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PRODUCTS OF THREE IDEMPOTENT TRANSFORMATIONS

R.P. SULLIVAN AND RACHEL THOMAS

In 1988 Howie, Robertson and Schein characterised the transformations of a finite
set X that can be written as a product of two or of three idempotent transfor-
mations of X; and in 1989 Saito did the same for products of four idempotents.
In 1998 Thomas extended the characterisation of two idempotents to arbitrary
sets, and here we characterise products of three idempotents in general. We also
define a notion of complexity for transformations of any set and use it to provide
a different solution to the three-idempotent problem.

1. INTRODUCTION

Let X be an arbitrary set and let T(X) denote the semigroup under composition
of all (total) transformations of X. For finite X, the authors of [6] characterised when
a € T(X) can be written as a product of two or of three idempotents in T(X), and
later Saito [9] did the same for products of four idempotents in T(X). In [10] Thomas
extended some of the earlier work to arbitrary sets and proved a corresponding result
for products of two idempotent linear transformations of a vector space. In Section
2, we characterise products of three idempotents in T(X) when X is arbitrary. A
more complicated characterisation of such products was provided by Thomas in [11,
Chapter 3]. Since it preserves the approach taken in [6] and uses an interesting notion of
complexity for transformations defined on an arbitrary set, we outline Thomas' solution
to the three-idempotent problem in Section 3.

In [8, Section 3], the authors aimed to determine when a nilpotent with index 2
is a product of two or of three idempotents in certain semigroups of transformations
defined on an infinite set. As noted in [10, p. 65], their results are incorrect and in
[10, Corollaries 1 and 2], Thomas purported to correct and generalise their result for
products of two idempotents. However, her work is partly incorrect. In Section 2, we fill
the gap and extend it to cover products of three idempotents in the relevant semigroups.
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58 R.P. Sullivan and R. Thomas [2]

2. PRODUCTS OF THREE IDEMPOTENTS IN T(X)

In what follows, Y — A 0 B means Y is a disjoint union of A and B, and we let
idy denote the identity transformation on Y. We adopt the convention introduced in
[1, Volume 2, p. 241]: namely, if a € T{X), we write

a =

and take as understood that the subscript i belongs to some (unmentioned) index set / ,
that the abbreviation {XJ} denotes {xi : ie I}, and that Xa = {x^ and x^a"1 = Ai,

in which case X — \J{Ai : i € / } .

We also let X \ a denote the complement of the singleton set {a} in X (compare
[1, Volume 1, p. 67]). Thus, there is usually a substantial difference between the set
X\{a j} and the set X\a{ (indeed, they are the same if and only if | / | = 1). Likewise,
we write X U a for the union of X and {a} (compare [1, Volume 1, p. 47]).

For convenience we state Thomas' characterisation of products of two idempotents
in T(X) [10, Theorem 2]. We say an idempotent S € T{X) is proper if S ^ idx (recall
that no injective transformation of X can be a product of proper idempotents).

THEOREM 1. If X is an arbitrary set and a € T(X) then a is a product of two

proper idempotents in T(X) if and only if

(1) a is non-injective, and
(2.1) for each y € Xa such that ya ^ y, there exists x € X \ Xa such that

xa — y.

For reference later, note that if e is a proper idempotent in T(X) then condition
(2.1) is vacuously true for e (since ye — y for each y € Xe) and this accords with the
fact that e = e2, a product of two idempotents.

Each a € T{X) determines a partition of X (denoted in [1, Volume 1, p. 51] by

7ra): namely,
para = {ya'1 : y € Xa}.

If para = {j4i}i w e saY iai} is a cross-section of para if a* G Ai for each i.

REMARK. Observe that (2.1) can be phrased more simply as: X a \ F i x a C (X \ Xa)a
where Fix a = {x e X : xa = x}. However, to accord with later work we note that if
X a = {bi} then (2.1) is equivalent to

(2.2) there is a cross-section {ai} of para such that ai € (X\Xa) U bt for

each i.

