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The André–Oort conjecture for

Drinfeld modular varieties

Patrik Hubschmid

Abstract

We consider the analogue of the André–Oort conjecture for Drinfeld modular varieties
which was formulated by Breuer. We prove this analogue for special points with
separable reflex field over the base field by adapting methods which were used by
Klingler and Yafaev to prove the André–Oort conjecture under the generalized Riemann
hypothesis in the classical case. Our result extends results of Breuer showing the
correctness of the analogue for special points lying in a curve and for special points
having a certain behaviour at a fixed set of primes.

Introduction

The André–Oort conjecture

The André–Oort conjecture asserts that every irreducible component of the Zariski closure of
a set of special points in a Shimura variety is a special subvariety. There has been remarkable
progress on this conjecture recently.

Edixhoven proved the conjecture for products of modular curves and Hilbert modular surfaces
assuming the generalized Riemann hypothesis (GRH) in [Edi01, Edi05, Edi98]. Both proofs
exploit the Galois action on special points and use geometric properties of Hecke correspondences.
In the special case of a product of two modular curves, André [And98] gave a proof without
assuming GRH using transcendence theory. Recently, Pila [Pil11] found an unconditional proof
of the conjecture for products of modular curves using techniques from model theory.

Edixhoven and Yafaev extended their Galois-theoretic and geometric methods in [EY03] to
prove the conjecture for curves in general Shimura varieties containing infinitely many special
points all lying in the same Hecke orbit. Subsequently, Yafaev [Yaf06] also proved the conjecture
for general curves assuming GRH.

Recently, Klingler and Yafaev [KY12] and Ullmo and Yafaev [UY12] have announced a proof
of the full André–Oort conjecture assuming GRH. Their methods use a combination of the
methods of Edixhoven and Yafaev and equidistribution results of Clozel and Ullmo [CU05]
established by methods from ergodic theory.

For a more detailed exposition of results concerning the André–Oort conjecture for Shimura
varieties, we refer to the survey article of Noot [Noo06].
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P. Hubschmid

Drinfeld modular varieties
Drinfeld modular varieties are a natural analogue of Shimura varieties in the function field case.
They can be interpreted as moduli spaces for Drinfeld A-modules over a global function field F
of a given rank r with K-level structure, where A is the ring of elements of F that are regular
outside of a fixed place ∞ and K ⊂GLr(Af

F ) is a compact open subgroup with Af
F the ring of

adeles of F outside ∞.
One can define special subvarieties of a Drinfeld modular variety S = SrF,K parametrizing

Drinfeld A-modules of rank r in analogy to the case of Shimura varieties. For each finite extension
F ′ of F of degree r/r′ with only one place above ∞ and integral closure A′ of A in F ′, the
restriction of Drinfeld A′-modules to A gives a morphism from the moduli space of Drinfeld
A′-modules of rank r′ (with a certain level structure) to S defined over F ′. These morphisms are
analogues of morphisms induced by a Shimura subdatum. A special subvariety V is defined to
be a geometrically irreducible component of a Hecke translate of the image of such a morphism.
A special point is a special subvariety of dimension 0.

In fact, we can interpret each special subvariety V as a geometrically irreducible component of
a Drinfeld modular subvariety which is the union of Galois conjugates of V over the corresponding
extension F ′ of F . A Drinfeld modular subvariety X is the image of the composition of an above
morphism defined by the restriction of Drinfeld A′-modules to A with a morphism given by
a Hecke correspondence. Such a composition, called inclusion morphism, is associated to an
extension F ′/F of the above type and an Af

F -linear isomorphism b : (Af
F )r ∼→ (Af

F ′)
r′ encoding

the involved Hecke correspondence. We say that F ′ is the reflex field of X and its geometrically
irreducible components.

In [Pin12], Pink constructs the Satake compactification S
r
F,K of a Drinfeld modular

variety SrF,K. It is characterized up to unique isomorphism by a certain universal property. If K is
sufficiently small in a certain sense, there is a natural ample invertible sheaf LrF,K on SrF,K. This
allows us to define the degree of a subvariety of SrF,K as the degree of its Zariski closure in S

r
F,K

with respect to LrF,K. The degree of a subvariety can be seen as a measure for the ‘complexity’
of the subvariety.

André–Oort conjecture for Drinfeld modular varieties
The following analogue of the André–Oort conjecture was formulated by Breuer in [Bre12].

Conjecture 1. Let S = SrF,K be a Drinfeld modular variety and Σ a set of special points
in S. Then each irreducible component over C∞ of the Zariski closure of Σ is a special subvariety
of S.

Breuer [Bre12] proved this analogue in two cases. Firstly, when the Zariski closure of Σ
is a curve, and secondly when all special points in Σ have a certain behaviour at a fixed set
of primes. Earlier in [Bre05, Bre07], he proved an analogue of the André–Oort conjecture for
products of modular curves in odd characteristic. These proofs use an adaptation of the methods
of Edixhoven and Yafaev in [Edi05, EY03, Yaf06]. The results are unconditional because GRH
holds over function fields.

In this thesis, we extend the arguments of Breuer using an adaptation of the methods of
Klingler and Yafaev in [KY12]. Our main result is the following theorem.

Theorem 2. Conjecture 1 is true if the reflex fields of all special points in Σ are separable
over F .
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The André–Oort conjecture for Drinfeld modular varieties

Since the reflex field of a special point in a Drinfeld modular variety SrF,K is of degree r over F ,
special points with inseparable reflex field over F can only occur if r is divisible by p= char(F ).
So Theorem 2 implies the following theorem.

Theorem 3. Conjecture 1 is true if r is not a multiple of p= char(F ).

Sketch of the proof of Theorem 2
First reductions. We need to show that a geometrically irreducible subvariety Z of SrF,K

containing a Zariski dense subset of special points with separable reflex field over F is a
special subvariety. An induction argument shows that it is enough to show the following crucial
statement.

Theorem 4. Let Σ be a set of Drinfeld modular subvarieties of S of dimension d whose union is
Zariski dense in a subvariety Z ⊂ S of dimension greater than d which is defined and irreducible
over F . Then, for almost all X ∈ Σ, there is a Drinfeld modular subvariety X ′ of S with
X (X ′ ⊂ Z.

In [KY12], Klingler and Yafaev perform the same induction; however, they work with special
subvarieties instead of certain unions of their Galois conjugates (Drinfeld modular subvarieties
in our case).

In the proof of this statement, we can assume without loss of generality that the following
hold.

– The subgroup K ⊂GLr(Af
F ) is sufficiently small such that the degree of subvarieties of

S = SrF,K is defined.

– Also, Z is Hodge generic, i.e., no geometrically irreducible component of Z is contained in
a proper Drinfeld modular subvariety of S.

Degree of Drinfeld modular subvarieties. We give a classification of the Drinfeld modular
subvarieties of S and then use it to show the following unboundedness result.

Theorem 5. If Σ is an infinite set of Drinfeld modular subvarieties of S, then deg X is
unbounded as X varies over Σ.

Note that, for a special subvariety V which is a geometrically irreducible component of a
Drinfeld modular subvariety X, the union of the Galois conjugates of V over its reflex field is
equal to X. Therefore, deg X measures both the degree of V and the number of Galois conjugates
of V . So our unboundedness statement tells us that it is not possible that, in an infinite family of
special subvarieties V , the degrees and the number of Galois conjugates of V are both bounded.
Since we can exclude this case, we only need an adaptation of the Galois-theoretic and geometric
methods in [KY12] and do not need equidistribution results as in [CU05].

Geometric criterion. We deduce a geometric criterion for Z being equal to S. It is a key
ingredient of our proof of Theorem 4 and says that Z is equal to the whole of S provided that
Z is contained in a suitable Hecke translate TgpZ of itself. A similar geometric criterion appears
in the proof of Klingler and Yafaev in the classical case.

Theorem 6. Suppose that K =Kp ×K(p) with Kp ⊂GLr(Fp ), and assume that Z ⊂ TgpZ for
some gp ∈GLr(Fp ) and Z Hodge-generic and irreducible over F . If, for all k1, k2 ∈ Kp, the cyclic
subgroup of PGLr(Fp ) generated by the image of k1 · gp · k2 is unbounded, then Z = S.
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The proof of this theorem is based on two results.

(i) (Zariski density) We define the (Thp + Th−1
p

)-orbit of a geometric point x ∈ S(C∞) to be
the smallest subset of S(C∞) containing x which is invariant under Thp and Th−1

p
. We show

that the (Thp + Th−1
p

)-orbit of an arbitrary point x ∈ S(C∞) is Zariski dense in the geometrically
irreducible component of S containing x provided that hp ∈GLr(Fp ) is chosen such that the
cyclic subgroup of PGLr(Fp ) generated by the image of hp is unbounded.

(ii) A result of Pink [Pin97, Theorem 0.1] on the Galois representations associated to Drinfeld
modules implies that the image of the arithmetic étale fundamental group of a geometrically
irreducible component of Z is open in GLr(Fp ), see [BP05, Theorem 4]. Here we need our
assumption that Z is Hodge-generic.

Induction. Our final step of the proof of Theorem 4 consists of an induction which uses a
Hecke correspondence with specific properties. By induction we show the following statement.

Theorem 7. Let X be a Drinfeld modular subvariety of S associated to F ′/F and b : (Af
F )r ∼→

(Af
F ′)

r′ and assume that X is contained in a Hodge-generic subvariety Z ⊂ S which is irreducible
over F .

Suppose that Tgp is a Hecke correspondence localized at a prime p with the following
properties.

(i) The element gp is defined by some g′p′ ∈GLr′(F ′p′) where p′ is a prime of F ′ lying over p,

i.e., gp = b−1 ◦ g′p′ ◦ b.

(ii) The element gp satisfies the unboundedness condition in Theorem 6, i.e., K =Kp ×K(p)

with Kp ⊂GLr(Fp ) and, for all k1, k2 ∈ Kp, the cyclic subgroup of PGLr(Fp ) generated by the
image of k1 · gp · k2 is unbounded.

(iii) If ι : S′→ S is an inclusion morphism with X ⊂ ι(S′), then the Hecke correspondence T ′

on S′ defined by g′p′ satisfies (ii) and deg T ′ = deg Tgp.

(iv) The inequality deg X > deg(Tgp)2s−1 · (deg Z)2s holds for s := dim Z − dimX.

Then there is a Drinfeld modular subvariety X ′ of S with X (X ′ ⊂ Z.

We perform an induction over s := dim Z − dimX. Property (i) implies that X ⊂ TgpX; in
particular, we therefore have

X ⊂ Z ∩ TgpZ.

The lower bound (iv) for deg X now says that X cannot be a union of geometrically irreducible
components of Z ∩ TgpZ. Therefore we find an irreducible component Z ′ over F of Z ∩ TgpZ with
X ⊂ Z ′ and dim Z ′ > dimX. There are two cases.

If Z ′ = Z, we have Z ⊂ TgpZ and conclude by Theorem 6 that Z = S, so the conclusion of
Theorem 4 is true with X ′ = S.

If Z ′ ( Z, then dim Z ′ < dim Z because Z is irreducible over F . We replace Z by Z ′ and
apply the induction hypothesis. In this step, it is possible that Z ′ is not Hodge-generic any more.
In this case, we replace S by a smaller Drinfeld modular variety S′ and show that properties
(i)–(iv) from Theorem 7 are still valid in S′ using our property (iii).
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Choice of a suitable Hecke correspondence. To finish the proof of Theorem 4, by Theorem 7
we need to show that, for almost all X ∈ Σ, there is a Hecke correspondence Tgp localized at a
prime p with the properties (i)–(iv) from Theorem 7. To construct such a Tgp for a X ∈ Σ, we
need the prime p to satisfy specific conditions under which we call the prime good for X.

Definition 8. Let X be a Drinfeld modular subvariety of SrF,K associated to F ′/F and
b : (Af

F )r ∼→ (Af
F ′)

r′ . A prime p of F is called good for X ⊂ SrF,K if there is an sp ∈GLr(Fp )
such that the following hold for the Ap -lattice Λp := sp ·Arp:

(a) K =Kp ×K(p) where Kp = spK(p)s−1
p for the principal congruence subgroup K(p) of

GLr(Ap );

(b) bp(Λp ) is an A′ ⊗A Ap -submodule of (A′ ⊗A Ap )r
′
;

(c) there exists a prime p′ of F ′ above p with local degree 1 over F .

Theorem 9. If p is a good prime for a Drinfeld modular subvariety X ⊂ SrF,K, then there is a
Hecke correspondence Tgp localized at p satisfying properties (i)–(iii) from Theorem 7 with

deg Tgp = |k(p)|r−1,

where k(p) denotes the residue field of p.

We show this theorem by defining

gp := sp diag(π−1
p , 1, . . . , 1)s−1

p

for a uniformizer πp at p. In the proof, it is crucial that Kp is not a maximal compact subgroup
of GLr(Fp ), which is guaranteed by condition (a) in Definition 8 of good prime. Otherwise we
are not able to satisfy the unboundedness condition (ii) from Theorem 7.

However, condition (a) in Definition 8 is a very strict condition on the prime p: for a fixed
level K it can only be satisfied at most at a finite set of primes because K is maximal compact
at almost all primes. Since conditions (b) and (c) in Definition 8 are both satisfied only for an
infinite set of primes of density smaller than one, for a fixed level K, in general we cannot find a
prime p satisfying conditions (a)–(c). We get rid of this problem by starting with a prime p for
which there is an sp ∈GLr(Fp ) such that

(a′) K = spGLr(Ap )s−1
p ×K(p)

and also conditions (b) and (c) in Definition 8 are satisfied. With an effective version of
Čebotarev’s theorem which relies on the correctness of GRH for function fields we can show that
such a prime satisfying an upper bound for |k(p)| exists provided that deg X is large enough.

In this situation we consider the Drinfeld modular variety S̃ := Sr
F,K̃ with K̃ = spK(p)s−1

p ×
K(p) which is a finite cover of S = SrF,K. The conditions (a)–(c) from Definition 8 are satisfied for
some Drinfeld modular subvariety X̃ of S̃ lying over X, i.e., p is a good prime for X̃ ⊂ S̃. By
Theorem 9, we then find a Hecke correspondence Tgp on S̃ localized at p satisfying properties
(i)–(iv) from Theorem 7 for X̃ ⊂ S̃ where property (iv) is ensured by the above upper bound for
|k(p)|.

Since deg X is unbounded as X ranges over Σ by Theorem 5, this works for almost all X ∈ Σ.
For these X, Theorem 7 gives a Drinfeld modular subvariety X̃ ′ of S̃ with X̃ ( X̃ ′ ( Z̃. The image
X ′ ⊂ S of X̃ ′ under the covering map S̃→ S then satisfies the conclusion of Theorem 4.
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Difficulties in the inseparable case
Unfortunately, the above methods do not work in the inseparable case, i.e., if Σ in Theorem 4
contains Drinfeld modular subvarieties of S with inseparable reflex field. This is caused by the
fact that every prime ramifies in an inseparable field extension. Therefore, for a Drinfeld modular
subvariety with inseparable reflex field, there is no prime for which condition (c) in Definition 8
is satisfied. So we cannot apply Theorem 9 to find a Hecke correspondence satisfying properties
(i)–(iii) from Theorem 7.

Also, other approaches to find such Hecke correspondences fail. For example, if X is a Drinfeld
modular subvariety of dimension 0 with purely inseparable reflex field F ′/F and p any prime
of F , then a Hecke correspondence Tgp localized at p satisfying property (i) of Theorem 7 does
not satisfy the unboundedness condition (ii) in Theorem 7. Indeed, in this case there is exactly
one prime p′ of F ′ above p with ramification index r and, if πp′ ∈ F ′p′ is a uniformizer, then
1, πp′ , . . . , π

r−1
p′ is an Fp -basis of F ′p′ . Therefore, if gp ∈GLr(Fp ) is defined by g′p′ = πkp′ ∈GL1(F ′p′)

as in property (i) of Theorem 7, then gp is a conjugate of the matrix
πp

1
. . .

1


k

∈GLr(Fp )

for πp := πrp′ . Its rth power is a scalar matrix, and hence the cyclic subgroup of PGLr(Fp )
generated by the image of gp is bounded and we cannot apply our geometric criterion (Theorem 6)
for the Hecke correspondence Tgp.

Organization of the paper
After discussing preliminaries in § 1, we define Drinfeld modular varieties for arbitrary level
K ⊂GLr(Af

F ) as quotients of fine moduli schemes of Drinfeld modules in § 2.
In § 3, we first define projection morphisms and Hecke correspondences on Drinfeld modular

varieties. Then we define inclusion morphisms of Drinfeld modular varieties which allow us to
define Drinfeld modular subvarieties and special subvarieties of a Drinfeld modular variety S.
Subsequently, we show various properties of these morphisms, give a classification of the Drinfeld
modular subvarieties of S, and describe the Galois action on the sets of Drinfeld modular
subvarieties and irreducible components of S.

In § 4, we define the degree of subvarieties of a Drinfeld modular variety using the Satake
compactification constructed in [Pin12] and discuss some of its properties. We then show our
unboundedness statement for the degree of Drinfeld modular subvarieties (Theorem 5).

The next two sections are devoted to the proof of our geometric criterion for being a Drinfeld
modular subvariety (Theorem 6). Section 5 deals with Zariski density of (Tg + Tg−1)-orbits and
in § 6 we give the proof of the actual criterion.

In § 7, we first define good primes for Drinfeld modular subvarieties. We then explain, for a
fixed Drinfeld modular subvariety, how we can find a suitable Hecke correspondence at a good
prime as in Theorem 9. The last subsection of § 7 is devoted to finding a good prime p satisfying an
upper bound for |k(p)| for a given Drinfeld modular subvariety after passing to a finite cover of S.

In § 8, we finally conclude the proof of Theorem 4 by proving Theorem 7 and applying the
results of the previous sections. Here we also explain why Theorem 4 implies our main result
(Theorem 2).
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1. Preliminaries

1.1 Notation and conventions
The following notation and conventions will be used throughout this paper.

– The symbol Fq denotes a fixed finite field with q elements.
– For an Fq-algebra R, we denote by R{τ} the ring of non-commutative polynomials in the

variable τ with coefficients in R and the commutator rule τλ= λqτ for λ ∈R.
– The symbol F always denotes a global function field of characteristic p with field of

constants Fq and ∞ a fixed place of F .
– For a pair (F,∞), we use the following notation:

A ring of elements of F regular outside ∞;
Fp completion of F at a place p;
Ap discrete valuation ring of Fp;
k(p) residue field of p;
C∞ completion of an algebraic closure of F∞;

Af
F ring of finite adeles of F (i.e., adeles outside ∞);

Af,p
F ring of finite adeles of F outside p (i.e., adeles outside p and ∞);

Â profinite completion
∏

p 6=∞ Ap of A;
Cl(F ) class group of A.

– A place p 6=∞ of F is said to be a prime of F . We identify a prime p of F with a prime
ideal of A.

– For a place p and a finite extension F ′ of F , we set F ′p := F ′ ⊗F Fp and A′p :=A′ ⊗A Ap.
We identify F ′p with

∏
p′|p F

′
p′ and A′p with

∏
p′|p A

′
p′ via the canonical isomorphisms. For a

second finite extension F ′′ of F , we use the analogous conventions and notations.
– For a subfield K ⊂ C∞ we denote by Ksep the separable and by K the algebraic closure of
K in C∞. Each K-automorphism of Ksep has a unique continuation to a K-automorphism
of K. Therefore, we can and do identify the absolute Galois group GK := Gal(Ksep/K) with
the automorphism group AutK(K).

For the formulation of algebro-geometric results, we use the following conventions.

– Unless otherwise stated, variety means a reduced separated scheme of finite type over C∞
and subvariety means a reduced closed subscheme of a variety. We identify the set X(C∞)
of C∞-valued points of a variety X with the set of its closed points.

– For a subfield K ⊂ C∞, a variety X together with a scheme X0 of finite type over K and an
isomorphism of schemes αX :X0,C∞

∼→X is called a variety over K. We often write X in
place of (X, X0, αX) and identify X0,C∞ with X via αX if this leads to no confusion. Such
a variety X is called K-irreducible if X0 is irreducible. Note that a variety over K is also a
variety over K ′ if K ⊂K ′ ⊂ C∞.

– Let X ′ =X ′0,C∞ and X =X0,C∞ be two varieties over K. A morphism X ′→X is said to be
defined over K if it is the base extension to C∞ of a morphism X ′0→X0 of schemes over K.

– For a variety X over K, a subvariety X ′ ↪→X is said to be defined over K if X ′ is a variety
over K and the closed immersion X ′ ↪→X is defined over K.

– For a variety X =X0,C∞ over K and a subfield K ′ ⊂ C∞ containing K, we denote by
X(K ′) the set of K ′-valued points of X0. Note that X(K ′) is naturally a subset of the set
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of closed points of X; in fact it is equal to the set of closed points of X defined over K ′,
see, e.g., [Bor91, p. 26].

– The degree of a finite surjective morphism X → Y of irreducible varieties is defined to be
the degree of the extension of the function fields C∞(X)/C∞(Y ). We say that a general
finite morphism f :X → Y of (not necessarily irreducible) varieties is of degree d if for each
irreducible component Z of f(X)∑

irreducible components
Xi of f−1(Z)

deg(f |Xi :Xi→ Z) = d. (1.1.1)

1.2 Galois action on subvarieties
Let X =X0,C∞ be a variety over K ⊂ C∞. Then there is a natural action of the absolute Galois
group GK on X0,K which induces an action of GK on the set of subvarieties of X which are
defined over K.

Proposition 1.2.1. A subvariety of X which is defined over K is already defined over K if and
only if it is defined over Ksep and GK-stable.

Proof. This follows from [Bor91, Theorem AG. 14.4]. 2

Proposition 1.2.2. Let X =X0,C∞ be a variety over K ⊂ C∞. Then the irreducible
components of X are defined over Ksep. The absolute Galois group acts transitively on the
set of irreducible components of X if and only if X is K-irreducible.

Proof. Corollary 5.56(2) in [GW10] implies that the irreducible components of X are defined
over Ksep. The second statement is a direct consequence of Proposition 1.2.1. 2

2. Drinfeld modular varieties

2.1 Analytic description and modular interpretation
We consider the following datum:

– a global function field F together with a fixed place ∞;
– a positive integer r, called rank ; and
– a compact open subgroup K of GLr(Af

F ), called level.

We define Drinfeld’s upper half-space over F of dimension r − 1 by

Ωr
F := Pr−1(C∞)\{F∞-rational hyperplanes}.

Proposition 2.1.1. The points of Drinfeld’s upper half-space Ωr
F are in bijective

correspondence with the set of injective F∞-linear maps F r∞ ↪→ C∞ up to multiplication by
a constant in C∗∞ via the assignment

[ω1 : · · · : ωr] 7−→ [(a1, . . . , ar) 7→ a1ω1 + · · ·+ arωr].

