt;:tr 5 and |\7IH and from Lemma 12.9, and Corollaries 10.18
and 12.5. L]

Let us record some examples where |\7I~H — éo has geometrically normal and
Cohen—Macaulay fibers. For these examples, we shall take J = {jo} and (gj,, L;,
(-, =, L,{,-)) asin Example 2.3. As a sanity check, let us begin with the
following.

REMARK 14.5. Suppose p is a good prime for (O, , L, {-, ), hy) as in [30,
Definition 1.4.1.1]. Then Zarhin’s trick is not needed because p { [L* : L].
Suppose H = HPH, with H? C G(Z”) and H, = G(Z,). Then the moduli

problem MH, in Example 13.11 is no longer naive, and gives the same My,
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as in [30, Deﬁniti(ln 1.4.1.4]. By [30, Lemma 1.4.4.2], we have an open and
closed immersion My, — My, and it follows from the smoothness of My, —
Sy that My — S, is also smooth, and hence satisfies all the properties in
Proposition 14.2.

We will need some deep inputs from the theory of local models in the following
nontrivial examples. The following is an important special case considered in, for
example, [19] (the actual assumptions there are more restrictive):

LEMMA 14.6. Suppose H = HPH, with H? C G(Z") and H, = G(Z,). Then
I\7IH — éo has geometrically normal and Cohen—Macaulay fibers if the integral
PEL datum (O, %, L, (-, -), hy) is defined as follows, and if I = {jo} and (g;,, L;,.
(-,) =, L, (")) are as in Example 2.3:

(1) O = Op is the maximal order given by the ring of integers in a CM number
field F, with totally real subfield F* and with the nontrivial involution *
induced by the complex conjugation, such that every prime of F* above p is
unramified in F (but p may still be arbitrarily ramified in F).

2) L= (Diff?gl/z(l))ea” @ O%" for some integer n > 0.

3) (-, : L x L — Z(Q) is the self-dual pairing defined by the composition of
the trace map Tro,7 Diff(_gl/z(l) — Z(1) with the skew-Hermitian pairing
LxL— Diffal/z(l) defined by the matrix (_?d" 6 )-

4) ho: C — Endpg,r(L ®z R) is defined by

_ . z1d, —2:(Q2n/=1) 01d,)
z=214+vV—1 22 ho(z) :== (Zz(Idn o /=1)~1) 2 1d, >,

where 2/—1 : 7 = Z(1) and Qr~/—D7" : Z(1) S 7 stand for the
isomorphisms defined by the choice of /—1 in C, and where the matrix acts
(symbolically) on elements (f) of L ®z R by left multiplication.

Proof. As explained in Example 13.11, by the construction of |\7IH, it admits an
open and closed immersion to the (schematic) closure of the characteristic zero
fiber in a naive moduli problem, as soon as this closure is known to be normal.
Since the base changes of G and (Reso,, /z GL,) X Gy, from Z to the ring W (F »)
of Witt vectors are isomorphic to each other, by the theory 01i local models (see
[51, pages 88—95]), it follows from [45, Theorem B] that My, is normal and
that the fibers of My, — S are geometrically normal and Cohen—-Macaulay, as
desired. O
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LEMMA 14.7. Suppose H = HPH , with H? C G(Z") and H, = G(Z,). Then
MH — So has geometrically normal and Cohen—Macaulay fibers if the integral
PEL datum (O, %, L, (-, ), ho) is defined as follows, and if ] = {jo} and (g;,, L;
(-,) =, L, (")) are as in Example 2.3:

0°

(1) O = O is the maximal order given by the ring of integers in a totally real
number field F, with the trivial involution *.

) L, (-, ), and hy are defined as in Lemma 14.6.

Proof. Since base changes of G and Resp,.;z GSp,, from Z to the ring W (F ») of
Witt vectors are isomorphic to each other up to center, by the same argument as
in the proof of Lemma 14.6, and by the theory (lf local models (see [51, pages
88-95]), it follows from [46, Theorem 12.2] that My, is normal and that the fibers
of My — S, are geometrically normal and Cohen—Macaulay, as desired. O

15. Density of ordinary loci

In this section, we will need some input from [31] (we will freely cite
definitions and basic results in [31] without repeating them in detail). We shall
assume that J = {jo} and (gj,, Lj,, (-, -)j,) = (1, L, {-,-)) as in Example 2.3. In
this case, the definitions of |\7|H, qu{m and so on in this article agree with those in

[31, in particular Section 2.2.1]. Let (M, ®; F,)™" and (My, ®, F,)™-4 be
defined as in [31, Section 6.3.2].