For, suppose (2.1) holds and let para = {Ai}. Put J = {i : b^a ̂  bi} and K = I\J.
Then (2.1) implies, for each j , there exists a,j € X \ Xa such that Oj-a = bj, thus
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o.j e Aj and a.j € (X \ Xa) U bj. Also, if we let ak = bk € Ak for each k, then
afc e (X \ X a ) U bk, and we have a cross-section {a, : j e J} U {a* : k & K} of pa ra
as in (2.2). Conversely, suppose (2.2) holds and assume y = bi ^ ha. Then ai ̂  bi,
so i = a; 6 X \ X a and aja — bi, as required for (2.1).

The next result is [4, Lemma 3.8]. In effect, it and its dual enable us to assume
that if a = Xfiy, for some idempotents A, \i in a regular subsemigroup 5 of T(X) then
par A = par a and Xfj, — Xa. This is because Green's 72. and £ relations on T(X) are
well-known [1, Volume 1, Lemmas 2.5 and 2.6]; and, by Hall's Theorem [3, Proposition
II.4.5], the % and C relations on 5 are just the restrictions to S of the corresponding
ones on T ( X ) .

LEMMA 1. Let S be a regular semigroup. If a € S and a = ex for some e2

= e € 5 and x € S then a— fx for some f2 = / € 5 such that f TZ a.

THEOREM 2 . Suppose X is an arbitrary set and let a E T(X) have range {bi}.
Then a is a product of three proper idempotents in T(X) if and only if

(1) a is non-injective, and
(3.1) there is a cross-section {aj} of para such that, if K = {i € I : a;

e Xa \ bi}, then there exist distinct Ck € X \ [(Xa \ bk) U {aj}] for each
keK.

P R O O F : Suppose a = <5î 2<̂ 3 for some idempotents 61,62,63 in T ( X ) . By Lemma

1, we can assume p a r J i = p a r a = {Ai} say, and write

In this notation, X61 — {aj} and thus a* € >lj for each i; possibly a; = Ci and/or
6j = Cj for some i and j ; and y € Y = X \ U/{°tJct} (if this se* is non-empty) and
similarly z € Z == X \ U/{^«>c>}- ^n other words, if necessary, we can redefine the
initial 61,62,63 so that a equals the product of the 6i,62,63 specified in (1).

Let K = {i € / : arf e Xa \ bi}. Note that for each i e I, a £ {aj : j f i}
since Cj — aj for j ^ i implies Cj = Ci<$2 = aj<52 = Cj, a contradiction. Similarly,
Ci ̂  {̂ i : j ¥" *} • Now if Cfc = at for some k £ K then

another contradiction. Therefore, Ck ̂  ak for each keK and thus c^ ̂  {aj} for each

fc. Consequently,

ckeX\[(Xa\bk)U{oi}]

and clearly all the Ck are distinct (since the bk are distinct and 63 is a mapping).
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C o n v e r s e l y , s u p p o s e a sa t i s f ies (1) and (3 .1) . P u t Ai — bia~1 a n d J — I\K a n d
def ine

4j Ak \ <• _ (aj {ofciCfc} Y\ _ /{a j , bj} {bk,ck} Z
%j ak J ' \Oj ck y J ' V ^ bk z

where possibly a;- = bj and/or bk = ck, but in any case

y G Y = X \ {{ai} U {ck}) and z G Z = X \ ({a.,6,} U {bk,ck}).

Then fo is an idempotent which is well-defined since all elements of {a,} U {ck} are
distinct. Also, $3 is an idempotent and it is well-defined since ck £ (Xa\bk) U {«»}
for each k G K and aj £ {bi : i ^ j} — Xa \ bj for each j G J. Moreover a = 8162S3
as required. D

Suppose in (3.1) that K — 0 for some cross-section {a*} of para. This means
ai £ Xa\bi for each i and hence a; G (X \Xa)l)bi for each i. That is, a is a product
of two proper idempotents by (2.2), and hence also of three proper idempotents. In other
words, products of two proper idempotents vacuously satisfy (3.1).

If a € T{X), we write r(a) for the rank of a (that is, \Xa\) and we also write:

D(a) = X\Xa, d(a) = \D(a)\,
Q( \ / /— Y —L \ ( \ I Q( \ I
^\a) — \ * t -A . xa f= xj-, s[a) — \d{a)\i

C(a) - LK2/"-1 = Iva-'l > 2}, c{a) = \C{a)\.

The cardinal numbers d(a),s{a) and c(a) are called, respectively, the defect, shift and
collapse of a. They were used by Howie [2] to characterise the transformations of X
that can be written as a product of idempotents in T(X) when X is infinite (see [4,
Lemma 2.10] for a correction to [2, Lemma 7]).