Proof. We have the canonical bijection

Cr
∞ −→ {F∞-linear maps F r∞→ C∞}

(ω1, . . . , ωr) 7−→ (a1, . . . , ar) 7→ a1ω1 + · · ·+ arωr.

The F∞-linear map (a1, . . . , ar) 7→ a1ω1 + · · ·+ arωr is injective if and only if ω1, . . . , ωr are F∞-
linearly independent, i.e., if and only if (ω1, . . . , ωr) does not lie in a F∞-rational hyperplane.
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The André–Oort conjecture for Drinfeld modular varieties

Hence, factoring out the action of C∗∞ on both sides, we get the desired bijection of Drinfeld’s
upper half-space with the set of injective F∞-linear maps F r∞ ↪→ C∞ up to multiplication by a
constant in C∗∞. 2

In the following, we use the identification given by Proposition 2.1.1 and denote the element
of Ωr

F associated to an injective F∞-linear map ω : F r∞ ↪→ C∞ by ω.
Using this notation, one sees that GLr(F ) acts on Ωr

F from the left by

T · ω := ω ◦ T−1 (2.1.1)

for T ∈GLr(F ) considered as automorphism of F r∞.

Remark. This action can also be described by regarding Ωr
F as a subset of Pr−1(C∞). A short

calculation shows that, for ω = [ω1 : · · · : ωr] ∈ Ωr
F ⊂ Pr−1(C∞) and T ∈GLr(F ) with T−1 = (sij),

we have
T · ω = [s11ω1 + · · ·+ sr1ωr : · · · : s1rω1 + · · ·+ srrωr]. (2.1.2)

In other words, the action of a T ∈GLr(F ) on Ωr
F ⊂ Pr−1(C∞) is the restriction to Ωr

F of the
natural action of (T−1)T ∈GLr(C∞) on Pr−1(C∞).

Theorem 2.1.2. There is a normal affine variety SrF,K of dimension r − 1 over F together with
an isomorphism

SrF,K(C∞)∼= GLr(F )\(Ωr
F ×GLr(Af

F )/K) (2.1.3)

of rigid-analytic spaces, where GLr(Af
F )/K is viewed as a discrete set.

Remarks.

– In the proof, we define a variety SrF,K over F together with a rigid-analytic isomorphism
of the form (2.1.3) up to isomorphism over F . This variety is called the Drinfeld modular
variety associated to the datum (F, r,K). We will identify its C∞-valued points with double
cosets in GLr(F )\(Ωr

F ×GLr(Af
F )/K) via the rigid-analytic isomorphism given in the proof.

– Later (Corollary 3.1.4), we will show that SrF,K is a non-singular variety if K is sufficiently
small in a certain sense.

Proof. The proof consists of several steps.
(i) We use Drinfeld’s construction of Drinfeld moduli schemes in [Dri74] to define SrF,K and

a rigid-analytic isomorphism of the form (2.1.3) for K =K(I)⊂GLr(Â) a principal congruence
subgroup modulo a proper ideal I of A.

(ii) For g ∈GLr(Af
F ) ∩Matr(Â) and proper ideals I, J of A with JÂr ⊂ gIÂr, we define

morphisms
πg : SrF,K(J) −→ SrF,K(I),

which are defined over F and satisfy the compatibility relation

πg ◦ πg′ = πgg′ .

In particular, these morphisms define an action of GLr(Â) on SrF,K(I).

(iii) We use this action to extend the definition in (i) to all compact open subgroups
K ⊂GLr(Â).

(iv) We extend the definition in (ii) to get morphisms

πg : SrF,K′ −→ SrF,K

for arbitrary K,K′ ⊂GLr(Â) and g ∈GLr(Af
F ) with K′ ⊂ g−1Kg.
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(v) We define SrF,K and a rigid-analytic isomorphism β of the form (2.1.3) for arbitrary levels
K ⊂GLr(Af

F ). We use the morphisms πg from (iv) to show the well-definedness of (SrF,K, β) up
to isomorphism over F .

Step (i). Recall that a Drinfeld A-module of rank r over an F -scheme S is a line bundle L over S
together with a ring homomorphism ϕ from A to the ring EndFq(L) of Fq-linear endomorphisms
of L (as a group scheme over S) such that, over any trivializing affine open subset Spec(B)⊂ S,
the homomorphism ϕ is given by

ϕ :

A −→ EndFq(Ga,Spec(B)) =B{τ}

a 7−→ ϕa =
m(a)∑
i=0

bi(a)τ i

where τ denotes the q-power Frobenius endomorphism and, for all a ∈A, we have:

(a) qm(a) = |A/(a)|r;
(b) bm(a)(a) ∈B∗;
(c) b0(a) = γ(a) where γ is the ring homomorphism F →B corresponding to the morphism of

affine schemes Spec(B) ↪→ S→ Spec(F ).

For a proper ideal I of A, an I-level structure on a Drinfeld module L/S of rank r is an A-linear
isomorphism of group schemes over S

α : (I−1/A)r −→LI :=
⋂
a∈I

ker(L a→L),

where (I−1/A)r denotes the constant group scheme over S with fibers (I−1/A)r.

Remark. In general, one can also define Drinfeld A-modules together with level structures over
A-schemes instead of F -schemes. In this case, one uses a different definition of I-level structure
to deal smoothly with the fibers over p ∈ Spec(A) dividing I; see, for example, [DH87, § I.6].

By [Dri74, § 5], the functor

FrF,I :
F -schemes −→ Sets

S 7−→ {Isomorphism classes of Drinfeld A-modules
of rank r over S with I-level structure}

is representable by a non-singular affine scheme of finite type over F of dimension r − 1. Note
that, in [Dri74], it is actually shown that the corresponding functor from the category of schemes
over Spec A to the category of sets is representable if I is contained in two distinct maximal
ideals of A. The argument in the proof shows that it is enough that I is a proper ideal of A if
we work with schemes over Spec F .

By our conventions in § 1.1, the base extension to C∞ of the above representing scheme is
a non-singular variety of dimension r − 1 defined over F . We denote it by SrF,K(I), where K(I)
denotes the principal congruence subgroup modulo I. By [Dri74, Proposition 6.6], there is a
natural isomorphism

SrF,K(I)(C∞)∼= GLr(F )\(Ωr
F ×GLr(Af

F )/K(I)) (2.1.4)

of rigid-analytic spaces. Under this isomorphism, the equivalence class of an element (ω, h) ∈
Ωr
F ×GLr(Af

F ) is mapped to the C∞-valued point of SrF,K(I) corresponding to the Drinfeld
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module over C∞ associated to the lattice

Λ := ω(F r ∩ hÂr)

with I-level structure given by the composition of the isomorphisms

(I−1/A)r h−→ I−1 · (F r ∩ hÂr)/(F r ∩ hÂr) ω−→ I−1 · Λ/Λ,

where the first isomorphism is given by the multiplication by h on (Af
F )r via the natural

identifications

(I−1/A)r ∼= I−1Âr/Âr,

I−1 · (F r ∩ hÂr)/(F r ∩ hÂr) ∼= I−1 · hÂr/hÂr

by the inclusion maps. For a detailed survey of this modular interpretation, we refer to the
explanations in [DH87, § II.5].

Step (ii). Let I, J be proper ideals of A and g ∈GLr(Af
F ) ∩Matr(Âr) such that JÂr ⊂ gIÂr. For

such a datum, we construct a morphism of functors

FrF,J −→FrF,I .

The given g ∈GLr(Af
F ) with matrix entries in Â induces a surjective endomorphism of (Af

F )r/Âr

with kernel g−1Âr/Âr. Since there is a natural isomorphism (F/A)r ∼= (Af
F /Â)r induced by the

inclusion maps, we therefore get a surjective homomorphism of A-modules

(F/A)r
g−→ (F/A)r.

The kernel U := ker g of this homomorphism is contained in (J−1/A)r because we have g−1Âr ⊂
J−1IÂr ⊂ J−1Âr by our assumption JÂr ⊂ gIÂr.

For any Drinfeld module L over an F -scheme S with J-level structure α : (J−1/A)r ∼→LJ , the
image of U ⊂ (J−1/A)r under α is a finite A-invariant subgroup scheme of L over S. Hence,

the quotient L′ := L/α(U) is also a Drinfeld A-module over S and contains the finite subgroup
scheme LJ/α(U). Since g(J−1/A)r ∼= (J−1/A)r/U , there is a unique A-linear isomorphism α′ of
group schemes over S such that the diagram

(J−1/A)r ∼
α

//

g

��

LJ

π

��
g(J−1/A)r ∼

α′
// LJ/α(U)

commutes, where π : LJ →LJ/α(U) is the canonical projection. By the assumption JÂr ⊂ gIÂr,
we have (I−1/A)r ⊂ g(J−1/A)r. Restricting the isomorphism α′ to the I-torsion gives, therefore,
an I-level structure

(I−1/A)r ∼−→L′I
of L′.

The assignment (L, α)→ (L′, α′|(I−1/A)r) induces a morphism of functors FrF,J →FrF,I and
therefore a morphism πg : SrF,K(J)→ SrF,K(I) defined over F .
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A simple verification shows that πg is given by

[(ω, h)] 7−→ [(ω, hg−1)] (2.1.5)

on C∞-valued points identified with double cosets via the isomorphisms (2.1.4).
This description implies that we have the relation

πg ◦ πg′ = πgg′

for two such morphisms:

πg : SrF,K(I′) −→ SrF,K(I),

πg′ : SrF,K(I′′) −→ SrF,K(I′).

In particular, we have an action of GLr(Â) on SrF,K(I) by morphisms defined over F and hence
also on isomorphism classes of Drinfeld A-modules with I-level structure.

Step (iii). Using the action of GLr(Â) on SrF,K(I) by the morphisms πg, we define, for a compact

open subgroup K ⊂GLr(Â),
SrF,K := SrF,K(I)/K,

where K(I) is a principal congruence subgroup contained in K. Since K(I) acts trivially
on SrF,K(I), this quotient can be viewed as a quotient under the action of the finite group
K/K(I) by morphisms defined over F . Hence, it is an affine variety defined over F of
dimension r − 1 = dim SrF,K(I) which is normal because SrF,K(I) is normal (see, e.g., [Ser88,
§ III.12]). By the description (2.1.5) of the above action on C∞-valued points, the rigid-analytic
isomorphism (2.1.4) induces one of the form

βI : (SrF,K(I)/K)(C∞)∼= GLr(F )\(Ωr
F ×GLr(Af

F )/K). (2.1.6)

It remains to show that, up to F -isomorphism, (SrF,K(I)/K, βI) is independent of the choice
of I. For this, note that, for two ideals I, J with I ⊂ J , the functors

S 7−→ FrF,I(S)/K(J),
S 7−→ FrF,J(S)

are isomorphic, where the quotient is taken with respect to the action of GLr(Â) on FrF,I(S).
The isomorphism is given by restricting I-level structures to (J−1/A)r.

Therefore, we have a natural isomorphism

SrF,K(I)/K(J)∼= SrF,K(J)

defined over F , which is compatible with the isomorphisms (2.1.6) and (2.1.4).
So for two ideals J, I with K(I)⊂K and K(J)⊂K we have

SrF,K(I)/K ∼= SrF,K(I∩J)/K ∼= SrF,K(J)/K,

and these isomorphisms are compatible with the isomorphisms (2.1.6). Therefore, we can well
define SrF,K up to isomorphism over F by SrF,K(I) together with the rigid-analytic isomorphism βI .

Step (iv). Let g ∈GLr(Af
F ) ∩Matr(Â) and K,K′ ⊂GLr(Â) with K′ ⊂ g−1Kg be given. Choose

proper ideals I and J of A such that K(I)⊂K, K(J)⊂K′ and JÂr ⊂ gIÂr. Then, by Step (iii),

SrF,K′ := SrF,K(J)/K
′,

SrF,K := SrF,K(I)/K,

518

https://doi.org/10.1112/S0010437X12000681 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000681
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and, by Step (ii), there is a morphism

πg : SrF,K(J) −→ SrF,K(I).

Since gK′g−1 ⊂K, for each k′ ∈ K′, there is a k ∈ K such that gk′ = kg and

πg ◦ πk′ = πk ◦ πg
as morphisms SrF,K(J) −→ SrF,K(I). So the composition of πg with the canonical projection
SrF,K(I)→ SrF,K is K′-invariant and induces therefore a morphism πg : SrF,K′ → SrF,K such that
the diagram

SrF,K(J)
πg //

��

SrF,K(I)

��
SrF,K′

πg // SrF,K

commutes, where the vertical maps are the canonical projections. By (2.1.5), using the
identifications SrF,K(C∞) and SrF,K′(C∞) with double coset spaces given by (2.1.6), this morphism
πg : SrF,K′ → SrF,K is given by

[(ω, h)] 7−→ [(ω, hg−1)] (2.1.7)
on C∞-valued points. Therefore, we have defined πg independently of the choice of I and J if all
matrix entries of g lie in Â.

If g ∈GLr(Af
F ) is arbitrary, there is a λ ∈A\{0} such that λ · g ∈GLr(Af

F ) ∩Matr(Â). We
then define πg := πλ·g. This morphism is independent of the choice of λ because we have

[(ω, h(λg)−1)] = [(ω, hg−1)]

in SrF,K(C∞) for all λ ∈A\{0} and [(ω, h)] ∈ SrF,K′(C∞). In particular, πg is still described
by (2.1.7) on C∞-valued points.

The latter implies the relation
πg ◦ πg′ = πgg′ (2.1.8)

for two such morphisms πg : SrF,K′ → SrF,K and πg′ : SrF,K′′ → SrF,K′ .

Step (v). For an arbitrary compact open subgroup K ⊂GLr(Af
F ), we choose a g ∈GLr(Af

F ) such
that gKg−1 ⊂GLr(Â). The composition of the rigid-analytic isomorphism (2.1.6)

SrF,gKg−1(C∞)∼= GLr(F )\(Ωr
F ×GLr(Af

F )/gKg−1)

and [(ω, h)] 7→ [(ω, hg)] gives a rigid-analytic isomorphism

βg : SrF,gKg−1(C∞)∼= GLr(F )\(Ωr
F ×GLr(Af

F )/K).

For another g′ ∈GLr(Af
F ) with g′Kg′−1 ⊂GLr(Â), the diagram

SrF,gKg−1(C∞)
βg

∼
**TTTTTTTTTTTTTTTT

πg′g−1∼

��

GLr(F )\(Ωr
F ×GLr(Af

F )/K)

SrF,g′Kg′−1(C∞)

βg′

∼

44jjjjjjjjjjjjjjjj
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commutes. By the relation (2.1.8), the vertical arrow πg′g−1 is an isomorphism over F with
inverse πgg′−1 .

Therefore, we can well define SrF,K up to F -isomorphism as SrF,gKg−1 together with the rigid-
analytic isomorphism βg. Since we have seen in Step (iii) that SrF,gKg−1 is a normal affine variety
of dimension r − 1 defined over F , the same holds for SrF,K. 2

Proposition 2.1.3. Let C be a set of representatives in GLr(Af
F ) for GLr(F )\GLr(Af

F )/K,
and set Γg := gKg−1 ∩GLr(F ) for g ∈ C. Then the map∐

g∈C
Γg\Ωr

F −→ GLr(F )\(Ωr
F ×GLr(Af

F )/K)

[ω]g 7−→ [(ω, g)]

is a rigid-analytic isomorphism which maps for each g ∈ C the quotient space Γg\Ωr
F to the

C∞-valued points of an irreducible component Yg of SrF,K over C∞.

This theorem implies that the irreducible components of SrF,K over C∞ are disjoint and that
C is in bijective correspondence with the set of irreducible components of SrF,K over C∞ where
g ∈ C corresponds to the irreducible component Yg with Yg(C∞)∼= Γg\Ωr

F via the isomorphism
given in the theorem.

Proof. A direct calculation shows that the considered map is well defined and bijective. Since
GLr(Af

F )/K is viewed as a discrete set, the map is also an isomorphism of rigid-analytic spaces.
Therefore, it only remains to show that the quotient spaces Γg\Ωr

F , g ∈ C, are irreducible
as rigid-analytic spaces because the irreducible components of the rigid analytification of SrF,K
coincide with the rigid analytification of the irreducible components of SrF,K (see, e.g., [Con99,
Theorem 2.3.1]). Since SrF,K is a normal variety, and therefore its rigid analytification is a normal
rigid-analytic space, this is equivalent to the connectedness of the quotient spaces Γg\Ωr

F . The
latter follows because Ωr

F is a connected rigid-analytic space by [Koh11, Theorem 2.4]. 2

Definition 2.1.4. For a C∞-valued point p= [(ω, h)] ∈ S(C∞) of a Drinfeld modular variety
S = SrF,K with h ∈GLr(Af

F ) and ω ∈ Ωr
F associated to ω : F r∞ ↪→ C∞, the elements of

End(p) := {u ∈ C∞ : u · ω(F r)⊂ ω(F r)}

are called endomorphisms of p.

Note that End(p) is well defined because the homothety class of ω(F r)⊂ C∞ does not depend
on the chosen representatives ω and h.

Remark. If K =K(I) and p ∈ SrF,K(I)(C∞) is corresponding to the Drinfeld module ϕ over C∞
associated to the lattice Λ⊂ C∞, then ω(F r) = F · Λ, and therefore

End(p) = F · End(ϕ)

for the endomorphism ring End(ϕ)⊂ C∞ of ϕ.

Lemma 2.1.5. The set End(p) of endomorphisms of p is a field extension of F contained in C∞
of finite degree dividing r with only one place above ∞.

Proof. This follows from the argumentation in the proof of Proposition 4.7.17 in [Gos98] noting
that the endomorphism ring of a Drinfeld module in generic characteristic is commutative. 2
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Lemma 2.1.6. Each irreducible component X of a Drinfeld modular variety SrF,K over C∞
contains a point p ∈X(C∞) with End(p) = F .

Proof. Choose ω ∈ Ωr
F such that ω(F r) = F ⊕ F · ξ2 ⊕ · · · ⊕ F · ξr with ξ2, . . . , ξr ∈ C∞

algebraically independent over F . This is possible because C∞ as uncountable field is of infinite
transcendence degree over the countable field F .

Now choose h ∈GLr(Af
F ) such that p := [(ω, h)] ∈X(C∞) (use the description of the

irreducible components of SrF,K over C∞ given in Proposition 2.1.3). Since 1 ∈ ω(F r), we have
on the one hand End(p)⊆ ω(F r). On the other hand, all elements of End(p) are algebraic over
F because the extension End(p)/F is finite. However, by the choice of ξ2, . . . , ξr, every element
of ω(F r) which is algebraic over F lies in F . Hence, End(p) = F . 2

2.2 Rank one case

In the case r = 1 the variety SrF,K is zero-dimensional and defined over F for any compact open
subgroup K ⊂GL1(Af

F ) = (Af
F )∗. Hence, S1

F,K consists only of finitely many closed points and it
can be set-theoretically identified with S1

F,K(C∞). By Proposition 1.2.2, the closed points are all
defined over F sep and the absolute Galois group Gal(F sep/F ) acts on S1

F,K.

Drinfeld’s upper half-space Ω1
F just consists of one point. Therefore, we have

S1
F,K = F ∗\(Af

F )∗/K

as a set. Since (Af
F )∗ is abelian, this set can be identified with the abelian group (Af

F )∗/(F ∗ · K).

Since F ∗ · K is a closed subgroup of finite index of (Af
F )∗, by class field theory, there is a

finite abelian extension H/F totally split at ∞ such that the Artin map

ψH/F : (Af
F )∗ −→Gal(H/F )

induces an isomorphism (Af
F )∗/(F ∗ · K)∼= Gal(H/F ). In particular we have

|S1
F,K|= [H : F ].

Theorem 2.2.1. If ψH/F (g) = σ|H for a g ∈ (Af
F )∗ and a σ ∈Gal(F sep/F ), then the action of σ

on S1
F,K = F ∗\(Af

F )∗/K is given by multiplication with g−1.

Proof. This follows from Theorem 1 in § 8 of Drinfeld’s article [Dri74]. Note that in this article
the action of an element g ∈ (Af

F )∗ on S1
F,K = F ∗\(Af

F )∗/K is given by the morphism πg, which
is given by multiplication with g−1. 2

Corollary 2.2.2. The absolute Galois group Gal(F sep/F ) acts transitively on S1
F,K.

3. Morphisms and Drinfeld modular subvarieties

3.1 Projection morphisms and Hecke correspondences

Let SrF,K be a fixed Drinfeld modular variety. For each g ∈GLr(Af
F ) and all compact open

subgroups K′ ⊂ g−1Kg of GLr(Af
F ), we have a well-defined map

SrF,K′(C∞) → SrF,K(C∞)
[(ω, h)] 7→ [(ω, hg−1)].

(3.1.1)
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Theorem 3.1.1. This map is induced by a unique finite morphism πg : SrF,K′ → SrF,K defined
over F .

Proof. In the case that K and K′ are contained in GLr(Â), we already showed the existence of
a morphism πg which is described by (3.1.1) on C∞-valued points in Step (iv) of the proof
of Theorem 2.1.2. If K and K′ are arbitrary with K′ ⊂ g−1Kg, there is an s ∈GLr(Af

F ) with

sK′s−1 ⊂ sg−1Kgs−1 ⊂GLr(Â).

By our definition in the proof of Theorem 2.1.2, we have SrF,K′ = SrF,sK′s−1 , where under the
identifications of C∞-valued points introduced in Step (v) of the proof of Theorem 2.1.2

[(ω, h)] ∈ SrF,K′(C∞)←→ [(ω, hs−1)] ∈ SrF,sK′s−1(C∞).

Similarly, we have SrF,K = SrF,sg−1Kgs−1 with

[(ω, h)] ∈ SrF,K(C∞)←→ [(ω, hgs−1)] ∈ SrF,sg−1Kgs−1(C∞).

Using these identifications, we can define the morphism πg : SrF,K′ → SrF,K as π1 : SrF,sK′s−1 →
SrF,sg−1Kgs−1(C∞). Since the latter morphism π1 is given by [(ω, h)] 7→ [(ω, h)] on C∞-valued
points, by the above identifications πg is indeed described by (3.1.1) on C∞-valued points. So we
have shown the existence of the morphism πg defined over F . It is uniquely determined by (3.1.1)
because C∞ is algebraically closed.

It remains to show finiteness of the morphism πg. By the above definition of a general
morphism πg, it is enough to show it for morphisms of the form π1 : SrF,K′ → SrF,K with
K′ ⊂K ⊂GLr(Â).

We first assume that K′ =K(I) is a principal congruence subgroup. Then π1 is the canonical
projection

SrF,K(I)→ SrF,K(I)/K
by the construction in the proof of Theorem 2.1.2. Since K(I)⊂K acts trivially on SrF,K(I), the
quotient SrF,K(I)/K can be viewed as a quotient under the action of the finite group K/K(I).
Therefore, π1 is finite.