PROPOSITION 15.1. Suppose that there exists a fully symplectic admissible
filtration 7. on L ®ZZ with respect to(L,(-,-)) suchthat Gr* | = 7_,/7_, = {O};

that the morphism MHPG(Z ) —> SO has geometrically normal fibers; and that the
algebra O ®zQ involves no simple factor of type D as in [30, Definition 1.2.1.15].

Then (M::n s ]Fp)fu]l-ord and (MH ®y Fp)full—ord are nonempty and dense in
Ml;nn ®z I, and My, &2 I, respectively.

Proof Without loss of generality, we may replace H with H”G(Z,) and assume
that MH — SO has geometrically normal fibers, because the nonemptlness and
density assertions are preserved under the finite morphism My — MWG(Z ) in
this case (for the density assertion, see, for example [35, 5.E, Theorem 5v)D.
Moreover, by Corollary 12.5, the assertion for (MH ®Z F ) and My, ®; F

follows form the one for (M "®y F,)lord and M "®y F,, and so it sufﬁces to
prove the latter.
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Consrder any M, 4..¢ as in Section 7, and let (M )ued denote the preimage
of (M ", F )f““ °od ynder (7.12). By the argument of [31, Sections 6.3.1

and 6.3.2], (M s)erd g also the locus where the pullback GJO wx Of the
tautological semlabehan scheme Gjj . OVer M;‘ZO e Fig s is ordinary (see [31,
Definition 3.1.1.2]).

Let (Zy, @4, 0%) be a representative of cusp label such that z3 is the
H-orbit of some Z such that Gr”, = {0} as in the statement of the proposition.
By Theorem 10.13, for any o € Xy, such thato C P , since (10. 3) is induced
by (8.33) (whose composmon with (7. 8) 1s (8.32)), the pullback of GJO aux tO the

[(Dy, 8y, 0)]-stratum Z[(q>H 83,0 Of M, nr is a split torus with character group
Xjj,,aux Which is ordinary by definition. So Z[(q)%(;%g)] ®zF, C (MH,E Q[ ,)ull-ord)

and therefore 2[(¢H 5,01 Q2 F, C (Mmm ®y F,)M (by Theorem 12.1) (this is
essentially the same argument as in the proof of [31 Corollary 6.3.3.2]). Thus, in

order to show that (M ®z ) full-ord is dense in M ®Z IF,, it suffices to show

that every irreducible component of M ®Z IE‘ has a nonempty intersection with
Z[@H s:01 Rz IF for some (Zy;, @y, SH) as above. Since Z[@H s, 18 closed in

- min

M,, because Gr’, = {0} (see Theorem 12.1), by Corollary 14.4, it suffices to

show that each irreducible component of M%i" ®z,C= M;I_lzn ®z C has a nonempty
intersection with Z4,, s, @z C = 2[@%5%)] ®z C for some (Z, Py, 83) as
above.

Since O ®z Q involves no simple factor of type D, and since the condition
Gr” | = {0} forces the rank of each Q-simple factor of L to be even, it follows from
the calculation in [26, Section 8, page 400] that the so-called failure of Hasse’s
principle does not occur for My,. Hence every Z such that Gr*, = {0} must come
from some filtration V of L ®7 Q as in [31, Lemma 1.2.3.1 and (1.2.3.2)] such
that Gr”, = {0}. This implies the desired assertion in the previous paragraph by
comparison with the complex analytic construction in [3, Theorem 10.11] and
[49, Section 6.2], as in [28, Theorem 5.1.1]. O

COROLLARY 15.2. Suppose we are in the setting of either of Remark 14.5,
Lemma 14.6, or Lemma 14.7. In the setting of Remark 14.5, we assume moreover
that p splits completely in the reflex field Fy defined by the integral PEL datum