HOWIE'S THEOREM. If X is infinite then the semigroup E(X) generated by
the proper idempotents in T(X) is the disjoint union of two semigroups:

V - {a G T(X) : 1 < d(a) < s{a) < No},

H = {a G T(X) : d(a) = s(a) = c(a) > No}-

In [2, pp. 712-714], Howie showed that each element of H is a product of just four
idempotents in H. Consequently, Theorem 2 and Saito's work [9] indirectly determine
products of four idempotent transformations of an arbitrary set. For, if X is infinite
and a G V, let E(a) = S(a) U S(a)ct, the so-called essential domain of a, and recall
that a maps E(a) into itself and fixes each element outside E(a). Hence, in this case,
a I E{a) is a transformation of a finite set and Saito characterised when such mappings
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are products of four idempotent transformations of the same set (and naturally these
idempotents can be easily extended to idempotent transformations of X itself). On the
other hand, the a G H which do not satisfy the conditions of Theorem 2 are precisely
those elements of H which can be written as four (and not less than four) idempotents
in H.

EXAMPLE 1. In [4, pp. 165-166] Howie gave an example of an a G T(X) which is a
product of four (and not less than four) idempotents in T(X). This can be used to
illustrate Theorem 2 as follows. Suppose X = UOVUW where \U\ = \V\ = \X\,
choose v' G V and let 6 : V -»• U be a bijection. Define a G T{X) by

ua = v', for all u G U,

va — v9, for all v G V,

wa = w, for all w G W.

Then D(a) = V\v',S(a) = UL)V and C(a) = U, so a € H and hence it is a product
of four idempotents in H. Now Xa = v' U U U W. Hence if U = {m} and Via — Ui
for each i, and if W = {WJ } , then

p a r a = {U, {vi}, {WJ} :i€l,j € J }

where WJOC = Wj for each j . Therefore any cross-section {ai} of para consists of some
v! € U together with each v, and Wj. Consequently, in the notation of condition (3.1),
for each v^ ^ v' and for each j , we have Vi £ Xa \ u^ and Wj £ Xa \ Wj. But u'a = v'
and u' e Xa \ v'; and also, if v'a = u" then v' e Xa \ u". In other words, the K
denned in (3.1) contains just two elements corresponding to u',v' € para. Hence if
(3.1) holds, there must exist distinct cjt for k = 1,2 such that

ckeX\[(Xa\bk)V{ai}]

where b\ = v' = u'a and 62 — u" = v'a. But clearly for each u' £ U we have:

(Xa \ v') U (u' U V U W) = X,

hence c\ cannot exist. That is, a does not satisfy (3.1), so it is a product of four (and
not three) idempotents in H.

In [4, Theorem 3.7], Howie showed in particular that if |X| = m > No then the set

Qm = {a G T(X) : d(a) = s(a) = c(a) = m}

is a regular idempotent-generated subsemigroup of T(X). Note that Im = {a G Qm :
r(a) <m} is an ideal of Qm. We let Pm denote the Rees quotient semigroup Qmjlm
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and identify this with Jm U {0}, where Jm = {a € Qm : r(a) — m} and the product
of two elements of Jm equals 0 if it lies in Im. In [7] Marques showed that Pm is also
a regular idempotent-generated semigroup. In [10, Corollary 1], Thomas showed that
condition (2.1) in Theorem 1 characterises products of two idempotents in Qm and in
Pm (note that these semigroups contain no injective transformations). For the next
result, we need [4, Lemma 2.8]: namely, if e € T(X) is idempotent, and the defect, the
shift or the collapse of e equals m, then e € Qm.

COROLLARY 1. Let S equal Qm or Pm and suppose a e 5 is non-zero. Then
a is a product of three idempotents in S if and only if condition (3.1) in Theorem 2
holds for a.

PROOF: If a is a product of three idempotents in S then this also holds in T(X),
hence a satisfies condition (3.1) in Theorem 2.

Conversely, suppose a € Qm satisfies condition (3.1). The proof of Theorem 2
shows that a = 6iS2S3 for some Si € T(X) where c(8i) — c(a) and d(S3) = d(a).