For general subgroups K′ ⊂K ⊂GLr(Â), choose a proper ideal I of A with K(I)⊂K′. Then
we have the following commutative diagram of projection maps.

SrF,K(I)

π1

��

π1

##HH
HH

HH
HH

H

SrF,K′

π1

{{vvv
vv

vv
vv

SrF,K

We have already shown that the morphisms π1 : SrF,K(I)→ SrF,K′ and π1 : SrF,K(I)→ SrF,K are finite.
Therefore π1 : SrF,K′ → SrF,K is also finite. 2

In the following, we call the morphisms πg projection morphisms of Drinfeld modular varieties.
In the case g = 1 we also call them canonical projections of Drinfeld modular varieties. For
two elements g, g′ ∈GLr(Af

F ) and two subgroups K′ ⊂ g−1Kg, K′′ ⊂ g′−1K′g′, by the description
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on C∞-valued points, we have

πgg′ = πg ◦ πg′ . (3.1.2)

Definition 3.1.2. A compact open subgroup K ⊂GLr(Af
F ) is called amply small if there is a

proper ideal I of A and a g ∈GLr(Af
F ) such that gKg−1 is contained in the principal congruence

subgroup K(I)⊂GLr(Â).

Proposition 3.1.3. Let K ⊂GLr(Af
F ) be amply small, g ∈GLr(Af

F ) and K′ ⊂ g−1Kg. Then
the finite morphism πg : SrF,K′ → SrF,K is étale of degree [g−1Kg :K′]. Furthermore, if K′ is a

normal subgroup of g−1Kg, it is an étale Galois cover over F with group g−1Kg/K′ where the
automorphism of the cover corresponding to a coset [x] ∈ g−1Kg/K′ is given by πx : SrF,K′ → SrF,K′ .

Remark. In fact, the condition that some conjugate of K is contained in a principal congruence
subgroup of GLr(Â) could be weakened. Indeed it is enough that there is a prime p such that
the image of some conjugate of K in GLr(A/p) is unipotent (cf. [Pin12, Proposition 1.5]).

Proof. Since K is amply small, there is an h ∈GLr(Af
F ) and a proper ideal I of A such that

h−1Kh⊂K(I)⊂GLr(Â). By the relation (3.1.2), we have the commutative diagram

SrF,h−1gK′g−1h

πg−1h

∼
//

π1

��

SrF,K′

πg

��
SrF,h−1Kh

πh
∼

// SrF,K

where the horizontal morphisms are isomorphisms with (πh)−1 = πh−1 and (πg−1h)−1 = πh−1g.
Therefore, we can assume without loss of generality that g = 1 and K′ ⊂K ⊂K(I)⊂GLr(Â).

Case (i). Let K′ be a principal congruence subgroup K(J) modulo a proper ideal J of A, i.e.,
K′ =K(J) �K ⊂K(I).

Then, by our definition in the proof of Theorem 2.1.2, π1 : SrF,K(J)→ SrF,K is the canonical
projection

SrF,K(J) −→ SrF,K(J)/K.
We show that K/K(J) acts freely on the closed points of SrF,K(J). This implies that this projection
is a finite étale morphism of degree [K :K(J)] (see, e.g., [Mum70, § II.7]). By the modular
interpretation of SrF,K(J) given in the proof of Theorem 2.1.2, it is enough to show that the
action of K/K(J) on isomorphism classes of Drinfeld A-modules over C∞ together with J-level
structure is free.

Indeed, assume that a coset [k] ∈ K/K(J) stabilizes the isomorphism class of the Drinfeld
module ϕ over C∞ associated to a lattice Λ⊂ C∞ together with J-level structure α : (J−1/A)r ∼→
J−1 · Λ/Λ. By our definition of the action of GLr(Â) on Drinfeld modules with J-level structure
in the proof of Theorem 2.1.2, this means that there is an automorphism c of ϕ under which
the J-level structure α passes into α ◦ k−1. Note that the restrictions of α and α ◦ k−1 to
(I−1/A)r coincide because k ∈ K(I). Rigidity of Drinfeld modules with I-level structure (see,
e.g., [Leh09, p. 30]) therefore implies that c is the identity. This is only possible if k ∈ K(J), i.e.
if [k] is trivial in K/K(J).

So we have shown that π1 : SrF,K(J)→ SrF,K = SrF,K(J)/K is an étale cover of degree [K :K(J)].
The group K/K(J) injects into the automorphism group over F of this cover via [k] 7→ πk.
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Since the degree of the cover is equal to [K :K(J)] and SrF,K(J) is F -irreducible, the automorphism
group (over F ) is therefore equal to K/K(J). Furthermore, the cover is Galois because this group
acts simply transitively on the geometric fibers.

Case (ii). Let K′ be an arbitrary normal subgroup of K, i.e., K′ �K ⊂K(I).
Choose a proper ideal J of A such that K(J)⊂K′ and note that the diagram

SrF,K(J)

π1

))SSSSSSSSSSSSSSS

π1

��

SrF,K′ = SrF,K(J)/K
′

π1

uukkkkkkkkkkkkkk

SrF,K = SrF,K(J)/K

(3.1.3)

commutes. Since K′ is normal in K, the action of K on SrF,K(J) induces an action of K/K′ on
the quotient SrF,K′ = SrF,K(J)/K

′. By the commutativity of the diagram, the variety SrF,K is the
quotient of SrF,K′ under this action. Furthermore, this action is free on the closed points of SrF,K′
because K/K(J) acts freely on the closed points of SrF,K(J). Therefore, we conclude by the same
arguments as above that π1 : SrF,K′ → SrF,K is an étale Galois cover of degree [K :K′] with group
K/K′ where the automorphism of the cover corresponding to a coset [k] ∈ K/K′ is given by πk.

Case (iii). Let K′ be an arbitrary subgroup of K, i.e., K′ ⊂K ⊂K(I).
As in Case (ii) above, choose a proper ideal J of A such that K(J)⊂K′. The diagram

above then also commutes and π1 : SrF,K(J)→ SrF,K′ and π1 : SrF,K(J)→ SrF,K are surjective étale
morphisms by Case (i). Furthermore, SrF,K(J) is a non-singular variety as explained in Step (i)
of the proof of Theorem 2.1.2.

Proposition 17.3.3.1 in EGA IV [Gro64] says that if X → Y is a flat, surjective morphism of
schemes and X is regular, then Y is also regular. Therefore, SrF,K and SrF,K′ are both non-singular
varieties.

By [Har77, Proposition 10.4], a morphism f :X → Y of non-singular varieties of the same
dimension over an algebraically closed field is étale if and only if, for every closed point x ∈X, the
induced map Tx→ Tf(x) on Zariski tangent spaces is an isomorphism. We can apply this criterion
because SrF,K(J), S

r
F,K and SrF,K′ are all non-singular. Since the morphisms π1 : SrF,K(J)→ SrF,K′

and π1 : SrF,K(J)→ SrF,K are étale, the commutativity of the above diagram therefore implies that
π1 : SrF,K′ → SrF,K is étale and finite of degree [K :K(J)]/[K′ :K(J)] = [K :K′]. 2

Corollary 3.1.4. If K ⊂GLr(Af
F ) is amply small, then the Drinfeld modular variety SrF,K is

non-singular.

Proof. See Case (iii) of the above proof of Proposition 3.1.3. 2

Definition 3.1.5 (Hecke correspondence). For g ∈GLr(Af
F ) and Kg :=K ∩ g−1Kg the diagram

SrF,Kg
π1

||xxxxxxxx πg

""FFFFFFFF

SrF,K SrF,K
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is called the Hecke correspondence Tg associated to g. For subvarieties Z ⊂ SrF,K we define

Tg(Z) := πg(π−1
1 (Z)).

Note that Tg(Z) is a subvariety of SrF,K for any subvariety Z ⊂ SrF,K because πg is finite and
hence proper. The integer

deg(Tg) := [K :K ∩ g−1Kg]
is called the degree of the Hecke correspondence Tg. If K is amply small, by Proposition 3.1.3,
it is equal to deg π1.

3.2 Inclusions of Drinfeld modular varieties
Let S = SrF,K be a given Drinfeld modular variety. We consider the following datum:

– a finite extension F ′ ⊂ C∞ of F of degree r/r′ for some integer r′ > 1 with only one place∞′
lying over ∞; and

– an Af
F -linear isomorphism b : (Af

F )r ∼→ (Af
F ′)

r′ .

Note that the integral closure A′ of A in F ′ is equal to the ring of elements of F ′ regular away
from ∞′ because ∞′ is the only place of F ′ lying over ∞.

The above datum defines a subgroup

K′ = (bKb−1) ∩GLr′(Af
F ′)

of GLr′(Af
F ′).

Lemma 3.2.1. The subgroup K′ is compact and open in GLr′(Af
F ′). If K is amply small, it is

also amply small.

Proof. We fix an Af
F -linear isomorphism b′ : (Af

F )r ∼→ (Af
F ′)

r′ with b′(Âr) = Â′
r′

and set g :=
b′−1 ◦ b ∈GLr(Af

F ). Since K is compact and open in GLr(Af
F ), there is a proper ideal I of A

such that the principal congruence subgroup K(I) is contained in gKg−1 with finite index.
Therefore, K′ = (b′gKg−1b′−1) ∩GLr′(Af

F ′) contains the subgroup K′′ = (b′K(I)b′−1) ∩GLr′(Af
F ′)

with finite index. The latter subgroup exactly consists of the elements of GLr′(Af
F ′) which

stabilize b′(Âr) = Â′
r′

and induce the identity on the quotient Â′
r′

/I · Â′
r′ ∼= (A′/IA′)r

′
. Hence,

K′′ is the principal congruence subgroup modulo IA′ and K′ is compact and open in GLr′(Af
F ′).

If K is amply small, there is a proper ideal I of A and an h ∈GLr(Af
F ) such that

hKh−1 ⊂K(I). Therefore K′ is contained in the subgroup

(bh−1K(I)hb−1) ∩GLr′(Af
F ′)

of GLr′(Af
F ′). This subgroup exactly consists of all elements of GLr′(Af

F ′) which stabilize
Λ := bh−1(Âr)⊂ (Af

F ′)
r′ and induce the identity on Λ/I · Λ. Since these elements are Af

F ′-linear,
they also stabilize the Â′-lattice Λ′ := Â′ · Λ and induce the identity on Λ′/I · Λ′. Since Λ′ is a
finitely generated Â′-submodule of (Af

F ′)
r′ with Af

F ′ · Λ
′ = (Af

F ′)
r′ and Â′ is a direct product of

principal ideal domains, Λ′ is a free Â′-module of rank r′. Hence, there is a g′ ∈GLr′(Af
F ′) such

that Λ′ = g′Â′
r′

and

K′ ⊂ (bh−1K(I)hb−1) ∩GLr′(Af
F ′)⊂ g

′K(I ′)g′−1

for I ′ := IA′. This implies that K′ is amply small. 2
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We choose an isomorphism

ϕ : F r ∼−→ F ′
r′

of vector spaces over F . By scalar extension to F∞ and Af
F it induces isomorphisms

F r∞
ϕ−→ F ′r

′

∞′

(Af
F )r

ϕ−→ (Af
F ′)

r′

which we also denote by ϕ. We now define a morphism from the lower-rank Drinfeld modular
variety S′ = Sr

′
F ′,K′ into S.

Theorem 3.2.2. There is a finite morphism ιF
′

F,b : S′→ S defined over F ′ which on C∞-valued
points is given by the injective map

S′(C∞) −→ S(C∞)
[(ω′, h′)] 7−→ [(ω′ ◦ ϕ, ϕ−1 ◦ h′ ◦ b)], (3.2.1)

where ω′ ∈ Ωr′
F ′ and h′ ∈GLr′(Af

F ′). The morphism ιF
′

F,b is independent of the choice of ϕ : F r ∼−→
F ′r

′
.

Proof. Case (i). We first consider the case where b(Âr) = Â′
r′

and K =K(I) is a principal
congruence subgroup modulo a proper ideal I of A. In this case, K′ = (bKb−1) ∩GLr′(Af

F ′) is the
principal congruence subgroup modulo I ′ := IA′ (see the proof of Lemma 3.2.1) and b induces
an A-linear isomorphism (I−1/A)r ∼−→ (I ′−1/A′)r

′
, which we again denote by b. Therefore, for a

Drinfeld A′-module (L, ψ) of rank r′ over an F ′-scheme with I ′-level structure

α : (I ′−1/A′)r
′ ∼−→LI′ ,

the restriction (L, ψ|A) to A⊂A′ is a Drinfeld A-module of rank r = r′ · [F ′/F ] over S and the
composition

(I−1/A)r b−→ (I ′−1/A′)r
′ α−→LI

is an I-level structure on (L, ψ|A) (note that the I-torsion subgroup scheme LI of L coincides
with the I ′-torsion subgroup scheme LI′ because I generates I ′ as an ideal of A′). The assignment

(L, ψ, α) 7−→ (L, ψ|A, α ◦ b) (3.2.2)

defines a morphism of functors from Fr′F ′,I′ to the restriction of FrF,I to the subcategory of F ′-
schemes (see Step (i) of the proof of Theorem 2.1.2 for the definition of these functors). Therefore,
we have a morphism

ιF
′

F,b : Sr
′

F ′,K(I′) −→ SrF,K(I)

defined over F ′. By [Bre12, Lemma 3.1 and Proposition 3.2], it is a proper morphism which is
injective on C∞-valued points. Since Sr

′

F ′,K(I′) and SrF,K(I) are both affine schemes of finite type

over C∞, the morphism ιF
′

F,b is therefore a proper morphism of finite presentation with finite
fibers. This implies that ιF

′
F,b is finite by Theorem 8.11.1 of EGA IV [Gro66].

Using

ω′(F ′r
′
∩ h′Â′

r′

) = (ω′ ◦ ϕ)(F r ∩ (ϕ−1 ◦ h′ ◦ b)Âr)
one sees that ιF

′
F,b is given by (3.2.1) on C∞-valued points.
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Case (ii). For b : (Af
F )r ∼→ (Af

F ′)
r′ and K ⊂GLr(Af

F ) arbitrary, we choose:

– a g′ ∈GLr′(Af
F ′) with g′K′g′−1 ⊂GLr′(Â′);

– an Af
F -linear isomorphism b′ : (Af

F )r ∼→ (Af
F ′)

r′ with b′(Âr) = Â′
r′

;

– a proper ideal I of A with K(I)⊂ g−1Kg, where g := b−1 ◦ g′−1 ◦ b′ ∈GLr(Af
F ).

Then g′ ◦ b= b′ ◦ g−1, hence

g′K′g′−1 = (b′g−1Kgb′−1) ∩GLr′(Af
F ′)⊃ (b′K(I)b′−1) ∩GLr′(Af

F ′) =K(IA′),

and by Case (i) and Theorem 3.1.1, the composition of morphisms

Sr
′

F ′,K(IA′)

ιF
′

F,b′−→ SrF,K(I)

πg−→ SrF,K

is defined and finite. Because

(g′K′g′−1)b′g−1 = b′g−1(b−1K′b)⊂ b′g−1K,

this composition is invariant under the action of g′K′g′−1 on Sr
′

F ′,K(IA′). Hence, it induces a finite

morphism f : Sr
′

F ′,g′K′g′−1 → SrF,K such that the diagram

Sr
′

F ′,K(IA′)

ιF
′

F,b′ //

π1

��

SrF,K(I)

πg

��
SF ′,g′K′g′−1

f // SrF,K

commutes. We can now define ιF
′

F,b := f ◦ πg′ , where πg′ : Sr
′
F ′,K′ → Sr

′

F ′,g′K′g′−1 . For [(ω′, h′)] ∈
Sr
′
F ′,K′(C∞) we indeed have

ιF
′

F,b([(ω′, h
′)]) = [(ω′ ◦ ϕ, ϕ−1 ◦ h′g′−1 ◦ b′ ◦ g−1)] = [(ω′ ◦ ϕ, ϕ−1 ◦ h′ ◦ b)],

independently of the choice of ϕ : F r ∼→ F ′r
′

and the representative (ω′, h′) ∈ Ωr′
F ′ ×GLr′(Ar′

F ′).
This also shows that our definition of ιF

′
F,b is independent of the choice of g′, b′ and I.

It remains only to prove that ιF
′

F,b is injective on C∞-valued points, i.e., that the map (3.2.1)
is injective. For this, consider two elements [(ω′1, h

′
1)], [(ω′2, h

′
2)] of Sr

′
F ′,K′(C∞) with ω′1, ω

′
2 ∈ Ωr′

F ′

associated to ω′1, ω
′
2 : F ′∞′

r′ ↪→ C∞ and h′1, h
′
2 ∈GLr′(Af

F ′) which are mapped to the same element
of S(C∞). This means that there exist T ∈GLr(F ) and k ∈ K such that:

(i) ω′1 ◦ ϕ ◦ T−1 = ω′2 ◦ ϕ;

(ii) T (ϕ−1 ◦ h′1 ◦ b)k = ϕ−1 ◦ h′2 ◦ b.

By (i), there is a ρ ∈ C∗∞ such that the diagram

F r∞
ϕ

∼
//

T

��

F ′∞′
r′ � � ω′1 // C∞

ρ

��
F r∞

ϕ

∼
// F ′∞′

r′ � � ω′2 // C∞
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commutes. Since the maps ω′1, ω
′
2, ρ are injective and F ′-linear, this implies that the F -linear

automorphism T ′ := ϕ ◦ T ◦ ϕ−1 of F ′r
′

is also F ′-linear and lies in GLr′(F ′). Thus, we have
T ′ · ω′1 = ω′2, i.e., ω′1 and ω′2 lie in the same GLr′(F ′)-orbit.

Equation (ii) implies that T ′h′1(b ◦ k ◦ b−1) = h′2 in GLr′(Af
F ′). Since h′1, h

′
2 and T ′ all lie in

GLr′(Af
F ′), we conclude that

b ◦ k ◦ b−1 ∈ K′ = (bKb−1) ∩GLr′(Af
F ′),

i.e., [(ω′1, h
′
1)] = [(ω′2, h

′
2)] in Sr

′
F ′,K′(C∞). 2

Since the morphism ιF
′

F,b : S′→ S is injective on C∞-valued points, we call it an inclusion of

Drinfeld modular varieties (by a slight abuse of terminology). If K ⊂GLr(Af
F ) is amply small

(in the sense of Definition 3.1.2), we can show that it is in fact a closed immersion.

Proposition 3.2.3. Let ιF
′

F,b : Sr
′
F ′,K′ → SrF,K be an inclusion of Drinfeld modular varieties with

K ⊂GLr(Af
F ) amply small. Then ιF

′
F,b is a closed immersion of varieties.

Before giving the proof of Proposition 3.2.3, we summarize the description of the tangent
spaces at the closed points of a Drinfeld modular variety SrF,K with K =K(I) for a proper ideal
I of A given in [Gek90].

We use for a ∈A the notation

deg a := logq(|A/(a)|)

and denote by C∞{{τ}} the ring of formal non-commutative power series in the variable τ with
coefficients in C∞ and the commutator rule τλ= λqτ for λ ∈ C∞.

Definition 3.2.4. Let ϕ :A→ C∞{τ} be a Drinfeld module over C∞ of rank r. An Fq-linear
map η :A→ τC∞{τ} is called a derivation with respect to ϕ if, for all a, b ∈A, the derivation
rule

ηab = aηb + ηa ◦ ϕb
is satisfied. Such a derivation is called reduced, respectively strictly reduced, if it satisfies degτ ηa 6
r · deg a, respectively degτ ηa < r · deg a, for all a ∈A. The space of reduced, respectively
strictly reduced, derivations A→ τC∞{τ} with respect to ϕ is denoted by Dr(ϕ),
respectively Dsr(ϕ).

Theorem 3.2.5. Let x be a C∞-valued point of SrF,K(I) corresponding to a Drinfeld A-module
ϕ with I-level structure α. Then there is a natural isomorphism

Tx(SrF,K(I))
∼−→Dsr(ϕ) (3.2.3)

of vector spaces over C∞.

Proof. This follows from the discussion in the in proof of Theorem 6.11 in [Gek90] and the
lemmas before this proof. 2

The isomorphism (3.2.3) is given as follows: a tangent vector ξ ∈ Tx(SrF,K(I)) is an
element of SrF,K(I)(C∞[ε]/(ε2)) which projects to x ∈ SrF,K(I)(C∞) under the canonical
projection C∞[ε]/(ε2)→ C∞. It corresponds to the isomorphism class of a Drinfeld A-
module over C∞[ε]/(ε2) with I-level structure which projects to (ϕ, α) under the canonical
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projection C∞[ε]/(ε2)→ C∞. There is a unique Drinfeld A-module ϕ̃ in this isomorphism class
such that, for all a ∈A,

ϕ̃a = ϕa + ε · ηa
where a 7→ ηa is a strictly reduced derivation with respect to ϕ. The tangent vector ξ is mapped
to this strictly reduced derivation under (3.2.3).

Theorem 3.2.6. Let ϕ be the Drinfeld A-module over C∞ associated to an A-lattice Λ⊂ C∞.
Then there is a natural isomorphism

Dr(ϕ) ∼−→HomA(Λ, C∞). (3.2.4)

The C∞-linear subspace Dsr(ϕ)⊂Dr(ϕ) is mapped to a subspace of HomA(Λ, C∞) which is a
complement of C∞ · id, where id : Λ ↪→ C∞ is the canonical inclusion.

Proof. See [Gek89, Theorems 5.14 and 6.10]. 2

The isomorphism (3.2.4) is called the de Rham isomorphism and can be described as follows.
Let η be a reduced derivation with respect to ϕ. Then, for all non-constant a ∈A, there is a
unique solution Fη ∈ C∞{{τ}} satisfying the difference equation

Fη(az)− aFη(z) = ηa(eΛ(z)) (3.2.5)

where

eΛ(z) = z ·
∏

06=λ∈Λ

(1− z/λ)

denotes the exponential function associated to the lattice Λ. This solution is independent of
the choice of a ∈A and defines an entire function C∞→ C∞ which restricts to an A-linear map
Λ→ C∞. The reduced derivation η is mapped to Fη|Λ under (3.2.4).

Proof of Proposition 3.2.3. We use the following criterion given in [GW10, Proposition 12.94].

A proper morphism f :X → Y of varieties over an algebraically closed field K is a closed
immersion if and only if the map X(K)→ Y (K) induced by f is injective and, for all x ∈X(K),
the induced map on Zariski tangent spaces Tx(X)→ Tf(x)(Y ) is injective.

Since finite morphisms are proper, by Theorem 3.2.2 we already know that ιF
′

F,b is proper and
injective on C∞-valued points. We therefore only have to show that, for all x ∈ Sr′F ′,K′(C∞), the
induced map on Zariski tangent spaces ιF

′
F,b∗ : Tx(Sr

′
F ′,K′)→ T

ιF
′

F,b(x)
(SrF,K) is injective.