(O, %, L, (-,-), hy) as in [30, Definition 1.2.5.4]. Then (M, ®; )" and

My, ®z F)"- are nonempty and dense in My, ®; F, and My, ®; F,,
respectively.
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Proof. In the setting of either of Remark 14.5, Lemma 14.6, or Lemma 14.7,
we have H = H?G(Z,) for some neat open compact subgroup H? of G(ZP)
(nevertheless, as explained in the proof of Proposition 15.1, the cases of other
levels can be reduced to this case). If p is a good prime as in Remark 14.5, then
it follows from [60] (as explained in the beginning of [31, Section 6.3.3]) that

(My, ®2F )™ is nonempty and dense in My, ®F ., and that (M, ®;,F )

is also dense in M::n ®z F,, because I\7|H ®z F, is dense in I\Q/II;_L"n ®z F, by
Corollary 12.5. In the setting of either of Lemma 14.6 or Lemma 14.7, the desired
assertions follow from Proposition 15.1. O

REMARK 15.3. When #] > 1, we do not expect (|\7IH ®z F )™ to be dense in

My, ®z F, in general. See [54] and [20, Corollary 3.11.3 and Section 3.12] for
examples where the ordinary loci are nonempty but not dense.

16. Concluding remarks

Let us compare the results obtained in this article with the main results in [30] in
the good reduction case (we shall not compare our results in this article with those
in works earlier than [30]. See the introduction of [30] for an indirect comparison).

REMARK 16.1. Compared with [30, Theorem 6.4.1.1], which is the main result
on integral models of toroidal compactifications in the good reduction case, the
results obtained in this article achieved the following.

(1) For sufficiently many compatible choices X of admissible (possibly
nonsmooth) rational polyhedral cone decompositions allowing the
consideration of Hecke actions (in a somewhat subtle sense; see
Examples 2.5 and 13.14, and Proposition 13.15), we can define the toroidal

. . —, tor < . . .
compactifications My, . of My, which carry a collection of degeneration

families (éj, Xj, ;J &Hj) of types M;.[j, for all j € J, extending the tautological
tuples over My, = My, by Theorem 11.2. This generalizes [30, Theorem
6.4.1.1(1)].

(2) The scheme M:: 5 1s proper but certainly not smooth in general. By

Proposition 14.2, the local property of l\_}lt;r 5 1s as nice as the one of |\7|H,
in terms of normality (by construction), geometric normality of fibers, and
Cohen—Macaulayness (or more generally the properties of fibers considered
there).

https://doi.org/10.1017/fms.2015.31 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.31

Compactifications of PEL-type Shimura varieties in ramified characteristics 93

(3) The stratification we obtained in Theorem 9.13 generalizes [30, Theorem
6.4.1.1(2)]. Since the strata are generally not smooth over éo, there are
some subtleties that needs to be—and can be—addressed. For example, by
Corollary 10.15, each stratum is ﬂat over SO and normal; by Corollary 10.18,

MH ®z F, is open and dense in MH s Q7 F,.

(4) While we cannot assert that the boundary |\7|;:r 5 = |\7IH (with its reduced
structure) is a normal crossing divisor as in [30, Theorem 6.4.1.1(3)], the
formal local description along the boundary strata will still be given by
the analog of [30, Theorem 6.4.1.1(5)] below (one can also introduce the
language of log structures, but we have not spelled that out).

(5) We do not have an analog of [30, Theorem 6.4.1.1(4)] because the extended
Kodaira—Spencer morphism is generally undefined in our context.

(6) The comparison of formal completions we obtained in Theorem 10.13
generalizes [30, Theorem 6.4.1.1(5)].

(7) The universal property of M 4.y We obtained in Theorems 7.14 and 11.4
generalizes [30, Theorem 6.4.1.1(6)].

(8) While the very construction of M, 3..» in Section 7 depends on the auxiliary
choices in Sections 4 and 5, by Corollary 11.7, up to canonical isomorphism,

= tor
the resulted M, . is in fact independent of the auxiliary choices.

REMARK 16.2. Compared with [30, Theorem 7.2.4.1], which is the main result
on integral models of minimal compactifications in the good reduction case, the
results obtained in this article achieved the following.

) Essent1ally by construction, the scheme M is projective and flat over

S = Spec(OF,,(»), and MH contains MH as an open dense subscheme.
This generalizes [30, Theorem 7.2.4.1(1)].