Hence S\ and S3 belong to Qm by the remark above. Also, using our earlier notation,
we see that D(Si) = {ck} UY, hence either \K\ = m or \Y\ — m. In both cases, this
means 0(^2) = rn (since {aj} n {cjt} = 0 in the first case) and thus S2 S Qm by the
same remark as before.

Suppose a € Pm satisfies (3.1) in Theorem 2. Then, from what we have just seen,
a = (5i($2̂ 3 for some Si e Qm; and if any Si has rank less than m, the same is true of
a: that is, if a € Pm then each St e Pm. D

Each element of Qm and of Pm is a product of four idempotents, and the number
'4' is best possible (see [4, Theorem 3.7] and [7, Theorem 3.7]). Hence the above result
indirectly determines the elements in these semigroups which are products of four but
not three idempotents.

As noted in [8, p. 403], for any infinite cardinal m, the sets

Km = {a e F m : Is/a"1! = m for some t / 6 l } u {0},

Lm = {a £ Pm : for all p < m, there exists y £ X such that Ij/a"1! > p) U {0},

are 0-bisimple regular subsemigroups of Pm such that Km C Lm. In [10, Corollary 2],
Thomas purports to show that condition (2.1) in Theorem 1 also characterises products
of two idempotents in these semigroups. However her proof is invalid: the / / defined
in [10, p. 65] is not idempotent in general.

EXAMPLE 2. Let X denote the set of non-negative integers (so m = No) and define

a : X ->• X by
{4n ,4n+l} 4n + 2 {4n + 3}

4n + 3 An 3
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where n > 0. That is,

^{0,1} {4,5} {8,9} . . . 2 6 10 . . . {3,7,11, . . .} \
a V 3 7 11 . . . 0 4 8 . . . 3 ) '

Then a € Km and it is not idempotent. But it satisfies condition (2.1): if y £ Xa and
ya / y then y — An for some n > 0 or y = An + 3 for some n > 1. And, since

£>(a) = {An + 1 : n > 0} U {4n + 2 : n > 0},

there exists a; € X \ Xa such that xa = y. However, if a = A/x for some idempotents
A, /i € i<rm then we can assume par A = par a and hence (An + 2) A = 4n + 2. Since
H2 — H, this implies (4n + 2)/x = An = (4n)ji. In addition, since A is idempotent,
{An, An + 1}A must equal An or An + 1. But if it equals 4n then (4n)^i = 4n + 3,
contradicting what we already know about fi. Therefore, it equals An + 1 and so
(An + l)n = An + 3 = (4n + 3)^- That is,

{4n + l,4n + 3} {4n,4ra + 2
An+ 3 An

In other words, if a is a product of two idempotents in Km then it satisfies condition
(2.1) in Theorem 1 but the converse may be false.

We now remedy the situation and prove the following result. As noted in [8, p. 405],
the "R and £ relations on Km and Lm are essentially the same as those on T(X).

THEOREM 3 . Let S equal Km or Lm and suppose a G S is non-zero and has
range {bi}. Then a is a product of two idempotents in S if and only if there is a
cross-section {aj} of para such that a; € (X \ Xa) U bi for each i and

(4) \(X\Xa)\{ai:ai?bi}\=m.

PROOF: If a = X/J. for some idempotents A, fj. € 5 then A, n are idempotents in
T(X) and so, by Theorem 1, condition (2.1) and its equivalent (2.2) holds for a. In
addition, by Lemma 1, we can assume par A = para = {Ai} say. Write XX = {OJ},
which is a cross-section of par A since A is idempotent. Let J — {i : ai ^ bi} and put
K = I\J. Then a,/x = bj = bjfj. for each j (since n2 — n) and akH — bk = a* for
each k. Moreover, using the definition of J and K, we obtain

X \ ({ai} U {bi}) = X \ ({bk} U {bj} U {aj}) =X\(XaU {aj}) = (X \ Xa) \ {a,}.

If this set has cardinal r < m then fj, cannot belong to Km or to Lm. For, so far we
have found only one or two elements in each bip~l\ hence if (4) does not hold then
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yur1 cannot have cardinal m for any y £ X. Likewise for Lm: if r < m then yyTx

cannot have cardinal greater than r for any y £ X. Thus the condition holds.

Conversely, suppose the condition holds for a € 5 . Let J = {i: Oj ^ bi} and note
that, by supposition, aj £ X \ Xa for each j £ J. Put K = I\J and define

\ u=J 'a* / \ bj ak y /

where y e Y = X \ ({aj} U {bi}) = (X\Xa) \ {aj}, a set with cardinal m by

supposition. Clearly, A and /i are well-defined idempotents in 5 and a = A/i. D

Returning to the Example, we now see why it failed to be a product of two idem-
potents in Km. For, the only cross-section {a^} of a which satisfies ai £ (X \ Xa)L)bi

for each i, is {4n + 1 : n > 0} U {4n + 2 : n > 0} which equals X \ Xa; but a* ^ bi for
each ai in this cross-section, hence (4) does not hold for this a.

Next we consider products of three idempotents in Km and in Lm. By careful
choice of notation, we see the answer is very similar to what we have already done.

THEOREM 4 . Let S equal Km or Lm and suppose a 6 S is non-zero and has
range {h}. Then a is a product of three idempotents in S if and only if there is a
cross-section {aj} of para such that

(3.1) if K = {i e I : di £ Xa \ bi} then, for each k £ K, there exists an
element ck £ X \ [(Xa \ bk) U {at}] such that \{ck}\ = \K\, and

(3.2) if L = {i £ I \ K : d{ / h} then \(X \ Xa) \ ({ae} U {ck})\ = m.

PROOF: If a = 816283 for some idempotents 6i £ S then this also holds in T(X),
hence a satisfies condition (3.1) in Theorem 2. In addition, we can assume par<5i
— para = {Aj} U {Ak} where J and K are defined in the proof of Theorem 2. If
X8\ = {aj} U {ak} then, since the <$< are idempotent, we have djS^ = aj for each j
and ak82 — ck82 — ck (with ck defined as before). This implies aj8^ = bj = 6^3 and
ck8z = bk = bk8z. Moreover, if L is defined as in (3.2) then

X \ ({dj,bj} U {bk,ck}) = X \ ( l a U {a/} U {ck}) = (X \Xa) \ ({ae} U {ck}).

If this set has cardinal less than m then 53 cannot belong to Km or to Lm. Hence
(3.2) holds.

Conversely, suppose the conditions hold for a € 5 . Using (3.1) we can define
î,<̂ 2,<53 as at (2) in the proof of Theorem 2. Now, D(a) = Y V {ck} and this set

has cardinal TO since a £ Pm- If \Y\ = m then 82 £ Km. If \K\ = m, write
= {ufc} U {vk} and redefine 62 as

_ fdj {ak,uk} Y'
2 \aj uk y'
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where Y' D {vk} and y' € Y'. Then 6'2 € Km. Finally, assuming (3.2) holds, then

\(X \ Xa) \ ({at} U {itfc}) = m if 82 has to be redefined. In other words, (3.2) ensures

that Z (or Z' = Z U {fjt}) has cardinal m and hence that S3 € Km C Lm. D

In [5] the authors showed that if m is a regular cardinal then Km constitutes all
products of nilpotents in P m ; and in [8, Section 2], the authors showed that Lm fills
the same role when m is a singular cardinal. As remarked in [8, p. 404], it would be
interesting to know whether Km and Lm are generated by their idempotents.

3. COMPLEXITY OF TRANSFORMATIONS

The characterisation of products of three idempotents in T(X) which was given
in [6] for a finite set X differs greatly from that stated in Theorem 2 for any set. In
[6] the authors used a measure of the complexity of a e T(X) defined as follows. An
admissible a-triple is a set {x,xa,xa2} where x € X \Xa and xa2 ^ xa3 (thus, no
two of x,xa,xa2 are equal). Then the complexity of a is defined as:

coma = max{|T| : T is a set of pairwise disjoint admissible a-triples}.

The next result is [6, Theorem 3]. In what follows, we write

= {xeX :xa = x} and fixa = |Fixa|.

THEOREM 5 . Suppose \X\ = n < No and a € T(X). Then a is a product of
three proper idempotents in T(X) if and only if a is non-injective and

(5) 2r(a) < n + fixQ + coma.

In [11] Thomas extended the notion of complexity to an arbitrary set X and then
used it to characterise products of three idempotents in T(X) in general. We prefer
the characterisation given in Theorem 2 since it can be more readily transferred to a
vector space setting (something we shall explore in a subsequent paper). However, for
interest, we now sketch Thomas' alternative approach to the problem for T(X).

Suppose X is any set and let Y C X. We say {x,xa,xct2} is a Y-admissible
a-triple if x £ X \ Xa, xa2 ^ xa3 and xa,xa2 € Y. We now define the complexity of
a over Y as

coma|y = max{|T | : T is a set of pairwise disjoint y-admissible a-triples},

and if there are no y-admissible a-triples, we put coma|y = 0.

To show this is well-defined, suppose there is at least one y-admissible a-triple t.

Then the set T = {t} is trivially a set of pairwise disjoint y-admissible a-triples. Let
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!F denote the family of all sets of pairwise disjoint Y -admissible a-triples and let C be
a chain in T under C. We assert that T contains \JC = K say. For, if s, t G K then
s € A and t G B for some A, B G C with AC B (say). Thus s,t€B, hence s l~l t = 0
and it follows that K G T. By Zorn's Lemma, T contains a maximal element, TM

say: that is, for each T € .F, if TM C T then TM=T.

We assert that if all elements of .F are finite then coma|y exists. This is cer-
tainly true if X is finite. However, suppose there are Tn G T with n > 1 whose
(finite) cardinals increase indefinitely: that is, if \Tn\ = an then ai < a2 < • • • < an

< • • • . Note that T4 contains at least four pairwise disjoint a-triples, and by Zorn's
Lemma there exists M G T which is maximal with respect to containing T4. By sup-
position, there exists n such that \M\ < \Tn\ and hence there exists t G Tn \M. From
the maximality of M, we deduce that t intersects each element of M. But this is
impossible since t contains just three elements of X, whereas M contains at least four
pairwise disjoint a-triples. Hence, when all elements of T are finite, it contains one
with maximum cardinal, therefore coma|y is well-defined in this case.

Suppose there is an infinite T G T and choose M e T maximal with respect to
containing T. We assert that if 5 is any element of T then |5 | < \M\. This is certainly
true if S is finite since M is infinite. Therefore suppose S is infinite and \S\ > \M\, so

\S\M\ = \S\>\M\.

Now, for each Si € 5 \ M = {s<} say, there exists U G M such that Si n U ^ 0:
otherwise, s» is disjoint with every element of M, hence Si G M (by the maximality of
M) which contradicts Si G S\M. Choose u, G S{Dt, for each i and note that Ui — Uj
if and only if i = j (since s<, Sj G S are disjoint if i ^ j). Therefore,

However, if M = {tj} then |7| = \M\ and, since {UJ} C (JM and each tj is an

a-triple, we have:

Since M is infinite, this implies \S\ < \M\, contradicting our supposition. Therefore
the assertion holds: that is, if there exists an infinite T 6 f then all elements of T

have cardinal at most \M\ where M G T is maximal with respect to containing T.

Consequently, coma|y exists in this situation, and in fact it equals \M\ for any such
M eT.

EXAMPLE 3. Suppose X = {1,2,... ,8} and let

_ / l 2 3 4 5 6 7 8 \

" ~ \ 2 3 5 5 6 8 3 8 / '
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If Y — X, there are only three y-admissible a-triples:

{1,2,3}, {4,5,6}, {3,5,7}.

So there are just two maximal sets of pairwise disjoint y-admissible a-triples:

Ti = {{1,2,3}, {4,5,6}} and T2 - {{3,5,7}}.

That is, when all sets of pairwise disjoint y-admissible a-triples are finite, maximal
ones can differ in size.

EXAMPLE 4. Suppose X = Z and let A,B,C and D denote the sets 1 + AX, 2
+ AX, 3 + AX and AX, respectively. Define a € T{X) by

aa = a + 1 if a € A,

ba = b + 1 if 6 e B,

ca = c + 3 if c € C,

da = d-\ ifdeD.

Then X \ Xa = A U D, Aa - B, Ba = C, Ca = B and Da = C. Now, if a 6 A then
a € X \ Xa and o + l = a a e B , a + 2 = aa2 e C and aa2 / aa3. Therefore

Ti = {{a,a+l,a+2} : a € A}

is a set of X-admissible a-triples and it is easy to see they are pairwise disjoint.
Moreover, as a ranges over A, each element of B and C appears in the second and
third components of some triple. