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ABSTRACT

We consider the analogue of the André—Oort conjecture for Drinfeld modular varieties
which was formulated by Breuer. We prove this analogue for special points with
separable reflex field over the base field by adapting methods which were used by
Klingler and Yafaev to prove the André—QOort conjecture under the generalized Riemann
hypothesis in the classical case. Our result extends results of Breuer showing the
correctness of the analogue for special points lying in a curve and for special points
having a certain behaviour at a fixed set of primes.

Introduction

The André—Oort conjecture

The André-Oort conjecture asserts that every irreducible component of the Zariski closure of
a set of special points in a Shimura variety is a special subvariety. There has been remarkable
progress on this conjecture recently.

Edixhoven proved the conjecture for products of modular curves and Hilbert modular surfaces
assuming the generalized Riemann hypothesis (GRH) in [Edi01, Edi05, Edi98]. Both proofs
exploit the Galois action on special points and use geometric properties of Hecke correspondences.
In the special case of a product of two modular curves, André [And98] gave a proof without
assuming GRH using transcendence theory. Recently, Pila [Pill1] found an unconditional proof
of the conjecture for products of modular curves using techniques from model theory.

Edixhoven and Yafaev extended their Galois-theoretic and geometric methods in [EY03] to
prove the conjecture for curves in general Shimura varieties containing infinitely many special
points all lying in the same Hecke orbit. Subsequently, Yafaev [Yaf06] also proved the conjecture
for general curves assuming GRH.

Recently, Klingler and Yafaev [KY12] and Ullmo and Yafaev [UY12] have announced a proof
of the full André-Oort conjecture assuming GRH. Their methods use a combination of the
methods of Edixhoven and Yafaev and equidistribution results of Clozel and Ullmo [CUO05]
established by methods from ergodic theory.

For a more detailed exposition of results concerning the André—Oort conjecture for Shimura
varieties, we refer to the survey article of Noot [Noo06].

Received 27 January 2012, accepted in final form 25 June 2012, published online 14 February 2013.
2010 Mathematics Subject Classification 11G09, 14G35.
Keywords: Drinfeld modular varieties, André—Oort conjecture.
The work presented in this paper has been partially funded by the SNSF, Switzerland (project no. 117638).
This journal is (© Foundation Compositio Mathematica 2013.

https://doi.org/10.1112/50010437X12000681 Published online by Cambridge University Press


http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X12000681

P. HUBSCHMID

Drinfeld modular varieties

Drinfeld modular varieties are a natural analogue of Shimura varieties in the function field case.
They can be interpreted as moduli spaces for Drinfeld A-modules over a global function field F’
of a given rank r with K-level structure, where A is the ring of elements of F' that are regular
outside of a fixed place oo and K C GL, (Aé) is a compact open subgroup with A{; the ring of
adeles of F' outside oco.

One can define special subvarieties of a Drinfeld modular variety S = Sp - parametrizing
Drinfeld A-modules of rank 7 in analogy to the case of Shimura varieties. For each finite extension
F’ of F of degree r/r’ with only one place above oo and integral closure A" of A in F’, the
restriction of Drinfeld A’-modules to A gives a morphism from the moduli space of Drinfeld
A’-modules of rank 7’ (with a certain level structure) to S defined over F’. These morphisms are
analogues of morphisms induced by a Shimura subdatum. A special subvariety V is defined to
be a geometrically irreducible component of a Hecke translate of the image of such a morphism.
A special point is a special subvariety of dimension 0.

In fact, we can interpret each special subvariety V' as a geometrically irreducible component of
a Drinfeld modular subvariety which is the union of Galois conjugates of V' over the corresponding
extension F’ of F. A Drinfeld modular subvariety X is the image of the composition of an above
morphism defined by the restriction of Drinfeld A’-modules to A with a morphism given by
a Hecke correspondence. Such a composition, called inclusion morphism, is associated to an
extension F'/F of the above type and an A?—linear isomorphism b: (A{,)’“ = (Alfw)’"' encoding
the involved Hecke correspondence. We say that F”’ is the reflex field of X and its geometrically
irreducible components.

In [Pinl2], Pink constructs the Satake compactification ?IGT,IC of a Drinfeld modular
variety S};} - It is characterized up to unique isomorphism by a certain universal property. If K is
sufficiently small in a certain sense, there is a natural ample invertible sheaf E’"F’,C on g;;’,C. This
allows us to define the degree of a subvariety of ST, as the degree of its Zariski closure in ?},K
with respect to E}",,,C. The degree of a subvariety can be seen as a measure for the ‘complexity’
of the subvariety.

André—Oort conjecture for Drinfeld modular varieties

The following analogue of the André—Oort conjecture was formulated by Breuer in [Brel2].

CONJECTURE 1. Let S :S}}JC be a Drinfeld modular variety and Y a set of special points
in S. Then each irreducible component over C, of the Zariski closure of ¥ is a special subvariety

of S.

Breuer [Brel2] proved this analogue in two cases. Firstly, when the Zariski closure of ¥
is a curve, and secondly when all special points in ¥ have a certain behaviour at a fixed set
of primes. Earlier in [Bre05, Bre07], he proved an analogue of the André-Oort conjecture for
products of modular curves in odd characteristic. These proofs use an adaptation of the methods
of Edixhoven and Yafaev in [Edi05, EY03, Yaf06]. The results are unconditional because GRH
holds over function fields.

In this thesis, we extend the arguments of Breuer using an adaptation of the methods of
Klingler and Yafaev in [KY12]. Our main result is the following theorem.

THEOREM 2. Conjecture 1 is true if the reflex fields of all special points in Y are separable
over F'.

508

https://doi.org/10.1112/50010437X12000681 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000681

THE ANDRE-QOORT CONJECTURE FOR DRINFELD MODULAR VARIETIES

Since the reflex field of a special point in a Drinfeld modular variety S7  is of degree r over F,
special points with inseparable reflex field over F' can only occur if r is divisible by p = char(F).
So Theorem 2 implies the following theorem.

THEOREM 3. Conjecture 1 is true if v is not a multiple of p = char(F).

Sketch of the proof of Theorem 2

First reductions. We need to show that a geometrically irreducible subvariety Z of S
containing a Zariski dense subset of special points with separable reflex field over F' is a
special subvariety. An induction argument shows that it is enough to show the following crucial
statement.

THEOREM 4. Let X be a set of Drinfeld modular subvarieties of S of dimension d whose union is
Zariski dense in a subvariety Z C S of dimension greater than d which is defined and irreducible
over F. Then, for almost all X € X, there is a Drinfeld modular subvariety X' of S with
XCcX cZz.

In [KY12], Klingler and Yafaev perform the same induction; however, they work with special
subvarieties instead of certain unions of their Galois conjugates (Drinfeld modular subvarieties
in our case).

In the proof of this statement, we can assume without loss of generality that the following
hold.

— The subgroup K C GLT(AQ) is sufficiently small such that the degree of subvarieties of
S = Sp 1s defined.

— Also, Z is Hodge generic, i.e., no geometrically irreducible component of Z is contained in
a proper Drinfeld modular subvariety of S.

Degree of Drinfeld modular subvarieties. We give a classification of the Drinfeld modular
subvarieties of S and then use it to show the following unboundedness result.

THEOREM 5. If 3 is an infinite set of Drinfeld modular subvarieties of S, then deg X is
unbounded as X varies over 3.

Note that, for a special subvariety V which is a geometrically irreducible component of a
Drinfeld modular subvariety X, the union of the Galois conjugates of V' over its reflex field is
equal to X. Therefore, deg X measures both the degree of V' and the number of Galois conjugates
of V. So our unboundedness statement tells us that it is not possible that, in an infinite family of
special subvarieties V', the degrees and the number of Galois conjugates of V' are both bounded.
Since we can exclude this case, we only need an adaptation of the Galois-theoretic and geometric
methods in [KY12] and do not need equidistribution results as in [CUO05].

Geometric criterion. We deduce a geometric criterion for Z being equal to S. It is a key
ingredient of our proof of Theorem 4 and says that Z is equal to the whole of S provided that
Z is contained in a suitable Hecke translate Ty, Z of itself. A similar geometric criterion appears
in the proof of Klingler and Yafaev in the classical case.

THEOREM 6. Suppose that K =K, x K¥) with K, C GL,(F}), and assume that Z C Ty, Z for
some gy € GL,.(Fy,) and Z Hodge-generic and irreducible over F'. If, for all k1, ko € K, the cyclic
subgroup of PGL,(F},) generated by the image of k1 - gy - k2 is unbounded, then Z = S.
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The proof of this theorem is based on two results.

(i) (Zariski density) We define the (T}, + Thp_1)—orbit of a geometric point z € S(Cy) to be
the smallest subset of S(Co) containing = which is invariant under Tj, and T, St We show
that the (Tj, + Th;1)—orbit of an arbitrary point = € S(Cy) is Zariski dense in the geometrically

irreducible component of S containing x provided that h, € GL,(F}) is chosen such that the
cyclic subgroup of PGL,(F} ) generated by the image of hy is unbounded.

(ii) A result of Pink [Pin97, Theorem 0.1] on the Galois representations associated to Drinfeld
modules implies that the image of the arithmetic étale fundamental group of a geometrically
irreducible component of Z is open in GL,(F}), see [BP05, Theorem 4]. Here we need our
assumption that Z is Hodge-generic.

Induction. Our final step of the proof of Theorem 4 consists of an induction which uses a
Hecke correspondence with specific properties. By induction we show the following statement.

THEOREM 7. Let X be a Drinfeld modular subvariety of S associated to F'/F and b : (Aé)” -t

(A?,)H and assume that X is contained in a Hodge-generic subvariety Z C S which is irreducible
over F.

Suppose that Ty, is a Hecke correspondence localized at a prime p with the following
properties.

(i) The element g, is defined by some g{J, € GLT/(F‘:,) where p’ is a prime of F' lying over p,
ie, gp=b"lo Gy ©b.
(ii) The element g, satisfies the unboundedness condition in Theorem 6, i.e., K = KCp x K®)

with IC, C GL,.(F}) and, for all ky, ko € Kpy, the cyclic subgroup of PGL,(F,) generated by the
image of ki - gy - k2 is unbounded.

(iii) If¢v: 8" — S is an inclusion morphism with X C +(S’), then the Hecke correspondence T"
on S' defined by g, satisfies (ii) and deg T" = deg Ty,.

(iv) The inequality deg X > deg(T,)* ~' - (deg Z)* holds for s :=dim Z — dim X.
Then there is a Drinfeld modular subvariety X' of S with X C X' C Z.

We perform an induction over s:=dim Z — dim X. Property (i) implies that X C Ty, X; in
particular, we therefore have

X CZNT,Z.

The lower bound (iv) for deg X now says that X cannot be a union of geometrically irreducible
components of Z N Ty, Z. Therefore we find an irreducible component Z’ over F of Z N T, Z with
X C Z" and dim Z' > dim X. There are two cases.

If Z/ =7, we have Z C T, g2 and conclude by Theorem 6 that Z =S, so the conclusion of
Theorem 4 is true with X' = S.

If 7' C Z, then dim Z' < dim Z because Z is irreducible over F'. We replace Z by Z' and
apply the induction hypothesis. In this step, it is possible that Z’ is not Hodge-generic any more.
In this case, we replace S by a smaller Drinfeld modular variety S’ and show that properties
(i)—(iv) from Theorem 7 are still valid in S” using our property (iii).
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Choice of a suitable Hecke correspondence. 'To finish the proof of Theorem 4, by Theorem 7
we need to show that, for almost all X € 3, there is a Hecke correspondence Ty, localized at a
prime p with the properties (i)-(iv) from Theorem 7. To construct such a Ty, for a X € ¥, we
need the prime p to satisfy specific conditions under which we call the prime good for X.

DEFINITION 8. Let X be a Drinfeld modular subvariety of Sp associated to F '/F and

b: (A{?)T = (A{m,)’”/. A prime p of F is called good for X C Sp if there is an sy € GL,(F})

such that the following hold for the Ap-lattice Ap:= s, - Ap:

(a) K=K, x KP® where ICp =5, K(p)sy, ! for the principal congruence subgroup K(p) of
GL (4 );

(b) bp(Ap) is an A’ @4 Ayp-submodule of (A’ ®4 Ap)";

(c) there exists a prime p’ of F’ above p with local degree 1 over F.

THEOREM 9. If p is a good prime for a Drinfeld modular subvariety X C S, then there is a
Hecke correspondence Ty, localized at p satisfying properties (i)—(iii) from Theorem 7 with

deg Tgp = |k(p)’T_17
where k(p) denotes the residue field of p.

We show this theorem by defining
gp = Sp diag(ﬂgl, 1,..., 1)51;1

for a uniformizer 7, at p. In the proof, it is crucial that K, is not a maximal compact subgroup
of GL,(F}), which is guaranteed by condition (a) in Definition 8 of good prime. Otherwise we
are not able to satisfy the unboundedness condition (ii) from Theorem 7.

However, condition (a) in Definition 8 is a very strict condition on the prime p: for a fixed
level IC it can only be satisfied at most at a finite set of primes because K is maximal compact
at almost all primes. Since conditions (b) and (c) in Definition 8 are both satisfied only for an
infinite set of primes of density smaller than one, for a fixed level K, in general we cannot find a
prime p satisfying conditions (a)—(c). We get rid of this problem by starting with a prime p for
which there is an s, € GL, (F}) such that

(@) K= spGLT(Ap)sp_l x K®)

and also conditions (b) and (c) in Definition 8 are satisfied. With an effective version of
Cebotarev’s theorem which relies on the correctness of GRH for function fields we can show that
such a prime satisfying an upper bound for |k(p)| exists provided that deg X is large enough.

In this situation we consider the Drinfeld modular variety S := St e with K= spKC(p)sy U
K®) which is a finite cover of S = S%. .. The conditions (a)-(c) from Definition 8 are satisfied for

some Drinfeld modular subvariety X of S lying over X, i.e., p is a good prime for X ¢ S. By
Theorem 9, we then find a Hecke correspondence T, on S localized at p satisfying properties
(i)~(iv) from Theorem 7 for X C S where property (iv) is ensured by the above upper bound for
|E(p)-

Since deg X is unbounded as X ranges over X by Theorem 5, this works for almost all X € 3.
For these X, Theorem 7 gives a Drinfeld modular subvariety X’ of S with X C X! - Z. The image
X' C S of X’ under the covering map S — S then satisfies the conclusion of Theorem 4.
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Difficulties in the inseparable case

Unfortunately, the above methods do not work in the inseparable case, i.e., if ¥ in Theorem 4
contains Drinfeld modular subvarieties of S with inseparable reflex field. This is caused by the
fact that every prime ramifies in an inseparable field extension. Therefore, for a Drinfeld modular
subvariety with inseparable reflex field, there is no prime for which condition (c) in Definition 8
is satisfied. So we cannot apply Theorem 9 to find a Hecke correspondence satisfying properties
(i)—(iii) from Theorem 7.

Also, other approaches to find such Hecke correspondences fail. For example, if X is a Drinfeld
modular subvariety of dimension 0 with purely inseparable reflex field F'/F and p any prime
of F, then a Hecke correspondence Ty, localized at p satisfying property (i) of Theorem 7 does
not satisfy the unboundedness condition (ii) in Theorem 7. Indeed, in this case there is exactly
one prime p’ of ' above p with ramification index r and, if my € Fy, is a uniformizer, then

Ly, ..., 7T;,_1 is an Fy-basis of F,. Therefore, if g, € GL,(F} ) is defined by g, = 7r§, € GL1(F})
as in property (i) of Theorem 7, then g, is a conjugate of the matrix
k
Tp
1
€ GL,(F})

1

for mp = 775,. Its rth power is a scalar matrix, and hence the cyclic subgroup of PGL,(F})
generated by the image of g, is bounded and we cannot apply our geometric criterion (Theorem 6)
for the Hecke correspondence Ty,

Organization of the paper

After discussing preliminaries in §1, we define Drinfeld modular varieties for arbitrary level
K C GLT(A{;) as quotients of fine moduli schemes of Drinfeld modules in § 2.

In §3, we first define projection morphisms and Hecke correspondences on Drinfeld modular
varieties. Then we define inclusion morphisms of Drinfeld modular varieties which allow us to
define Drinfeld modular subvarieties and special subvarieties of a Drinfeld modular variety S.
Subsequently, we show various properties of these morphisms, give a classification of the Drinfeld
modular subvarieties of S, and describe the Galois action on the sets of Drinfeld modular
subvarieties and irreducible components of S.

In §4, we define the degree of subvarieties of a Drinfeld modular variety using the Satake
compactification constructed in [Pinl12] and discuss some of its properties. We then show our
unboundedness statement for the degree of Drinfeld modular subvarieties (Theorem 5).

The next two sections are devoted to the proof of our geometric criterion for being a Drinfeld
modular subvariety (Theorem 6). Section 5 deals with Zariski density of (T + T},-1)-orbits and
in §6 we give the proof of the actual criterion.

In §7, we first define good primes for Drinfeld modular subvarieties. We then explain, for a
fixed Drinfeld modular subvariety, how we can find a suitable Hecke correspondence at a good
prime as in Theorem 9. The last subsection of § 7 is devoted to finding a good prime p satisfying an
upper bound for |k(p)| for a given Drinfeld modular subvariety after passing to a finite cover of S.

In §8, we finally conclude the proof of Theorem 4 by proving Theorem 7 and applying the
results of the previous sections. Here we also explain why Theorem 4 implies our main result
(Theorem 2).
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1. Preliminaries

1.1 Notation and conventions
The following notation and conventions will be used throughout this paper.

— The symbol I, denotes a fixed finite field with ¢ elements.

— For an Fg-algebra R, we denote by R{7} the ring of non-commutative polynomials in the
variable 7 with coefficients in R and the commutator rule 7A = A%7 for A\ € R.

— The symbol F' always denotes a global function field of characteristic p with field of
constants F, and oo a fixed place of F'.

— For a pair (F, c0), we use the following notation:

A ring of elements of F' regular outside oo;

F, completion of F' at a place p;

Ay discrete valuation ring of Fy;

k(p) residue field of p;

Cwo completion of an algebraic closure of Fi;

AJI; ring of finite adeles of F' (i.e., adeles outside c0);

A?p ring of finite adeles of F' outside p (i.e., adeles outside p and oo);

A profinite completion Hp oo Ap Of A;
CI(F) class group of A.

— A place p # 0o of F is said to be a prime of F. We identify a prime p of F' with a prime
ideal of A.

— For a place p and a finite extension F’ of F', we set I}, :=F' @p F, and A} := A" ®a A,.
We identify Fy with [, Fy, and A, with ][, A}, via the canonical isomorphisms. For a
second finite extension F” of I, we use the analogous conventions and notations.

— For a subfield K C C,, we denote by K5°P the separable and by K the algebraic closure of
K in C4,. Each K-automorphism of K®P has a unique continuation to a K-automorphism
of K. Therefore, we can and do identify the absolute Galois group G := Gal(K*®/K) with
the automorphism group Aut g (K).

For the formulation of algebro-geometric results, we use the following conventions.

— Unless otherwise stated, variety means a reduced separated scheme of finite type over Co,
and subvariety means a reduced closed subscheme of a variety. We identify the set X (Cy)
of Cyo-valued points of a variety X with the set of its closed points.