(2) Also essentially by construction, some power of the Hodge invertible sheaf
wwm,, over My, extends to an ample invertible sheaf wgmn | over I\7I::n This
H o
generalizes [30, Theorem 7.2.4.1(2)].
(3) The assertion in Proposition 7.11 that l\7|:;m = Proj (@DO F(I\?Igz,

w‘%{;, )) generalizes part of [30, Theorem 7.2.4.1(3)].
HE
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(4) The stratification we obtained in Theorems 12.1 and 12.16 generalizes [30,
Theorem 7.2.4.1 (4) and (5)]. By Corollary 12.5 (see also Remark 12.6),

|\7|H ®z [, is open and dense in l\7|;1m ®zF,.

(5) While the very construction of M;ﬂn in Proposition 7.11 depends on the
auxiliary choices in Sections 4 and 5, by Corollary 12.7, up to canonical

isomorphism, the resulted K/I::Zn is in fact independent of the auxiliary
choices.

Thus, perhaps surprisingly, many features of the ‘good reduction’ theory in [30]
extend to the ‘bad reduction’ theory for constructions by normalization, regardless
of the ramification, levels, and polarization degrees involved (nevertheless, for this
to be useful, the input from the theory of local models is often crucial, as we have
seen in the examples in Sections 14 and 15. See Remarks 16.4 and 16.5 below).

REMARK 16.3. (This remark was updated after we received the latest revision of
[34] on February 25, 2015.) The same constructions by taking normalizations
of good reduction auxiliary models have been considered in [34] for general
Hodge-type Shimura varieties, and results similar to ours have been obtained
under the additional assumption that the level H is exactly the preimage of
]_[jEJ H; aux under the homomorphism G(A®) — ]_[jeJ Gj ax(A*) induced by
(4.10), using a rather different method based on rationality properties of Hodge
tensors. Nevertheless, our methods are closer to those in [10] and [30], and hence
are logically simpler (because the Hodge-type methods in [34] also depend on
[10] and [30]). Moreover, we allow the level H to be arbitrarily high at p, and
we have shown that all the geometric objects constructed by normalization are
independent of the auxiliary choices (such independence seems rather subtle—
and perhaps not meaningful—in general Hodge-type cases). In these regards, our
results are not yet subsumed by the latest version of [34], and the semiabelian
degenerations parameterized by our integral models of toroidal compactifications
might be useful in certain applications.

REMARK 16.4. The toroidal and minimal compactifications constructed in
[55] and [56] are for the Siegel moduli with parahoric levels at p defined
by linear algebraic data that are otherwise split, in which case the naive moduli
problems as in Example 13.12 are not naive and define good integral models.
The constructions rely crucially on the assertion that the integral models
(before compactification) are normal, which is shown there using results of
[44] and [12]. The Siegel moduli with pro-p-Iwahoric levels at p have also been
considered in [S7]. Again, the constructions crucially rely on the assertion that the
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integral models before compactification are normal, which is shown there using
results of [44], [12], and [21]. In fact, these integral models with Iwahoric and
pro- p-Iwahoric levels at p have been shown to be normal and Cohen—Macaulay. If
we use the constructions in this article instead, then we obtain the same (projective
normal) minimal compactifications as in [56] and [57], and sufficiently many (but
not all) normal and Cohen—Macaulay toroidal compactifications as in [55] and
[57], which admit stratifications and formal local descriptions compatible with
those in [10] and [30] in characteristic zero.

REMARK 16.5. Local models for moduli problems of abelian schemes with PEL
structures at parahoric levels at p (as in Examples 2.4 and 13.12) have been
extensively studied in the last two decades (see the survey articles [50], [16],
and [48], and see [62] and [47] for some important recent developments). In all
cases where the local models are known to be flat and normal, our constructions
give toroidal and minimal compactifications for them, with local properties of
the toroidal compactifications such as the normality of geometric fibers and
Cohen—Macaulayness (or more generally the properties of fibers considered in
Proposition 14.2) as nice as the integral models before compactification, and with
stratifications and formal local descriptions compatible with those in [10] and [30]
in characteristic zero.

REMARK 16.6. It remains unclear what one can really say about substantially
higher levels. The simple-minded but indirect constructions by normalization
do produce reasonably good models for arbitrary levels, as we have shown in
this article. But for many applications one will still need to relate them to some
more meaningful or direct constructions. We do not have a good strategy at this
moment.
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