Case (i). As in the proof of Theorem 3.2.2, we first consider the case where b(Âr) = Â′
r′

and
K =K(I) is a principal congruence subgroup modulo a proper ideal I of A. In this case, we
have K′ =K(I ′) with I ′ := IA′. We can therefore use the description of the tangent spaces given
above.

Let x ∈ Sr′F ′,K(I′)(C∞) be a point corresponding to the Drinfeld A′-module ϕ associated to

anA′-lattice Λ⊂ C∞ of rank r′ with I ′-level structure. Since we defined ιF
′

F,b by restricting Drinfeld
A′-modules to Drinfeld A-modules, the point ιF

′
F,b(x) ∈ SrF,K(C∞) corresponds to the Drinfeld

A-module ϕ|A associated to the same Λ⊂ C∞ considered as A-lattice of rank r with
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some I-level structure. We can therefore consider the following diagram

Tx(Sr
′

F ′,K(I′))
(3.2.3)

∼
//

ιF
′

F,b∗��

Dsr(ϕ)

��

� � (3.2.4)// HomA′(Λ, C∞)� _

��
T
ιF
′

F,b(x)
(SrF,K) (3.2.3)

∼
// Dsr(ϕ|A) � � (3.2.4)// HomA(Λ, C∞)

where the vertical arrow in the middle denotes the restriction of derivations from A′ to A and the
one at the right the canonical inclusion. The left square of the diagram commutes by the definition
of (3.2.3) because ιF

′
F,b∗ has the modular interpretation of restricting Drinfeld A′-modules over

C∞[ε]/(ε2) to A. The right square also commutes because the unique solution of (3.2.5) is
independent of a ∈A′ and Λ as an A′-lattice has the same exponential function as Λ as an
A-lattice.

Hence, the diagram commutes and, since the right vertical arrow is an injective map, also
the other two are injective maps. In particular, the induced map ιF

′
F,b∗ between tangent spaces is

injective.

Case (ii). Let b : (Af
F )r ∼→ (Af

F ′)
r′ be arbitrary and K ⊂GLr(Af

F ) be an arbitrary amply small
subgroup. Then, by the construction in the proof of Theorem 3.2.2, there is:

– a g′ ∈GLr′(Af
F ′) with g′K′g′−1 ⊂GLr′(Â′);

– an Af
F -linear isomorphism b′ : (Af

F )r ∼→ (Af
F ′)

r′ with b′(Âr) = Â′
r′

;

– a proper ideal I of A with K(I)⊂ g−1Kg, where g := b−1 ◦ g′−1 ◦ b′ ∈GLr(Af
F )

such that the diagram

Sr
′

F ′,K(I′)

ιF
′

F,b′ //

πg′−1

��

SrF,K(I)

πg

��
Sr
′
F ′,K′

ιF
′

F,b // SrF,K

with I ′ := IA′ commutes. By Proposition 3.1.3 and Corollary 3.1.4, the projection maps πg′−1

and πg in this diagram are étale morphisms between non-singular varieties because K′ and K
are amply small. Hence, they induce isomorphisms on tangent spaces of closed points [Har77,
Proposition 10.4]. By Case (i), the upper horizontal arrow ιF

′
F,b′ induces injections on tangent

spaces of closed points. Therefore, the commutativity of the diagram implies that, for all
x ∈ Sr′F ′,K′(C∞), the induced map ιF

′
F,b∗ : Tx(Sr

′
F ′,K′)→ T

ιF
′

F,b(x)
(SrF,K) is injective. 2

Proposition 3.2.7. Let ιF
′

F,b1
: Sr

′
F ′,K′ → S and ιF

′′
F,b2

: Sr
′′
F ′′,K′′ → S be two inclusions of Drinfeld

modular varieties with F ′′ ⊂ F ′. Then for an Af
F ′′-linear isomorphism c : (Af

F ′′)
r′′ → (Af

F ′)
r′ with

b1 = c ◦ b2 ◦ k (3.2.6)
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for some k ∈ K, the diagram

Sr
′
F ′,K′

ιF
′

F ′′,c

��

ιF
′

F,b1

""EEEEEEEE

S

Sr
′′
F ′′,K′′

ιF
′′

F,b2

<<yyyyyyyy

commutes.

Proof. Note that we have

K′ = (b1Kb−1
1 ) ∩GLr′(Af

F ′) = (cK′′c−1) ∩GLr′(Af
F ′)

by the definition of K′ and K′′, and (3.2.6). Therefore, there is an inclusion ιF
′

F ′′,c : Sr
′
F ′,K′ → Sr

′′
F ′′,K′′ .

The commutativity of the diagram follows by a direct calculation on C∞-valued points
using (3.2.1). 2

3.3 Drinfeld modular subvarieties
The image of an inclusion ιF

′
F,b : S′→ S of Drinfeld modular varieties is a subvariety of S because

finite morphisms are proper.

Definition 3.3.1. A subvariety of S of the form X = ιF
′

F,b(S
′) for an inclusion ιF

′
F,b is called a

Drinfeld modular subvariety of S. An irreducible component of a Drinfeld modular subvariety
over C∞ is called a special subvariety and a special subvariety of dimension 0 a special point.

Lemma 3.3.2. Let K̃ ⊂ K be an open subgroup and π1 : Sr
F,K̃→ SrF,K the corresponding

canonical projection. Then the following hold.

(i) For each Drinfeld modular subvariety X ′ ⊂ Sr
F,K̃, the image π1(X ′) is a Drinfeld modular

subvariety of SrF,K.

(ii) For each Drinfeld modular subvariety X = ιF
′

F,b(S
r′
F ′,K′)⊂ SrF,K, the preimage π−1

1 (X) is a
finite union of Drinfeld modular subvarieties of Sr

F,K̃.

Proof. For part (i), assume that X ′ is the image of the inclusion ι̃F
′

F,b : Sr
′

F ′,K̃′ → Sr
F,K̃ associated

to the datum (F ′, b) and consider the inclusion morphism ιF
′

F,b : Sr
′
F ′,K′ → SrF,K associated to the

same datum. The diagram

Sr
′

F ′,K̃′

π′1
��

ι̃F
′

F,b // Sr
F,K̃

π1

��
Sr
′
F ′,K′

ιF
′

F,b // SrF,K

with π′1 and π1 the respective canonical projections commutes by definition of the inclusion
morphisms. Hence,

π1(X ′) = ιF
′

F,b(π
′
1(Sr

′

F ′,K̃′)) = ιF
′

F,b(S
r′
F ′,K′)

is a Drinfeld modular subvariety of SrF,K.
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For part (ii), choose a set of representatives k1, . . . , kl ∈ K for the left cosets K/K̃ and consider
the inclusion morphisms ιF

′
F,b◦ki : Sr

′

F ′,K̃′i
→ Sr

F,K̃ associated to (F ′, b ◦ ki) for i= 1, . . . , l. By the

definition of the inclusion morphisms we have

π−1
1 (X) =

l⋃
i=1

ιF
′

F,b◦ki(S
r′

F ′,K̃′i
),

and hence π−1
1 (X) is a finite union of Drinfeld modular subvarieties of Sr

F,K̃. 2

Lemma 3.3.3. For an inclusion ιF
′

F,b : S′→ S, we have

End(p′) = End(ιF
′

F,b(p
′))

for all p′ ∈ S′(C∞).

Remark. This is an equality of subfields of C∞ and not just an abstract isomorphism of fields.

Proof. This follows from our definitions because, for p′ = [(ω′, h′)] ∈ S′(C∞), we have End(p′) =
{u ∈ C∞ : u · ω′(F ′r

′
)⊂ ω′(F ′r

′
)} and End(ιF

′
F,b(p

′)) = {u ∈ C∞ : u · (ω′ ◦ ϕ)(F r)⊂ (ω′ ◦ ϕ)(F r)}
for a chosen F -isomorphism ϕ : F r ∼→ F ′r

′
. 2

Now we give a criterion under which two Drinfeld modular subvarieties are contained in each
other.

Proposition 3.3.4. Let X ′ = ιF
′

F,b1
(Sr

′
F ′,K′) and X ′′ = ιF

′′
F,b2

(Sr
′′
F ′′,K′′) be two Drinfeld modular

subvarieties of S. The following statements are equivalent.

(i) The inclusion X ′ ⊂X ′′ holds.

(ii) There is an irreducible component of X ′ over C∞ which is contained in X ′′.

(iii) The inclusion F ′′ ⊂ F ′ holds and there exist k ∈ K and an Af
F ′′-linear isomorphism

c : (Af
F ′′)

r′′ → (Af
F ′)

r′ such that b1 = c ◦ b2 ◦ k.

Proof. We write S′ = Sr
′
F ′,K′ and S′′ = Sr

′′
F ′′,K′′ .

The implication (i) ⇒ (ii) is trivial and (iii) ⇒ (i) follows from Proposition 3.2.7.
For (ii) ⇒ (iii) assume that ιF

′
F,b1

(Y ′)⊂ ιF ′′F,b2(S′′) for an irreducible component Y ′ of S′

over C∞. By Lemma 2.1.6 there is a p′ = [(ω′, h′)] ∈ Y ′(C∞) with End(p′) = F ′. Now let
ιF
′

F,b1
(p′) = ιF

′′
F,b2

(p′′) for a suitable p′′ = [(ω′′, h′′)] ∈ S′′(C∞). Lemmas 2.1.5 and 3.3.3 yield

F ′ = End(p′) = End(ιF
′

F,b1(p′)) = End(ιF
′′

F,b2(p′′)) = End(p′′)⊃ F ′′.

Because ιF
′

F,b1
(p′) = ιF

′′
F,b2

(p′′), we have

[(ω′ ◦ ϕ1, ϕ
−1
1 ◦ h

′ ◦ b1)] = [(ω′′ ◦ ϕ2, ϕ
−1
2 ◦ h

′′ ◦ b2)]

for F -linear isomorphisms ϕ1 : F r ∼→ F ′r
′

and ϕ2 : F r ∼→ F ′′r
′′
. Hence, there are T ∈GLr(F ) and

k ∈ K such that:

(1) ω′ ◦ ϕ1 = ω′′ ◦ ϕ2 ◦ T−1;

(2) ϕ−1
1 ◦ h′ ◦ b1 = T (ϕ−1

2 ◦ h′′ ◦ b2)k.

Because of (1) and F ′′ ⊂ F ′, one concludes as in the proof of Theorem 3.2.2 that the F -linear
isomorphism ψ := ϕ1 ◦ T ◦ ϕ−1

2 : F ′′r
′′ → F ′r

′
is F ′′-linear.
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We set c := b1 ◦ k−1 ◦ b−1
2 : (Af

F ′′)
r′′ → (Af

F ′)
r′ . By (2) this is equal to

c= h′−1 ◦ ϕ1 ◦ T ◦ ϕ−1
2 ◦ h

′′ = h′−1 ◦ ψ ◦ h′′.

Since ψ is F ′′-linear and F ′′ ⊂ F ′ we conclude that c is an Af
F ′′-linear isomorphism. Furthermore,

we have b1 = c ◦ b2 ◦ k by the definition of c, which shows part (iii) of the proposition. 2

Corollary 3.3.5. Let X ′ = ιF
′′

F,b′(S
r′′
F ′′,K′′) be a fixed Drinfeld modular subvariety of S. Then

the assignment

X 7−→ ιF
′′

F,b′(X)

is a bijection from the set of Drinfeld modular subvarieties of Sr
′′
F ′′,K′′ to the set of Drinfeld

modular subvarieties of S contained in X ′.

Proof. Since ιF
′′

F,b′ is injective on C∞-valued points, it is enough to show the following.

(i) The variety ιF
′′

F,b′(X) is a Drinfeld modular subvariety of S for each Drinfeld modular
subvariety X of Sr

′′
F ′′,K′′ .

(ii) The variety (ιF
′′

F,b′)
−1(X) is a Drinfeld modular subvariety of Sr

′′
F ′′,K′′ for every Drinfeld

modular subvariety X ⊂X ′ of S.
For (i), let X = ιF

′
F ′′,c(S

r′
F ′,K′) be a Drinfeld modular subvariety of Sr

′′
F ′′,K′′ . The map

b := c ◦ b′ : (Af
F )r→ (Af

F ′)
r′

is an Af
F -linear isomorphism, hence we can apply Proposition 3.2.7 to conclude that

ιF
′′

F,b′(X) = ιF
′′

F,b′(ι
F ′
F ′′,c(S

r′
F ′,K′)) = ιF

′
F,b(S

r′
F ′,K′)

is a Drinfeld modular subvariety of SrF,K.

For (ii), let X = ιF
′

F,b(S
r′
F ′,K′) be a Drinfeld modular subvariety of S which is contained

in X ′. By Proposition 3.3.4, we have F ⊂ F ′′ ⊂ F ′ and there are an Af
F ′′-linear isomorphism

c : (Af
F ′′)

r′′ ∼→ (Af
F ′)

r′ and a k ∈ K such that

b= c ◦ b′ ◦ k.
By Proposition 3.2.7, we have

X = ιF
′

F,b(S
r′
F ′,K′) = ιF

′′
F,b′(ι

F ′
F ′′,c(S

r′
F ′,K′)).

Since ιF
′′

F,b′ is injective on C∞-valued points, this implies that (ιF
′′

F,b′)
−1(X) = ιF

′
F ′′,c(S

r′
F ′,K′) is a

Drinfeld modular subvariety of Sr
′′
F ′′,K′′ . 2

From Proposition 3.3.4, the following criterion for equality of Drinfeld modular subvarieties
follows.

Corollary 3.3.6. Let X ′ = ιF
′

F,b1
(Sr

′
F ′,K′) and X ′′ = ιF

′′
F,b2

(Sr
′′
F ′′,K′′) be two Drinfeld modular

subvarieties of S. The following statements are equivalent.

(i) The equality X ′ =X ′′ holds.

(ii) The varieties X ′ and X ′′ have a common irreducible component over C∞.

(iii) The equality F ′ = F ′′ holds (hence r′ = r′′) and there exist s ∈GLr′(Af
F ′) and k ∈ K such

that b1 = s ◦ b2 ◦ k.

In particular, each special subvariety of S is an irreducible component over C∞ of a unique
Drinfeld modular subvariety of S.
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Corollary 3.3.7. For a Drinfeld modular subvariety X ′ ⊂ S there is a unique extension
F ′ ⊂ C∞ of F and a unique conjugacy class C of compact open subgroups of GLr′(Af

F ′) with

r′ = r/[F ′/F ] such that F ′′ = F ′ and K′′ ∈ C for all inclusions ιF
′′

F,c : Sr
′′
F ′′,K′′ → S with image X ′.

Proof. By definition, X ′ is the image of some inclusion ιF
′

F,b : Sr
′
F ′,K′ → S. For any other inclusion

ιF
′′

F,c : Sr
′′
F ′′,K′′ → S with imageX ′, Corollary 3.3.6 implies that F ′′ = F ′ and b= s ◦ c ◦ k for suitable

s ∈GLr′(Af
F ′) and k ∈ K. The latter implies K′ = sK′′s−1, i.e., K′′ lies in the conjugacy class of

K′ in GLr′(Af
F ′). 2

The preceding corollary allows us to make the following definition.

Definition 3.3.8. For a Drinfeld modular subvariety X ′ = ιF
′

F,b(S
r′
F ′,K′) of S, the extension

F ′ ⊂ C∞ of F is called the reflex field of X ′, and the index of K′ in a maximal compact subgroup
of GLr′(Af

F ′) is called the index of X ′ and is denoted by i(X ′). Furthermore, the product

D(X ′) := |Cl(F ′)| · i(X ′),

where Cl(F ′) denotes the class group of A′ ⊂ F ′, is called the predegree of X ′.

By Corollary 3.3.6, each special subvariety of S is an irreducible component of a unique Drinfeld
modular subvariety of S. This allows us to define the reflex field of a special subvariety.

Definition 3.3.9. For a special subvariety V of S which is an irreducible component of a
Drinfeld modular subvariety X ′ of S, the reflex field of V is defined to be the reflex field of X ′.

If K = GLr(Â), Corollary 3.3.6 immediately implies the following characterization of the set
of Drinfeld modular subvarieties of S with a given reflex field F ′.

Corollary 3.3.10. Assume that S = SrF,K with K = GLr(Â) and let F ′ ⊂ C∞ be an
extension of F of degree r/r′ for some integer r′ > 1 with only one place ∞′ lying over ∞. Then
the set of Drinfeld modular subvarieties of S with reflex field F ′ is in bijective correspondence
with the set of orbits of the action of GLr′(Af

F ′) on the set of free Â-submodules of rank r of

(Af
F ′)

r′ via the assignment

ιF
′

F,b(S
′) 7−→GLr′(Af

F ′) · b(Â
r).

Proposition 3.3.11. The natural action of the absolute Galois group Gal(F sep/F ) on the
set of subvarieties of S = SrF,K which are defined over F restricts to an action on the set of
Drinfeld modular subvarieties of S. For σ ∈Gal(F sep/F ) and a Drinfeld modular subvariety

X = ιF
′

F,b(S
r′
F ′,K′), the Galois conjugate σ(X) is given by ι

σ(F ′)
F,σ◦b(S

r′

σ(F ′),σ◦K′◦σ−1).

Remark. In the above formula for the Galois conjugate σ(X), the Af
F -linear isomorphism

(Af
F ′)

r′ ∼→ (Af
σ(F ′))

r′ obtained by tensoring σ : F ′ ∼→ σ(F ′) with (Af
F )r

′
over F is also denoted

by σ.

Proof. As explained in § 1.1, we identify Gal(F sep/F ) with AutF (F ) via the unique extension of
the elements of Gal(F sep/F ) to F .

Case (i). We first consider the case where S = SrF,K(I) for a proper ideal I of A and

X = ιF
′

F,b(S
r′
F ′,K′)
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for an inclusion morphism ιF
′

F,b associated to a datum (F ′, b) satisfying b(Âr) = Â′
r′

with A′ the
integral closure of A in F ′. As explained in the proof of Theorem 3.2.2, in this case we have
K′ =K(I ′) with I ′ = IA′ and ιF

′
F,b is defined by the morphism (3.2.2) of functors from Fr′F ′,I′ to

FrF,I (restricted to the subcategory of F ′-schemes) using the modular interpretation of Sr
′

F ′,K(I′)
and SrF,K(I).

Note that, for any Drinfeld A′-module ϕ :A′→ F{τ} over F ,

ϕσ :
σ(A′) −→ F{τ}
σ(a′) 7−→ (ϕa′)σ

where (ϕa′)σ is obtained from ϕa′ by applying σ to its coefficients, is a Drinfeld σ(A′)-module
over F . Furthermore, for any I ′-level structure α : (I ′−1/A′)r

′ ∼→ ϕI′ ⊂ F on ϕ, the composition

(σ(I ′)−1/σ(A′))r
′ σ−1

−→ (I ′−1/A′)r
′ α−→ ϕI′

σ−→ (ϕσ)σ(I′)

is a σ(I ′)-level structure on ϕσ. Using the modular interpretation of Sr
′

F ′,K(I′) and Sr
′

σ(F ′),K(σ(I′)),
the assignment

(ϕ, α) 7−→ (ϕσ, σ ◦ α ◦ σ−1)
defines a map gσ : Sr

′

F ′,K(I′)(F )→ Sr
′

σ(F ′),K(σ(I′))(F ). By construction, the map gσ is bijective with
inverse gσ−1 .

Note that we have (σ ◦ b)(Âr) = σ̂(A′)
r′

. Hence the datum (σ(F ′), σ ◦ b) defines an inclusion
map

ι
σ(F ′)
F,σ◦b : Sr

′

σ(F ′),K(σ(I′)) −→ SrF,K(I),

which is defined by a morphism of functors from Fr′σ(F ′),σ(I′) to FrF,I (restricted to the subcategory
of σ(F ′)-schemes). A straightforward verification shows that the diagram

Sr
′

F ′,K(I′)(F )
ιF
′

F,b //

gσ

��

SrF,K(I)(F )

σ

��
Sr
′

σ(F ′),K(σ(I′))(F )
ι
σ(F ′)
F,σ◦b // SrF,K(I)(F )

commutes, where the right vertical map is given by the natural action of σ on the closed points
of SrF,K(I) defined over F .

Since, for any subvariety Y ⊂ S defined over F , the set Y (F ) of F -valued points (viewed as a
subset of the closed points of Y ⊂ S) is Zariski dense in Y (see, e.g., [Bor91, Corollary AG. 13.3]),
the commutativity of the above diagram implies that

σ(X) = ι
σ(F ′)
F,σ◦b(gσ(Sr

′

F ′,K(I′))) = ι
σ(F ′)
F,σ◦b(S

r′

σ(F ′),K(σ(I′)))

for X = ιF
′

F,b(S
r′

F ′,K(I′)). Hence, σ(X) is a Drinfeld modular subvariety of S and it is of the desired
form because σ ◦ K′ ◦ σ−1 =K(σ(I ′)).

Case (ii). For a general X = ιF
′

F,b(S
r′
F ′,K′)⊂ SrF,K, by the construction in the proof of

Theorem 3.2.2, there is:

– a g′ ∈GLr′(Af
F ′) with g′K′g′−1 ⊂GLr′(Â′);

– an Af
F -linear isomorphism b′ : (Af

F )r ∼→ (Af
F ′)

r′ with b′(Âr) = Â′
r′

;
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– a proper ideal I of A with K(I)⊂ g−1Kg, where g := b−1 ◦ g′−1 ◦ b′ ∈GLr(Af
F )

such that the diagram

Sr
′

F ′,K(I′)

ιF
′

F,b′ //

πg′−1

��

SrF,K(I)

πg

��
Sr
′
F ′,K′

ιF
′

F,b // SrF,K

with I ′ := IA′ commutes where πg and πg′−1 are surjective and defined over F . This implies,
together with Case (i),

σ(X) = σ(ιF
′

F,b(πg′−1(Sr
′

F ′,K(I′)))) = σ(πg(ιF
′

F,b′(S
r′

F ′,K(I′))))

= πg(σ(ιF
′

F,b′(S
r′

F ′,K(I′)))) = πg(ι
σ(F ′)
F,σ◦b′(S

r′

σ(F ′),K(σ(I′)))).

By a similar commutative diagram, this is equal to

ι
σ(F ′)
F,σ◦b(S

r′

σ(F ′),σ◦K′◦σ−1),

hence a Drinfeld modular subvariety of S of the desired form. 2

3.4 Determinant map and irreducible components
For a general Drinfeld modular variety SrF,K, we denote by detK ⊂ (Af

F )∗ the image of K ⊂
GLr(Af

F ) under the determinant map. Since the determinant map is a group homomorphism and
maps principal congruence subgroups of GLr(Af

F ) to principal congruence subgroups of (Af
F )∗,

the subgroup detK ⊂ (Af
F )∗ is open and compact.

Definition 3.4.1. The map SrF,K(C∞)→ S1
F,detK(C∞) given by

GLr(F )\(Ωr
F ×GLr(Af

F )/K) −→ F ∗\(Af
F )∗/detK

[(ω, h)] 7−→ [det h]

is called determinant map and is denoted by det.