— For a subfield K C C,, a variety X together with a scheme X of finite type over K and an
isomorphism of schemes ax : Xo .. 5 X is called a variety over K. We often write X in
place of (X, Xo, ax) and identify X ¢, with X via ax if this leads to no confusion. Such
a variety X is called K-irreducible if Xg is irreducible. Note that a variety over K is also a
variety over K’ if K C K' C Co,

— Let X' = X{ ¢ and X = Xqc,, be two varieties over K. A morphism X’ — X is said to be
defined over K if it is the base extension to Co, of a morphism X} — Xy of schemes over K.

— For a variety X over K, a subvariety X’ < X is said to be defined over K if X' is a variety
over K and the closed immersion X’ < X is defined over K.

— For a variety X = X, over K and a subfield K’ C C containing K, we denote by
X (K') the set of K’'-valued points of Xj. Note that X (K’) is naturally a subset of the set
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of closed points of X; in fact it is equal to the set of closed points of X defined over K’,
see, e.g., [Bor91, p. 26].

— The degree of a finite surjective morphism X — Y of irreducible varieties is defined to be
the degree of the extension of the function fields Coo(X)/Coo(Y). We say that a general
finite morphism f: X — Y of (not necessarily irreducible) varieties is of degree d if for each
irreducible component Z of f(X)

> deg(f|X;: X; — Z) = d. (1.1.1)
irreducible components
X; of f71(2)

1.2 Galois action on subvarieties

Let X = Xq,c., be a variety over K C C,. Then there is a natural action of the absolute Galois
group G on X,z which induces an action of Gk on the set of subvarieties of X which are

defined over K.

PROPOSITION 1.2.1. A subvariety of X which is defined over K is already defined over K if and
only if it is defined over K®*°P and G-stable.

Proof. This follows from [Bor91, Theorem AG. 14.4]. O

ProrosITION 1.2.2. Let X = Xoc, be a variety over K CCy. Then the irreducible
components of X are defined over K°P. The absolute Galois group acts transitively on the
set of irreducible components of X if and only if X is K-irreducible.

Proof. Corollary 5.56(2) in [GW10] implies that the irreducible components of X are defined
over K®P. The second statement is a direct consequence of Proposition 1.2.1. O

2. Drinfeld modular varieties
2.1 Analytic description and modular interpretation
We consider the following datum:

— a global function field F' together with a fixed place oco;
— a positive integer r, called rank; and
— a compact open subgroup K of GLT(AQ), called level.

We define Drinfeld’s upper half-space over F' of dimension » — 1 by
QO :=P"1(Cy ) \{ Fso-rational hyperplanes}.

PropPOSITION 2.1.1. The points of Drinfeld’s upper half-space ). are in bijective
correspondence with the set of injective Fu-linear maps F. — Cs up to multiplication by
a constant in C_ via the assignment

Wi rwr]—[(a1,. .., ar) = aqwy + - - - + apwy].
Proof. We have the canonical bijection

Cl, — {Foo-linear maps F, — C}

(Wi, ..o wp) — (a1,...,a.)— awr + - + awp.
The Fyo-linear map (aq, . .., a;) — ajwi + - - - + a,w, is injective if and only if wy, . . . , w, are Fio-
linearly independent, i.e., if and only if (wi,...,w,) does not lie in a F-rational hyperplane.
514
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Hence, factoring out the action of C_ on both sides, we get the desired bijection of Drinfeld’s
upper half-space with the set of injective Fi.-linear maps F_ — C, up to multiplication by a
constant in C%_. )

In the following, we use the identification given by Proposition 2.1.1 and denote the element
of ()} associated to an injective Fio-linear map w: I} — Cy, by w.
Using this notation, one sees that GL,(F') acts on Q}, from the left by
T W:=woT"! (2.1.1)
for T' € GL,(F) considered as automorphism of FZ.
Remark. This action can also be described by regarding ()} as a subset of P"1(Cy). A short
calculation shows that, for w = [w; : - - - 1 w,] € Q% CP""HCyx) and T € GL,(F) with T71 = (s;5),
we have
T -w={[s11w1 + "+ Sprwp i+ :81,wW1 + -+ Sppwy]. (2.1.2)
In other words, the action of a T' € GL,(F) on Q. C P""!}(Cy) is the restriction to Q7. of the
natural action of (T~")7 € GL,(Cy) on P"~}(Cy).
THEOREM 2.1.2. There is a normal affine variety SITV,IC of dimension r — 1 over I’ together with
an isomorphism
Spoge(Coc) = GLr(F)\(r x GLy (Af;)/K) (21.3)
of rigid-analytic spaces, where GL, (A?) /K is viewed as a discrete set.

Remarks.

— In the proof, we define a variety Sp . over F' together with a rigid-analytic isomorphism
of the form (2.1.3) up to isomorphism over F'. This variety is called the Drinfeld modular
variety associated to the datum (F, r, ). We will identify its Coo-valued points with double

cosets in GL,.(F)\(Q% x GL, (A?) /K) via the rigid-analytic isomorphism given in the proof.
— Later (Corollary 3.1.4), we will show that S}, is a non-singular variety if K is sufficiently
small in a certain sense.
Proof. The proof consists of several steps.
(1) We use Drinfeld’s construction of Drinfeld moduli schemes in [Dri74] to define Sj ;- and
a rigid-analytic isomorphism of the form (2.1.3) for K = K(I) € GL,(A) a principal congruence
subgroup modulo a proper ideal I of A.
(ii) For g€ GLT(AQ) ﬂMatT(fl) and proper ideals I, J of A with JAT CgI/l”, we define
morphisms
g Skx(r) — SEx):
which are defined over F' and satisfy the compatibility relation
Tg O Mg = Tgg'-

In particular, these morphisms define an action of GL,(A4) on S};K( N

(iii) We use this action to extend the definition in (i) to all compact open subgroups

K c GL,(A).
(iv) We extend the definition in (ii) to get morphisms

7Tg . S;',IC’ — S},K

for arbitrary K, K’ C GL,(A) and g € GLT(AQ) with K’ C g71Kg.
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(v) We define S ;- and a rigid-analytic isomorphism (3 of the form (2.1.3) for arbitrary levels

K C GLT(A{;). We use the morphisms 7, from (iv) to show the well-definedness of (S}, 3) up
to isomorphism over F'.

Step (i). Recall that a Drinfeld A-module of rank r over an F-scheme S is a line bundle £ over S
together with a ring homomorphism ¢ from A to the ring Endg, (L) of F,-linear endomorphisms
of L (as a group scheme over S) such that, over any trivializing affine open subset Spec(B) C S,
the homomorphism ¢ is given by

A — Enqu (Ga,Spec(B)) = B{T}
©: m(a) ,
a > Q= Z bi(a)T"
=0

where 7 denotes the g-power Frobenius endomorphism and, for all a € A, we have:

(a) g™ =]A/(a)[";

(b) bm(a)(a) S B*§

(¢) bo(a) =~(a) where 7 is the ring homomorphism F' — B corresponding to the morphism of
affine schemes Spec(B) — S — Spec(F).

For a proper ideal I of A, an I-level structure on a Drinfeld module £/S of rank r is an A-linear
isomorphism of group schemes over S

a:(I'JA) — L= m ker(£L % L),
acl

where (I7!/A)" denotes the constant group scheme over S with fibers (I=1/A)".

Remark. In general, one can also define Drinfeld A-modules together with level structures over
A-schemes instead of I-schemes. In this case, one uses a different definition of I-level structure
to deal smoothly with the fibers over p € Spec(A) dividing I; see, for example, [DH87, §1.6].

By [Dri74, §5], the functor

F-schemes — Sets
Frr: S +— {Isomorphism classes of Drinfeld A-modules
of rank r over S with I-level structure}

is representable by a non-singular affine scheme of finite type over F' of dimension r — 1. Note
that, in [Dri74], it is actually shown that the corresponding functor from the category of schemes
over Spec A to the category of sets is representable if I is contained in two distinct maximal
ideals of A. The argument in the proof shows that it is enough that I is a proper ideal of A if
we work with schemes over Spec F.

By our conventions in §1.1, the base extension to Co, of the above representing scheme is
a non-singular variety of dimension r — 1 defined over F'. We denote it by SITV,IC( Iy where (1)
denotes the principal congruence subgroup modulo I. By [Dri74, Proposition 6.6], there is a
natural isomorphism

Ty (Coo) 2 GL (F)\(Q x GL,(AL)/K(I)) (2.1.4)

of rigid-analytic spaces. Under this isomorphism, the equivalence class of an element (i, h) €
O x GLT(Af;) is mapped to the Cy.-valued point of S;“,IC(I) corresponding to the Drinfeld
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module over C,, associated to the lattice
A:=w(F" N hA")
with I-level structure given by the composition of the isomorphisms
(I /A L 171 (FT N AT J(F7 N hAT) <5 T AJA,

where the first isomorphism is given by the multiplication by h on (A?)r via the natural
identifications

(I7YJA) = 71A" /AT,
IV (FTnhA™)J(FT N hAT) = I71 . hAT /h A"

by the inclusion maps. For a detailed survey of this modular interpretation, we refer to the
explanations in [DH87, §IL5].

Step (ii). Let I, J be proper ideals of A and g € GL, (A?) N Mat,.(A") such that JA” C gITA”. For
such a datum, we construct a morphism of functors

T T
Fro— Frr-

The given g € GL,«(AQ) with matrix entries in A induces a surjective endomorphism of (A;)’" /AT
with kernel g~* A" /A”. Since there is a natural isomorphism (F/A)" = (A? /A)" induced by the
inclusion maps, we therefore get a surjective homomorphism of A-modules

(F/A)" = (F/A)".
The kernel U := ker g of this homomorphism is contained in (J71/A)" because we have g A" C
J A" ¢ J7YA" by our assumption JA” C gI A",

For any Drinfeld module £ over an F-scheme S with J-level structure o : (J=1/A)" 5 L, the
image of U C (J~!/A)" under « is a finite A-invariant subgroup scheme of £ over S. Hence,

the quotient £ := L/a(U) is also a Drinfeld A-module over S and contains the finite subgroup
scheme L;/a(U). Since g(J~1/A)" = (J~1/A)" /U, there is a unique A-linear isomorphism o' of
group schemes over S such that the diagram

(A —— L

o

C

gAY £5/0(U)

commutes, where w: L; — Lj/a(U) is the canonical projection. By the assumption J AT c gIA",
we have (I71/A)" C g(J~1/A)". Restricting the isomorphism o’ to the I-torsion gives, therefore,
an I-level structure

(I~'/A) = cj
of L.

The assignment (£, a) — (L', a'|(;-1,4)) induces a morphism of functors Fp, ; — Fp; and

therefore a morphism 7, : S7, () St k(1) defined over F.
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A simple verification shows that 7, is given by
[(w, )] ¥ [(w, hg™")] (2.1.5)
on C-valued points identified with double cosets via the isomorphisms (2.1.4).

This description implies that we have the relation
Tg O Ty = Tgg'
for two such morphisms:

Tg - SITT,IC(I’) - ;",IC(I)v
Ty - S}:—‘,IC(I”) I S;’,]C(I’)'

In particular, we have an action of GL,(A) on S}, K1) by morphisms defined over F' and hence
also on isomorphism classes of Drinfeld A-modules with I-level structure.

Step (iii). Using the action of GLT(A) on S}, K(n) by the morphisms 7, we define, for a compact

open subgroup K C GL,(A),

Stx = Sexmn/K;
where K(I) is a principal congruence subgroup contained in K. Since K(I) acts trivially
on S}%K( It this quotient can be viewed as a quotient under the action of the finite group
K/K(I) by morphisms defined over F. Hence, it is an affine variety defined over F of
dimension r — 1 = dim S;“,IC(I) which is normal because S;,’K(I) is normal (see, e.g., [Ser88,
§II1.12]). By the description (2.1.5) of the above action on Cs-valued points, the rigid-analytic
isomorphism (2.1.4) induces one of the form

B+ (Shc(/K)(Coo) 22 GL (F)\ (2 x GLo(AL)/K). (2.1.6)

It remains to show that, up to F-isomorphism, (S}",,C( I)/ IC, Br) is independent of the choice
of I. For this, note that, for two ideals I, J with I C J, the functors

S — Fri(S)/K(J),
S — Fr(S)
are isomorphic, where the quotient is taken with respect to the action of GL,(A) on Frr(S).

The isomorphism is given by restricting I-level structures to (J~1/A)".
Therefore, we have a natural isomorphism

Sexn/KJ) = Spiewn
defined over F', which is compatible with the isomorphisms (2.1.6) and (2.1.4).
So for two ideals J, I with (1) C K and IC(J) C K we have

St/ K= Skxunn/K = Spicn/K
and these isomorphisms are compatible with the isomorphisms (2.1.6). Therefore, we can well
define Sf, - up to isomorphism over F' by S, () together with the rigid-analytic isomorphism ;.

Step (iv). Let g € GLT(AQ) N Mat,(A) and K, K’ € GL,(A) with K’ € g~'Kg be given. Choose
proper ideals I and J of A such that K(I) C K, K(J) € K’ and JA” C gIA". Then, by Step (iii),

Sk = Spxy /K,
Skx = Spxm/Ks
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and, by Step (ii), there is a morphism
g - SITT,IC(J) - S;“,K(I)-
Since gK'g~' C K, for each k' € K', there is a k € K such that gk’ = kg and
Ty O T = T, © Ty

as morphisms S}K(J) —>S;“IC(I)' So the composition of m; with the canonical projection
S;?,K;( n— Fic s K'-invariant and induces therefore a morphism m : S}’K, — SIT;’,C such that
the diagram

SEx) SALI SExw)

L,

r g T
SF,IC’ > SF,IC

commutes, where the vertical maps are the canonical projections. By (2.1.5), using the
identifications ST, - (Coo) and Sty (Coo) with double coset spaces given by (2.1.6), this morphism
Ty ! Sg’,c/ — Sp i Is given by

[(w, B)] — [(w, hg™")] (2.1.7)
on Cy.-valued points. Therefore, we have defined 7, independently of the choice of I and J if all
matrix entries of g lie in A.

Ifge GLT(A{,) is arbitrary, there is a A € A\{0} such that \-g € GLT(A{,) N Mat,.(A). We
then define 7, := 7).,. This morphism is independent of the choice of A because we have
[(w, h(Ag)™H)] = [(w, hg™")]
in S x(Co) for all A€ A\{0} and [(w, h)] € Sk (Co). In particular, my is still described
by (2.1.7) on Cyo-valued points.
The latter implies the relation
Ty O Mg = Mgg (2.1.8)

for two such morphisms 7y : Sp o) — Sp e and wg 2 S e — S s

Step (v). For an arbitrary compact open subgroup K C GLT(A{T), we choose a g € GLT(AQ) such
that gKg~' € GL,(A). The composition of the rigid-analytic isomorphism (2.1.6)

s gicg—1 (Coo) = GL(F)\(Q x GLr(AL)/gKg™")

and [(w, h)] — [(, hg)] gives a rigid-analytic isomorphism
By St gicg-1 (Coo) = GLy (F)\(2 x GLy(Af)/K).
For another ¢’ € GLT(AJ;) with ¢'Kg'~' € GL,(A), the diagram

;“,gng*1 ((COO)

By
~ | Tgrg—1 GLT(F)\(QTF X GLT(AQ)/K)
By
Sh gicg-1(Coo)
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commutes. By the relation (2.1.8), the vertical arrow 7,1 is an isomorphism over F' with

g'g
inverse Tgg/—1-

Therefore, we can well define ST, up to F-isomorphism as Sl’; gKg—1 together with the rigid-
analytic isomorphism f;. Since we have seen in Step (iii) that S}, gKg1 is a normal affine variety

of dimension r — 1 defined over F’, the same holds for ST . O

PROPOSITION 2.1.3. Let C' be a set of representatives in GLT(A{,ﬂ) for GLT(F)\GLT(A{,)/IC,
and set I'y := gKg~' N GL,(F) for g € C. Then the map

[T ro\2% — GL.(F)\(2} x GL,(A})/K)
geC
@y — (@, g)]

is a rigid-analytic isomorphism which maps for each g € C' the quotient space I'j\Q}. to the
Cwo-valued points of an irreducible component Y, of SITVJC over Cyo.

This theorem implies that the irreducible components of S7., over Co, are disjoint and that
C is in bijective correspondence with the set of irreducible corriponents of St over C, where
g € C corresponds to the irreducible component Y, with Y,(Cy) = ')\Q% via the isomorphism
given in the theorem.

Proof. A direct calculation shows that the considered map is well defined and bijective. Since
GL,«(A{?) /K is viewed as a discrete set, the map is also an isomorphism of rigid-analytic spaces.

Therefore, it only remains to show that the quotient spaces I'j\Q},, g € C, are irreducible
as rigid-analytic spaces because the irreducible components of the rigid analytification of S
coincide with the rigid analytification of the irreducible components of SJZ“,IC (see, e.g., [Con99,
Theorem 2.3.1]). Since ST i Is a normal variety, and therefore its rigid analytification is a normal
rigid-analytic space, this is equivalent to the connectedness of the quotient spaces I'g\Q%. The
latter follows because Q. is a connected rigid-analytic space by [Kohll, Theorem 2.4]. O

DEFINITION 2.1.4. For a C.-valued point p = [(w, h)] € S(Cx) of a Drinfeld modular variety
S =Sk with h € GLT(A{,) and W € Y, associated to w: F, — C, the elements of

End(p) :={ueCx:u-w(F") Cw(F")}
are called endomorphisms of p.

Note that End(p) is well defined because the homothety class of w(F") C Cs does not depend
on the chosen representatives w and h.

Remark. If K =K(I) and p € Sg,c(])((coo) is corresponding to the Drinfeld module ¢ over Co,
associated to the lattice A C Co, then w(F") = F' - A, and therefore

End(p) = F - End(p)
for the endomorphism ring End(¢) C C of ¢.

LEMMA 2.1.5. The set End(p) of endomorphisms of p is a field extension of F' contained in C
of finite degree dividing r with only one place above oco.

Proof. This follows from the argumentation in the proof of Proposition 4.7.17 in [Gos98] noting
that the endomorphism ring of a Drinfeld module in generic characteristic is commutative. O
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LEMMA 2.1.6. FEach irreducible component X of a Drinfeld modular variety S, over Cs
contains a point p € X (Cs) with End(p) = F.

Proof. Choose W€}, such that wW(F")=F@®F -&L@---OF-§ with &,...,§ €Cx
algebraically independent over F'. This is possible because Co, as uncountable field is of infinite
transcendence degree over the countable field F'.

Now choose h € GLT(AQ) such that p:=[(w, h)] € X(Cx) (use the description of the
irreducible components of S% - over Co given in Proposition 2.1.3). Since 1 € w(F"), we have
on the one hand End(p) C w(F"). On the other hand, all elements of End(p) are algebraic over
F because the extension End(p)/F is finite. However, by the choice of &, . .., &, every element
of w(F") which is algebraic over F' lies in F'. Hence, End(p) = F. O

2.2 Rank one case

In the case r =1 the variety S?,IC is zero-dimensional and defined over F' for any compact open
subgroup K C GLl(Ag) = (A?)* Hence, S}U,K consists only of finitely many closed points and it
can be set-theoretically identified with S};JC (Cs). By Proposition 1.2.2, the closed points are all
defined over F*P and the absolute Galois group Gal(F#*P/F') acts on S};’,C.

Drinfeld’s upper half-space Q}; just consists of one point. Therefore, we have
Sk = F\(AR)"/K
as a set. Since (A?)* is abelian, this set can be identified with the abelian group (A%)* J(F* - K).

Since F* - K is a closed subgroup of finite index of (A?)*, by class field theory, there is a
finite abelian extension H/F totally split at oo such that the Artin map

Viyr: (Af)" — Gal(H/F)
induces an isomorphism (A{,)* J(F*-K) = Gal(H/F). In particular we have
|Skcl = [H : F).

THEOREM 2.2.1. If ¢y p(g) =0|y forage (A?)* and a o € Gal(F®*P/F), then the action of o

on S = F*\(A?)*//C is given by multiplication with g~ *.

Proof. This follows from Theorem 1 in § 8 of Drinfeld’s article [Dri74]. Note that in this article
the action of an element g € (A;)* on S};},C = F*\(A?)* /K is given by the morphism ,, which
is given by multiplication with ¢~ 1. O

COROLLARY 2.2.2. The absolute Galois group Gal(F*°P/F') acts transitively on S}«“,lc'

3. Morphisms and Drinfeld modular subvarieties

3.1 Projection morphisms and Hecke correspondences
Let Spy be a fixed Drinfeld modular variety. For each g € GLT(A];) and all compact open
subgroups K’ C g~ 'Kg of GLT(AQ), we have a well-defined map

S;',’C/ ((COO) — S}“T‘,’C ((COO)

[(@,h)] — [(@ kg™ b)) (3.1.1)
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THEOREM 3.1.1. This map is induced by a unique finite morphism g : St .o — Spyc defined
over F.

Proof. In the case that K and K" are contained in GL,(A), we already showed the existence of
a morphism 7, which is described by (3.1.1) on Cu-valued points in Step (iv) of the proof
of Theorem 2.1.2. If K and K’ are arbitrary with X' C g~'Kg, there is an s € GLT(A{;) with

sK's™t c sg7 Kgs™t € GL,(A).

By our definition in the proof of Theorem 2.1.2, we have Sy, =S}, 4 1, where under the

identifications of Cy-valued points introduced in Step (v) of the proof of Theorem 2.1.2
[(w, B)] € S (Coo) = [(w, hs™ )] € S gyers-1(Coo)-

Similarly, we have Sp . =S _, with

;ﬂsg—lngS
[(w, 1)) € Shxc(Coo) = [(w, hgs™)] € Shr oy-1xp5-1(Coo)-

Using these identifications, we can define the morphism 7, : SITT,IC’ — SE,IC as M Sp jrg-1 —
S};’Sg,
points, by the above identifications 7 is indeed described by (3.1.1) on Cye-valued points. So we
have shown the existence of the morphism 7, defined over F. It is uniquely determined by (3.1.1)

because C, is algebraically closed.

11Cgs*1((c<>°)' Since the latter morphism m is given by [(w, h)] — [(w, k)] on Cs-valued

It remains to show finiteness of the morphism m,;. By the above definition of a general
morphism 7y, it is enough to show it for morphisms of the form i : 5% — Sk with

~

K'Cc K C GL,.(A).
We first assume that K’ = IC(I) is a principal congruence subgroup. Then 7 is the canonical
projection

St = Srrm/K
by the construction in the proof of Theorem 2.1.2. Since K(I) C K acts trivially on Sk x(n) the
quotient Sp ;) /K can be viewed as a quotient under the action of the finite group K/K(I).
Therefore, 7 is finite.

For general subgroups K’ C K C GL,(A), choose a proper ideal I of A with K(I) C K'. Then
we have the following commutative diagram of projection maps.

SExw

X

1 ;‘,IC’

>
T
K
We have already shown that the morphisms 7 : S, () St and my 0 ST () xc are finite.
Therefore 7y : S s — Sp i is also finite. O

In the following, we call the morphisms 7, projection morphisms of Drinfeld modular varieties.
In the case g =1 we also call them canonical projections of Drinfeld modular varieties. For
two elements g, ¢’ € GL, (Ag) and two subgroups K' € g~1Kg, K" € ¢’ 'K'g, by the description
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on Co-valued points, we have

Tgg! = Tg O Tyl (3.1.2)

DEFINITION 3.1.2. A compact open subgroup K C GLT(Ag) is called amply small if there is a
proper ideal I of A and a g € GL, (A?) such that gkCg~! is contained in the principal congruence
subgroup K(I) € GL,(A).

PropoSITION 3.1.3. Let K C GLT(Aﬁ) be amply small, g € GLT(Aﬁ) and K' C g~'Kg. Then
the finite morphism m, : S’E,C, — S}},,C is étale of degree [¢g~'Kg:K']. Furthermore, if K' is a
normal subgroup of g~'Kg, it is an étale Galois cover over F with group g~ 'Kg/K' where the
automorphism of the cover corresponding to a coset [x] € g~ g /K’ is given by 7, : S};’ o S};’,C,.

Remark. In fact, the condition that some conjugate of I is contained in a principal congruence
subgroup of GL,(A) could be weakened. Indeed it is enough that there is a prime p such that
the image of some conjugate of K in GL,(A/p) is unipotent (cf. [Pinl2, Proposition 1.5]).

Proof. Since K is amply small, there is an h € GLT(AQ) and a proper ideal I of A such that
h=1Kh c K(I) € GL,(A). By the relation (3.1.2), we have the commutative diagram

T, —1
T g~ +h T
SF,hflglC’gflh ~ SF,IC’

\Lﬂ-l lﬂ-g
Sr Th Sr
Fh—1Kh ~ =P FEK

. . . . . _1 _ _1 _
where the horizontal morphisms are isomorphisms with (7)™ =m,-1 and (7g-15)"" = )1,

Therefore, we can assume without loss of generality that g =1 and K' € K C K(I) C GL,(4).

Case (i). Let K’ be a principal congruence subgroup K(J) modulo a proper ideal J of A, i.e.,
K'=K(J)<KcK).

Then, by our definition in the proof of Theorem 2.1.2, 7 : S}JC(J) — Sk 1s the canonical
projection

Sty — Skrn/K.
We show that KC/K(J) acts freely on the closed points of ST, x(s)- This implies that this projection
is a finite étale morphism of degree [K:/K(J)] (see, e.g., [Mum?70, §11.7]). By the modular
interpretation of S};,,C( ) given in the proof of Theorem 2.1.2, it is enough to show that the
action of IC/KC(J) on isomorphism classes of Drinfeld A-modules over Co, together with J-level
structure is free.

Indeed, assume that a coset [k] € K/K(J) stabilizes the isomorphism class of the Drinfeld
module ¢ over C,, associated to a lattice A C Co, together with J-level structure o : (J~1/A)" 5
J~1. A/A. By our definition of the action of GL,(A) on Drinfeld modules with J-level structure
in the proof of Theorem 2.1.2, this means that there is an automorphism ¢ of ¢ under which
the J-level structure o passes into ao k™. Note that the restrictions of a and aok™! to
(I71/A)" coincide because k € K(I). Rigidity of Drinfeld modules with I-level structure (see,
e.g., [Leh09, p. 30]) therefore implies that c is the identity. This is only possible if k € KC(J), i.e.
if [k] is trivial in IC/IC(J).

So we have shown that 71 : Sp ) = Spx = S};’K(J)/IC is an étale cover of degree [K: KC(J)].
The group K/K(J) injects into the automorphism group over F of this cover via [k]+— 7.
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Since the degree of the cover is equal to [K : K(.J)] and ST, k(. is F-irreducible, the automorphism

group (over F') is therefore equal to IC/IC(J). Furthermore, the cover is Galois because this group
acts simply transitively on the geometric fibers.

Case (ii). Let K’ be an arbitrary normal subgroup of K, i.e., K' << C K(I).
Choose a proper ideal J of A such that I(J) C K’ and note that the diagram

SEr

N

™ St =Srxn/K (3.1.3)

=
5?,/6 = S;,IC(J)/IC

commutes. Since K’ is normal in K, the action of K on S7, x(s) nduces an action of K/K" on
the quotient Sp . = S;‘,Kj( 7 /K'. By the commutativity of the diagram, the variety Sf is the
quotient of ST, under this action. Furthermore, this action is free on the closed points of ST,
because /K (J) acts freely on the closed points of S}, k() Therefore, we conclude by the same

arguments as above that 7 : S} — Sh is an étale Galois cover of degree [IC: K'] with group
/K" where the automorphism of the cover corresponding to a coset [k] € K/K' is given by .

Case (iii). Let K’ be an arbitrary subgroup of K, i.e., K' C K C K(I).

As in Case (ii) above, choose a proper ideal J of A such that K(J) C K'. The diagram
above then also commutes and 7y : S;?,IC( nH= S}}JO and 7y : S}}’K( n= Sﬁ  are surjective étale
morphisms by Case (i). Furthermore, Sk x(y 18 a non-singular variety as explained in Step (i)
of the proof of Theorem 2.1.2.

Proposition 17.3.3.1 in EGA IV [Gro64] says that if X — Y is a flat, surjective morphism of
schemes and X is regular, then Y is also regular. Therefore, Sﬁ i and Sﬁ i« are both non-singular
varieties.

By [Har77, Proposition 10.4], a morphism f: X — Y of non-singular varieties of the same
dimension over an algebraically closed field is étale if and only if, for every closed point x € X, the
induced map T, — T}, on Zariski tangent spaces is an isomorphism. We can apply this criterion
because S?’K( 7y S}:“,IC and SE,C, are all non-singular. Since the morphisms 7y : S;?,IC( nH= S}}JO
and 7y : S;‘,IC( n= St i are étale, the commutativity of the above diagram therefore implies that
11 Sp s — Sp i Is étale and finite of degree [K: K(J)]/[K": K(J)] = [K: K']. O

COROLLARY 3.1.4. If K C GLT(Aﬁ) is amply small, then the Drinfeld modular variety ST is
non-singular.

Proof. See Case (iii) of the above proof of Proposition 3.1.3. O
DEFINITION 3.1.5 (Hecke correspondence). For g € GL, (A;) and Ky := K N g1 KCg the diagram

T
SEK,

T T
F.K F.K
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is called the Hecke correspondence Ty associated to g. For subvarieties Z C ST ;- we define
T,(Z) = my(my ' (2)).
Note that T,(Z) is a subvariety of St for any subvariety Z C S - because 7 is finite and
hence proper. The integer
deg(T,) == [K:KNg 'Ky

is called the degree of the Hecke correspondence T}. If K is amply small, by Proposition 3.1.3,
it is equal to deg 7.

3.2 Inclusions of Drinfeld modular varieties
Let S = Sp be a given Drinfeld modular variety. We consider the following datum:

— a finite extension F’ C C, of F of degree r/r’ for some integer r’ > 1 with only one place oo’

lying over co; and

— an A?—linear isomorphism b : (A;)’" = (A?,)’J.
Note that the integral closure A’ of A in F” is equal to the ring of elements of F’ regular away
from oo’ because oo’ is the only place of F’ lying over co.

The above datum defines a subgroup

K' = (bKb~') N GL,/(AL,)
of GL,/(AL,).

LEMMA 3.2.1. The subgroup K' is compact and open in GL, (Ag,). If K is amply small, it is
also amply small.

Proof. We fix an Aé—linear isomorphism ¥’ : (A?)” = (A?,)T’ with b/(A") :1/4\’T/ and set g:=
¥~lobe GLT(AQ). Since K is compact and open in GLT(Aﬁ), there is a proper ideal I of A
such that the principal congruence subgroup K(I) is contained in gkg~! with finite index.
Therefore, K’ = (¥ gKCg~'0'~1) N GL, (A{w) contains the subgroup K = (¥'K(1)b'~1) N GL, (A{;,)
with finite index. The latter subgroup exactly consists of the elements of GL,. (Aé,) which

/ !

stabilize b/ (AT) = A" and induce the identity on the quotient A’ /T - A" (A’/TA") . Hence,
K" is the principal congruence subgroup modulo I A" and K’ is compact and open in GL,~ (A;,).
If K is amply small, there is a proper ideal I of A and an h€ GLT(AQ) such that
hICh= C K(I). Therefore K’ is contained in the subgroup
(bh~ ' KC(D)hb~Y) N GL, (AL,)

of GL,/ (Aé,). This subgroup exactly consists of all elements of GL,~ (A{,/) which stabilize
A:=bh (A7) C (A{;,)TJ and induce the identity on A/I - A. Since these elements are A{;,-linear,
they also stabilize the A’-lattice A’ := A’ - A and induce the identity on A’ /I-A. Since A’ is a
finitely generated A’-submodule of (A;,)T/ with A{,, N = (Aé,)w and A’ is a direct product of
principal ideal domains, A’ is a free Al-module of rank 7'. Hence, there is a g e GLTI(A{,,) such

/

that A’ = ¢’ A" and
K' C (bh™ K(1)hb™Y) N QL (AL) c g K1) g™
for I’ := I A’. This implies that K’ is amply small. O
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We choose an isomorphism
o FT L F
of vector spaces over F. By scalar extension to F, and A? it induces isomorphisms
FL, 2 R
© ’
(AL 5 (AL

which we also denote by ¢. We now define a morphism from the lower-rank Drinfeld modular
variety S’ = S}/, o into S,

THEOREM 3.2.2. There is a finite morphism Lg’b : 8" — S defined over F’ which on Cy.-valued
points is given by the injective map
S'(Cx) — S(Cx)

(@, 1)) +— [Wop, ¢ ol ob), (3.2.1)

where W' € O, and h' € GL, (A?). The morphism Lgb is independent of the choice of p : F" —
F

/

Proof. Case (i). We first consider the case where b(A") =A" and K =K(I) is a principal
congruence subgroup modulo a proper ideal I of A. In this case, K' = (bKb~1) N GL, (Aé,) is the

principal congruence subgroup modulo I’ := T A’ (see the proof of Lemma 3.2.1) and b induces
an A-linear isomorphism (I~'/A)" = (I'~'/A’)"", which we again denote by b. Therefore, for a
Drinfeld A’-module (£, %) of rank ' over an F’-scheme with I’-level structure
a: (1714 =L,
the restriction (£, 1]4) to A C A’ is a Drinfeld A-module of rank r =7’ - [F’/F] over S and the
composition
(1AY== (71 A) 5 4

is an I-level structure on (£, 1|a) (note that the I-torsion subgroup scheme L; of £ coincides
with the I’-torsion subgroup scheme £ because I generates I’ as an ideal of A’). The assignment

(L, ¢, a) — (L, ¢|a, a0 b) (3.2.2)

defines a morphism of functors from .7-"};',’ v to the restriction of F,; to the subcategory of F' &
schemes (see Step (i) of the proof of Theorem 2.1.2 for the definition of these functors). Therefore,
we have a morphism
LJI::,/b : S;:’,IC(I’) - S}:“,IC(I)

defined over F’. By [Brel2, Lemma 3.1 and Proposition 3.2], it is a proper morphism which is
injective on Cy-valued points. Since S}’;,JC( ) and SE,C( [y are both affine schemes of finite type
over C,, the morphism L?:b is therefore a proper morphism of finite presentation with finite
fibers. This implies that Lgb is finite by Theorem 8.11.1 of EGA IV [Gro66].

Using

W (F" ARA )= (W o) (F N (g ok ob)A")

one sees that Lgb is given by (3.2.1) on Cy.-valued points.
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Case (ii). For b: (A?)” = (A{W)T/ and K C GLT(A@ arbitrary, we choose:

— ag € GLy(AL) with ¢'K'g'~1 € GL,.(4');

— an Aﬁ;—linear isomorphism b’ : (A?)r = (A?,)W with b/ (A7) = z/4\’rl;

— a proper ideal I of A with K(I) C g~'Kg, where g:=b"log1ob € GLT(AQ).
Then g’ o b=1b" o0 g~!, hence

gK'g™ = g Cgh'™") N GLy (AL) D (VK(IY ™) N GL.(AL,) = K(14),
and by Case (i) and Theorem 3.1.1, the composition of morphisms
LFI
SITT/’,IC(IA’) o SEx = Shx
is defined and finite. Because
(gK'g =g =g~ (b'K'D) C Vg 'K,

this composition is invariant under the action of ¢’K’¢'~! on S;,’K( A7) Hence, it induces a finite

morphism f: ST,, T STk such that the diagram

F/
L
7‘/ F,b/ T
SF',/C(IA') - SFJC(I)

- T

SF/7gl’C/g/—1 _— S;‘,’C

corlnmutes. We can now define Lﬁb = fomg, where my : Sp o0 — S -1 For (W, h)] €
Sh j(Coo) we indeed have
(@ 1)) = [(W o @, 0 oWy ot og ) =[(Wop, ¢ ok 0b)],
independently of the choice of ¢ : F" = F' " and the representative (w’, h') € QTF/, X GL, (A}:ﬁ,).
This also shows that our definition of Lgb is independent of the choice of ¢/, v and I.
It remains only to prove that Lglb is injective on Cy-valued points, i.e., that the map (3.2.1)
is injective. For this, consider two elements [(w], h})], [(w}, hb)] of S}}/,,,C,((Coo) with W/, wh € Q7

associated to wi, w) : F é;,/ — Coo and h}, hl, € GL (A{w) which are mapped to the same element
of S(Cs). This means that there exist '€ GL,(F') and k € K such that:

(i) wiopoT ! =wyoyp;
(ii) T(p tohiob)k=p tohhob.
By (i), there is a p € C} such that the diagram

!
w1

A

I

!
17 C
—F

T P

A

’ ng
s 17 C
Foo ~ F, Coo

o0
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commutes. Since the maps w], wj, p are injective and F’-linear, this implies that the F-linear
automorphism 17" :=¢@oT o ™! of ' is also F'-linear and lies in GL,/(F"). Thus, we have
T w] =wh, i.e., w] and ) lie in the same GL,(F")-orbit.

Equation (ii) implies that T'h}(bo ko b~1) =Rl in GL, (A?,). Since hf, hly and T all lie in
GL,/ (A?,), we conclude that

bokob 'ek =(BKb')NGL.(AL),
ie., (W], B))] = [(wh, hb)] in Spv s (Coo)- m

Since the morphism L?’b : 8" — S is injective on Cyo-valued points, we call it an inclusion of
Drinfeld modular varieties (by a slight abuse of terminology). If I C GLT(Aé) is amply small
(in the sense of Definition 3.1.2), we can show that it is in fact a closed immersion.
PROPOSITION 3.2.3. Let L?b : Sfm/, xr — S be an inclusion of Drinfeld modular varieties with

KcC GLT(A{;) amply small. Then L?:b is a closed immersion of varieties.

Before giving the proof of Proposition 3.2.3, we summarize the description of the tangent
spaces at the closed points of a Drinfeld modular variety Sp - with K = K(I) for a proper ideal
I of A given in [Gek90].

We use for a € A the notation

deg a:=log,(|4/(a)])

and denote by Coo{{7}} the ring of formal non-commutative power series in the variable 7 with
coefficients in Cy, and the commutator rule 7\ = A?7 for A € C..

DEFINITION 3.2.4. Let ¢ : A — C{7} be a Drinfeld module over C, of rank r. An F,-linear
map 7: A — 7Cx{7} is called a derivation with respect to ¢ if, for all a,b € A, the derivation
rule
Nab = aMp + Mg © Pp

is satisfied. Such a derivation is called reduced, respectively strictly reduced, if it satisfies deg 1, <
r - dega, respectively deg_ n, <r-dega, for all a€ A. The space of reduced, respectively
strictly reduced, derivations A — 7Coo{7} with respect to ¢ is denoted by D,(p),
respectively Dg,(¢).

THEOREM 3.2.5. Let x be a Cy-valued point of S;—,,C(I) corresponding to a Drinfeld A-module
o with I-level structure . Then there is a natural isomorphism

To(Skxc(ry) — Dsr(9) (3.2.3)
of vector spaces over Cu.

Proof. This follows from the discussion in the in proof of Theorem 6.11 in [Gek90] and the
lemmas before this proof. O

The isomorphism (3.2.3) is given as follows: a tangent vector EETm(S}}K(I)) is an
element of S;;,C(I)((COO[E]/(EZ)) which projects to xeS}}K(I)(COO) under the canonical

projection Cyle]/(?) — Coo. It corresponds to the isomorphism class of a Drinfeld A-
module over Cy[g]/(¢?) with I-level structure which projects to (¢, a) under the canonical
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projection Cx[g]/(62) — Coo. There is a unique Drinfeld A-module ¢ in this isomorphism class
such that, for all a € A,

@a =Pa+E N
where a +— 7, is a strictly reduced derivation with respect to ¢. The tangent vector £ is mapped
to this strictly reduced derivation under (3.2.3).

THEOREM 3.2.6. Let ¢ be the Drinfeld A-module over Co, associated to an A-lattice A C Cq.
Then there is a natural isomorphism

D, () — Hom (A, Cs). (3.2.4)

The Cyo-linear subspace Ds,(¢) C D,(¢) is mapped to a subspace of Homa(A, C) which is a
complement of C, - id, where id : A — Cq, is the canonical inclusion.

Proof. See [Gek89, Theorems 5.14 and 6.10]. O

The isomorphism (3.2.4) is called the de Rham isomorphism and can be described as follows.
Let n be a reduced derivation with respect to ¢. Then, for all non-constant a € A, there is a
unique solution F, € Coo{{7}} satisfying the difference equation

Fy(az) — aFy,(2) =n.(ea(z)) (3.2.5)
where
en(z)=z- H (1—2z/X)
0#£NEA

denotes the exponential function associated to the lattice A. This solution is independent of
the choice of a € A and defines an entire function C,, — Co, which restricts to an A-linear map
A — C. The reduced derivation 7 is mapped to F|s under (3.2.4).

Proof of Proposition 3.2.3. We use the following criterion given in [GW10, Proposition 12.94].

A proper morphism f: X —Y of varieties over an algebraically closed field K is a closed
immersion if and only if the map X (K) — Y (K) induced by f is injective and, for all x € X (K),
the induced map on Zariski tangent spaces Ty(X) — Ty (Y) is injective.

Since finite morphisms are proper, by Theorem 3.2.2 we already know that LIIZ::b is proper and
injective on Coo-valued points. We therefore only have to show that, for all 2 € S%, x(Coo), the
induced map on Zariski tangent spaces L?b* : Tx(S};I,’,C,) — Tbgjb (x)(S;ﬂ,,C) is injective.

/

Case (i). As in the proof of Theorem 3.2.2, we first consider the case where b(A") = A" and
K =K(I) is a principal congruence subgroup modulo a proper ideal I of A. In this case, we
have K' = KC(I") with I’ := T A’. We can therefore use the description of the tangent spaces given
above.

Let xz € S};/, K( ],)(Coo) be a point corresponding to the Drinfeld A’-module ¢ associated to
an A'-lattice A C C, of rank r' with I’-level structure. Since we defined L?Ib by restricting Drinfeld

A’-modules to Drinfeld A-modules, the point L?Zb(x) € St x(Coo) corresponds to the Drinfeld
A-module |4 associated to the same A C Cy considered as A-lattice of rank r with
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some [-level structure. We can therefore consider the following diagram

o (3.2.3) ¢ (32
T (S IC(I/)) —— Do () —— HomA’(A’ Coo)

lbg/b* l
r 3.2.
TLg:b(m)(SFJC) (*l Dsr(‘P‘A)((—Q HOIIlA(A, Coo

where the vertical arrow in the middle denotes the restriction of derivations from A’ to A and the
one at the right the canonical inclusion. The left square of the diagram commutes by the definition
of (3.2.3) because Lgb* has the modular interpretation of restricting Drinfeld A’-modules over
Coole]/(?) to A. The right square also commutes because the unique solution of (3.2.5) is
independent of a € A’ and A as an A’-lattice has the same exponential function as A as an
A-lattice.

Hence, the diagram commutes and, since the right vertical arrow is an injective map, also
the other two are injective maps. In particular, the induced map Llf;/b* between tangent spaces is
injective.

Case (ii). Let b: (A{;)T = (A{;,)’”/ be arbitrary and K C GLT(A{?) be an arbitrary amply small
subgroup. Then, by the construction in the proof of Theorem 3.2.2, there is:

— a ¢ € GLu(AL,) with ¢K'¢'~' C GL, (AD);

— an A?—linear isomorphism b’ : (A?)T = (A;,)’J with o/ (/AV") — A"

)

— a proper ideal I of A with K(I) C g~ 'Kg, where g:=b"tog'~tob € GLT(A{,)

such that the diagram

with I' := I A" commutes. By Proposition 3.1.3 and Corollary 3.1.4, the projection maps 7y -1
and 7, in this diagram are étale morphisms between non-singular varieties because K’ and K
are amply small. Hence, they induce isomorphisms on tangent spaces of closed points [Har77,
Proposition 10.4]. By Case (i), the upper horizontal arrow walb, induces injections on tangent
spaces of closed points. Therefore, the commutativity of the diagram implies that, for all
x e Sy, x/(Cso), the induced map Llf;:b* s T ( }’,JC,) — TLgfb(m)(S%,lC) is injective. O

PROPOSITION 3.2.7. Let Lgbl : S}/,,K, — S and LI{Z:;? : S};/:,’,C,, — S be two inclusions of Drinfeld

modular varieties with F”" C F'. Then for an A{:,,—]inear isomorphism c : (Ag,,)rﬁ — (A{,,)’J with

by =cobyok (3.2.6)
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for some k € K, the diagram

commutes.
Proof. Note that we have
K' = (b1 KbyY) N QL (AL) = (eK"¢™Y) N GL(AL,)

by the definition of K’ and K", and (3.2.6). Therefore, there is an inclusion ¢4, . : Sk o — St -

The commutativity of the diagram follows by a direct calculation on C..-valued points
using (3.2.1). O

3.3 Drinfeld modular subvarieties

The image of an inclusion Lglb : 8 — S of Drinfeld modular varieties is a subvariety of S because
finite morphisms are proper.

DEFINITION 3.3.1. A subvariety of S of the form X = L?b(S’ ) for an inclusion L?b is called a
Drinfeld modular subvariety of S. An irreducible component of a Drinfeld modular subvariety
over C is called a special subvariety and a special subvariety of dimension 0 a special point.

LEMMA 3.3.2. Let KCK be an open subgroup and m : S - —>S Fi the corresponding
canonical projection. Then the following hold.

i) For each Drinfeld modular subvariety X' C S”, ., the image 71(X') is a Drinfeld modular
FK

subvariety of S}}K.

T‘

(ii) For each Drinfeld modular subvariety X = LF/b( 1 k1) C Sk, the preimage m; THX) is a

finite union of Drinfeld modular subvarieties of S; ©

Proof. For part (i), assume that X’ is the image of the inclusion Zgb : 5’;, o ST associated
to the datum (F’,b) and consider the inclusion morphism £, : ST, o — Sk assoc1ated to the
same datum. The diagram

with 7] and m; the respective canonical projections commutes by definition of the inclusion
morphisms. Hence,

ﬂ-l(X) LFb( (S;;v IC’)) LFb(SF’ IC’)
is a Drinfeld modular subvariety of Sp .

931

https://doi.org/10.1112/50010437X12000681 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000681

P. HUBSCHMID

For part (ii), choose a set of representatives ki,...,k €K for the left cosets /K and consider

the inclusion morphisms L?jboki : SF, e S’" _ associated to (F',bok;) for i=1,...,1. By the

definition of the inclusion morphisms we have

U L :
F,bok; F’,’C;)’

and hence 7 1(X) is a finite union of Drinfeld modular subvarieties of S} © O

LEMMA 3.3.3. For an inclusion Llf;:b : 8" — S, we have
End(p') = End(if,(p'))
for all p' € §'(C).
Remark. This is an equality of subfields of C,, and not just an abstract isomorphism of fields.

Proof. This follows from our definitions because, for p’ = [(w’, h')] € S'(Cso), we have End(p’) =
{ueCx:u-w (F’T ) Cw (F’r )} and End(LFb( N={ueCx:u-(Wop)(F")C (W op)(F)}
for a chosen F-isomorphism ¢ : F" = F’ " O

Now we give a criterion under which two Drinfeld modular subvarieties are contained in each
other.

PRrROPOSITION 3.3.4. Let X' = LFbl(S};, w) and X" = LII?/;Q(S;,/, «») be two Drinfeld modular
subvarieties of S. The following statements are equivalent.

(i) The inclusion X' C X" holds.

(ii) There is an irreducible component of X' over Co, which is contained in X"

(iii) The inclusion F" C F' holds and there exist k € K and an A{w-linear isomorphism
c: (A?,,)”" — (A{;,)T/ such that by =cobgok.

Proof. We write S’ = S};I, o and S" = S};,,,, e

The implication (i) = (ii) is trivial and (iii) = (i) follows from Proposition 3.2.7.

For (ii) = (iii) assume that Ll;:bl(Y’ ) C L?:l;i(sll) for an irreducible component Y’ of S’
over Coo. By Lemma 2.1.6 there is a p'=[(w',h/)] € Y'(Cs) with End(p') = F'. Now let
Lf,:bl (p) = 511::/1;2 (p") for a suitable p” = [(w", h")] € S”(Cw). Lemmas 2.1.5 and 3.3.3 yield

= End(p) = End(ef, (') = End (e, (p)) = End(p”) > F”.

Because Lgbl (p) = Lf;/éQ (p"), we have

[(Wowr, @1t o b 0by)] =[(W" 02, 03" 0 h" 0 by)]

for F-linear isomorphisms ¢ : F" = F'" and oo Fm 5 . Hence, there are T' € GL,.(F') and
k € K such that:

(1) w' o Y1 = w" o P20 T—l;
(2) w1t oh'oby =T(py" oh” oby)k.

Because of (1) and F” C F’, one concludes as in the proof of Theorem 3.2.2 that the F-linear
isomorphism 1 := ;0 T o @, ' : F" — F'™ is F/-linear.
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1

We set ¢:=by o k™l obyt: (AL,)" — (AL)". By (2) this is equal to
C:h/_losﬁ]_ OTO(p;loh,/:h,_lo’l)Z)Oh,/.

Since 1) is F”-linear and F” C F’ we conclude that ¢ is an A{,,,—Iinear isomorphism. Furthermore,
we have by = co by o k by the definition of ¢, which shows part (iii) of the proposition. O

COROLLARY 3.3.5. Let X' =%, (S ) be a fixed Drinfeld modular subvariety of S. Then
the assignment

X+— Lg{)/ (X)
is a bijection from the set of Drinfeld modular subvarieties of S};/,’/ «» to the set of Drinfeld
modular subvarieties of S contained in X'.

Proof. Since L{;II;, is injective on C,o-valued points, it is enough to show the following.
(i) The variety Ll;/l;/ (X) is a Drinfeld modular subvariety of S for each Drinfeld modular
subvariety X of S}/,I, e

(ii) The variety (:5,)~'(X) is a Drinfeld modular subvariety of Sh, . for every Drinfeld
modular subvariety X C X' of S.

For (i), let X = /£ F,, (St ,C,) be a Drinfeld modular subvariety of S, k- The map
b:=cob : (A?) — (A?,)
is an A{;-linear isomorphism, hence we can apply Proposition 3.2.7 to conclude that
Uy (X) = vy (e (ST i) = v (S i)
is a Drinfeld modular subvarlety of St -

For (ii), let X —LFIb( 7 xr) be a Drinfeld modular subvariety of S which is contained
in X’. By Proposition 3.3.4, we have F C F” C F’ and there are an Aé/,—linear isomorphism
c: (A{W,)’”” = (Ag,) "and a k € K such that

b=cob ok.
By Proposition 3.2.7, we have

1

F
X = LFb(SF/ Kr) = LFb’(LF” (SF’ K1)
Since «f7,, is injective on Ceo-valued points, this implies that (:5,,)71(X) =k, (Sh ) is a
Drinfeld modular subvariety of Sj;/,/, - O

From Proposition 3.3.4, the following criterion for equality of Drinfeld modular subvarieties
follows.

COROLLARY 3.3.6. Let X':L?bl(S};/, ) and X' = ?,; (S5 xn) be two Drinfeld modular
subvarieties of S. The following statements are equ1va]en1;

(i) The equality X" = X" holds.
(ii) The varieties X" and X" have a common irreducible component over C

(iii) The equality F' = F" holds (hence 1’ = ") and there exist s € GLy (AL w) and k € IC such
that by = so by o k.

In particular, each special subvariety of S is an irreducible component over C,, of a unique
Drinfeld modular subvariety of S.
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COROLLARY 3.3.7. For a Drinfeld modular subvariety X' C S there is a unique extension
F' c Cy of F and a unique conjugacy class C' of compact open subgroups of GL, (A ,) with
r' =r/[F'/F] such that F” = F" and K" € C for all inclusions L?c : SF,,JC,, — S with image X'.

Proof. By definition, X’ is the image of some inclusion ¢£, F,b : S}},JC, — . For any other inclusion
L?; St ,C,, — S with image X', Corollary 3.3.6 implies that F" = F"and b = s o c o k for suitable
s € GL/ (A F,) and k € K. The latter implies K’ = sK”s~!, i.e., K" lies in the conjugacy class of
K’ in GL, (AF,). O

The preceding corollary allows us to make the following definition.

DEFINITION 3.3.8. For a Drinfeld modular subvariety X' = L§7,b(5’§,7,c,) of S, the extension
F' € Cy of F is called the reflex field of X', and the index of K in a maximal compact subgroup
of GL,+(A F,) is called the inder of X’ and is denoted by i(X’). Furthermore, the product

D(X') = |CL(F")] - i(X"),
where CI(F”) denotes the class group of A’ C F”, is called the predegree of X'.

By Corollary 3.3.6, each special subvariety of S is an irreducible component of a unique Drinfeld
modular subvariety of S. This allows us to define the reflex field of a special subvariety.

DEFINITION 3.3.9. For a special subvariety V' of S which is an irreducible component of a
Drinfeld modular subvariety X’ of S, the reflex field of V is defined to be the reflex field of X’.

If K= GLT(A), Corollary 3.3.6 immediately implies the following characterization of the set
of Drinfeld modular subvarieties of S with a given reflex field F”.

COROLLARY 3.3.10. Assume that S=S} with K=GL.(A) and let F'CCs be an
extension of F of degree r/r’ for some integer ' > 1 with only one place oo’ lying over co. Then
the set of Drinfeld modular subvarieties of S with reflex field F' is in bijective correspondence
with the set of orbits of the action of GL,,/(A%) on the set of free A-submodules of rank r of

(A{;,)W via the assignment
L5(8") — GLy(A],) - b(AT).
PROPOSITION 3.3.11. The natural action of the absolute Galois group Gal(F*P/F') on the

set of subvarieties of S = S}, - which are defined over F restricts to an action on the set of

Drinfeld modular subvarieties of S. For o € Gal(F*P/F) and a Drinfeld modular subvariety

X = LFb(S}, k), the Galois conjugate o(X) is given by LF(fol);(Sr( )UOK,OJ_I).

Remark. In the above formula for the Galois conjugate o(X), the Af -linear isomorphism

(A{;/)T/ = (Ai(F,))T/ obtained by tensoring o : F’ = o(F’) with (A )7" over F is also denoted
by o.

Proof. As explained in § 1.1, we identify Gal(F*P/F) with Autp(F) via the unique extension of
the elements of Gal(F*?/F) to F.

Case (i). We first consider the case where S = S, K1) for a proper ideal I of A and

X =15y (S i)
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for an inclusion morphism 5, associated to a datum (F", b) satisfying b(AT) = A" with A’ the
integral closure of A in F’. As explained in the proof of Theorem 3.2.2, in this case we have
K'=K(I') with I' = TA’" and /£ is defined by the morphism (3.2.2) of functors from Fj, ,, to
Frr (restricted to the subcategory of F’-schemes) using the modular interpretation of ST, ()
and S},K( N B B
Note that, for any Drinfeld A’-module ¢ : A’ — F{r} over F,
o, o(A) — F{r}
Co(d) — (pw)?
where (¢,/)7 is obtained from ¢, by applying o to its coefficients, is a Drinfeld o(A’)-module
over F. Furthermore, for any I’-level structure a : (I' "1 /A")" = op € F on ¢, the composition

o

(o(I) " o (A))" T (I A 5 op T (67) o

is a o(I')-level structure on ¢?. Using the modular interpretation of S;,K(I,) and S;'(F,)x(a(l,)),
the assignment

(¢, @) — (¢7 0000 )
defines a map ¢, : SZ,K(I,)(F) — Sg/(F,)JC(U([,))(F). By construction, the map g, is bijective with
inverse g,-1.

/\T‘/

Note that we have (o 0 b)(A") = (A’) . Hence the datum (o(F’), o o b) defines an inclusion
map
o(F’ ! -
LFanz)) LSy K(e(1ry) ™ OEK)

which is defined by a morphism of functors from .7-"5/( P O Fr1 (restricted to the subcategory

of o(F")-schemes). A straightforward verification shows that the diagram

Fl

! — LF,b r S5l
S ey (F) St F)

o(F')

—\'Fo0b

Sorn ko F) == Sk (F)

commutes, where the right vertical map is given by the natural action of o on the closed points
of ST, k(1) defined over F.

Since, for any subvariety Y C S defined over F, the set Y (F') of F-valued points (viewed as a
subset of the closed points of Y C S) is Zariski dense in Y (see, e.g., [Bor91, Corollary AG. 13.3]),
the commutativity of the above diagram implies that

(F’ / F’) /
o(X)= L;‘,ool))(gg( };’,IC(I’))) = L;Eoob(SZ(F/),IC(U(I’))>
for X = Lf;:b(S};’,’K( I,)). Hence, o(X) is a Drinfeld modular subvariety of S and it is of the desired

form because o o K' o 0=t = K(o(I")).

Case (ii). For a general X =.k,(S%, k) CSEx, by the construction in the proof of
Theorem 3.2.2, there is:

— ag €GLy (Aé/) with ¢’K'g’~' € GL, (:4\’),

— an A?—linear isomorphism b’ : (A{;)” = (A?,)W with b/(A") = A
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— a proper ideal I of A with K(I) C g7 *Kg, where g:=b"tog Lot € GLT(AQ)
such that the diagram
LF,
! Fu/ r
SF’,IC(I’) > SFJC(I)

7Tg/—1 Tg
F/

with I’ := I A’ commutes where 7, and 7y -1 are surjective and defined over F. This implies,
together with Case (i),

o(X) = U(Lgb(ﬂ'g’*l(S;:/JC([/)))) = U(”g(bg,/b'(s}n:’/,lc(p))))

/ ! o(F’ !
= WQ(U(Lg,b’(SF’,IC(I’)))) = ﬂ-g(LFfool))’(SU(F’),IC(U(I’))))'
By a similar commutative diagram, this is equal to

O'(F/) r’
LF,aob(Sa(F’),ooIC/oa—l)’

hence a Drinfeld modular subvariety of S of the desired form. O

3.4 Determinant map and irreducible components

For a general Drinfeld modular variety S, we denote by det K C (A{;)* the image of K C
GL, (A?) under the determinant map. Since the determinant map is a group homomorphism and
maps principal congruence subgroups of GLT(AJ;) to principal congruence subgroups of (A?)*,

the subgroup det K C (A?)* is open and compact.

DEFINITION 3.4.1. The map St (Coo) = Sk et xc(Coo) given by

GL(F)\(Q x GL,(A})/K) — F*\(Af,)"/det K
[(@, h)] — [det 7]
is called determinant map and is denoted by det.

Remark. The determinant map can be described in terms of the modular interpretation, using
the construction of exterior powers of Drinfeld modules in [Hei04, Theorem 3.3]. We refrain from
doing so because we do not need that.

PROPOSITION 3.4.2. The determinant map is surjective and its fibers are exactly the irreducible
components of S -(Co).

Proof. The surjectivity is immediate because det : GLT(AQ) — (A?)* is surjective.
We know by Proposition 2.1.3 that the irreducible components of Sy ,-(C) are in bijective

correspondence with the double coset space GLT(F)\GLT(AQ)/IC. A point [(@, h)] € SE - (Ceo)

lies in the irreducible component corresponding to a double coset [g] € GL,(F )\GLT(AQ) /K if
and only if h € [g].

We show that, for every g € GLT(Ag), the fiber of [det g] € S};7det,c(@oo) is equal to the

irreducible component corresponding to [g] € GL,(F )\GLT(A{?) /K. By the above remarks, this
is equivalent to

heGL(F)-g-K<=dethe F*-(detg)- (det K)
for all h € GL,(A%).
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If h e GL,(F) - g - K, then we have det h € F* - (det g) - (det ) by the multiplicativity of the
determinant. Conversely, assume that det h € F* - (det g) - (det K). Then there are T' € GL,(F)
and k € K such that

det h=det(T - g - k),
and hence Tgkh™! € SLT(A’;). By the strong approximation theorem [Pra77] for semi-simple
simply connected groups over function fields, SL,(F') is dense in SLT(AQ). Since hKCh™! is an
open subgroup of GLT(A{;), we therefore have

SL,(AL) = SL,(F) - (hKh™Y) N SL,.(AL)).
So there are 7" € SL,(F') and ¥ € KN SLT(A];) such that Tgkh~! = T'hk’h~1. This implies
h=T""Tgkk'"' € GL,(F)-g- K. O
By Proposition 3.4.2, the determinant map induces a bijection
det, : mo (S i) — S}I'“,deth

between the set mo(S% ) of irreducible components of S%.,- over Coy and the set Sk, . (we

identify the latter set with 5’};7dct x(Cx) as explained in §2.2). We now consider the natural
action of the absolute Galois group G := Gal(F*P/F) on these two sets.

ProprosITION 3.4.3. The bijection det, is Gp-equivariant.
Proof. We consider separable extensions F’' C Co, of F of degree r with only one place above

oo. The intersection F” of all these extensions is equal to F. This follows by induction over r.

Assume by contradiction that F” 2 F with [F”/F] =1’ > 1. By Eisenstein’s criterion ([Sti93,
Proposition III.1.14]) we find a second extension FJ # F” of F of degree ' with only one place
oo}y above co. By the induction hypothesis, the intersection of all separable extensions of Fy
of degree r/r’ with only one place above oof is equal to F}. These extensions of Fj are all
separable extensions of F' of degree r with only one place above oo, and hence its intersection Fy/
contains . This is not possible, because Fy # F” and [y /F| = [F"/F] =r'.

The equality F” = F implies that the subgroups Gal(F*P/F’) C G where F’ runs over all
separable extensions of F' of degree r with only one place above oo generate the whole absolute
Galois group Gp. Therefore it is enough to show that det, is Gal(FP/F’)-equivariant for all
these extensions F”.

From now on, let F’/F be a fixed extension of the above form, Y an irreducible component of
St and o € Gal(F*?/F'). We have to show that det.(o(Y)) = o(det.(Y')). We assume that ¥’

corresponds to the class of g € GL, (A?) in GL, (F)\GL, (Ag) /IC via the bijective correspondence
from Proposition 2.1.3. We choose an F-linear isomorphism

o: " = F/,
and define
b:=pog: (A?)r ;Aé,.
The datum (F’, b) defines an inclusion morphism L?:b : 511?’,16’ — ST - By its definition, the point

p=1]¢€ Sl/,IC' = F’*\(A{,,)*/IC’ is mapped to the closed point

pi=tpy([1]) =[(iop, ¢t olob)=][(i0p,g)]
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of 5%, where ¢ denotes the canonical inclusion F! , — Cy. This point lies in the irreducible
component Y, which corresponds to the class of ¢ in GL,(F)\GL, (A?)/IC

By Proposition 1.2.2, the point p’ € SL, o is defined over F"P = [P Since Lglb is defined
over F’, the closed point p = Lg’ (1) € Sk x(Cxo) is also defined over P and we have

(0@ =0o(p) €a(Y),

ie, o(Y) is the unique irreducible component of Sp . containing (0 (p')). The equality
det.(0(Y)) = o(det«(Y)) is therefore equivalent to

det(ehy (o (p)) = o(det ). (3.4.1)

We use the description of the Galois action on Sk, o and S}? det k¢ given by Theorem 2.2.1 to
calculate both sides of (3.4.1). For this, let H/F (respectively H'/F’) be the finite abelian
extensions corresponding to the closed finite index subgroups F* - det IC C (A{;)* (respectively

F™.K'C (A;,)*) in class field theory, and let E be the compositum of H and H’'. Then the
diagram of Artin maps

(alys 2% Gal(H/F)

TNF//F TT‘E/H

commutes with Np/,/p, the norm map, and rg,f, rg/g, the restriction maps. Therefore, if
h' e (A;,)* is chosen such that ¢ g, p (h') = o|g, then we have
Yy (W) = olmr,
Yu/r(Npyp(h') = ol
With Theorem 2.2.1 this implies
det(tfy (o (p))) = det (1 ([P 1)) = det(™ 0 B/ 0 b)
= det(go_l (e} h,_l e} QD) - det g= [NF//F(h/)_l - det g]
= o([det g]) = o(det p).
So we have shown (3.4.1), which is equivalent to det.(c(Y)) = o(det«(Y)). O

COROLLARY 3.4.4. The determinant map is induced by a unique morphism S;’JC — };AetK
defined over F.

Proof. By Proposition 3.4.2, the determinant map is constant on the irreducible components
of St x(Cx). Since these irreducible components and all closed points of Sll;’det i are defined
over F*°P_ the determinant map is therefore induced by a unique morphism defined over F°P.

By Proposition 3.4.3, this morphism over F*P is Gp-equivariant. Hence, by [Bor91, AG 14.3]
it is defined over F'. a
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COROLLARY 3.4.5. The Drinfeld modular variety St is F'-irreducible and has exactly
|Skden x| = [F*\(AL)" /det K| = [CI(F)]| - |A*/(F} - det K)]
irreducible components over Cxg.

Proof. By Corollary 2.2.2 and Proposition 3.4.3, it follows that the absolute Galois group G acts
transitively on the set of irreducible components of S7., over C. Hence, S}, is F-irreducible
by Proposition 1.2.2.

It only remains to show the second equality. Note that
(AG)"/(F* - A7) = CI(F)
by the direct adaptation of [Neu07, Proposition VI.1.3] to the function field case. Therefore we
have
|F*\(A%,)"/det K| = |CL(F)| - |(F* - A%)/(F* - det K)|.
The claim now follows from
(F* - A*)/(F* - det K) = A*/((F* - det K) N A*)
and
(F* - det K)NA* = (F* N A*) - det K =T} - det K. O

COROLLARY 3.4.6. Each Drinfeld modular subvariety of Sp with reflex field F' is F'-
irreducible.

Proof. A Drinfeld modular subvariety X of Sf. - with reflex field F " is the image of an inclusion

morphism Lglb . ST, ko — Sy Since Lg/b is defined over F’ by Theorem 3.2.2, Corollary 3.4.5
immediately implies the F’-irreducibility of X. O

4. Degree of subvarieties

4.1 Compactification of Drinfeld modular varieties
In [Pin12] Pink constructs the Satake compactification ?;,,C of a Drinfeld modular variety Sp.

~

with K C GL,(A4). It is a normal projective variety which contains Sk as an open dense
subvariety and it is characterized up to unique isomorphism by a certain universal property.

If € is amply small, ng’K is endowed with a natural ample invertible sheaf L7 .. In [Pin12],
the space of global sections of its kth power is defined to be the space of algebraic modular forms
of weight k on ST, .

If € C GL, (A?) is arbitrary (not necessarily contained in GL,(A)) and g € GLT(AJI;) is chosen
such that gkg~! C GL,(A), we define

Stx = Sp g (4.1.1)

and, if K is amply small,

%,K = [’%,gngfl' (412)
As in Step (v) of the proof of Theorem 2.1.2, one can show, using part (i) of the following
proposition for K C GL,(A), that this defines ?E,C and L7 up to isomorphism.
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ProPOSITION 4.1.1. (i) For gEGLT(A{;) and a compact open subgroup K' C g~ 'Kg the
morphism 7 : S;“,IC' — S?JC defined in § 3.1 extends uniquely to a finite morphism T : g;,,g —
EQ,K defined over F with deg 7T, =degm,. If K is amply small, then there is a canonical
isomorphism

' ~Y K '
FK = Tg 'CF,IC-

(ii) Any inclusion ngb LS e — Sty of Drinfeld modular varieties extends uniquely to a

finite morphism E : ?%/7 o = ?;, « defined over F' with deg E =deg L;:b. If K is amply small,
then there is a canonical isomorphism

r’ F ¥ pr
[’F’,]C’ = [’F,b EF,IC‘

Proof. This follows from [Pinl12, Propositions 4.11 and 4.12 and Lemma 5.1]. Note that these

statements automatically hold for arbitrary levels K and K’ (not necessarily contained in GL,.(A),

respectively GL, (:4\’)) because (4.1.1) and (4.1.2) define the Satake compactification of a general
Drinfeld modular variety as the Satake compactification of a Drinfeld modular variety with level

contained in GL,(A) respectively GL,. (1/4\’) The equalities deg 7, = deg 74 and deg E =deg Lglb
hold because each Drinfeld modular variety is dense in its Satake compactification. O

4.2 Degree of subvarieties

In this subsection, ST, always denotes a Drinfeld modular variety with X amply small.

DEFINITION 4.2.1. The degree of an irreducible subvariety X C ST i is defined to be the degree
of its Zariski closure X in g;;y,c with respect to E"FJC, i.e., the integer

deg X :=degpr X = | al }";’,C)dimx N [X], (4.2.1)
’ Srx
where ¢ ( 2 ©) € Algrﬂ x denotes the first Chern class of L i, the cycle class of X in Agim ngv, K
is denoted by [X] and N is the cap-product between Ad™X §; i and Agim XE;’JC'
The degree of a reducible subvariety X C S, is the sum of the degrees of all irreducible
components of X.

Remarks.

— Note that our definition of degree for reducible subvarieties differs from the one used in
many textbooks where only the sum over the irreducible components of maximal dimension
is taken.

— The formula (4.2.1) also holds for reducible subvarieties X C Sj . whose irreducible
components all have the same dimension.
LEMMA 4.2.2. The degree of a subvariety X C Sp Is at least the number of irreducible
components of X.
Proof. 'This follows by our definition of degree because L is ample and the degree of an

irreducible subvariety of a projective variety with respect to an ample invertible sheaf is a positive
integer (see, e.g., [Ful98, Lemma 12.1]). O
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PROPOSITION 4.2.3. (i) Let my : S s — ST be the morphism defined in § 3.1 for g € GL, (A?)
and K' C g~ 'Kg. Then
deg 7w, '(X)=[g 'Kg:K'] - deg X (4.2.2)
for subvarieties X C Sp - and
deg mg(X') < deg X' (4.2.3)

for subvarieties X' C ST, . In particular, we have
deg Ty(X) < [K:KNg'Kg] - deg X (4.2.4)

for subvarieties X C St .

. . . / / . . . .
(ii) For any inclusion L]{': b St g — Sp i of Drinfeld modular varieties and for any subvariety
/
X C Sy xr, we have

deg X = deg Lg,/b(X). (4.2.5)

Proof. We use the projection formula for Chern classes (see, e.g., [Ful98, Proposition 2.5(c)]).

If f: X =Y is a proper morphism of varieties and L is an invertible sheaf on Y, then, for
all k-cycles o € Ap(X), we have the equality

felar(ffL)Na)=ci(L)N fu(a) (4.2.6)
of (k—1)-cycles in Ap_1(Y).

For the proof of (4.2.2) and (4.2.3), we first assume that X C Sp, and X' C Sy, are
irreducible. For this, note that my: ST — Sk is finite of degree [g71Kg: K] and étale by
Proposition 3.1.3 because K is amply small. The latter implies that the restriction of 7, to the
subvariety 7rg_1(X) is also finite of degree [¢7!'Kg:K'] and, because deg 7, = deg m,, we have
the equality

o lmg (X)) =[97'Kg: K] - [X]
of cycles on STI;JC' For d:=dim X, with Proposition 4.1.1(i) and the above projection formula
we get

deg Wg_l(X) = degﬁ*ﬁ%,m Wg_l(X) = /37' cl(wig*ﬁ’l%,c)d N [Wg_l(X)]
F,K’
~ [ T ) s 0]
Sk
= [ i n .m0
SFx

=g Kg:K']- /T cl(ETFJC)d N[X] =g Kg:K'] - deg X.

Srx

For the proof of (4.2.3), we note that

Ty [X'] = deg(mg|x7) - [y (X)]
as cycles on ?;’ ic- The same calculation as above gives

deg X' = deg(my|x/) - deg my(X') > deg my(X').
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IfXc SE“,IC is reducible with irreducible components X1, ..., X,, we have
n
deg 7rg_1(X) = Z deg Wg_l(Xi)
i=1

because the set of irreducible components of 7 1(X) is the disjoint union of the sets of irreducible
components of the 71’9_1(XZ‘). Therefore, (4.2.2) follows from the irreducible case.

If X’ C ST i is reducible with irreducible components X7, ..., X}, then the set of irreducible
components of m4(X') is a subset of {my(X7), ..., my(X})}, hence we have

k
deg ﬂ'g(X/) < Z deg Wg(Xz{)a
i=1

and the inequality (4.2.3) follows from the irreducible case.
The inequality (4.2.4) immediately follows from (4.2.2) and (4.2.3) because
Ty(X) = mg(my ' (X))
where 71 and 7, are projection morphisms S}},,Cg — Sk with Kg:=LN g 'KCg and
degm =[K: K] =[K:KNg 'Ky
Finally, for the proof of (4.2.5) we use that L?b : S}I, o — Spy is a closed immersion by

Proposition 3.2.3 because K is amply small. We therefore have deg Lllj:'b =deg L?b =1 and, for an
irreducible subvariety X C ST/,’,C,, the equality

LJP;,/b* [Y] = [Lﬁ’b(X)]
of cycles on S;,IC holds. The same calculation as in the proof of (4.2.2) therefore gives
deg Lgb(X) =deg X

N2 ’ s .
because L?b Fic = Ly o by Proposition 4.1.1(ii).

If XcC Sfm’/ « is reducible with irreducible components Xi,...,X;, then Lllj:/b(X ) has
exactly the irreducible components L?lb(Xl), cee Lglb(Xl) because Lglb is a closed immersion.
Therefore, the formula (4.2.5) for X reducible follows from the irreducible case. O

We will use the following two consequences of Bézout’s theorem to get an upper bound for
the degree of the intersection of two subvarieties of Sp .

LEMMA 4.2.4. For subvarieties V., W of a projective variety U and an ample invertible sheaf £
on U, we have
degVNW <degV -deg W,

where deg denotes the degree with respect to L.

Proof. See [Ful98, Example 8.4.6] in the case where V and W are irreducible.

fv=viu---UVyand W =W, U---UW, are decompositions into irreducible components,
then

vVow=Jvnw;
4,J
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Therefore, each irreducible component of V' N W is an irreducible component of some V; N Wj.
By our definition of degree for reducible varieties this implies

deg VAW <) deg(V; N ;).
i,J
Hence, by the case that V and W are irreducible, we get
deg VAW <Y degV; - deg W = (ZdegVi) : (Zdegwj> =deg V - deg W. O
ij i j
LEMMA 4.2.5. For subvarieties V, W of S}}’,C we have
degVNW <degV -deg W.

Proof. In view of the previous lemma, it is enough to show the following inequality of degrees
of Zariski closures in ?;,,C with respect to Ll x:

degVNW <degVNW.

For this, it suffices to show that each irreducible component of V' N W is an irreducible component
of VN W. Note that VNW CV NW and

VAWNSpe=VnW=VnSpe)N(WNSkx)=VNW)N Sk

because ST, - is Zariski open in F;’,K' Therefore
Vaw=vnw u Yn({VnWw)) (4.2.7)

where Y::?};’K\S};’K denotes the boundary of the compactification. Since the irreducible

components of VNW are the Zariski closures of the irreducible components of V NW, they
are all not contained in Y and therefore, by (4.2.7), irreducible components of V N W. O

4.3 Degree of Drinfeld modular subvarieties
We let S = S} be a Drinfeld modular variety.
ProrosiTION 4.3.1. If K is amply small, there is a constant C' > 0 only depending on F', K and
r such that

deg(X) > C- D(X)
for all Drinfeld modular subvarieties X C S with D(X) the predegree of X from
Definition 3.3.8.

Remark. We expect that one could also prove an upper bound for deg(X) of the form deg(X) <
C'- D(X) with a constant C’ depending on F, K and r. Because of this expectation, we call
D(X) the predegree of X. We refrain from proving an upper bound because we only need a lower
bound in the following.

Proof. Since K is amply small, there is a proper ideal I of A and a g € GLT(AQ) such that
gKg~—! C K(I). As explained in the beginning of the proof of Proposition 3.2.3, for each Drinfeld
modular subvariety X = Lg’/b(S}::,’K,) of S, there is a ¢’ € GL, (A?,) such that XK' C ¢/K(I')g'!
where I’ := I A’. Therefore, by Proposition 4.2.3, we have

deg(X) = deg(S;/7K/) = [g/K(I/)glil : IC/] . deg(S?:’,’C(I’))‘
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Since S};I, k(1) has at least |C1(F")| irreducible components over Co, by Corollary 3.4.5, we have
deg(Sp () = [CI(F")|. Using i(X) = [¢/GLy(A")g'~! : K'] we therefore get

(X 1

Z,(\ ) - |CI(F)| = — :
(L () : (1) (L () : (1)

Because [GL, (1/4\’) :K(I"] < [GL,(A) : K(I)], we conclude that deg(X)>C-D(X) for C:=
1/[GL,(A) : K(I)] only depending on K, F' and r. a

deg(X) >

D(X).

THEOREM 4.3.2. For each sequence (X,,) of pairwise distinct Drinfeld modular subvarieties of S,
the sequence of predegrees (D(X,,)) is unbounded. In particular, if K is amply small, the degrees
deg(X,,) are unbounded.

Proof. By Proposition 4.3.1, it is enough to show that the sequence

where F,, is the reflex field of X, is unbounded.

The following two propositions imply that there are only finitely many extensions F’ of F' of
degree dividing r and bounded class number.

PROPOSITION 4.3.3. There are only finitely many finite extensions F' C C4, of I of fixed genus
¢’ and bounded degree.

Proof. By the Hurwitz genus formula (see e.g. [Sti93, Theorem II1.4.12]) the degree of the
different divisor of F’/F and therefore also the degree of the discriminant divisor of F'/F is
bounded as F’ runs over all finite separable extensions of F' of fixed genus and bounded degree.
Hence, [Gos98, Theorem 8.23.5] implies that there are only finitely many separable extensions
of F' with fixed genus and bounded degree. Since each finite extension of F' can be decomposed
into a separable and a totally inseparable extension and each global function field has at most
one totally inseparable extension of a given degree, the proposition follows. O

PROPOSITION 4.3.4. Let F' be a function field of genus ¢’ with field of constants Fy. Then
(@ = D™ —29'¢" +1)
2¢/(¢'9+" — 1)
Proof. See [Bre05, Proposition 3.1]. O

|CI(F")| >

Therefore, the sequence D(X,,) is unbounded if the set of reflex fields F), is infinite. So it
suffices to show unboundedness of the predegree D(X,,) in a sequence of pairwise distinct Drinfeld
modular subvarieties of S with fixed reflex field. This follows from the next theorem. Thus we
have reduced the proof of Theorem 4.3.2 to Theorem 4.3.5. O

THEOREM 4.3.5. For each sequence (X,,) of pairwise distinct Drinfeld modular subvarieties of
S with fixed reflex field F', the indices i(X,,) are unbounded.

Proof. We first note that we can assume without loss of generality that the given compact
subgroup K equals GLT(A). Indeed, if IC is replaced by a compact open subgroup £ D K and the
X, by their images under the canonical projection 7y : S};? o S}% - the indices i(X,,) decrease by
Definition 3.3.8. Hence, we can assume that X is a maximal compact open subgroup and therefore
some conjugate hGL,(A)h ! of GL,(A). If we further replace the X,, by their images under the

1 3 . T T y 3 <
isomorphism 7,-1: .S FAGL (A1 S F.GL(A)’ then the i(X,,) obviously do not change because
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the X, are the image of an inclusion from the same Sg/’,@((coo). Therefore, we can without loss
of generality assume K = GL,(A).

For the following considerations, we assume that X, = Lglbn( ;ﬁ/c,ql (Cx)) with A?—linear
isomorphisms b, : (Aﬁ)’” — (A?,)’”/. We denote by A, the A-lattices b,(A”) in (A?,)’”'. By
Corollary 3.3.10, they are determined up to and only up to the action of GL,~ (Aé,), and their
orbits under the action of GL,,/(A%) are pairwise distinct.

We have the product decomposition Ap, =[], .o Anp =TI, 200 bnp(A}), Where Apy C Fér,
are free Ay-submodules of rank r. The A;J -modules A;, - A p are finitely generated submodules
of F;T/ with Fy - App = F];T/, and hence free of rank 7/ because Ay, is a direct product of principal
ideal domains. This implies that A’ - A, is a free A’-submodule of (A?,)’"l of rank 7. Since the A,
are determined up to and only up to the action of GLTI(AQ,), we may therefore assume without
loss of generality that A’ - A, = A’ " for all n.

Note that we have

K}, = (baGLy(A)b, ') N GLyv (AL,) = Stab Ap.

o (AT)

Since A’ - A, = A’ " , these compact open subgroups of GL, (A{,,) are all contained in the maximal
compact subgroup GL, (121’ ) = Stabg (Al )A’T . Hence, we can write the indices i(X,,) as
T F!

~

i(X,) = [GLy(A) : Stabg, s ) An]

o (AT)

and, using the above product decompositions, as i(X,) = Hp oo n,p, Where
inp = [GLy(A}) : Stabar, , (77) Anpl-
For each n, almost all factors of this product are 1 because A, , = A{JT, for almost all p.

Since we assumed that A;J App= A;f/, by the Proposition 4.3.6 below, we get the estimates
inp = C - [A;fl : Anyp]l/”, where the constant C' is independent of n and p.

We now finish the proof by assuming (for contradiction) that the sequence (i(X,)) is
bounded. This implies by the above product decomposition of ¢(X,) and estimates of i, , that

[A;T/ : Ay p] < D for all n and p for some uniform constant D.
However, note that as a finite Ay-module A;T// A, p is isomorphic to some product
Ap /P Ap X - X Ay [P A
IfApyp 2 pN - A{Jr/, we have m; > N + 1 for some ¢ and therefore
()Y <[4 s Ang] < D.

In particular, we have |k(p)| < D whenever An,p#A;fl. Since there are only finitely many
primes p with |k(p)| < D, we conclude the following.

— There are finitely many primes py, . .., p, such that A, , = A;f/ forallmand p #pq, ..., pp.
— There is an N € N such that, for all p and n, the Ay-lattice A, , contains pNA]’f,.

Because the quotients A;f/ /pN A;T, are finite, the second statement implies that for all 1 <i < k
there are only finitely many possibilities for A, , . Since for p # py, ..., p; the lattices A, are
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independent of n, this implies that only finitely many A-lattices A,, C (A;,)”' occur, which is a
contradiction of our assumptions. O

PROPOSITION 4.3.6. Let K be a complete field with respect to a discrete valuation v with finite
residue field containing IF, and let R be the corresponding discrete valuation ring with maximal
ideal m. Let K' := L1 x - -+ x Ly, with L; finite field extensions of K and R' := 81 x --- xS,
with S; C L; the discrete valuation ring associated to the unique extension of v to L;. Suppose
that ' > 1, and set r:=71"->"",[L; : KJ.

There is a constant C > 0 only /depending on q and r such that, for any free R-submodule
A C K" of rank r with R'- A =R'", we have

[GL/(R') : Stabgy,, () (A)] = C - [R” < AJV7
Proof. We introduce the notation
H:={T € Mat..(R):T-ACA}.

This set of matrices is an R-subalgebra of Mat,.(R’) with H* = Stabgr, , g/ (A).

Note that, if g1, ..., g, is an R-basis of A, then A =¢(R") C K™ for

K" — K"
(@1, @) = @101+ TG

Since K is complete, ¢ is a homeomorphism (cf. [NeuO7, Proposition 4.9]). This implies that
AC R is open.

Hence, there is a k € N such that m*R'™ C A. Therefore Mat,.(m*R') C H and

H/Mat,(m*R') = {T € Mat,(R'/m*R') : T - (A/m*R") C A/m*R""}
if we identify Mat,.(R'/m*R’) with Mat,.(R')/Mat,.(m*R’). For the stabilizer of A/m*R’ " under
the action of GL,/(R'/m*R’), this means that
(H/Mat,«/ (mkR’))* = StabGLT/(R’/mkR’) (A/mkR”J>.
The orbit of A under GL,/(R’) is in bijective correspondence with the orbit of A/m*R’ " under
GL, (R /m*R') via
T A (T-A)/mFR"

Therefore the above formulas for the corresponding stabilizers give us the following estimate:
|GL,/ (R /m*R')|
[H : Mat,.(mkR")]
LEMMA 4.3.7. There is a constant C only depending on q and r (namely C = (1 —1/q)") such
that

[GL,/(R) : H*] = [GLy(R'/m*R') : (H/Mat,(m"*R'))*] >

|GL, (R /m*R")| > C - |Mat,.(R'/mFR')).

Proof. By the definition of R’ the quotient R'/mF R’ is isomorphic to S;/m*S; x - - - x S, /mFS,,,
and hence

CL (R /m*R') = QL. (S /m*S)) x - - - x QL (Sy/m*S,,),
Mat, (R’ /m*R) = Mat,.(S1/m*S1) x - - - x Maty(Sy,/mFS,,).

Now note that, for any [ > 1 and any discrete valuation ring U with maximal ideal n and residue
field Fy containing [Fy, a matrix 7" € Mat,(U) is invertible if and only if its reduction modulo n!

546

https://doi.org/10.1112/50010437X12000681 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000681

THE ANDRE-QOORT CONJECTURE FOR DRINFELD MODULAR VARIETIES

is invertible in Mat, (U/n!). In particular, GL, (U/n!) exactly consists of the matrices with
reduction modulo n lying in GL,~(U/n). As the fibers of the projection Mat,(U/n') — Mat,. (U /n)

1 ’2_ /l*lT’2
7 = gD

have all cardinality |n/n , we get

QL (U] = ¢V | QL (F
|GL(U/n)[ = ¢ |GL (Fy )|
= @ = 1)

" —d) (" —q

/

12 1 r
(1)
q

/

_ <1 _ i) Mat, (U /nl)].
Since m < r/r’, altogether we have
(GLy (R ) > (1~ ;)m Mty (R /mB)| > C - [Mat (R /m* )|
with € = (1 —1/g)". o

Proof of Proposition 4.3.6 (continued). By Lemma 4.3.7 and the preceding estimate, we have
Mat, (R') : Mat,(m*R')]
[H : Mat,.(m*R')]

To finish the proof of Proposition 4.3.6, we consider an R-basis g1, . . ., g, of A and the R-module

homomorphism

[GL(R'):H*] > C - [ =C - [Mat,.(R') : H].

Mat, (R')" — R"™ /A
(Th,....,7,) — (Th-g1+---+7T,-g,) mod A.
It is surjective and its kernel contains H". Therefore, we have
[Mat,(R') : H" = [Mat,(R)" : H'] > [R" : A]
and in total
[GL.(R) : Stabar, , (k) (A)] = C - [Mat, (R):H]>C- [R’rl :A]l/r.
This completes the proof of Proposition 4.3.6. O

5. Zariski density of Hecke orbits

In the whole of this section, S = ST, denotes a Drinfeld modular variety and C' a set

of representatives in GLT(A{;) for GL,(F )\GLT(AQ) J/IC. We use the description of the
irreducible components of S over C,, given in Proposition 2.1.3. We let Y} be the irreducible
component of S over Co, corresponding to h € C' and identify its Coo-valued points Y, (Cso) C
GL, (F)\(Q} x GLT(Aé)/IC) with I',\Q% where T :=hKh™1 N GL,(F) via the isomorphism
from Proposition 2.1.3.

5.1 Definition and explicit description of (T + T,-1)-orbits
For g € GL, (A;) and closed subvarieties Z C S we define

(Ty + Ty1)(2) = Ty(Z) U T, (2),
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and recursively define

(Ty+T,-1)%(2) =2

(Ty + Ty1)"(2) = (Ty + Ty-1) (Ty + T,1)" " 1(2)), n>1.
DEFINITION 5.1.1. For a geometric point x € S(Co) and g € GLAA?), the union

To°(z) = | J(Ty + Ty-1)"(x) C S(Cx0)
n=0
is called the (Ty + T,-1)-orbit of x.
Note that 7,°(z) is the smallest subset of S(Cs) containing x which is mapped into itself under
Ty and Ty-1.
We now give an explicit description of the intersection of T ;O(m) with the irreducible

components of S over C, for z € S(Cy) and g € GLT(AQ).

PROPOSITION 5.1.2. Let hy, hy € C and assume that x € Yy, (Cs) with = [w] € 'y, \Q}. Then
the intersection of To°(x) with Yp,(Cy) is given by

Ty°(x) N Yy (Coo) = {[Tw] € T, \Q : T € ho(KgK)hy ' N GL.(F)},
where (KgKC) denotes the subgroup of GLT(Aé) generated by the double coset Kgk.

Proof. By assumption, we have z=[(w,h1)]€ GL.(F)\(Q} x GLT(Aﬁ)/IC). Hence, by
Definition 3.1.5 and the recursive definition of (Ty +7,-1)"(z), the elements of 7.°(z) are
exactly those of the form [(w, h1k1g1k2go - - - kngn)] with n >0, k; € K and g; € {g, g~ '}. Hence,
an element y € T.°(x) N Yy, (Coo) can be written as y = [(w, h1s)] with s € (KgK). Since y lies in
Y}, there exist T' € GL,(F) and k € K with Thysk = hg. Therefore

y=[(w, s)] = [(Tw, Thisk)] = [(Tw, ha)]

is equal to [Tw] € T, \QY, where T' € ho(KgK)hy* N GL,.(F).
Conversely, an element [Tw] € T, \Q}, with T = hash ! € ha(KgK)hy' N GL.(F) is equal to

(Tw, h)] = [(w, T~ ha)] = [(w, has~ Ay ha)] = [(w, s ™)
with s7! € (KgK), and hence lies in T;°(x) N Y3, (Coo). O

5.2 Zariski density
We give a sufficient condition for a subset M C S(C) to be Zariski dense in one irreducible

component Y of S over C. Recall that, for a place p # oo of F', by A?p we denote the adeles
outside co and p.

PROPOSITION 5.2.1. Let M be a subset of S(Cs) contained in an irreducible component Y}, of
S over C for h € C' and suppose that M contains an element x = [w] € Y},(Cx) =T'p\QY such

that there exists a place p # oo of F' and an open subgroup K' C GLT(A};”J) with
M :={[Tw]) eTp\Qp: T € (SL,(F,) x K') N GL,.(F)} C M.
Then M is Zariski dense in Y},.

Proof. We denote the Zariski closure of M’ by Y. It is enough to show that ¥ (Coo) = Y3(Cso). As
the non-singular locus Y™ of Y over Cy, is Zariski open and dense in Y [Har77, Theorem 1.5.3],
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the intersection Y™¥(Co) N M’ is non-empty. Since (SL,(Fy) x K') N GL,(F) is a subgroup of
GL,(F), we can therefore assume that x = [w] lies in Y™(Cy). Hence it is enough to show that
the tangent space T, Y of Y at x is of dimension r — 1 =dim S.

Since K’ is open in GLT(AQP), there is an N € A with N ¢ p such that K'(N) C K, where

K'(N) denotes the principal congruence subgroup modulo N of GLT(A?). Now let I > 1 such
that p! = () is a principal ideal of A and consider for 1 <4 <7 — 1 and k > 1 the matrices

A = 1 S SLT(F),

& 1
with the entry N/7* in the ith column. As elements of GLT(A{?) (diagonally embedded) they
lie in SL,(Fy) x K'(N) C SL,(Fy) x K'. Hence, for all 1<i<r—1 and k>1, [A;w] lies in
M' CY(Cy).
We now view Q% as a subset of A"!(Cy) by identifying [wy:---:wy—q:1] with
(Wi, ..., wr—1) (note that the rth projective coordinate w, of an arbitrary element of Q}, can be

assumed to be 1 because the Fi,-rational hyperplane w, =0 does not belong to 2}). Assume
that we have w = (w1, ..., wy_1) in this identification. Then, using (2.1.2), we see that

N
Aikw: wl,...,wi—ﬁ,...,wr_l

for all 1<i<r—1 and k>1. Note that w; — N/7rk converges to w; in Cy for k£ — oo and
that {[Ajw]}r=1 CY(Cx) for all 1 <i<r—1. Since Y (Cq) C Y3 (Coo) =T, \Q% is closed in
the rigid-analytic topology, it follows that there is an € > 0 such that for all 1 <i<r —1 and
c € Cy with |¢|eo <&
(Wi, . wite ... wrm1)] €Y(Coo).
This implies dim 7,Y =r — 1 and Y (Cy) = Y3,(C). O
Now let p # 0o be a place of F' and g € GLT(AQ) trivial outside p, ie., g:=(1,...,9p,..., 1)

for some g, € GL,(F}). Using Proposition 5.2.1, we prove a sufficient condition for the (T, +

T,-1)-orbit T°(x) to be Zariski dense in the irreducible component of S over Co containing z.

This result is a generalization of Theorem 4.11 in [Brel2].

THEOREM 5.2.2. Assume that the image of the cyclic subgroup (g,) C GL,(F},) in PGL,.(F}) is
unbounded and, for x € S(Cy), let Y, be the irreducible component of S over Co, containing x.
Then, for all z € S(Cy) and g:=(1,...,6,...,1), the intersection of the (T, + T,-1)-orbit
T7°(z) with Y, (Cx) is Zariski dense in Y.

Proof. We assume that Y, =Y} for some h € C. Then, by Proposition 5.1.2, we have
T7°(2) N Ye(Coo) = {[Tw] € Tp\Qp : T € h(KgK)h™" N GL,(F)}.

Since hKh~! is an open subgroup of GLT(AQ), we can find compact open subgroups K, C
GL,(F,) and K' C GL,(A%) such that K, x K’ € hKh~! and hence

(Kphpgphy ' Kp) x K C R{KgKC)h™".
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We now consider the open subgroup Uy := (Kphyp gy hy ' Ky) N SL,(Fp) of SL, (F, ). It is normalized
by the image of (gp) in PGL, (F} ), which is unbounded by assumption. Since PGL,. is a connected
adjoint absolutely simple linear algebraic group over the local field F}, and SL, — GL, — PGL,
is its universal covering, we conclude by [Pin00, Theorem 2.2] that U, is equal to SL,(F}).

Hence, SL,(F}) is contained in (K hygphy ' Ky) and we have
{[Tw] € TR\ : T € (SL,(Fy) x K') NGL,(F)} C T,°(x) N Yz (Coo).

Therefore, we can apply Proposition 5.2.1 to the subset 72°(x) N Yz (Cx) of S(Cx) and conclude
that T.°(z) NYz(Cw) is Zariski dense in Y. O

6. Geometric criterion for being a Drinfeld modular subvariety

PROPOSITION 6.1.1. Let S =S5p be a Drinfeld modular variety and Z C S an irreducible
subvariety over Co, such that Z=Ty,Z =T, 17 for some g=(1,...,6,...,1) with g, €
GL,(F}). If the cyclic subgroup of PGL,(F,) generated by the image of g, is unbounded, then
Z is an irreducible component of S over C...

Proof. Let x € Z(C) be a geometric point of Z. By assumption we have T,(z) C T,Z = Z and

Ty-1(x) CTy-1Z = Z, and hence

(Tg + Tgfl)(l') c Z.
Iterating we get for all n > 1

(Ty+Ty1)"(z) C Z,
so the (T, + Ty—1)-orbit T,°(z) of z is contained in Z. Since Z is irreducible over Cy, the orbit
T7°(x) is contained in one irreducible component Y of S over Coo. So T;°(z) is Zariski dense
in Y by Theorem 5.2.2. Since Z is Zariski closed in .S, it follows that Z =Y is an irreducible
component of S over Cyo. O

DEFINITION 6.1.2. A subvariety X defined over F of a Drinfeld modular subvariety St 1s called
Hodge-generic if none of its irreducible components over Co, is contained in a proper Drinfeld
modular subvariety of St .

THEOREM 6.1.3. Let S = S}},K be a Drinfeld modular variety with K = KCpp x K® amply small
where Ky C GL.(F,) and K® C GLT(AQ’). Suppose that Z C S is an F-irreducible Hodge-
generic subvariety with dim Z >1 such that Z C T,Z for some g=(1,...,gp,...,1) with
gp € GL,(F}). If, for all k1, ko € Kp), the cyclic subgroup of PGL,(F},) generated by the image of
k1 - gp - ko is unbounded, then Z = S.

Remark. Note that the unboundedness condition in this theorem is stronger than the one in
Proposition 6.1.1. For example, for r =2, K, = GL2(A,) and a uniformizer 7, € Fj,, the image of
gp = (78’ (1)) generates an unbounded subgroup of PGLy(F}), but for ki = ((1) é) € Ky, the image
of k1g, generates a bounded subgroup of PGLa(F}) because (k1gy)? is a scalar matrix.

Proof. In this proof, for simplicity of notation, we identify GL,(F}) as a subgroup of GL, (A?)
via the inclusion

hp € GL,(Fp) — (1, ..., hp, ..., 1) € GL,(AL).

Let Z=27Z1U---UZs; be a decomposition of Z into irreducible components over Cg..
Since Z is defined over F', the irreducible component Z; is defined over some finite, separable
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extension F of F'. By the F-irreducibility of S and Z, it is enough to show that Z; is an irreducible
component of S over C,,. We divide the proof into two steps.

Step (i) We show that there is an open subgroup K’ C I with associated canonical projection
7 Spxr — Sk and an E-irreducible component Z] of 7~1(Z;) which is also irreducible over
Coo such that Tj, Z] is E-irreducible for all hy € GL,(F}).

Step (ii) Using Proposition 6.1.1, we prove that Z] is an irreducible component of S}, ., over
Coo-
Steps (i) and (ii) imply that Z; = n(Z]) is an irreducible component of S = S}, - over C.

Step (i). Note that, by Proposition 3.1.3, the canonical projections

. Qr
U - SF,prK;@) S

where U, runs over all open normal subgroups of K, form a projective system of finite étale
Galois covers defined over F' with Galois groups K,/U,. Hence, by Proposition 3.1.3

Tp S = lim S;’prlc(p) — S
Uy
is a pro-étale Galois cover with group lim? Ky /U,. Since K, is a profinite group, this group is
isomorphic to K, and we have the following isomorphisms of rigid-analytic spaces:
SO (Coo) = lim GL, (F)\(Q x GL(AL) /(U x KP)))
Up
= GL, (F)\( x CL(AL)/KP).
By Proposition 3.1.3 and these identifications, the automorphism of the XCy-cover m, corre-
sponding to a k, € K, is given by
tim i, : (@ 1)] > [(@. by )]
Us
on Cso-valued points of S®).

We now denote by Y the non-singular locus of the variety Z; over C.. By [Har77,
Theorem 1.5.3.], Y is a non-empty open subset of Z; and Y is also defined over E.

Let y € Y(Cy) C S(Cy) be a geometric point of Y. We denote by 7™ (Y, y/) the arithmetic
fundamental group of the variety Y over E, i.e., 7™ (Y, 4) := 71 (Yp, y) if Y = (Yo)c,, for a
scheme Y over E. Furthermore we fix a geometric point = = [(@, h)] € S®)(Cy) with my(z) =y
and consider the monodromy representation

pe (Y, ) — K,
associated to z € S®P)(Cy) and the Ky-cover 7.
By [BPO05, Theorem 4] the image of p is open in GL,(F},) under the assumptions:
— K is amply small;
— Y is a smooth irreducible locally closed subvariety of S with dimY > 1;

— the Zariski closure of Y in S is Hodge-generic.

These assumptions are satisfied in our case, and hence K} := p(mthm (Y 4)) is open in KCp.

Now we set K’ := IC;J x K® and consider the canonical projection

m: Sk — Sk
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The orbit of the point 2’ := [(@, h)] € SF 4 (Cos) lying between our base points = € S®)(Cy) and
y € St xc(Coo) under the action of 7erithm (Y7 ) on the fiber 771 (y) equals

{[(@, hky )] € S (Coo) : Ky € p(r ™™ (Y, ) = K}

and is therefore of cardinality 1. Hence, the E-irreducible component Y’ of 7=!(Y’) containing
2’ is mapped isomorphically onto Y by 7. Since Y is irreducible over C., it follows that Y” is
also irreducible over C.

Note, furthermore, for any open subgroup 16,’3 C K, and K= 16{, x K® with canonical

projection 7’ : St — g that

@) = {(@, hky)) € ST e,

(Coo) : by € Ky}

is exactly one orbit under the action of 7™ (Y, y) on a/~!(7~1(y)). Therefore, 7' ' (Y") is
E-irreducible. Since this holds for every open subgroup K} C Kj, this implies that T3, Y" is
E-irreducible for all hy, € GL,(F}).

We now define Z] to be the Zariski closure of Y in ST, ,. Since Y is irreducible over C, its
Zariski closure Z] is also irreducible over C,, and, moreovér, by dimension reasons, an irreducible
component of 771(Z;) over Cy. Since Y’ is also E-irreducible, we similarly conclude that Z] is
an E-irreducible component of 771(Z).

Note that, for all h, € GL.(Fy), the projections 71 and 7, in the definition of the Hecke
correspondence Tp, on Sp . are open and closed because they are finite and étale. By the
E-irreducibility of Tj,, Y this implies that

Ty Z1 = 7y (my (V7)) = 7, (7 (V7)) = T, Y7
is E-irreducible and concludes Step (i).

Step (ii). By the assumption Z C Ty Z, the irreducible component Z; of Z is contained in Ty Z;
for some 4. Since Z is F-irreducible, there is an element o € Gal(F*?/F') with Z; = o(Z;). This
gives for Z| C ST

Zycn N Zy) c N Tyo(2y)) = o(n 1Ty Zy)), (6.1.1)

where the last equality holds because all our projection morphisms are defined over F'.

A direct computation shows that

l
N (TyZ) = | Ty 141, 21 (6.1.2)
ij=1
where {ki,...,k} is a set of representatives for the left cosets in KCp/Kj. By Step (i), all

/ . .
Tki—l ok 7 are E-irreducible.

Since Z] is E-irreducible, the relations (6.1.1) and (6.1.2) imply the existence of indices i
and j such that for hy := k; 'gyk;

Zy = a(ThpZi).
Iterating this gives the inclusion

Zy = o(Th,0(Th, 21)) = 0*(Ty, (T, 21)) D 0*(T12 21),
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which must be an equality because both sides are of the same dimension and Z] is E-irreducible.
Repeating the same argument gives

Zi = Ui(Th;;Zi)

for alli > 1. There is an n > 1 with 0™ € Gal(F**?/E). Since Thy Z] is defined over E, we conclude
the relations

Z{ = Jn(Tth{) = Thng1,
Again, the latter relation must be an equality because T,-»Z] is E-irreducible and of the
p

same dimension as Zj. Note that the cyclic subgroup of PGL,(F},) generated by the image
of hy = (k; ! gpk;)™ is unbounded by our assumption. So we can apply Proposition 6.1.1 and
conclude that Z] is an irreducible component of S}, ., over Cu. |

7. Existence of good primes and suitable Hecke operators

7.1 Good primes
In this subsection, X = L?b(S}}/, ) denotes a Drinfeld modular subvariety of a Drinfeld modular
variety Sp, associated to the datum (F”, ).

DEFINITION 7.1.1. For a prime p of F, a free Ap-submodule A, C F of rank r is called an
Ay -lattice.

DEFINITION 7.1.2. A prime p is called good for X C St if there exists an Ap-lattice Ay C Fy
such that the following hold.

(i) We have K = K, x K®) with /C, the kernel of the natural map
Stabgr, (5,)(Ap) — Autg) (Ap/p - Ap)
for a KW GLT(AJI;"J).
(ii) There is a prime p’ of F” above p with local degree [Fy, /F}] = 1.
(iii) The Ap-module by(Ay) is an Ay-submodule of F];TI.
Remarks.

— The definition is independent of the datum (F’,b) describing X because F’ is uniquely
determined by X and by, = s 0 by 0 ky with s, € GL,(Fy) and ky € Ky C Stabgr,, (5,)(Ap) for
a second datum (F’,b’) describing X by Corollary 3.3.6.

— The existence of a good prime p for X implies that the reflex field F’ of X is separable
over I because there exists a prime p’ of F’ which is unramified over F.

— If Ay = spAj, for an sy € GL,(Fy), then condition (i) is equivalent to
K =sp,K(p)s, ' x K,
where K(p) C GL,(Ay) is the principal congruence subgroup modulo p.
— Condition (i) implies that K’ = (bKb™1) N GL,~ (Aé/) =K, X K'®) with K the kernel of the

natural map

Stabar, , (ry) (0p(Ap)) — Autp) (bp(Ap) /P - bp(Ap))-
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Since by(Ay) is an Aj-submodule of Fg/r/ by condition (iii), this means that Ky, is conjugate
to the principal congruence subgroup modulo p of GL,~ (A;,).

PROPOSITION 7.1.3. Let p be a good prime for X. Suppose that X is contained in a Drinfeld
1 ,r//

modular subvariety X' =ty (Spu jon) C Sh -

Then X" := (1 gll;,) 1(X) is a Drinfeld modular subvariety of St ,» and there is a prime p"
of F" above p with k(p) = k(p”) such that p” is good for X" C Sh,, -

Proof. By Corollary 3.3.5, X" = (1 Ilj:l,;,) L(X) is a Drinfeld modular subvariety of Sj;/;, - In the

proof of Corollary 3.3.5 we saw that F' C F” C F’ and there are an A;,,—linear isomorphism
c: (A?,,)’"“ = (A;,) ™ and a k € K such that

b=cob ok (7.1.1)

and X" = (£ F,, (S5 xr)- The situation is summarized in the following commutative diagram where
all arrows are bijections on C,.-valued points.

T

X C X/ C Stx
F"/
Lpp

12 1/
S;W,IC’ Lg,b/ X II:: b

N
F// "

X" - Spn yor

Let Ay be an Ap-lattice and p’ a prime of F’ above p for which the conditions (i)-(iii) of
Definition 7.1.2 are satisfied. We define p” to be the prime of F” lying between p and p’. Since p’
is of local degree 1 over F, we have k(p) = k(p’) = k(p”). We now show that p” is a good prime
for X" = LF,, ( }}/,JC,) C S}}/,I,JC,,.

By construction, p’ is also of local degree 1 over F”, i.e., condition (ii) in Definition 7.1.2 is
satisfied for p”.

By condition (iii), by(Ay) is an Aj-submodule of F‘;r,. Hence, we can write
bp(Ap) = Ajyr x A0

with A}, C F’;,,r/ an Ay ,-submodule (recall that A, = A" ® 4 A, by our conventions). Since

cis A{,,/-linear and A" C A', it follows that Ay, := c;,l(A;,,) is an Aj,-lattice in F’;f,T”. By
construction, condition (iii) in Definition 7.1.2 holds for p” and AJ,.

We note that condition (i) implies K" = (WKV ™) N GLyw (AL, ) = Kl x K"®) with K/ the
kernel of the natural map StabGLT,/(Fé/)(b (Ap)) — Autyp) (b (Ap)/p - by(Ap)). Note that

by(Ap) = By(kphy) = 6 (bp(Ap)) = 6 (A x AB)) = A, x A7),

Since k(p) = k(p") and pAj, =p"AJ,, we therefore see that condition (i) is also satisfied for p”
and Ay, O
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7.2 Suitable Hecke correspondences
PROPOSITION 7.2.1. Let X = ngb(S}}/, k1) C Spxc be a Drinfeld modular subvariety and g' €
GL, (Ag,). Then, we have
X CT,X
forg:=b"logobe GLT(Aﬁ).
Proof. Let p =15, ([(w, h')]) € X(Cs) for some o’ € O, and h' € GL, (A?,). Then we have
p=[(w o, <p_1 oh'ob)] =[(w o, gp_l oh'g’obo g_l)]
for an F-linear isomorphism ¢: F" = F’ " and therefore p lies in Ty (5 ([(W, W'g)])) and
therefore in Ty X (Cy). Since p € X(C) was arbitrary, we conclude X C T,X. O
THEOREM 7.2.2. Let p be a good prime for a Drinfeld modular subvariety X = ngb( }/, ) C
St and let p’ be a prime of F' above p with local degree 1 over F. Then there is a
Jg=qQ,... ,g;/, o 1)e GL,J(A{;/)
with g, € GL/(Fy,) such that the following hold for g:=b""og' o b€ GL, (AL):
(i) X CT,X;
(i) degTy=[K:Kng 'Kg]=[k(p)"":

(iii) for all kq, ko € Ky, the cyclic subgroup of PGL, (F}) generated by the image of k1 - gy - k2 is
unbounded.

Proof. Suppose that the conditions (i)-(iii) in Definition 7.1.2 are satisfied for the A,-lattice
Ay CFy.
p

By condition (iii) in Definition 7.1.2, by(A,) is an Aj-submodule of Fér,. Hence we can write
bo(Ap) = ALy x ALP)
with A}, C F’;,T, a free Ay,-submodule of rank r’. Let g, : F;,T, — Fé,rl be given by
diag(my, 1,...,1)
for a uniformizer my € A;, with respect to an A;,—basis of A;J,.
We now check the conditions (i)-(iii) for g:=b"'o g’ ob where ¢’ =(1,... VG- 1) €

GL, (Ag,). Statement (i) follows by Proposition 7.2.1.

For conditions (ii) and (i), note that each A} -basis of Ay, is also an Ay-basis of A}, and can
be extended to an Ay-basis of by(Ap) because the local degree [F, /Fy] is equal to 1. In particular,

the p-component g, € GL,/(Fy) =[], GLy (Fy) of ¢’ € GL (A{;,) viewed as an Fj-linear map
Fér/ — Fér/ is given by the diagonal matrix
with respect to some Ay-basis B’ of by(A,) for a uniformizer m, € A,. It follows that the p-

component gy : Fy' — FJ of g= blogobe GLT(AQ) is also given by D, with respect to the
Ap-basis b, '(B') of Ap. Hence, there is an s, € GL,(F}) such that

—1

w=&%%,
_ r

Ap = spAp.
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By the remark after Definition 7.1.2, we therefore have

ICp = Sp/C(p)Sp_l

with K(p) the principal congruence subgroup of GL,(A,) modulo p.

Hence, we can and do assume IC, = K(p) and g, = D, because conditions (ii) and (iii) are
invariant under conjugation.

For the proof of condition (ii), consider the map

. Klp) — (Ap/(mp)) "
b ([mpthatl, . mp e haal).

For h, h' € K(p), we have for 2 <i<r
mp e (hh )iy = (my MR )Ry + iy Phig) + > (mp thig) By
J#i,1
= W‘:lhﬁ + 7Tp_1h;1 +0 (mod p),

and therefore « is a homomorphism of groups. It is, furthermore, surjective, and its kernel is
exactly equal to K(p) N Dy K(p) Dy 1. Hence, we have

KN g Kyl = [Ky: Ko N gy KCpgp] = [k (p)[" .
For condition (iii), let Ky, kp € K, =C(p) be arbitrary. We prove that the eigenvalues of

(klgpk‘g)*l =ky 1Dp_ 1k1_ ! do not all have the same p-valuation by showing that the Newton
polygon of the characteristic polynomial

XA) =X+ a, A a ) +ag

of k5 le_ lkl_ ! consists at least of two line segments. This implies that the cyclic subgroup of
PGL,(F},) generated by the image of k1gpks is unbounded.

Since k1, k2 are elements of GL,(Ay ), we have det(k1), det(k2) € Ay and hence
vp(ag) = vp(det(ky "Dy k1)) = 0 — vp(det(Dy)) + 0 = —1.
The coefficient a,_1 can be expressed as
ar—1 = —tr(ky "Dy k) = =Y (ky Damy D = DY (ka ik e
i i j#l

Because of ki, ko € K(p), we have vy((k71)is), vo((k31)ij) =0 with equality exactly for i = j.
Therefore, in the above expression for a,_;, the summand for ¢=1 in the first sum has
p-valuation —1 and all the other summands have p-valuation at least 0. We conclude

vp(ar—1) = —1.

Hence, the point (r — 1, vy(a,—1)) lies below the line through (0, vy(ag)) and (7, 0). This implies
that the Newton polygon of x consists at least of two line segments. O

7.3 Existence of good primes

PROPOSITION 7.3.1. Let X = Lg’/b(S};/, i) C Sk be a Drinfeld modular subvariety and p a prime
of F' such that the following hold.
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(i) There is a prime p’ of " above p with local degree [Fy, /Fy] =
(ii) We have K =K, x K®) with K, C GL,(F,) a maximal compact subgroup and K® c
GL,(A5P).
(ili) The subgroup K, = (byKpby ') N GL/(F}) of GL,/(F}) is maximal compact.
Then there is a subgroup K C K and a Drinfeld modular subvariety X C ST such that:

(a) m1(X)= X for the canonical projection  : 5’ - — Sk
(b) p is good for X C SF’C,'
() [K:K] < [k(p)"

Proof. As K, is a maximal compact subgroup of GL,(F},), there is an s, € GL,(F,) with
Ky = spGLr(Ap)sgl. We define Ay to be the lattice sy - Ay, for which we have

]Cp StabGL (Fp)(Ap)
Now, we let IC~p be the kernel of the natural map
Stabar, (r,)(Ap) — Autyp) (Ap/p - Ap)

and define K := Iép x KCP),
By construction, we get the upper bound (c) for the index of K in K:

[KC 2 K] = [KCp : Ky = [ Attty (Ap/p - Ap)| = [GL ((p))] < [k(p)|"”

We denote by i%,, the inclusion S”,, ., — S, _ associated to the same datum (F”, b) as t57, and

'K FK .
set X 1= 5 b(S}, ’C,) The proof of Lemma 3.3.2(i) shows that X is a Drinfeld modular subvariety
of S’” with 71 (X) = X.

It remains to show that p is good for X C S;’%. Condition (i) in Definition 7.1.2 is satisfied by

construction of K and condition (ii) by assumption. So we only have to check that Ay = by(Ay)

is an Aj-submodule of Fér/. Since Ky is the stabilizer of Ay in GL,(F}), the stabilizer of A} in
GL,/(Fy) is exactly

Ky = (b Kpby ') N GL (Fy),
which is a maximal compact subgroup of GL,/(Fy,) by assumption. Since A"J* is the unique
maximal compact subgroup of F/*, we therefore have

!/ !/ ks /1 *

Stab - (Ap) = Ky N By = AL,
where F," is embedded in GL,/(Fy) as scalars. Since A" generates A} as a ring, we conclude
that A} is an Aj-submodule of F”",. O

THEOREM 7.3.2. Let S = Sp . be a Drinfeld modular variety and N > 0. For every prime q of F,
denote by ICq the projection of K to GL,.(Fy). Then, for almost all Drinfeld modular subvarieties
X = L?b(S FI, ) Wwith separable reflex field F’ over F, there is a prime p with the following
properties.

(i) There is a prime p’ of I above p with local degree [Fy, /F,] = 1.
ii) The subgroup K, of GL,(F}) is maximal compact and K = K, x K® with K® c GL, ALPY.
p p p F
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(iii) The subgroup K := (by lebp_l) N GL(Fy) of GL/(Fy) is maximal compact.
(iv) We have |k(p)|N < D(X) where D(X) denotes the predegree of X from Definition 3.3.8.
Before giving the proof of this theorem, we show two lemmas.

LEMMA 7.3.3. There are absolute constants C1, Cy > 0 such that for all global function fields F’
with field of constants containing F,

g(F') < C1 + C2 - log,(|CL(F)|)
where g(F") denotes the genus of F' and |C1(F")| the class number of F’.

Proof. Let F' be a global function field with field of constants Fy DF,. Then, with
Proposition 4.3.4 we get the estimate

(¢ = D(@*F) —2(F)goF) 1) (T
s> 00 (G )

ClF")| =
|CI(F)] 20 g
which implies
9(F") 2|CI(F")| 2
e ]
g9(F") -1 q
and, because z/2 > log, z — 1,

g(F")
2

—2<g(F') — 1 —log, g(F') < log,(4|CL(F")]).
So the desired estimate holds for the absolute constants C7 := 8 and Cy := 2. O

LEMMA 7.3.4. There are constants C'3,Cy >0 only depending on r such that for all finite
separable extensions F'/F of global function fields with [F'/F] < r

9(E") < C3+Cy - g(F')
where E’ denotes the normal closure of the extension F'/F.

Proof. Let F'/F be a finite separable extension of global function fields of degree ' < r. Its
normal closure E’ is the compositum of all Galois conjugates FY, ..., F), of F' over F. We use
Castelnuovo’s inequality [Sti93, Theorem III1.10.3] to bound its genus.

If a global function field K is the compositum of two subfields K1 and Ko with n; .= [K/K;] <
oo fori=1,2, then

9(K) <n1-g(Ki) +ng - g(K2) + (n1 — 1)(n2 — 1),
For K; = F| and Ky = F} this gives
g(F{F) v’ g(F) +0" - g(F) + (' = 1)? <20 g(F') + 1"

because all Galois conJugates of F" over F have the same genus, and [F|Fy/F{]| < [F}/F] =1
and [F{F}/F}) < [F{/F])=r". With induction over k we get

g(F] - Fp) <kr™ ' g(F) + (k — 1)r'*
and with k=1" we get
g(E') < P cg(FY+ (" —1)- ' <(r—1Dr" +7" - g(F"). O

Proof of Theorem 7.3.2. For a Drinfeld modular subvariety X = ¢ b(S}’f, ) with separable reflex
field over F', we denote by n(X) the number of primes of F for which properties (ii) and (iii) in

558

https://doi.org/10.1112/50010437X12000681 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000681

THE ANDRE-QOORT CONJECTURE FOR DRINFELD MODULAR VARIETIES

Theorem 7.1.3 do not both hold, and by m(X, N) the number of primes of F' with properties
(i) and (iv). We show the following statements for Drinfeld modular subvarieties X of S with
separable reflex field.

(a) We have n(X) < Cs + Cs - log, (i(X)) for constants C5, Cg independent of X where i(.X)
denotes the index of X as defined in Definition 3.3.8.
(b) There is an M > 0 such that m(X, N) > n(X) for all X with D(X) > M.

Statement (b) implies the theorem because D(X)> M for almost all Drinfeld modular
subvarieties X of S by Theorem 4.3.2.

Proof of (a). For a Drinfeld modular subvariety X = L?jb(S}/,’,C,) of S we have
K' = (bKb™') N GL, (AL

and the index i(X) is the index of K" in a maximal compact subgroup of GL,. (Aé,).
For a prime p for which property (ii) holds, we can write Ky, = Stabgr, (£,)(Ay) for some
Ap-lattice Ay C F and
Ky = (bpKCpby 1) N GLy (F, ) = Stabgy, ,( £y (Ap)

with Ay :=by(Ap). Note that Ay - Ay is a free Aj-submodule of rank 7’ because Aj is a direct
product of principal ideal domains. Therefore with Proposition 4.3.6 we get the estimate

[Stabar,, () (Ap - Ap) 1 Ky 1> C - [Ay - Ay AL]Y”
for some constant C' > 0 only depending on ¢ and r. If IC]’J is not a maximal compact subgroup of
GL,/(Fy) (i-e., property (iii) does not hold for p), then A; cannot be an Ay-submodule of F,;T’,
i.e., we have Ay C Aj - Ay and
[Stabgr,, (5 (45 - Ay) 1 K12 C - [k(p)[V7

because each finite non-trivial Ay-module has at least |k(p)| elements.
Since, for each prime p satisfying property (ii), we have K' = IC;, x K’ () for some subgroup
K'®) € GL.(F' @ ALP), we conclude that

i(X) 2 C - |k(p)|3XV > . g,

where ng(X) is the number of primes of F' for which property (ii) holds, but property (iii) does
not hold. If ny is the number of primes of F', for which property (ii) does not hold, then we
conclude

n(X) =ng +nz(X) <ng — 7 -log,(C) + 7 - log, (i(X)).
This finishes the proof of (a), because ng is independent of X.

Proof of (b). Let X be a Drinfeld modular subvariety of S with separable reflex field F’ over F.
We denote the normal closure of the extension F'/F by E’. To give a lower bound for m(X, N)
we note that all primes p of F' which completely split in E’ satisfy property (i). We bound the
number of such primes with fixed degree using an effective version of Cebotarev’s theorem.

For the application of Cebotarev’s theorem we fix some notations. We denote the constant

extension degree of E'/F by n and its geometric extension degree by k. Since we assumed F' to
have field of constants I, the field of constants of £’ is Fgn and k = [E' /Fgn - F']. We furthermore
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fix a separating transcendence element 6 of F//F, (i.e., an element 6 of F' such that F//F,(6) is
finite and separable) and set d := [F/F,(6)].

The effective version of Cebotarev’s theorem in [FJ05, Proposition 6.4.8] says that for all
i > 1 with nli
’L

cuE' /Py - L

< 2 ((k+ g()d + k2a(F) + V)" + g(E') + db)

where
Ci(E'/F) := {p place of F | k(p) =F,i, p completely splits in E" and
p is unramified over Fy(0)}.

We apply this for all X with predegree D(X )= ¢*N™. Because n < [E'/F] <!, for these X we
have ¢" < D(X)Y4N. Therefore there are j > 1 with n|j and ¢/ < D(X)"N and we can define

i=max{j>1:n|j,¢ < DX)Y/N}.
Our choice of 7 ensures that
m(X, N) > |Ci(E'/F)|.

By our choice of i and X we have ¢ < D(X)YN, ¢"*" > D(X)'N and ¢" < D(X)Y*N. Hence

we have the bounds
n-+1

¢ < D)WY, gi =T > DXV,

q’rb
Furthermore, Lemmas 7.3.3 and 7.3.4 imply
g(F ) ~ Cl + CQ Iqu(D(X))7
g(E') < C34 Cy - g(F').

")
Since d is independent of X and 1< n,k <r! for all X, the above conclusion of Cebotarev’s
theorem and these bounds imply

O} D(X)YAN  Ch+ Cylog,(D(X)
log,(D(X))  log,(D(X))
with C1, C%, C5 > 0 independent of X. On the other hand, our statement (a) gives the bound
n(X) < C5 + Cy - log,(D(X)

with Cs, Cg independent of X. Since 2'/2V (log,(z))* = o(z3/*N)) for 2 — oo, these bounds imply
the existence of an M > 0 such that m(X, N) > n(X) for all X with D(X) > M. O

m(X,N) > (D(X)V2N & D(X)VAN 4+ 1)

8. The André—Oort conjecture for Drinfeld modular varieties

8.1 Statement and first reduction

CONJECTURE 8.1.1 (André-Oort Conjecture for Drinfeld modular varieties). Let S be a Drin-
feld modular variety and X a set of special points of S. Then each irreducible component over
Coo of the Zariski closure of X is a special subvariety of S.

Our main result is the following theorem.

THEOREM 8.1.2. Conjecture 8.1.1 is true if the reflex fields of all special points in 3. are separable
over F'.
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Since the reflex field of a special point in Sp - is of degree r over F, special points with
inseparable reflex field over F' can only occur if r is divisible by p = char(F'). Hence, Theorem 8.1.2
implies the following corollary.

COROLLARY 8.1.3. Conjecture 8.1.1 is true if r is not a multiple of p = char(F).

Theorem 8.1.2 follows from the following crucial statement, whose proof we give in the next
subsection.

THEOREM 8.1.4. Let S be a Drinfeld modular variety and Z C S an F-irreducible subvariety.
Suppose that X is a set of Drinfeld modular subvarieties of S, all of the same dimension d < dim Z
and with separable reflex field over F', whose union is Zariski dense in Z. Then, for almost all
X €%, there is a Drinfeld modular subvariety X' of S with X C X' C Z.

Remark. By Proposition 3.3.4, the proper inclusion X C X’ implies that dim X < dim X’
because the reflex field of X’ is properly contained in the reflex field of X.

ProrosSITION 8.1.5. Theorem 8.1.4 implies Theorem 8.1.2.

Proof of Proposition 8.1.5. We can assume without loss of generality that the Zariski closure Y
of ¥ is irreducible over C,. Since each special point in X is defined over F®°P, the Zariski closure
Y of ¥ is also defined over F*P. Hence, we can consider the subvariety Z := Gal(F*P/F) Y,
which is F-irreducible by Proposition 1.2.2. The union ¥’ of all Gal(F*°P/F)-conjugates of the
elements of ¥ is Zariski dense in Z. Proposition 3.3.11 implies that Y’ is a union of Drinfeld
modular subvarieties of dimension 0 with separable reflex field over F.

Hence, we can apply Theorem 8.1.4 with d =0 and find a finite subset 3 C ¥ such that for
all X € ¥\%, there is a Drinfeld modular subvariety X’ with X C X’ C Z. We denote the set of
these Drinfeld modular subvarieties X’ by ¥'. Since % is finite, the union of all subvarieties in
Y is Zariski dense in Z.

Note that Proposition 3.3.4 implies that all elements X’ of ¥/ are of positive dimension.
Therefore there is a d’ > 0 with d < dim Z such that the Zariski closure of the union of all
subvarieties of dimension d’ in ¥’ is of codimension 0 in Z. We let X" be the set of all Gal(F*®P/F)-
conjugates of the subvarieties of dimension d’ in ¥'. Since Z is F-irreducible, this is a set of
Drinfeld modular subvarieties of S, all of the same dimension d >0, whose union is Zariski
dense in Z.

If d = dim Z, then Y is an irreducible component over C, of an element in X" and therefore
special. If d’ < dim Z, we apply Theorem 8.1.4 with d =d’ >0 one more time to get a set of
Drinfeld modular subvarieties of dimension d” > d’ whose union is Zariski dense in Z. We iterate
this process until we eventually get such a set with d” = dim Z, which implies that Y is special. O

8.2 Inductive proof in the separable case

The proof of Theorem 8.1.4 requires the results from §7.3 about the existence of good primes
and the following theorem. We first give an inductive proof of the latter theorem using our
results about existence of suitable Hecke correspondences from §7.2 and our geometric criterion
in Theorem 6.1.3.

THEOREM 8.2.1. Let S = Sp, be a Drinfeld modular variety and X C S a Drinfeld modular
subvariety over F' which is contained in an F'-irreducible subvariety Z C S with dim Z > dim X.
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Suppose that p is a good prime for X C S and
deg(X) > [k(p)|"" V71 . deg(2)*
for s :=dim Z — dim X. Then there is a Drinfeld modular subvariety X’ of S with X C X' C Z.

Remark. The degree deg(X) makes sense here because K is amply small by condition (i) in
Definition 7.1.2.

Proof. In this proof, by ‘irreducible component’ we always mean an irreducible component
over C,. We assume that X = L?lb(S?, «r)- Note that F’ is separable over F' by the remark
after Definition 7.1.2.

We prove the following statements for all n > 1.

(i) If the theorem is true for s = n and Z Hodge-generic (i.e., no irreducible component of Z
lies in a proper Drinfeld modular subvariety of S, see Definition 6.1.2), then it is true for s =n
and general Z.

(ii) If the theorem is true for all s with 1 < s < n and general Z, then it is true for s =n and
Z Hodge-generic.

These two statements imply the theorem by induction over s.

Proof of (i). We assume that the theorem is true for s = n and Z Hodge-generic and have to show
that it is true for s = n if Z is not Hodge-generic. In this case, there is an irreducible component
of Z which is contained in a proper Drinfeld modular subvariety of S. Since Gal(F*°?/F) acts
transitively on the irreducible components of Z (Proposition 1.2.2) and Gal(F*®?/F) acts on
the set of Drinfeld modular subvarieties of S (Proposition 3.3.11), also the other irreducible
components of Z are contained in a proper Drinfeld modular subvariety of S. In particular,
this is the case for some chosen irreducible component Z’ of Z which contains an irreducible
component V of X.

We now consider a minimal Drinfeld modular subvariety Y = 5, (St xon) of S with Z' C Y C
S. By Proposition 3.3.4, the reflex field F” of Y is contained in F” and is therefore also separable
over F. Since Y is defined over F”, the F”-irreducible component Z” := Gal(F*P/F") - Z' of Z
is contained in Y. Furthermore, the F’-irreducibility of X (see Corollary 3.4.6) implies

X = Gal(F*P/F') - V C Gal(F*P /F") . V C Gal(F*?/F") . 7' = 7" C Y.
We now set X := (Lgl;,)_l(X) and Z := (L?:l;,)_l(zﬁ). These are subvarieties of S}}/,/,,K,, with
X CZC Sy
and
dim Z — dim X = dim Z — dim X =n.
The subvariety Z = (Lgl;,)*l(Z” ) is F”-irreducible because Z” C Lgl;,(Sg,l,,K,,) is F"-irreducible
and Lgl;, is a closed immersion defined over F” by Proposition 3.2.3.

By Corollary 3.3.5 and minimality of Y, the subvariety Z C S};,,,,JC,, is Hodge-generic and X

is a Drinfeld modular subvariety of S},,,, v with separable reflex field F’ over F. Furthermore,
by Proposition 7.1.3, there is a prime p” of I above p with k(p) = k(p") such that p” is good
for X C SZ—::/ K.
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Proposition 4.2.3 (ii) implies
deg X = deg X,
deg Z = deg 7" < deg Z.
Because k(p) = k(p”) and r”" < r, the assumption
deg(X) > [k(p")|" "D "D . deg(2)*"

is satisfied. So if Theorem 8.2.1 is true for Z Hodge-generic and s =n then there is a Drinfeld
modular subvariety X’ of S;“/'I',IC" with X € X/ C Z and X' := L?I;, (X’) is the desired Drinfeld
modular subvariety of S with X C X’ C Z. This concludes the proof of (i).

Proof of (ii). We assume that the theorem is true for all s with 1 < s < n and have to show that
it is true for Z Hodge-generic and dim Z — dim X =n. Since p is a good prime for X, we can
apply Theorem 7.2.2 and find a g € GL, (Ag) with the following properties:

(a) X CTyX;

(b) deg T, = [KC: K N g~'Kg] = [k(p)[;

(c) for all ky, ky € Ky, the cyclic subgroup of PGL,(F,) generated by the image of k1 - g - ko
is unbounded.

Because of property (a) and X C Z, we have
XCZNT,Z

Lemma 4.2.5 together with Proposition 4.2.3 and property (b) of our g € GLT(A@ give us
the upper bound

deg(ZNT,Z) < deg Z - deg T,Z < (deg Z)? - deg T, = (deg Z)? - |k(p)|" .
With the assumption on deg X and n =dim Z — dim X > 1 we conclude
deg X > |k(p)| "V =V . deg(2)¥" > deg(Z N T,2).

Therefore X cannot be a union of irreducible components of ZNT,Z. Note that ZNT,Z is
defined over F', hence also over the reflex field F’ of X. Since X is F’-irreducible, there is an
F'-irreducible component Y’ of Z N T, Z with X C Y’. We have X C Y’ because X is not a union
of irreducible components (over Co,) of ZNT,Z.

Now we set Y := Gal(F*?/F)-Y'. This is an F-irreducible component of Z NT,Z which
contains X with dim X < dim Y. We distinguish two cases.

Case 1. Y = Z. Because Y C Z N1T,Z, this is only possible if Z C T,Z. Since Z is F-irreducible
and Hodge-generic, property (c) from the above list holds and K is amply small, we can apply
our geometric criterion (Theorem 6.1.3) and conclude that Z =S. So X' := Z = S satisfies the
conclusion of the theorem.

Case 2.Y C Z. Set s’ :=dimY — dim X. Since Y and Z are F-irreducible, we have 1 < s’ <n =
dim Z — dim X. Hence, by our assumption, we can apply the theorem to X CY C S and the
prime p provided that the inequality of degrees

Sl

deg X > \k(P)|(T_1)'(2S,_1) -deg(Y)?
holds.
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To check the latter, note that Y is a union of irreducible components (over C,) of ZNT,Z,
because it is an F-irreducible component of Z NT,Z, whence

deg Y < deg(Z NTyZ) < [k(p)|"~" - (deg 2)*.
Therefore we indeed have

(p)] D deg(v)? <
<

nfl

k()| =1 L deg(v)?
()| "D "D L k(p) 0702 (deg )"
[k(p)| =D "1 (deg 2)*" < deg X

So we find a Drinfeld modular subvariety X’ of S with X C X' CY C Z as desired. O

Proof of Theorem 8.1.4. We first reduce ourselves to the case S'=Sp with £ amply small.
If K is not amply small, there is an amply small open subgroup £ C K with corresponding
canonical projection 7y : S, o — Sp . We choose an F-irreducible component Z of 7y Y(Z) with

dim Z = dim Z and set
> :={X C Z F'-irreducible component of 77 1(X) | X € ¥ with reflex field F'}.

Since Drinfeld modular subvarieties with reflex field F’ are F’-irreducible by Corollary 3.4.6, all
X € % are Drinfeld modular subvarieties of S 7 by Lemma 3.3.2. They are all contained in Z

and their union is Zariski dense in Z by our assumption on X. If Theorem 8.1.4 is true for K
amply small, we conclude that, for almost all X e E there is a Drinfeld modular subvariety X!
of Si., with X C X' C Z. For such an X', again by Lemma 3.3.2, X' :=m(X’) is a Drinfeld
modular subvariety of Sp . Hence, for almost all X € X, there is a Drinfeld modular subvariety
X' with X € X' C Z.

So we now assume that K is amply small. By Theorem 7.3.2 with N =2(r —1)-(2° — 1) +
r2 .25t for s :=dim Z — d, for almost all X = Li::b(S;—f/ xr) € X2, there exists a prime p of F' with
the following properties.

(i) There is a prime p’ of F' above p with local degree [F}, /F}] =
(ii) We have K =K, x £®) with K, C GL.(F,) a maximal compact subgroup and K® c
GL,(A5P).
iii) The subgroup K/ := (byKpby }) N GL,(F!) of GL,+(F!) is maximal compact.
P pIMpYp p p
(iv) We have |k(p)[20—D@=D+r*2" « D(X) for s := dim Z — d.
Furthermore, by Theorem 4.3.2 we have:
(v) D(X) > deg(2)*"/C?,
for almost all X € ¥ with C the constant from Proposition 4.3.1.
By Proposition 7.3.1, for all X = LFIb( 7 i) and p with (i)—(v) there is a subgroup Kck

and a Drinfeld modular subvariety X C S” such that:

(a) m(X) =X for the canonical projection 7 : S ©— SEic

(b) p is good for X C SFK:;
() [K: K] < [k(p)"
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Furthermore, for such an X C ST g we choose an F-irreducible component Z of n1(Z) with
Xc ~Z . Since m is finite of degree [K : K] by Theorem 3.1.3, we have dim Z = dim Z > dim X =
dim X and

deg Z
deg X

degm'Z =[K:K]-deg Z < ]k:(p)\’"2 -deg Z,
deg m1(X) =deg X

<
2

by Proposition 4.2.3. Therefore, using Proposition 4.3.1, we get the inequality

deg X > degX >C-D(X)=D(X)Y?.(C-D(X)"?)
LY () (DD deg(2)2" 3 k(p)] DD . deg(2)2

Therefore X C Z C S;K together with p satisfy the assumptions of Theorem 8.2.1. So we find
a Drinfeld modular subvariety X’ of ST e with X CX'cZ, and X':=m(X') is a Drinfeld
modular subvariety of Sp - with X C X "'cZ. O
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