Remark. The determinant map can be described in terms of the modular interpretation, using
the construction of exterior powers of Drinfeld modules in [Hei04, Theorem 3.3]. We refrain from
doing so because we do not need that.

Proposition 3.4.2. The determinant map is surjective and its fibers are exactly the irreducible
components of SrF,K(C∞).

Proof. The surjectivity is immediate because det : GLr(Af
F )→ (Af

F )∗ is surjective.
We know by Proposition 2.1.3 that the irreducible components of SrF,K(C∞) are in bijective

correspondence with the double coset space GLr(F )\GLr(Af
F )/K. A point [(ω, h)] ∈ SrF,K(C∞)

lies in the irreducible component corresponding to a double coset [g] ∈GLr(F )\GLr(Af
F )/K if

and only if h ∈ [g].
We show that, for every g ∈GLr(Af

F ), the fiber of [det g] ∈ S1
F,detK(C∞) is equal to the

irreducible component corresponding to [g] ∈GLr(F )\GLr(Af
F )/K. By the above remarks, this

is equivalent to
h ∈GLr(F ) · g · K ⇐⇒ det h ∈ F ∗ · (det g) · (detK)

for all h ∈GLr(Af
F ).
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If h ∈GLr(F ) · g · K, then we have det h ∈ F ∗ · (det g) · (detK) by the multiplicativity of the
determinant. Conversely, assume that det h ∈ F ∗ · (det g) · (detK). Then there are T ∈GLr(F )
and k ∈ K such that

det h= det(T · g · k),

and hence Tgkh−1 ∈ SLr(Af
F ). By the strong approximation theorem [Pra77] for semi-simple

simply connected groups over function fields, SLr(F ) is dense in SLr(Af
F ). Since hKh−1 is an

open subgroup of GLr(Af
F ), we therefore have

SLr(Af
F ) = SLr(F ) · ((hKh−1) ∩ SLr(Af

F )).

So there are T ′ ∈ SLr(F ) and k′ ∈ K ∩ SLr(Af
F ) such that Tgkh−1 = T ′hk′h−1. This implies

h= T ′−1Tgkk′−1 ∈GLr(F ) · g · K. 2

By Proposition 3.4.2, the determinant map induces a bijection

det∗ : π0(SrF,K) ∼−→ S1
F,detK

between the set π0(SrF,K) of irreducible components of SrF,K over C∞ and the set S1
F,detK (we

identify the latter set with S1
F,detK(C∞) as explained in § 2.2). We now consider the natural

action of the absolute Galois group GF := Gal(F sep/F ) on these two sets.

Proposition 3.4.3. The bijection det∗ is GF -equivariant.

Proof. We consider separable extensions F ′ ⊂ C∞ of F of degree r with only one place above
∞. The intersection F ′′ of all these extensions is equal to F . This follows by induction over r.

Assume by contradiction that F ′′ ) F with [F ′′/F ] = r′ > 1. By Eisenstein’s criterion ([Sti93,
Proposition III.1.14]) we find a second extension F ′′2 6= F ′′ of F of degree r′ with only one place
∞′′2 above ∞. By the induction hypothesis, the intersection of all separable extensions of F ′′2
of degree r/r′ with only one place above ∞′′2 is equal to F ′′2 . These extensions of F ′′2 are all
separable extensions of F of degree r with only one place above∞, and hence its intersection F ′′2
contains F ′′. This is not possible, because F ′′2 6= F ′′ and [F ′′2 /F ] = [F ′′/F ] = r′.

The equality F ′′ = F implies that the subgroups Gal(F sep/F ′)⊂GF where F ′ runs over all
separable extensions of F of degree r with only one place above ∞ generate the whole absolute
Galois group GF . Therefore it is enough to show that det∗ is Gal(F sep/F ′)-equivariant for all
these extensions F ′.

From now on, let F ′/F be a fixed extension of the above form, Y an irreducible component of
SrF,K and σ ∈Gal(F sep/F ′). We have to show that det∗(σ(Y )) = σ(det∗(Y )). We assume that Y
corresponds to the class of g ∈GLr(Af

F ) in GLr(F )\GLr(Af
F )/K via the bijective correspondence

from Proposition 2.1.3. We choose an F -linear isomorphism

ϕ : F r ∼−→ F ′,

and define

b := ϕ ◦ g : (Af
F )r ∼−→ Af

F ′ .

The datum (F ′, b) defines an inclusion morphism ιF
′

F,b : S1
F ′,K′ → SrF,K. By its definition, the point

p′ := [1] ∈ S1
F ′,K′ = F ′∗\(Af

F ′)
∗/K′ is mapped to the closed point

p := ιF
′

F,b([1]) = [(i ◦ ϕ, ϕ−1 ◦ 1 ◦ b)] = [(i ◦ ϕ, g)]
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of SrF,K, where i denotes the canonical inclusion F ′∞′ ↪→ C∞. This point lies in the irreducible
component Y , which corresponds to the class of g in GLr(F )\GLr(Af

F )/K.

By Proposition 1.2.2, the point p′ ∈ S1
F ′,K′ is defined over F ′sep = F sep. Since ιF

′
F,b is defined

over F ′, the closed point p= ιF
′

F,b(p
′) ∈ SrF,K(C∞) is also defined over F sep and we have

ιF
′

F,b(σ(p′)) = σ(p) ∈ σ(Y ),

i.e., σ(Y ) is the unique irreducible component of SrF,K containing ιF
′

F,b(σ(p′)). The equality
det∗(σ(Y )) = σ(det∗(Y )) is therefore equivalent to

det(ιF
′

F,b(σ(p′))) = σ(det p). (3.4.1)

We use the description of the Galois action on S1
F ′,K′ and S1

F,detK given by Theorem 2.2.1 to
calculate both sides of (3.4.1). For this, let H/F (respectively H ′/F ′) be the finite abelian
extensions corresponding to the closed finite index subgroups F ∗ · detK ⊂ (Af

F )∗ (respectively
F ′∗ · K′ ⊂ (Af

F ′)
∗) in class field theory, and let E be the compositum of H and H ′. Then the

diagram of Artin maps

(Af
F )∗

ψH/F // Gal(H/F )

(Af
F ′)
∗

NF ′/F

OO

ψE/F ′//

ψH′/F ′

&&LLLLLLLLLL
Gal(E/F ′)

rE/H

OO

rE/H′

��
Gal(H ′/F ′)

commutes with NF ′/F , the norm map, and rE/H , rE/H′ , the restriction maps. Therefore, if
h′ ∈ (Af

F ′)
∗ is chosen such that ψE/F ′(h′) = σ|E , then we have

ψH′/F ′(h
′) = σ|H′ ,

ψH/F (NF ′/F (h′)) = σ|H .

With Theorem 2.2.1 this implies

det(ιF
′

F,b(σ(p′))) = det(ιF
′

F,b([h
′−1])) = det(ϕ−1 ◦ h′−1 ◦ b)

= det(ϕ−1 ◦ h′−1 ◦ ϕ) · det g = [NF ′/F (h′)−1 · det g]
= σ([det g]) = σ(det p).

So we have shown (3.4.1), which is equivalent to det∗(σ(Y )) = σ(det∗(Y )). 2

Corollary 3.4.4. The determinant map is induced by a unique morphism SrF,K→ S1
F,detK

defined over F .

Proof. By Proposition 3.4.2, the determinant map is constant on the irreducible components
of SrF,K(C∞). Since these irreducible components and all closed points of S1

F,detK are defined
over F sep, the determinant map is therefore induced by a unique morphism defined over F sep.

By Proposition 3.4.3, this morphism over F sep is GF -equivariant. Hence, by [Bor91, AG 14.3]
it is defined over F . 2
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Corollary 3.4.5. The Drinfeld modular variety SrF,K is F -irreducible and has exactly

|S1
F,detK|= |F ∗\(A

f
F )∗/detK|= |Cl(F )| · |Â∗/(F∗q · detK)|

irreducible components over C∞.

Proof. By Corollary 2.2.2 and Proposition 3.4.3, it follows that the absolute Galois group GF acts
transitively on the set of irreducible components of SrF,K over C∞. Hence, SrF,K is F -irreducible
by Proposition 1.2.2.

It only remains to show the second equality. Note that

(Af
F )∗/(F ∗ · Â∗)∼= Cl(F )

by the direct adaptation of [Neu07, Proposition VI.1.3] to the function field case. Therefore we
have

|F ∗\(Af
F )∗/detK|= |Cl(F )| · |(F ∗ · Â∗)/(F ∗ · detK)|.

The claim now follows from

(F ∗ · Â∗)/(F ∗ · detK)∼= Â∗/((F ∗ · detK) ∩ Â∗)

and

(F ∗ · detK) ∩ Â∗ = (F ∗ ∩ Â∗) · detK = F∗q · detK. 2

Corollary 3.4.6. Each Drinfeld modular subvariety of SrF,K with reflex field F ′ is F ′-
irreducible.

Proof. A Drinfeld modular subvariety X of SrF,K with reflex field F ′ is the image of an inclusion
morphism ιF

′
F,b : Sr

′
F ′,K′ → SrF,K. Since ιF

′
F,b is defined over F ′ by Theorem 3.2.2, Corollary 3.4.5

immediately implies the F ′-irreducibility of X. 2

4. Degree of subvarieties

4.1 Compactification of Drinfeld modular varieties

In [Pin12] Pink constructs the Satake compactification S
r
F,K of a Drinfeld modular variety SrF,K

with K ⊂GLr(Â). It is a normal projective variety which contains SrF,K as an open dense
subvariety and it is characterized up to unique isomorphism by a certain universal property.

If K is amply small, SrF,K is endowed with a natural ample invertible sheaf LrF,K. In [Pin12],
the space of global sections of its kth power is defined to be the space of algebraic modular forms
of weight k on SrF,K.

If K ⊂GLr(Af
F ) is arbitrary (not necessarily contained in GLr(Â)) and g ∈GLr(Af

F ) is chosen
such that gKg−1 ⊂GLr(Â), we define

S
r
F,K := S

r
F,gKg−1 (4.1.1)

and, if K is amply small,

LrF,K := LrF,gKg−1 . (4.1.2)

As in Step (v) of the proof of Theorem 2.1.2, one can show, using part (i) of the following
proposition for K ⊂GLr(Â), that this defines SrF,K and LrF,K up to isomorphism.
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Proposition 4.1.1. (i) For g ∈GLr(Af
F ) and a compact open subgroup K′ ⊂ g−1Kg the

morphism πg : SrF,K′ → SrF,K defined in § 3.1 extends uniquely to a finite morphism πg : SrF,K′ →
S
r
F,K defined over F with deg πg = deg πg. If K is amply small, then there is a canonical

isomorphism

LrF,K′ ∼= πg
∗LrF,K.

(ii) Any inclusion ιF
′

F,b : Sr
′
F ′,K′ → SrF,K of Drinfeld modular varieties extends uniquely to a

finite morphism ιF
′

F,b : Sr
′

F ′,K′ → S
r
F,K defined over F ′ with deg ιF ′F,b = deg ιF

′
F,b. If K is amply small,

then there is a canonical isomorphism

Lr′F ′,K′ ∼= ιF
′

F,b

∗
LrF,K.

Proof. This follows from [Pin12, Propositions 4.11 and 4.12 and Lemma 5.1]. Note that these
statements automatically hold for arbitrary levels K and K′ (not necessarily contained in GLr(Â),
respectively GLr′(Â′)) because (4.1.1) and (4.1.2) define the Satake compactification of a general
Drinfeld modular variety as the Satake compactification of a Drinfeld modular variety with level
contained in GLr(Â) respectively GLr′(Â′). The equalities deg πg = deg πg and deg ιF ′F,b = deg ιF

′
F,b

hold because each Drinfeld modular variety is dense in its Satake compactification. 2

4.2 Degree of subvarieties

In this subsection, SrF,K always denotes a Drinfeld modular variety with K amply small.

Definition 4.2.1. The degree of an irreducible subvariety X ⊂ SrF,K is defined to be the degree
of its Zariski closure X in S

r
F,K with respect to LrF,K, i.e., the integer

deg X := degLrF,K X =
∫
S
r
F,K

c1(LrF,K)dimX ∩ [X], (4.2.1)

where c1(LrF,K) ∈A1S
r
F,K denotes the first Chern class of LrF,K, the cycle class of X in AdimXS

r
F,K

is denoted by [X] and ∩ is the cap-product between AdimXS
r
F,K and AdimXS

r
F,K.

The degree of a reducible subvariety X ⊂ SrF,K is the sum of the degrees of all irreducible
components of X.

Remarks.

– Note that our definition of degree for reducible subvarieties differs from the one used in
many textbooks where only the sum over the irreducible components of maximal dimension
is taken.

– The formula (4.2.1) also holds for reducible subvarieties X ⊂ SrF,K whose irreducible
components all have the same dimension.

Lemma 4.2.2. The degree of a subvariety X ⊂ SrF,K is at least the number of irreducible
components of X.

Proof. This follows by our definition of degree because LrF,K is ample and the degree of an
irreducible subvariety of a projective variety with respect to an ample invertible sheaf is a positive
integer (see, e.g., [Ful98, Lemma 12.1]). 2
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Proposition 4.2.3. (i) Let πg : SrF,K′ → SrF,K be the morphism defined in § 3.1 for g ∈GLr(Af
F )

and K′ ⊂ g−1Kg. Then

deg π−1
g (X) = [g−1Kg :K′] · deg X (4.2.2)

for subvarieties X ⊂ SrF,K and

deg πg(X ′) 6 deg X ′ (4.2.3)

for subvarieties X ′ ⊂ SrF,K′ . In particular, we have

deg Tg(X) 6 [K :K ∩ g−1Kg] · deg X (4.2.4)

for subvarieties X ⊂ SrF,K.

(ii) For any inclusion ιF
′

F,b : Sr
′
F ′,K′ → SrF,K of Drinfeld modular varieties and for any subvariety

X ⊂ Sr′F ′,K′ , we have

deg X = deg ιF
′

F,b(X). (4.2.5)

Proof. We use the projection formula for Chern classes (see, e.g., [Ful98, Proposition 2.5(c)]).

If f :X → Y is a proper morphism of varieties and L is an invertible sheaf on Y , then, for
all k-cycles α ∈Ak(X), we have the equality

f∗(c1(f∗L) ∩ α) = c1(L) ∩ f∗(α) (4.2.6)

of (k − 1)-cycles in Ak−1(Y ).

For the proof of (4.2.2) and (4.2.3), we first assume that X ⊂ SrF,K and X ′ ⊂ SrF,K′ are
irreducible. For this, note that πg : SrF,K′ → SrF,K is finite of degree [g−1Kg :K′] and étale by
Proposition 3.1.3 because K is amply small. The latter implies that the restriction of πg to the
subvariety π−1

g (X) is also finite of degree [g−1Kg :K′] and, because deg πg = deg πg, we have
the equality

πg∗[π
−1
g (X)] = [g−1Kg :K′] · [X]

of cycles on S
r
F,K. For d := dimX, with Proposition 4.1.1(i) and the above projection formula

we get

deg π−1
g (X) = degπg∗LrF,K π

−1
g (X) =

∫
S
r
F,K′

c1(πg∗LrF,K)d ∩ [π−1
g (X)]

=
∫
S
r
F,K

πg∗(c1(πg∗LrF,K)d ∩ [π−1
g (X)])

=
∫
S
r
F,K

c1(LrF,K)d ∩ πg∗[π
−1
g (X)]

= [g−1Kg :K′] ·
∫
S
r
F,K

c1(LrF,K)d ∩ [X] = [g−1Kg :K′] · deg X.

For the proof of (4.2.3), we note that

πg∗[X
′] = deg(πg|X′) · [πg(X ′)]

as cycles on S
r
F,K. The same calculation as above gives

deg X ′ = deg(πg|X′) · deg πg(X ′) > deg πg(X ′).
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If X ⊂ SrF,K is reducible with irreducible components X1, . . . , Xn, we have

deg π−1
g (X) =

n∑
i=1

deg π−1
g (Xi)

because the set of irreducible components of π−1
g (X) is the disjoint union of the sets of irreducible

components of the π−1
g (Xi). Therefore, (4.2.2) follows from the irreducible case.

If X ′ ⊂ SrF,K′ is reducible with irreducible components X ′1, . . . , X
′
k, then the set of irreducible

components of πg(X ′) is a subset of {πg(X ′1), . . . , πg(X ′k)}, hence we have

deg πg(X ′) 6
k∑
i=1

deg πg(X ′i),

and the inequality (4.2.3) follows from the irreducible case.
The inequality (4.2.4) immediately follows from (4.2.2) and (4.2.3) because

Tg(X) = πg(π−1
1 (X))

where π1 and πg are projection morphisms SrF,Kg → SrF,K with Kg :=K ∩ g−1Kg and

deg π1 = [K :Kg] = [K :K ∩ g−1Kg].

Finally, for the proof of (4.2.5) we use that ιF
′

F,b : Sr
′
F ′,K′ → SrF,K is a closed immersion by

Proposition 3.2.3 because K is amply small. We therefore have deg ιF ′F,b = deg ιF
′

F,b = 1 and, for an
irreducible subvariety X ⊂ Sr′F ′,K′ , the equality

ιF
′

F,b∗
[X] = [ιF ′F,b(X)]

of cycles on S
r
F,K holds. The same calculation as in the proof of (4.2.2) therefore gives

deg ιF
′

F,b(X) = deg X

because ιF ′F,b
∗
LrF,K ∼= Lr

′
F ′,K′ by Proposition 4.1.1(ii).

If X ⊂ Sr′F ′,K′ is reducible with irreducible components X1, . . . , Xl, then ιF
′

F,b(X) has
exactly the irreducible components ιF

′
F,b(X1), . . . , ιF

′
F,b(Xl) because ιF

′
F,b is a closed immersion.

Therefore, the formula (4.2.5) for X reducible follows from the irreducible case. 2

We will use the following two consequences of Bézout’s theorem to get an upper bound for
the degree of the intersection of two subvarieties of SrF,K.

Lemma 4.2.4. For subvarieties V , W of a projective variety U and an ample invertible sheaf L
on U , we have

deg V ∩W 6 deg V · deg W,

where deg denotes the degree with respect to L.

Proof. See [Ful98, Example 8.4.6] in the case where V and W are irreducible.
If V = V1 ∪ · · · ∪ Vk and W =W1 ∪ · · · ∪Wl are decompositions into irreducible components,

then

V ∩W =
⋃
i,j

Vi ∩Wj .
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Therefore, each irreducible component of V ∩W is an irreducible component of some Vi ∩Wj .
By our definition of degree for reducible varieties this implies

deg V ∩W 6
∑
i,j

deg(Vi ∩Wj).

Hence, by the case that V and W are irreducible, we get

deg V ∩W 6
∑
i,j

deg Vi · deg Wj =
(∑

i

deg Vi

)
·
(∑

j

deg Wj

)
= deg V · deg W. 2

Lemma 4.2.5. For subvarieties V , W of SrF,K we have

deg V ∩W 6 deg V · deg W.

Proof. In view of the previous lemma, it is enough to show the following inequality of degrees
of Zariski closures in S

r
F,K with respect to LrF,K:

deg V ∩W 6 deg V ∩W.

For this, it suffices to show that each irreducible component of V ∩W is an irreducible component
of V ∩W . Note that V ∩W ⊂ V ∩W and

V ∩W ∩ SrF,K = V ∩W = (V ∩ SrF,K) ∩ (W ∩ SrF,K) = (V ∩W ) ∩ SrF,K

because SrF,K is Zariski open in S
r
F,K. Therefore

V ∩W = V ∩W ∪ (Y ∩ (V ∩W )) (4.2.7)

where Y := S
r
F,K\SrF,K denotes the boundary of the compactification. Since the irreducible

components of V ∩W are the Zariski closures of the irreducible components of V ∩W , they
are all not contained in Y and therefore, by (4.2.7), irreducible components of V ∩W . 2

4.3 Degree of Drinfeld modular subvarieties

We let S = SrF,K be a Drinfeld modular variety.

Proposition 4.3.1. If K is amply small, there is a constant C > 0 only depending on F , K and
r such that

deg(X) > C ·D(X)

for all Drinfeld modular subvarieties X ⊂ SrF,K with D(X) the predegree of X from
Definition 3.3.8.

Remark. We expect that one could also prove an upper bound for deg(X) of the form deg(X) 6
C ′ ·D(X) with a constant C ′ depending on F , K and r. Because of this expectation, we call
D(X) the predegree of X. We refrain from proving an upper bound because we only need a lower
bound in the following.

Proof. Since K is amply small, there is a proper ideal I of A and a g ∈GLr(Af
F ) such that

gKg−1 ⊂K(I). As explained in the beginning of the proof of Proposition 3.2.3, for each Drinfeld
modular subvariety X = ιF

′
F,b(S

r′
F ′,K′) of S, there is a g′ ∈GLr′(Af

F ′) such that K′ ⊂ g′K(I ′)g′−1

where I ′ := IA′. Therefore, by Proposition 4.2.3, we have

deg(X) = deg(Sr
′
F ′,K′) = [g′K(I ′)g′−1 :K′] · deg(Sr

′

F ′,K(I′)).
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Since Sr
′

F ′,K(I′) has at least |Cl(F ′)| irreducible components over C∞ by Corollary 3.4.5, we have

deg(Sr
′

F ′,K(I′)) > |Cl(F ′)|. Using i(X) = [g′GLr′(Â′)g′−1 :K′] we therefore get

deg(X) >
i(X)

[GLr′(Â′) :K(I ′)]
· |Cl(F ′)|= 1

[GLr′(Â′) :K(I ′)]
·D(X).

Because [GLr′(Â′) :K(I ′)] 6 [GLr(A) :K(I)], we conclude that deg(X) > C ·D(X) for C :=
1/[GLr(A) :K(I)] only depending on K, F and r. 2

Theorem 4.3.2. For each sequence (Xn) of pairwise distinct Drinfeld modular subvarieties of S,
the sequence of predegrees (D(Xn)) is unbounded. In particular, if K is amply small, the degrees
deg(Xn) are unbounded.

Proof. By Proposition 4.3.1, it is enough to show that the sequence

D(Xn) = i(Xn) · |Cl(Fn)|

where Fn is the reflex field of Xn is unbounded.
The following two propositions imply that there are only finitely many extensions F ′ of F of

degree dividing r and bounded class number.

Proposition 4.3.3. There are only finitely many finite extensions F ′ ⊂ C∞ of F of fixed genus
g′ and bounded degree.

Proof. By the Hurwitz genus formula (see e.g. [Sti93, Theorem III.4.12]) the degree of the
different divisor of F ′/F and therefore also the degree of the discriminant divisor of F ′/F is
bounded as F ′ runs over all finite separable extensions of F of fixed genus and bounded degree.
Hence, [Gos98, Theorem 8.23.5] implies that there are only finitely many separable extensions
of F with fixed genus and bounded degree. Since each finite extension of F can be decomposed
into a separable and a totally inseparable extension and each global function field has at most
one totally inseparable extension of a given degree, the proposition follows. 2

Proposition 4.3.4. Let F ′ be a function field of genus g′ with field of constants Fq′ . Then

|Cl(F ′)|> (q′ − 1)(q′2g
′
− 2g′q′g

′
+ 1)

2g′(q′g
′+1 − 1)

.

Proof. See [Bre05, Proposition 3.1]. 2

Therefore, the sequence D(Xn) is unbounded if the set of reflex fields Fn is infinite. So it
suffices to show unboundedness of the predegree D(Xn) in a sequence of pairwise distinct Drinfeld
modular subvarieties of S with fixed reflex field. This follows from the next theorem. Thus we
have reduced the proof of Theorem 4.3.2 to Theorem 4.3.5. 2

Theorem 4.3.5. For each sequence (Xn) of pairwise distinct Drinfeld modular subvarieties of
S with fixed reflex field F ′, the indices i(Xn) are unbounded.

Proof. We first note that we can assume without loss of generality that the given compact
subgroup K equals GLr(Â). Indeed, if K is replaced by a compact open subgroup L ⊃K and the
Xn by their images under the canonical projection π1 : SrF,K→ SrF,L, the indices i(Xn) decrease by
Definition 3.3.8. Hence, we can assume that K is a maximal compact open subgroup and therefore
some conjugate hGLr(Â)h−1 of GLr(Â). If we further replace the Xn by their images under the
isomorphism πh−1 : Sr

F,hGLr(Â)h−1
→ Sr

F,GLr(Â)
, then the i(Xn) obviously do not change because
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the Xn are the image of an inclusion from the same Sr
′
F ′,K′(C∞). Therefore, we can without loss

of generality assume K = GLr(Â).
For the following considerations, we assume that Xn = ιF

′
F,bn

(Sr
′
F ′,K′n(C∞)) with Af

F -linear

isomorphisms bn : (Af
F )r→ (Af

F ′)
r′ . We denote by Λn the Â-lattices bn(Âr) in (Af

F ′)
r′ . By

Corollary 3.3.10, they are determined up to and only up to the action of GLr′(Af
F ′), and their

orbits under the action of GLr′(Af
F ′) are pairwise distinct.

We have the product decomposition Λn =
∏

p 6=∞ Λn,p :=
∏

p 6=∞ bn,p(Arp), where Λn,p ⊂ F ′p
r′

are free Ap -submodules of rank r. The A′p -modules A′p · Λn,p are finitely generated submodules
of F ′p

r′ with F ′p · Λn,p = F ′p
r′ , and hence free of rank r′ because A′p is a direct product of principal

ideal domains. This implies that Â′ · Λn is a free Â′-submodule of (Af
F ′)

r′ of rank r′. Since the Λn
are determined up to and only up to the action of GLr′(Af

F ′), we may therefore assume without

loss of generality that Â′ · Λn = Â′
r′

for all n.
Note that we have

K′n = (bnGLr(Â)b−1
n ) ∩GLr′(Af

F ′) = Stab
GLr′ (A

f

F ′ )
Λn.

Since Â′ · Λn = Â′
r′

, these compact open subgroups of GLr′(Af
F ′) are all contained in the maximal

compact subgroup GLr′(Â′) = Stab
GLr′ (A

f

F ′ )
Â′
r′

. Hence, we can write the indices i(Xn) as

i(Xn) = [GLr′(Â′) : Stab
GLr′ (A

f

F ′ )
Λn]

and, using the above product decompositions, as i(Xn) =
∏

p 6=∞ in,p, where

in,p = [GLr′(A′p ) : StabGLr′ (F
′
p )Λn,p].

For each n, almost all factors of this product are 1 because Λn,p =A′p
r′ for almost all p.

Since we assumed that A′p · Λn,p =A′p
r′ , by the Proposition 4.3.6 below, we get the estimates

in,p > C · [A′p
r′ : Λn,p]1/r, where the constant C is independent of n and p.

We now finish the proof by assuming (for contradiction) that the sequence (i(Xn)) is
bounded. This implies by the above product decomposition of i(Xn) and estimates of in,p that
[A′p

r′ : Λn,p] 6D for all n and p for some uniform constant D.

However, note that as a finite Ap -module A′p
r′/Λn,p is isomorphic to some product

Ap/p
m1Ap × · · · ×Ap/p

mlAp.

If Λn,p 6⊇ pN ·A′p
r′ , we have mi >N + 1 for some i and therefore

|k(p)|N+1 6 [A′p
r′ : Λn,p] 6D.

In particular, we have |k(p)|6D whenever Λn,p 6=A′p
r′ . Since there are only finitely many

primes p with |k(p)|6D, we conclude the following.

– There are finitely many primes p1, . . . , pk such that Λn,p =A′p
r′ for all n and p 6= p1, . . . , pk.

– There is an N ∈ N such that, for all p and n, the Ap -lattice Λn,p contains pNA′p
r′ .

Because the quotients A′p
r′/pNA′p

r′ are finite, the second statement implies that for all 1 6 i6 k
there are only finitely many possibilities for Λn,pi . Since for p 6= p1, . . . , pk the lattices Λn,p are
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independent of n, this implies that only finitely many Â-lattices Λn ⊂ (Af
F ′)

r′ occur, which is a
contradiction of our assumptions. 2

Proposition 4.3.6. Let K be a complete field with respect to a discrete valuation v with finite
residue field containing Fq and let R be the corresponding discrete valuation ring with maximal
ideal m. Let K ′ := L1 × · · · × Lm with Li finite field extensions of K and R′ := S1 × · · · × Sm
with Si ⊂ Li the discrete valuation ring associated to the unique extension of v to Li. Suppose
that r′ > 1, and set r := r′ ·

∑m
i=1[Li :K].

There is a constant C > 0 only depending on q and r such that, for any free R-submodule
Λ⊂K ′r′ of rank r with R′ · Λ =R′r

′
, we have

[GLr′(R′) : StabGLr′ (K
′)(Λ)] > C · [R′r

′
: Λ]1/r.

Proof. We introduce the notation

H := {T ∈Matr′(R′) : T · Λ⊆ Λ}.

This set of matrices is an R-subalgebra of Matr′(R′) with H∗ = StabGLr′ (R
′)(Λ).

Note that, if g1, . . . , gr is an R-basis of Λ, then Λ = ξ(Rr)⊂K ′r
′

for

ξ : Kr −→ K ′r
′

(x1, . . . , xr) 7−→ x1g1 + · · ·+ xrgr.

Since K is complete, ξ is a homeomorphism (cf. [Neu07, Proposition 4.9]). This implies that
Λ⊂R′r

′
is open.

Hence, there is a k ∈ N such that mkR′r
′
⊆ Λ. Therefore Matr′(mkR′)⊆H and

H/Matr′(mkR′) = {T ∈Matr′(R′/mkR′) : T · (Λ/mkR′
r′)⊆ Λ/mkR′

r′}

if we identify Matr′(R′/mkR′) with Matr′(R′)/Matr′(mkR′). For the stabilizer of Λ/mkR′r
′

under
the action of GLr′(R′/mkR′), this means that

(H/Matr′(mkR′))∗ = StabGLr′ (R
′/mkR′)(Λ/m

kR′
r′).

The orbit of Λ under GLr′(R′) is in bijective correspondence with the orbit of Λ/mkR′r
′

under
GLr′(R′/mkR′) via

T · Λ 7−→ (T · Λ)/mkR′
r′
.

Therefore the above formulas for the corresponding stabilizers give us the following estimate:

[GLr′(R′) :H∗] = [GLr′(R′/mkR′) : (H/Matr′(mkR′))∗] >
|GLr′(R′/mkR′)|
[H : Matr′(mkR′)]

.

Lemma 4.3.7. There is a constant C only depending on q and r (namely C = (1− 1/q)r) such
that

|GLr′(R′/mkR′)|> C · |Matr′(R′/mkR′)|.

Proof. By the definition of R′ the quotient R′/mkR′ is isomorphic to S1/m
kS1 × · · · × Sm/mkSm,

and hence

GLr′(R′/mkR′) ∼= GLr′(S1/m
kS1)× · · · ×GLr′(Sm/mkSm),

Matr′(R′/mkR′) ∼= Matr′(S1/m
kS1)× · · · ×Matr′(Sm/mkSm).

Now note that, for any l > 1 and any discrete valuation ring U with maximal ideal n and residue
field Fq′ containing Fq, a matrix T ∈Matr′(U) is invertible if and only if its reduction modulo nl
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is invertible in Matr′(U/nl). In particular, GLr′(U/nl) exactly consists of the matrices with
reduction modulo n lying in GLr′(U/n). As the fibers of the projection Matr′(U/nl)→Matr′(U/n)
have all cardinality |n/nl|r′

2

= q′(l−1)r′2 , we get

|GLr′(U/nl)| = q′
(l−1)r′2 |GLr′(Fq′)|

= q′
(l−1)r′2(q′r

′
− 1)(q′r

′
− q′) · · · (q′r

′
− q′r

′−1)

> q′
lr′2
(

1− 1
q

)r′
=
(

1− 1
q

)r′
|Matr′(U/nl)|.

Since m6 r/r′, altogether we have

|GLr′(R′/mkR′)|>
(

1− 1
q

)mr′
|Matr′(R′/mkR′)|> C · |Matr′(R′/mkR′)|

with C = (1− 1/q)r. 2

Proof of Proposition 4.3.6 (continued). By Lemma 4.3.7 and the preceding estimate, we have

[GLr′(R′) :H∗] > C · [Matr′(R′) : Matr′(mkR′)]
[H : Matr′(mkR′)]

= C · [Matr′(R′) :H].

To finish the proof of Proposition 4.3.6, we consider an R-basis g1, . . . , gr of Λ and the R-module
homomorphism

Matr′(R′)r −→ R′r
′
/Λ

(T1, . . . , Tr) 7−→ (T1 · g1 + · · ·+ Tr · gr) mod Λ.
It is surjective and its kernel contains Hr. Therefore, we have

[Matr′(R′) :H]r = [Matr′(R′)r :Hr] > [R′r
′
: Λ]

and in total

[GLr′(R′) : StabGLr′ (K
′)(Λ)] > C · [Matr′(R′) :H] > C · [R′r

′
: Λ]1/r.

This completes the proof of Proposition 4.3.6. 2

5. Zariski density of Hecke orbits

In the whole of this section, S = SrF,K denotes a Drinfeld modular variety and C a set
of representatives in GLr(Af

F ) for GLr(F )\GLr(Af
F )/K. We use the description of the

irreducible components of S over C∞ given in Proposition 2.1.3. We let Yh be the irreducible
component of S over C∞ corresponding to h ∈ C and identify its C∞-valued points Yh(C∞)⊂
GLr(F )\(Ωr

F ×GLr(Af
F )/K) with Γh\Ωr

F where Γh := hKh−1 ∩GLr(F ) via the isomorphism
from Proposition 2.1.3.

5.1 Definition and explicit description of (Tg + Tg−1)-orbits

For g ∈GLr(Af
F ) and closed subvarieties Z ⊂ S we define

(Tg + Tg−1)(Z) := Tg(Z) ∪ Tg−1(Z),
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and recursively define

(Tg + Tg−1)0(Z) := Z

(Tg + Tg−1)n(Z) := (Tg + Tg−1)
(
(Tg + Tg−1)n−1(Z)

)
, n> 1.

Definition 5.1.1. For a geometric point x ∈ S(C∞) and g ∈GLr(Af
F ), the union

T∞g (x) :=
⋃
n>0

(Tg + Tg−1)n(x)⊂ S(C∞)

is called the (Tg + Tg−1)-orbit of x.

Note that T∞g (x) is the smallest subset of S(C∞) containing x which is mapped into itself under
Tg and Tg−1 .

We now give an explicit description of the intersection of T∞g (x) with the irreducible
components of S over C∞ for x ∈ S(C∞) and g ∈GLr(Af

F ).

Proposition 5.1.2. Let h1, h2 ∈ C and assume that x ∈ Yh1(C∞) with x= [ω] ∈ Γh1\Ωr
F . Then

the intersection of T∞g (x) with Yh2(C∞) is given by

T∞g (x) ∩ Yh2(C∞) = {[Tω] ∈ Γh2\Ωr
F : T ∈ h2〈KgK〉h−1

1 ∩GLr(F )},

where 〈KgK〉 denotes the subgroup of GLr(Af
F ) generated by the double coset KgK.

Proof. By assumption, we have x= [(ω, h1)] ∈GLr(F )\
(
Ωr
F ×GLr(Af

F )/K
)
. Hence, by

Definition 3.1.5 and the recursive definition of (Tg + Tg−1)n(x), the elements of T∞g (x) are
exactly those of the form [(ω, h1k1g1k2g2 · · · kngn)] with n> 0, ki ∈ K and gi ∈ {g, g−1}. Hence,
an element y ∈ T∞g (x) ∩ Yh2(C∞) can be written as y = [(ω, h1s)] with s ∈ 〈KgK〉. Since y lies in
Yh2 , there exist T ∈GLr(F ) and k ∈ K with Th1sk = h2. Therefore

y = [(ω, h1s)] = [(Tω, Th1sk)] = [(Tω, h2)]

is equal to [Tω] ∈ Γh2\Ωr
F , where T ∈ h2〈KgK〉h−1

1 ∩GLr(F ).
Conversely, an element [Tω] ∈ Γh2\Ωr

F with T = h2sh
−1
1 ∈ h2〈KgK〉h−1

1 ∩GLr(F ) is equal to

[(Tω, h2)] = [(ω, T−1h2)] = [(ω, h1s
−1h−1

2 h2)] = [(ω, h1s
−1)]

with s−1 ∈ 〈KgK〉, and hence lies in T∞g (x) ∩ Yh2(C∞). 2

5.2 Zariski density
We give a sufficient condition for a subset M ⊂ S(C∞) to be Zariski dense in one irreducible
component Yh of S over C∞. Recall that, for a place p 6=∞ of F , by Af,p

F we denote the adeles
outside ∞ and p.

Proposition 5.2.1. Let M be a subset of S(C∞) contained in an irreducible component Yh of
S over C∞ for h ∈ C and suppose that M contains an element x= [ω] ∈ Yh(C∞) = Γh\Ωr

F such

that there exists a place p 6=∞ of F and an open subgroup K′ ⊂GLr(Af,p
F ) with

M ′ := {[Tω] ∈ Γh\Ωr
F : T ∈ (SLr(Fp )×K′) ∩GLr(F )} ⊂M.

Then M is Zariski dense in Yh.

Proof. We denote the Zariski closure of M ′ by Y . It is enough to show that Y (C∞) = Yh(C∞). As
the non-singular locus Y ns of Y over C∞ is Zariski open and dense in Y [Har77, Theorem I.5.3],
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the intersection Y ns(C∞) ∩M ′ is non-empty. Since (SLr(Fp )×K′) ∩GLr(F ) is a subgroup of
GLr(F ), we can therefore assume that x= [ω] lies in Y ns(C∞). Hence it is enough to show that
the tangent space TxY of Y at x is of dimension r − 1 = dim S.

Since K′ is open in GLr(Af,p
F ), there is an N ∈A with N 6∈ p such that K ′(N)⊂K′, where

K ′(N) denotes the principal congruence subgroup modulo N of GLr(Af,p
F ). Now let l > 1 such

that pl = (π) is a principal ideal of A and consider for 1 6 i6 r − 1 and k > 1 the matrices

Aik :=


1

. . .
1

. . .
N
πk

1

 ∈ SLr(F ),

with the entry N/πk in the ith column. As elements of GLr(Af
F ) (diagonally embedded) they

lie in SLr(Fp )×K ′(N)⊂ SLr(Fp )×K′. Hence, for all 1 6 i6 r − 1 and k > 1, [Aikω] lies in
M ′ ⊂ Y (C∞).

We now view Ωr
F as a subset of Ar−1(C∞) by identifying [ω1 : · · · : ωr−1 : 1] with

(ω1, . . . , ωr−1) (note that the rth projective coordinate ωr of an arbitrary element of Ωr
F can be

assumed to be 1 because the F∞-rational hyperplane ωr = 0 does not belong to Ωr
F ). Assume

that we have ω = (ω1, . . . , ωr−1) in this identification. Then, using (2.1.2), we see that

Aikω =
(
ω1, . . . , ωi −

N

πk
, . . . , ωr−1

)
for all 1 6 i6 r − 1 and k > 1. Note that ωi −N/πk converges to ωi in C∞ for k→∞ and
that {[Aikω]}k>1 ⊂ Y (C∞) for all 1 6 i6 r − 1. Since Y (C∞)⊂ Yh(C∞) = Γh\Ωr

F is closed in
the rigid-analytic topology, it follows that there is an ε > 0 such that for all 1 6 i6 r − 1 and
c ∈ C∞ with |c|∞ < ε

[(ω1, . . . , ωi + c, . . . , ωr−1)] ∈ Y (C∞).

This implies dim TxY = r − 1 and Y (C∞) = Yh(C∞). 2

Now let p 6=∞ be a place of F and g ∈GLr(Af
F ) trivial outside p, i.e., g := (1, . . . , gp, . . . , 1)

for some gp ∈GLr(Fp ). Using Proposition 5.2.1, we prove a sufficient condition for the (Tg +
Tg−1)-orbit T∞g (x) to be Zariski dense in the irreducible component of S over C∞ containing x.
This result is a generalization of Theorem 4.11 in [Bre12].

Theorem 5.2.2. Assume that the image of the cyclic subgroup 〈gp〉 ⊂GLr(Fp ) in PGLr(Fp ) is
unbounded and, for x ∈ S(C∞), let Yx be the irreducible component of S over C∞ containing x.
Then, for all x ∈ S(C∞) and g := (1, . . . , gp, . . . , 1), the intersection of the (Tg + Tg−1)-orbit
T∞g (x) with Yx(C∞) is Zariski dense in Yx.

Proof. We assume that Yx = Yh for some h ∈ C. Then, by Proposition 5.1.2, we have

T∞g (x) ∩ Yx(C∞) = {[Tω] ∈ Γh\Ωr
F : T ∈ h〈KgK〉h−1 ∩GLr(F )}.

Since hKh−1 is an open subgroup of GLr(Af
F ), we can find compact open subgroups Kp ⊂

GLr(Fp ) and K′ ⊂GLr(Af,p
F ) such that Kp ×K′ ⊂ hKh−1 and hence

〈Kphpgph
−1
p Kp〉 × K′ ⊂ h〈KgK〉h−1.
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We now consider the open subgroup Up := 〈Kphpgph
−1
p Kp〉 ∩ SLr(Fp ) of SLr(Fp ). It is normalized

by the image of 〈gp〉 in PGLr(Fp ), which is unbounded by assumption. Since PGLr is a connected
adjoint absolutely simple linear algebraic group over the local field Fp and SLr ↪→GLr→ PGLr
is its universal covering, we conclude by [Pin00, Theorem 2.2] that Up is equal to SLr(Fp ).

Hence, SLr(Fp ) is contained in 〈Kphpgph
−1
p Kp〉 and we have

{[Tω] ∈ Γh\Ωr
F : T ∈ (SLr(Fp )×K′) ∩GLr(F )} ⊂ T∞g (x) ∩ Yx(C∞).

Therefore, we can apply Proposition 5.2.1 to the subset T∞g (x) ∩ Yx(C∞) of S(C∞) and conclude
that T∞g (x) ∩ Yx(C∞) is Zariski dense in Yx. 2

6. Geometric criterion for being a Drinfeld modular subvariety

Proposition 6.1.1. Let S = SrF,K be a Drinfeld modular variety and Z ⊂ S an irreducible
subvariety over C∞ such that Z = TgZ = Tg−1Z for some g = (1, . . . , gp, . . . , 1) with gp ∈
GLr(Fp ). If the cyclic subgroup of PGLr(Fp ) generated by the image of gp is unbounded, then
Z is an irreducible component of S over C∞.

Proof. Let x ∈ Z(C∞) be a geometric point of Z. By assumption we have Tg(x)⊂ TgZ = Z and
Tg−1(x)⊂ Tg−1Z = Z, and hence

(Tg + Tg−1)(x)⊂ Z.
Iterating we get for all n> 1

(Tg + Tg−1)n(x)⊂ Z,
so the (Tg + Tg−1)-orbit T∞g (x) of x is contained in Z. Since Z is irreducible over C∞, the orbit
T∞g (x) is contained in one irreducible component Y of S over C∞. So T∞g (x) is Zariski dense
in Y by Theorem 5.2.2. Since Z is Zariski closed in S, it follows that Z = Y is an irreducible
component of S over C∞. 2

Definition 6.1.2. A subvariety X defined over F of a Drinfeld modular subvariety SrF,K is called
Hodge-generic if none of its irreducible components over C∞ is contained in a proper Drinfeld
modular subvariety of SrF,K.

Theorem 6.1.3. Let S = SrF,K be a Drinfeld modular variety with K =Kp ×K(p) amply small

where Kp ⊂GLr(Fp ) and K(p) ⊂GLr(Af,p
F ). Suppose that Z ⊂ S is an F -irreducible Hodge-

generic subvariety with dim Z > 1 such that Z ⊂ TgZ for some g = (1, . . . , gp, . . . , 1) with
gp ∈GLr(Fp ). If, for all k1, k2 ∈ Kp, the cyclic subgroup of PGLr(Fp ) generated by the image of
k1 · gp · k2 is unbounded, then Z = S.

Remark. Note that the unboundedness condition in this theorem is stronger than the one in
Proposition 6.1.1. For example, for r = 2, Kp = GL2(Ap ) and a uniformizer πp ∈ Fp, the image of
gp =

(
πp 0
0 1

)
generates an unbounded subgroup of PGL2(Fp ), but for k1 =

(
0 1
1 0

)
∈ Kp, the image

of k1gp generates a bounded subgroup of PGL2(Fp ) because (k1gp )2 is a scalar matrix.

Proof. In this proof, for simplicity of notation, we identify GLr(Fp ) as a subgroup of GLr(Af
F )

via the inclusion

hp ∈GLr(Fp ) 7−→ (1, . . . , hp, . . . , 1) ∈GLr(Af
F ).

Let Z = Z1 ∪ · · · ∪ Zs be a decomposition of Z into irreducible components over C∞.
Since Z is defined over F , the irreducible component Z1 is defined over some finite, separable
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extension E of F . By the F -irreducibility of S and Z, it is enough to show that Z1 is an irreducible
component of S over C∞. We divide the proof into two steps.

Step (i) We show that there is an open subgroup K′ ⊂K with associated canonical projection
π : SrF,K′ → SrF,K and an E-irreducible component Z ′1 of π−1(Z1) which is also irreducible over
C∞ such that ThpZ

′
1 is E-irreducible for all hp ∈GLr(Fp ).

Step (ii) Using Proposition 6.1.1, we prove that Z ′1 is an irreducible component of SrF,K′ over
C∞.

Steps (i) and (ii) imply that Z1 = π(Z ′1) is an irreducible component of S = SrF,K over C∞.

Step (i). Note that, by Proposition 3.1.3, the canonical projections

πUp : Sr
F,Up×K(p) −→ S

where Up runs over all open normal subgroups of Kp form a projective system of finite étale
Galois covers defined over F with Galois groups Kp/Up. Hence, by Proposition 3.1.3

πp : S(p) := lim
←−
Up

Sr
F,Up×K(p) −→ S

is a pro-étale Galois cover with group lim←−
Up

Kp/Up. Since Kp is a profinite group, this group is

isomorphic to Kp and we have the following isomorphisms of rigid-analytic spaces:

S(p)(C∞) ∼= lim
←−
Up

GLr(F )\(Ωr
F ×GLr(Af

F )/(Up ×K(p)))

∼= GLr(F )\(Ωr
F ×GLr(Af

F )/K(p)).

By Proposition 3.1.3 and these identifications, the automorphism of the Kp -cover πp corre-
sponding to a kp ∈ Kp is given by

lim
←−
Up

πkp : [(ω, h)] 7→ [(ω, hk−1
p )]

on C∞-valued points of S(p).
We now denote by Y the non-singular locus of the variety Z1 over C∞. By [Har77,

Theorem I.5.3.], Y is a non-empty open subset of Z1 and Y is also defined over E.
Let y ∈ Y (C∞)⊂ S(C∞) be a geometric point of Y . We denote by πarithm

1 (Y, y) the arithmetic
fundamental group of the variety Y over E, i.e., πarithm

1 (Y, y) := π1(Y0, y) if Y = (Y0)C∞ for a
scheme Y0 over E. Furthermore we fix a geometric point x= [(ω, h)] ∈ S(p)(C∞) with πp(x) = y
and consider the monodromy representation

ρ : πarithm
1 (Y, y)−→Kp

associated to x ∈ S(p)(C∞) and the Kp -cover πp.
By [BP05, Theorem 4] the image of ρ is open in GLr(Fp ) under the assumptions:

– K is amply small;
– Y is a smooth irreducible locally closed subvariety of S with dim Y > 1;
– the Zariski closure of Y in S is Hodge-generic.

These assumptions are satisfied in our case, and hence K′p := ρ(πarithm
1 (Y, y)) is open in Kp.

Now we set K′ :=K′p ×K(p) and consider the canonical projection

π : SrF,K′ → SrF,K.
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The orbit of the point x′ := [(ω, h)] ∈ SrF,K′(C∞) lying between our base points x ∈ S(p)(C∞) and
y ∈ SrF,K(C∞) under the action of πarithm

1 (Y, y) on the fiber π−1(y) equals

{[(ω, hk′p
−1)] ∈ SrF,K′(C∞) : k′p ∈ ρ(πarithm

1 (Y, y)) =K′p}

and is therefore of cardinality 1. Hence, the E-irreducible component Y ′ of π−1(Y ) containing
x′ is mapped isomorphically onto Y by π. Since Y is irreducible over C∞, it follows that Y ′ is
also irreducible over C∞.

Note, furthermore, for any open subgroup K̃′p ⊂K′p and K̃′ := K̃′p ×K(p) with canonical
projection π′ : Sr

F,K̃′ → SrF,K′ that

π′
−1(x′) = {[(ω, hk′p )] ∈ Sr

F,K̃′(C∞) : k′p ∈ K′p}

is exactly one orbit under the action of πarithm
1 (Y, y) on π′−1(π−1(y)). Therefore, π′−1(Y ′) is

E-irreducible. Since this holds for every open subgroup K̃′p ⊂K′p, this implies that ThpY
′ is

E-irreducible for all hp ∈GLr(Fp ).

We now define Z ′1 to be the Zariski closure of Y ′ in SrF,K′ . Since Y ′ is irreducible over C∞, its
Zariski closure Z ′1 is also irreducible over C∞, and, moreover, by dimension reasons, an irreducible
component of π−1(Z1) over C∞. Since Y ′ is also E-irreducible, we similarly conclude that Z ′1 is
an E-irreducible component of π−1(Z1).

Note that, for all hp ∈GLr(Fp ), the projections π1 and πhp in the definition of the Hecke
correspondence Thp on SrF,K′ are open and closed because they are finite and étale. By the
E-irreducibility of ThpY

′ this implies that

ThpZ
′
1 = πhp(π

−1
1 (Y ′)) = πhp(π

−1
1 (Y ′)) = ThpY

′

is E-irreducible and concludes Step (i).

Step (ii). By the assumption Z ⊂ TgZ, the irreducible component Z1 of Z is contained in TgZi
for some i. Since Z is F -irreducible, there is an element σ ∈Gal(F sep/F ) with Zi = σ(Z1). This
gives for Z ′1 ⊂ SrF,K′

Z ′1 ⊂ π−1(Z1)⊂ π−1(Tgσ(Z1)) = σ(π−1(TgZ1)), (6.1.1)

where the last equality holds because all our projection morphisms are defined over F .

A direct computation shows that

π−1(TgZ1) =
l⋃

i,j=1

Tk−1
i gpkj

Z ′1 (6.1.2)

where {k1, . . . , kl} is a set of representatives for the left cosets in Kp/K′p. By Step (i), all
Tk−1

i gpkj
Z ′1 are E-irreducible.

Since Z ′1 is E-irreducible, the relations (6.1.1) and (6.1.2) imply the existence of indices i
and j such that for hp := k−1

i gpkj

Z ′1 = σ(ThpZ
′
1).

Iterating this gives the inclusion

Z ′1 = σ(Thpσ(ThpZ
′
1)) = σ2(Thp(ThpZ

′
1))⊃ σ2(Th2

p
Z ′1),
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which must be an equality because both sides are of the same dimension and Z ′1 is E-irreducible.
Repeating the same argument gives

Z ′1 = σi(ThipZ
′
1)

for all i> 1. There is an n> 1 with σn ∈Gal(F sep/E). Since Thnp Z
′
1 is defined over E, we conclude

the relations

Z ′1 = σn(Thnp Z
′
1) = Thnp Z

′
1,

Th−np
Z ′1 = Th−np

(Thnp Z
′
1)⊃ Z ′1.

Again, the latter relation must be an equality because Th−np
Z ′1 is E-irreducible and of the

same dimension as Z ′1. Note that the cyclic subgroup of PGLr(Fp ) generated by the image
of hnp = (k−1

i gpkj)n is unbounded by our assumption. So we can apply Proposition 6.1.1 and
conclude that Z ′1 is an irreducible component of SrF,K′ over C∞. 2

7. Existence of good primes and suitable Hecke operators

7.1 Good primes
In this subsection, X = ιF

′
F,b(S

r′
F ′,K′) denotes a Drinfeld modular subvariety of a Drinfeld modular

variety SrF,K associated to the datum (F ′, b).

Definition 7.1.1. For a prime p of F , a free Ap -submodule Λp ⊂ F rp of rank r is called an
Ap-lattice.

Definition 7.1.2. A prime p is called good for X ⊂ SrF,K if there exists an Ap -lattice Λp ⊂ F rp
such that the following hold.

(i) We have K =Kp ×K(p) with Kp the kernel of the natural map

StabGLr(Fp )(Λp )→Autk(p)(Λp/p · Λp )

for a K(p) ⊂GLr(Af,p
F ).

(ii) There is a prime p′ of F ′ above p with local degree [F ′p′/Fp] = 1.

(iii) The Ap-module bp(Λp ) is an A′p -submodule of F ′p
r′ .

Remarks.

– The definition is independent of the datum (F ′, b) describing X because F ′ is uniquely
determined by X and b′p = sp ◦ bp ◦ kp with sp ∈GLr′(F ′p ) and kp ∈ Kp ⊂ StabGLr(Fp )(Λp ) for
a second datum (F ′, b′) describing X by Corollary 3.3.6.

– The existence of a good prime p for X implies that the reflex field F ′ of X is separable
over F because there exists a prime p′ of F ′ which is unramified over F .

– If Λp = spA
r
p for an sp ∈GLr(Fp ), then condition (i) is equivalent to

K = spK(p)s−1
p ×K(p),

where K(p)⊂GLr(Ap ) is the principal congruence subgroup modulo p.

– Condition (i) implies that K′ = (bKb−1) ∩GLr′(Af
F ′) =K′p ×K′(p) with K′p the kernel of the

natural map

StabGLr′ (F
′
p )(bp(Λp ))→Autk(p)(bp(Λp )/p · bp(Λp )).
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Since bp(Λp ) is an A′p -submodule of F ′p′
r′ by condition (iii), this means that K′p is conjugate

to the principal congruence subgroup modulo p of GLr′(A′p ).

Proposition 7.1.3. Let p be a good prime for X. Suppose that X is contained in a Drinfeld
modular subvariety X ′ = ιF

′′
F,b′(S

r′′
F ′′,K′′)⊂ SrF,K.

Then X ′′ := (ιF
′′

F,b′)
−1(X) is a Drinfeld modular subvariety of Sr

′′
F ′′,K′′ and there is a prime p′′

of F ′′ above p with k(p) = k(p′′) such that p′′ is good for X ′′ ⊂ Sr′′F ′′,K′′ .

Proof. By Corollary 3.3.5, X ′′ = (ιF
′′

F,b′)
−1(X) is a Drinfeld modular subvariety of Sr

′′
F ′′,K′′ . In the

proof of Corollary 3.3.5 we saw that F ⊂ F ′′ ⊂ F ′ and there are an Af
F ′′-linear isomorphism

c : (Af
F ′′)

r′′ ∼→ (Af
F ′)

r′ and a k ∈ K such that

b= c ◦ b′ ◦ k (7.1.1)

and X ′′ = ιF
′

F ′′,c(S
r′
F ′,K′). The situation is summarized in the following commutative diagram where

all arrows are bijections on C∞-valued points.

X ⊂ X ′ ⊂ SrF,K

Sr
′
F ′,K′

ιF
′

F,b

==zzzzzzzzz

ιF
′

F ′′,c !!CC
CC

CC
CC

C

X ′′

ιF
′′

F,b′ |X′′

OO

⊂ Sr
′′
F ′′,K′′

ιF
′′

F,b′

OO

Let Λp be an Ap -lattice and p′ a prime of F ′ above p for which the conditions (i)–(iii) of
Definition 7.1.2 are satisfied. We define p′′ to be the prime of F ′′ lying between p and p′. Since p′

is of local degree 1 over F , we have k(p) = k(p′) = k(p′′). We now show that p′′ is a good prime
for X ′′ = ιF

′
F ′′,c(S

r′
F ′,K′)⊂ Sr

′′
F ′′,K′′ .

By construction, p′ is also of local degree 1 over F ′′, i.e., condition (ii) in Definition 7.1.2 is
satisfied for p′′.

By condition (iii), bp(Λp ) is an A′p-submodule of F ′p
r′ . Hence, we can write

bp(Λp ) = Λ′p′′ × Λ′(p
′′)

with Λ′p′′ ⊂ F ′p′′
r′ an A′p′′-submodule (recall that A′p′′ =A′ ⊗A′′ A′′p′′ by our conventions). Since

c is Af
F ′′-linear and A′′ ⊂A′, it follows that Λ′′p′′ := c−1

p′′ (Λ
′
p′′) is an A′′p′′-lattice in F ′′p′′

r′′ . By
construction, condition (iii) in Definition 7.1.2 holds for p′′ and Λ′′p′′ .

We note that condition (i) implies K′′ = (b′Kb′−1) ∩GLr′′(Af
F ′′) =K′′p ×K′′

(p) with K′′p the
kernel of the natural map StabGLr′′ (F

′′
p )(b′p(Λp ))→Autk(p)(b′p(Λp )/p · b′p(Λp )). Note that

b′p(Λp ) = b′p(kpΛp ) = c−1
p (bp(Λp )) = c−1

p (Λ′p′′ × Λ′(p
′′)) = Λ′′p′′ × Λ′′(p

′′)
.

Since k(p) = k(p′′) and pA′′p′′ = p′′A′′p′′ , we therefore see that condition (i) is also satisfied for p′′

and Λ′′p′′ . 2
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7.2 Suitable Hecke correspondences
Proposition 7.2.1. Let X = ιF

′
F,b(S

r′
F ′,K′)⊂ SrF,K be a Drinfeld modular subvariety and g′ ∈

GLr′(Af
F ′). Then, we have

X ⊂ TgX
for g := b−1 ◦ g′ ◦ b ∈GLr(Af

F ).

Proof. Let p= ιF
′

F,b([(ω′, h
′)]) ∈X(C∞) for some ω′ ∈ Ωr′

F ′ and h′ ∈GLr′(Af
F ′). Then we have

p= [(ω′ ◦ ϕ, ϕ−1 ◦ h′ ◦ b)] = [(ω′ ◦ ϕ, ϕ−1 ◦ h′g′ ◦ b ◦ g−1)]

for an F -linear isomorphism ϕ : F r ∼→ F ′r
′
, and therefore p lies in Tg(ιF

′
F,b([(ω′, h

′g′)])) and
therefore in TgX(C∞). Since p ∈X(C∞) was arbitrary, we conclude X ⊂ TgX. 2

Theorem 7.2.2. Let p be a good prime for a Drinfeld modular subvariety X = ιF
′

F,b(S
r′
F ′,K′)⊂

SrF,K and let p′ be a prime of F ′ above p with local degree 1 over F . Then there is a

g′ = (1, . . . , g′p′ , . . . , 1) ∈GLr′(Af
F ′)

with g′p′ ∈GLr′(F ′p′) such that the following hold for g := b−1 ◦ g′ ◦ b ∈GLr(Af
F ):

(i) X ⊂ TgX;

(ii) deg Tg = [K :K ∩ g−1Kg] = |k(p)|r−1;

(iii) for all k1, k2 ∈ Kp, the cyclic subgroup of PGLr(Fp ) generated by the image of k1 · gp · k2 is
unbounded.

Proof. Suppose that the conditions (i)–(iii) in Definition 7.1.2 are satisfied for the Ap -lattice
Λp ⊂ F rp .

By condition (iii) in Definition 7.1.2, bp(Λp ) is an A′p-submodule of F ′p
r′ . Hence we can write

bp(Λp ) = Λ′p′ × Λ′p
(p′)

with Λ′p′ ⊂ F ′p′
r′ a free A′p′-submodule of rank r′. Let g′p′ : F

′
p′
r′ → F ′p′

r′ be given by

diag(πp′ , 1, . . . , 1)

for a uniformizer πp′ ∈A′p′ with respect to an A′p′-basis of Λ′p′ .

We now check the conditions (i)–(iii) for g := b−1 ◦ g′ ◦ b where g′ = (1, . . . , g′p′ , . . . , 1) ∈
GLr′(Af

F ′). Statement (i) follows by Proposition 7.2.1.
For conditions (ii) and (iii), note that each A′p′-basis of Λ′p′ is also an Ap -basis of Λ′p′ and can

be extended to an Ap -basis of bp(Λp ) because the local degree [F ′p′/Fp] is equal to 1. In particular,

the p-component g′p ∈GLr′(F ′p ) =
∏

q′|p GLr′(F ′q′) of g′ ∈GLr′(Af
F ′) viewed as an Fp -linear map

F ′p
r′ → F ′p

r′ is given by the diagonal matrix

Dp := diag(πp, 1, . . . , 1) ∈GLr(Fp )

with respect to some Ap -basis B′ of bp(Λp ) for a uniformizer πp ∈Ap. It follows that the p-
component gp : F rp → F rp of g = b−1 ◦ g′ ◦ b ∈GLr(Af

F ) is also given by Dp with respect to the
Ap -basis b−1

p (B′) of Λp. Hence, there is an sp ∈GLr(Fp ) such that

gp = spDps
−1
p ,

Λp = spA
r
p.
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By the remark after Definition 7.1.2, we therefore have

Kp = spK(p)s−1
p

with K(p) the principal congruence subgroup of GLr(Ap ) modulo p.

Hence, we can and do assume Kp =K(p) and gp =Dp because conditions (ii) and (iii) are
invariant under conjugation.

For the proof of condition (ii), consider the map

α :
K(p) −→ (Ap/(πp ))r−1

h 7−→ ([π−1
p · h21], . . . , [π−1

p · hr1]).

For h, h′ ∈ K(p), we have for 2 6 i6 r

π−1
p · (hh′)i1 = (π−1

p hi1)h′11 + hii(π−1
p h′i1) +

∑
j 6=i,1

(π−1
p hij)h′j1

≡ π−1
p hi1 + π−1

p h′i1 + 0 (mod p),

and therefore α is a homomorphism of groups. It is, furthermore, surjective, and its kernel is
exactly equal to K(p) ∩DpK(p)D−1

p . Hence, we have

[K :K ∩ g−1Kg] = [Kp :Kp ∩ g−1
p Kpgp] = |k(p)|r−1.

For condition (iii), let k1, k2 ∈ Kp =K(p) be arbitrary. We prove that the eigenvalues of
(k1gpk2)−1 = k−1

2 D−1
p k−1

1 do not all have the same p-valuation by showing that the Newton
polygon of the characteristic polynomial

χ(λ) = λr + ar−1λ
r−1 + · · ·+ a1λ+ a0

of k−1
2 D−1

p k−1
1 consists at least of two line segments. This implies that the cyclic subgroup of

PGLr(Fp ) generated by the image of k1gpk2 is unbounded.

Since k1, k2 are elements of GLr(Ap ), we have det(k1), det(k2) ∈A∗p and hence

vp(a0) = vp(det(k−1
2 D−1

p k−1
1 )) = 0− vp(det(Dp )) + 0 =−1.

The coefficient ar−1 can be expressed as

ar−1 =−tr(k−1
2 D−1

p k−1
1 ) =−

∑
i

(k−1
2 )i1π−1

p (k−1
1 )1i −

∑
i

∑
j 6=1

(k−1
2 )ij(k−1

1 )ji.

Because of k1, k2 ∈ K(p), we have vp((k−1
1 )ij), vp((k−1

2 )ij) > 0 with equality exactly for i= j.
Therefore, in the above expression for ar−1, the summand for i= 1 in the first sum has
p-valuation −1 and all the other summands have p-valuation at least 0. We conclude

vp(ar−1) =−1.

Hence, the point (r − 1, vp(ar−1)) lies below the line through (0, vp(a0)) and (r, 0). This implies
that the Newton polygon of χ consists at least of two line segments. 2

7.3 Existence of good primes

Proposition 7.3.1. LetX = ιF
′

F,b(S
r′
F ′,K′)⊂ SrF,K be a Drinfeld modular subvariety and p a prime

of F such that the following hold.
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(i) There is a prime p′ of F ′ above p with local degree [F ′p′/Fp] = 1.

(ii) We have K =Kp ×K(p) with Kp ⊂GLr(Fp ) a maximal compact subgroup and K(p) ⊂
GLr(Af,p

F ).

(iii) The subgroup K′p := (bpKpb
−1
p ) ∩GLr′(F ′p ) of GLr′(F ′p ) is maximal compact.

Then there is a subgroup K̃ ⊂ K and a Drinfeld modular subvariety X̃ ⊂ Sr
F,K̃ such that:

(a) π1(X̃) =X for the canonical projection π1 : Sr
F,K̃→ SrF,K;

(b) p is good for X̃ ⊂ Sr
F,K̃;

(c) [K : K̃]< |k(p)|r2 .

Proof. As Kp is a maximal compact subgroup of GLr(Fp ), there is an sp ∈GLr(Fp ) with
Kp = spGLr(Ap )s−1

p . We define Λp to be the lattice sp ·Arp, for which we have

Kp = StabGLr(Fp )(Λp ).

Now, we let K̃p be the kernel of the natural map

StabGLr(Fp )(Λp )→Autk(p)(Λp/p · Λp )

and define K̃ := K̃p ×K(p).
By construction, we get the upper bound (c) for the index of K̃ in K:

[K : K̃] = [Kp : K̃p] = |Autk(p)(Λp/p · Λp )|= |GLr(k(p))|< |k(p)|r2 .

We denote by ι̃F
′

F,b the inclusion Sr
′

F ′,K̃′ → Sr
F,K̃ associated to the same datum (F ′, b) as ιF

′
F,b and

set X̃ := ιF
′

F,b(S
r′

F ′,K̃′). The proof of Lemma 3.3.2(i) shows that X̃ is a Drinfeld modular subvariety

of Sr
F,K̃ with π1(X̃) =X.

It remains to show that p is good for X̃ ⊂ Sr
F,K̃. Condition (i) in Definition 7.1.2 is satisfied by

construction of K̃ and condition (ii) by assumption. So we only have to check that Λ′p := bp(Λp )
is an A′p -submodule of F ′p

r′ . Since Kp is the stabilizer of Λp in GLr(Fp ), the stabilizer of Λ′p in
GLr′(F ′p ) is exactly

K′p := (bpKpb
−1
p ) ∩GLr′(F ′p ),

which is a maximal compact subgroup of GLr′(F ′p ) by assumption. Since A′p
∗ is the unique

maximal compact subgroup of F ′p
∗, we therefore have

StabF ′p∗(Λ
′
p ) =K′p ∩ F ′p

∗ =A′p
∗
,

where F ′p
∗ is embedded in GLr′(F ′p ) as scalars. Since A′p

∗ generates A′p as a ring, we conclude
that Λ′p is an A′p -submodule of F ′p

r′ . 2

Theorem 7.3.2. Let S = SrF,K be a Drinfeld modular variety and N > 0. For every prime q of F ,
denote by Kq the projection of K to GLr(Fq). Then, for almost all Drinfeld modular subvarieties
X = ιF

′
F,b(S

r′
F ′,K′) with separable reflex field F ′ over F , there is a prime p with the following

properties.

(i) There is a prime p′ of F ′ above p with local degree [F ′p′/Fp] = 1.

(ii) The subgroup Kp of GLr(Fp ) is maximal compact and K =Kp ×K(p) with K(p) ⊂GLr(Af,p
F ).
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(iii) The subgroup K′p := (bpKpb
−1
p ) ∩GLr′(F ′p ) of GLr′(F ′p ) is maximal compact.

(iv) We have |k(p)|N <D(X) where D(X) denotes the predegree of X from Definition 3.3.8.

Before giving the proof of this theorem, we show two lemmas.

Lemma 7.3.3. There are absolute constants C1, C2 > 0 such that for all global function fields F ′

with field of constants containing Fq
g(F ′) 6 C1 + C2 · logq(|Cl(F ′)|)

where g(F ′) denotes the genus of F ′ and |Cl(F ′)| the class number of F ′.

Proof. Let F ′ be a global function field with field of constants Fq′ ⊃ Fq. Then, with
Proposition 4.3.4 we get the estimate

|Cl(F ′)|> (q′ − 1)(q′2g(F
′) − 2g(F ′)q′g(F

′) + 1)
2g(F ′)(q′g(F ′)+1 − 1)

> (q − 1) ·
(
qg(F

′)−1

2g(F ′)
− 1
q

)
,

which implies
qg(F

′)−1

g(F ′)
6

2|Cl(F ′)|
q − 1

+
2
q

6 4|Cl(F ′)|,

and, because x/2 > logq x− 1,

g(F ′)
2
− 2 6 g(F ′)− 1−logq g(F ′) 6 logq(4|Cl(F ′)|).

So the desired estimate holds for the absolute constants C1 := 8 and C2 := 2. 2

Lemma 7.3.4. There are constants C3, C4 > 0 only depending on r such that for all finite
separable extensions F ′/F of global function fields with [F ′/F ] 6 r

g(E′) 6 C3 + C4 · g(F ′)

where E′ denotes the normal closure of the extension F ′/F .

Proof. Let F ′/F be a finite separable extension of global function fields of degree r′ 6 r. Its
normal closure E′ is the compositum of all Galois conjugates F ′1, . . . , F

′
r′ of F ′ over F . We use

Castelnuovo’s inequality [Sti93, Theorem III.10.3] to bound its genus.
If a global function field K is the compositum of two subfields K1 and K2 with ni := [K/Ki]<

∞ for i= 1, 2, then

g(K) 6 n1 · g(K1) + n2 · g(K2) + (n1 − 1)(n2 − 1).

For K1 = F ′1 and K2 = F ′2 this gives

g(F ′1F
′
2) 6 r′ · g(F ′) + r′ · g(F ′) + (r′ − 1)2 6 2r′ · g(F ′) + r′2

because all Galois conjugates of F ′ over F have the same genus, and [F ′1F
′
2/F

′
1] 6 [F ′2/F ] = r′

and [F ′1F
′
2/F

′
2] 6 [F ′1/F ] = r′. With induction over k we get

g(F ′1 · · · F ′k) 6 kr′k−1 · g(F ′) + (k − 1)r′k,

and with k = r′ we get

g(E′) 6 r′r
′ · g(F ′) + (r′ − 1) · r′r′ 6 (r − 1)rr + rr · g(F ′). 2

Proof of Theorem 7.3.2. For a Drinfeld modular subvarietyX = ιF
′

F,b(S
r′
F ′,K′) with separable reflex

field over F , we denote by n(X) the number of primes of F for which properties (ii) and (iii) in
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Theorem 7.1.3 do not both hold, and by m(X, N) the number of primes of F with properties
(i) and (iv). We show the following statements for Drinfeld modular subvarieties X of S with
separable reflex field.

(a) We have n(X) 6 C5 + C6 · logq(i(X)) for constants C5, C6 independent of X where i(X)
denotes the index of X as defined in Definition 3.3.8.

(b) There is an M > 0 such that m(X, N)> n(X) for all X with D(X)>M .

Statement (b) implies the theorem because D(X)>M for almost all Drinfeld modular
subvarieties X of S by Theorem 4.3.2.

Proof of (a). For a Drinfeld modular subvariety X = ιF
′

F,b(S
r′
F ′,K′) of S we have

K′ = (bKb−1) ∩GLr′(Af
F ′)

and the index i(X) is the index of K′ in a maximal compact subgroup of GLr′(Af
F ′).

For a prime p for which property (ii) holds, we can write Kp = StabGLr(Fp )(Λp ) for some
Ap -lattice Λp ⊂ F rp and

K′p = (bpKpb
−1
p ) ∩GLr′(F ′p ) = StabGLr′ (F

′
p )(Λ

′
p )

with Λ′p := bp(Λp ). Note that A′p · Λ′p is a free A′p -submodule of rank r′ because A′p is a direct
product of principal ideal domains. Therefore with Proposition 4.3.6 we get the estimate

[StabGLr′ (F
′
p )(A

′
p · Λ′p ) :K′p ] > C · [A′p · Λ′p : Λ′p ]1/r

for some constant C > 0 only depending on q and r. If K′p is not a maximal compact subgroup of
GLr′(F ′p ) (i.e., property (iii) does not hold for p), then Λ′p cannot be an A′p -submodule of F ′p

r′ ,
i.e., we have Λ′p (A′p · Λ′p and

[StabGLr′ (F
′
p )(A

′
p · Λ′p ) :K′p ] > C · |k(p)|1/r

because each finite non-trivial Ap -module has at least |k(p)| elements.
Since, for each prime p satisfying property (ii), we have K′ =K′p ×K′(p) for some subgroup

K′(p) ⊂GLr′(F ′ ⊗ Af,p
F ), we conclude that

i(X) > C · |k(p)|n3(X)/r > C · qn3(X)/r,

where n3(X) is the number of primes of F for which property (ii) holds, but property (iii) does
not hold. If n2 is the number of primes of F , for which property (ii) does not hold, then we
conclude

n(X) = n2 + n3(X) 6 n2 − r · logq(C) + r · logq(i(X)).

This finishes the proof of (a), because n2 is independent of X.

Proof of (b). Let X be a Drinfeld modular subvariety of S with separable reflex field F ′ over F .
We denote the normal closure of the extension F ′/F by E′. To give a lower bound for m(X, N)
we note that all primes p of F which completely split in E′ satisfy property (i). We bound the
number of such primes with fixed degree using an effective version of Čebotarev’s theorem.

For the application of Čebotarev’s theorem we fix some notations. We denote the constant
extension degree of E′/F by n and its geometric extension degree by k. Since we assumed F to
have field of constants Fq, the field of constants of E′ is Fqn and k = [E′/Fqn · F ]. We furthermore
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fix a separating transcendence element θ of F/Fq (i.e., an element θ of F such that F/Fq(θ) is
finite and separable) and set d := [F/Fq(θ)].

The effective version of Čebotarev’s theorem in [FJ05, Proposition 6.4.8] says that for all
i> 1 with n|i∣∣∣∣|Ci(E′/F )| − qi

ik

∣∣∣∣< 2
ik

((k + g(E′))qi/2 + k(2g(F ) + 1)qi/4 + g(E′) + dk)

where

Ci(E′/F ) := {p place of F | k(p) = Fqi , p completely splits in E′ and
p is unramified over Fq(θ)}.

We apply this for all X with predegree D(X) > q4Nr!. Because n6 [E′/F ] 6 r!, for these X we
have qn 6D(X)1/4N . Therefore there are j > 1 with n|j and qj <D(X)1/N and we can define

i := max{j > 1 : n | j, qj <D(X)1/N}.

Our choice of i ensures that

m(X, N) > |Ci(E′/F )|.
By our choice of i and X we have qi <D(X)1/N , qn+i >D(X)1/N and qn 6D(X)1/4N . Hence
we have the bounds

qi <D(X)1/N , qi =
qn+i

qn
>D(X)3/4N .

Furthermore, Lemmas 7.3.3 and 7.3.4 imply

g(F ′) 6 C1 + C2 · logq(D(X)),
g(E′) 6 C3 + C4 · g(F ′).

Since d is independent of X and 1 6 n, k 6 r! for all X, the above conclusion of Čebotarev’s
theorem and these bounds imply

m(X, N) >
C ′1 ·D(X)3/4N

logq(D(X))
−
C ′2 + C ′3 logq(D(X))

logq(D(X))
(D(X)1/2N +D(X)1/4N + 1)

with C ′1, C
′
2, C

′
3 > 0 independent of X. On the other hand, our statement (a) gives the bound

n(X) 6 C5 + C6 · logq(D(X))

with C5, C6 independent of X. Since x1/2N (logq(x))2 = o(x3/4N ) for x→∞, these bounds imply
the existence of an M > 0 such that m(X, N)> n(X) for all X with D(X)>M . 2

8. The André–Oort conjecture for Drinfeld modular varieties

8.1 Statement and first reduction
Conjecture 8.1.1 (André–Oort Conjecture for Drinfeld modular varieties). Let S be a Drin-
feld modular variety and Σ a set of special points of S. Then each irreducible component over
C∞ of the Zariski closure of Σ is a special subvariety of S.

Our main result is the following theorem.

Theorem 8.1.2. Conjecture 8.1.1 is true if the reflex fields of all special points in Σ are separable
over F .
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Since the reflex field of a special point in SrF,K is of degree r over F , special points with
inseparable reflex field over F can only occur if r is divisible by p= char(F ). Hence, Theorem 8.1.2
implies the following corollary.

Corollary 8.1.3. Conjecture 8.1.1 is true if r is not a multiple of p= char(F ).

Theorem 8.1.2 follows from the following crucial statement, whose proof we give in the next
subsection.

Theorem 8.1.4. Let S be a Drinfeld modular variety and Z ⊂ S an F -irreducible subvariety.
Suppose that Σ is a set of Drinfeld modular subvarieties of S, all of the same dimension d < dim Z
and with separable reflex field over F , whose union is Zariski dense in Z. Then, for almost all
X ∈ Σ, there is a Drinfeld modular subvariety X ′ of S with X (X ′ ⊂ Z.

Remark. By Proposition 3.3.4, the proper inclusion X (X ′ implies that dimX < dimX ′

because the reflex field of X ′ is properly contained in the reflex field of X.

Proposition 8.1.5. Theorem 8.1.4 implies Theorem 8.1.2.

Proof of Proposition 8.1.5. We can assume without loss of generality that the Zariski closure Y
of Σ is irreducible over C∞. Since each special point in Σ is defined over F sep, the Zariski closure
Y of Σ is also defined over F sep. Hence, we can consider the subvariety Z := Gal(F sep/F ) · Y ,
which is F -irreducible by Proposition 1.2.2. The union Σ′ of all Gal(F sep/F )-conjugates of the
elements of Σ is Zariski dense in Z. Proposition 3.3.11 implies that Σ′ is a union of Drinfeld
modular subvarieties of dimension 0 with separable reflex field over F .

Hence, we can apply Theorem 8.1.4 with d= 0 and find a finite subset Σ̃⊂ Σ such that for
all X ∈ Σ\Σ̃, there is a Drinfeld modular subvariety X ′ with X (X ′ ⊂ Z. We denote the set of
these Drinfeld modular subvarieties X ′ by Σ′. Since Σ̃ is finite, the union of all subvarieties in
Σ′ is Zariski dense in Z.

Note that Proposition 3.3.4 implies that all elements X ′ of Σ′ are of positive dimension.
Therefore there is a d′ > 0 with d′ 6 dim Z such that the Zariski closure of the union of all
subvarieties of dimension d′ in Σ′ is of codimension 0 in Z. We let Σ′′ be the set of all Gal(F sep/F )-
conjugates of the subvarieties of dimension d′ in Σ′. Since Z is F -irreducible, this is a set of
Drinfeld modular subvarieties of S, all of the same dimension d′ > 0, whose union is Zariski
dense in Z.

If d′ = dim Z, then Y is an irreducible component over C∞ of an element in Σ′′ and therefore
special. If d′ < dim Z, we apply Theorem 8.1.4 with d= d′ > 0 one more time to get a set of
Drinfeld modular subvarieties of dimension d′′ > d′ whose union is Zariski dense in Z. We iterate
this process until we eventually get such a set with d′′ = dim Z, which implies that Y is special. 2

8.2 Inductive proof in the separable case

The proof of Theorem 8.1.4 requires the results from § 7.3 about the existence of good primes
and the following theorem. We first give an inductive proof of the latter theorem using our
results about existence of suitable Hecke correspondences from § 7.2 and our geometric criterion
in Theorem 6.1.3.

Theorem 8.2.1. Let S = SrF,K be a Drinfeld modular variety and X ⊂ S a Drinfeld modular
subvariety over F which is contained in an F -irreducible subvariety Z ⊂ S with dim Z > dimX.
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Suppose that p is a good prime for X ⊂ S and

deg(X)> |k(p)|(r−1)·(2s−1) · deg(Z)2s

for s := dim Z − dimX. Then there is a Drinfeld modular subvariety X ′ of S with X (X ′ ⊂ Z.

Remark. The degree deg(X) makes sense here because K is amply small by condition (i) in
Definition 7.1.2.

Proof. In this proof, by ‘irreducible component’ we always mean an irreducible component
over C∞. We assume that X = ιF

′
F,b(S

r′
F ′,K′). Note that F ′ is separable over F by the remark

after Definition 7.1.2.

We prove the following statements for all n> 1.

(i) If the theorem is true for s= n and Z Hodge-generic (i.e., no irreducible component of Z
lies in a proper Drinfeld modular subvariety of S, see Definition 6.1.2), then it is true for s= n
and general Z.

(ii) If the theorem is true for all s with 1 6 s < n and general Z, then it is true for s= n and
Z Hodge-generic.

These two statements imply the theorem by induction over s.

Proof of (i). We assume that the theorem is true for s= n and Z Hodge-generic and have to show
that it is true for s= n if Z is not Hodge-generic. In this case, there is an irreducible component
of Z which is contained in a proper Drinfeld modular subvariety of S. Since Gal(F sep/F ) acts
transitively on the irreducible components of Z (Proposition 1.2.2) and Gal(F sep/F ) acts on
the set of Drinfeld modular subvarieties of S (Proposition 3.3.11), also the other irreducible
components of Z are contained in a proper Drinfeld modular subvariety of S. In particular,
this is the case for some chosen irreducible component Z ′ of Z which contains an irreducible
component V of X.

We now consider a minimal Drinfeld modular subvariety Y = ιF
′′

F,b′(S
r′′
F ′′,K′′) of S with Z ′ ⊂ Y (

S. By Proposition 3.3.4, the reflex field F ′′ of Y is contained in F ′ and is therefore also separable
over F . Since Y is defined over F ′′, the F ′′-irreducible component Z ′′ := Gal(F sep/F ′′) · Z ′ of Z
is contained in Y . Furthermore, the F ′-irreducibility of X (see Corollary 3.4.6) implies

X = Gal(F sep/F ′) · V ⊂Gal(F sep/F ′′) · V ⊂Gal(F sep/F ′′) · Z ′ = Z ′′ ⊂ Y.

We now set X̃ := (ιF
′′

F,b′)
−1(X) and Z̃ := (ιF

′′
F,b′)

−1(Z ′′). These are subvarieties of Sr
′′
F ′′,K′′ with

X̃ ⊂ Z̃ ⊂ Sr′′F ′′,K′′

and

dim Z̃ − dim X̃ = dim Z − dimX = n.

The subvariety Z̃ = (ιF
′′

F,b′)
−1(Z ′′) is F ′′-irreducible because Z ′′ ⊂ ιF ′′F,b′(Sr

′′
F ′′,K′′) is F ′′-irreducible

and ιF
′′

F,b′ is a closed immersion defined over F ′′ by Proposition 3.2.3.

By Corollary 3.3.5 and minimality of Y , the subvariety Z̃ ⊂ Sr′′F ′′,K′′ is Hodge-generic and X̃

is a Drinfeld modular subvariety of Sr
′′
F ′′,K′′ with separable reflex field F ′ over F ′′. Furthermore,

by Proposition 7.1.3, there is a prime p′′ of F ′′ above p with k(p) = k(p′′) such that p′′ is good
for X̃ ⊂ Sr′′F ′′,K′′ .
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Proposition 4.2.3 (ii) implies

deg X̃ = deg X,
deg Z̃ = deg Z ′′ 6 deg Z.

Because k(p) = k(p′′) and r′′ < r, the assumption

deg(X̃)> |k(p′′)|(r′′−1)·(2n−1) · deg(Z̃)2n

is satisfied. So if Theorem 8.2.1 is true for Z Hodge-generic and s= n then there is a Drinfeld
modular subvariety X̃ ′ of Sr

′′
F ′′,K′′ with X̃ ( X̃ ′ ⊂ Z̃ and X ′ := ιF

′′
F,b′(X̃ ′) is the desired Drinfeld

modular subvariety of S with X (X ′ ⊂ Z. This concludes the proof of (i).

Proof of (ii). We assume that the theorem is true for all s with 1 6 s < n and have to show that
it is true for Z Hodge-generic and dim Z − dimX = n. Since p is a good prime for X, we can
apply Theorem 7.2.2 and find a g ∈GLr(Af

F ) with the following properties:

(a) X ⊂ TgX;

(b) deg Tg = [K :K ∩ g−1Kg] = |k(p)|r−1;

(c) for all k1, k2 ∈ Kp, the cyclic subgroup of PGLr(Fp ) generated by the image of k1 · gp · k2

is unbounded.

Because of property (a) and X ⊂ Z, we have

X ⊂ Z ∩ TgZ.

Lemma 4.2.5 together with Proposition 4.2.3 and property (b) of our g ∈GLr(Af
F ) give us

the upper bound

deg(Z ∩ TgZ) 6 deg Z · deg TgZ 6 (deg Z)2 · deg Tg = (deg Z)2 · |k(p)|r−1.

With the assumption on deg X and n= dim Z − dimX > 1 we conclude

deg X > |k(p)|(r−1)·(2n−1) · deg(Z)2n > deg(Z ∩ TgZ).

Therefore X cannot be a union of irreducible components of Z ∩ TgZ. Note that Z ∩ TgZ is
defined over F , hence also over the reflex field F ′ of X. Since X is F ′-irreducible, there is an
F ′-irreducible component Y ′ of Z ∩ TgZ with X ⊂ Y ′. We have X ( Y ′ because X is not a union
of irreducible components (over C∞) of Z ∩ TgZ.

Now we set Y := Gal(F sep/F ) · Y ′. This is an F -irreducible component of Z ∩ TgZ which
contains X with dimX < dim Y . We distinguish two cases.

Case 1. Y = Z. Because Y ⊂ Z ∩ TgZ, this is only possible if Z ⊂ TgZ. Since Z is F -irreducible
and Hodge-generic, property (c) from the above list holds and K is amply small, we can apply
our geometric criterion (Theorem 6.1.3) and conclude that Z = S. So X ′ := Z = S satisfies the
conclusion of the theorem.

Case 2. Y ( Z. Set s′ := dim Y − dimX. Since Y and Z are F -irreducible, we have 1 6 s′ < n=
dim Z − dimX. Hence, by our assumption, we can apply the theorem to X ⊂ Y ⊂ S and the
prime p provided that the inequality of degrees

deg X > |k(p)|(r−1)·(2s′−1) · deg(Y )2s
′

holds.
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To check the latter, note that Y is a union of irreducible components (over C∞) of Z ∩ TgZ,
because it is an F -irreducible component of Z ∩ TgZ, whence

deg Y 6 deg(Z ∩ TgZ) 6 |k(p)|r−1 · (deg Z)2.

Therefore we indeed have

|k(p)|(r−1)·(2s′−1) · deg(Y )2s
′
6 |k(p)|(r−1)·(2n−1−1) · deg(Y )2n−1

6 |k(p)|(r−1)·(2n−1−1) · |k(p)|(r−1)·2n−1 · (deg Z)2n

= |k(p)|(r−1)·(2n−1) · (deg Z)2n < deg X.

So we find a Drinfeld modular subvariety X ′ of S with X (X ′ ⊂ Y ⊂ Z as desired. 2

Proof of Theorem 8.1.4. We first reduce ourselves to the case S = SrF,K with K amply small.
If K is not amply small, there is an amply small open subgroup L ⊂K with corresponding
canonical projection π1 : SrF,L→ SrF,K. We choose an F -irreducible component Z̃ of π−1

1 (Z) with
dim Z = dim Z̃ and set

Σ̃ := {X̃ ⊂ Z̃ F ′-irreducible component of π−1
1 (X) |X ∈ Σ with reflex field F ′}.

Since Drinfeld modular subvarieties with reflex field F ′ are F ′-irreducible by Corollary 3.4.6, all
X̃ ∈ Σ̃ are Drinfeld modular subvarieties of SrF,L by Lemma 3.3.2. They are all contained in Z̃

and their union is Zariski dense in Z̃ by our assumption on Σ. If Theorem 8.1.4 is true for K
amply small, we conclude that, for almost all X̃ ∈ Σ̃, there is a Drinfeld modular subvariety X̃ ′

of SrF,L with X̃ ( X̃ ′ ⊂ Z̃. For such an X̃ ′, again by Lemma 3.3.2, X ′ := π1(X̃ ′) is a Drinfeld
modular subvariety of SrF,K. Hence, for almost all X ∈ Σ, there is a Drinfeld modular subvariety
X ′ with X (X ′ ⊂ Z.

So we now assume that K is amply small. By Theorem 7.3.2 with N = 2(r − 1) · (2s − 1) +
r2 · 2s+1 for s := dim Z − d, for almost all X = ιF

′
F,b(S

r′
F ′,K′) ∈ Σ, there exists a prime p of F with

the following properties.

(i) There is a prime p′ of F ′ above p with local degree [F ′p′/Fp] = 1.

(ii) We have K =Kp ×K(p) with Kp ⊂GLr(Fp ) a maximal compact subgroup and K(p) ⊂
GLr(Af,p

F ).

(iii) The subgroup K′p := (bpKpb
−1
p ) ∩GLr′(F ′p ) of GLr′(F ′p ) is maximal compact.

(iv) We have |k(p)|2(r−1)·(2s−1)+r2·2s+1
<D(X) for s := dim Z − d.

Furthermore, by Theorem 4.3.2 we have:

(v) D(X)> deg(Z)2s+1
/C2,

for almost all X ∈ Σ with C the constant from Proposition 4.3.1.

By Proposition 7.3.1, for all X = ιF
′

F,b(S
r′
F ′,K′) and p with (i)–(v) there is a subgroup K̃ ⊂ K

and a Drinfeld modular subvariety X̃ ⊂ Sr
F,K̃ such that:

(a) π1(X̃) =X for the canonical projection π1 : Sr
F,K̃→ SrF,K;

(b) p is good for X̃ ⊂ Sr
F,K̃;

(c) [K : K̃]< |k(p)|r2 .
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Furthermore, for such an X̃ ⊂ Sr
F,K̃, we choose an F -irreducible component Z̃ of π−1

1 (Z) with

X̃ ⊂ Z̃. Since π1 is finite of degree [K : K̃] by Theorem 3.1.3, we have dim Z̃ = dim Z > dimX =
dim X̃ and

deg Z̃ 6 deg π−1
1 Z = [K : K̃] · deg Z < |k(p)|r2 · deg Z,

deg X̃ > deg π1(X̃) = deg X

by Proposition 4.2.3. Therefore, using Proposition 4.3.1, we get the inequality

deg X̃ > deg X > C ·D(X) =D(X)1/2 · (C ·D(X)1/2)
(iv),(v)
> |k(p)|(r−1)·(2s−1)+r2·2s · deg(Z)2s > |k(p)|(r−1)·(2s−1) · deg(Z̃)2s .

Therefore X̃ ⊂ Z̃ ⊂ Sr
F,K̃ together with p satisfy the assumptions of Theorem 8.2.1. So we find

a Drinfeld modular subvariety X̃ ′ of Sr
F,K̃ with X̃ ( X̃ ′ ⊂ Z̃, and X ′ := π1(X̃ ′) is a Drinfeld

modular subvariety of SrF,K with X (X ′ ⊂ Z. 2
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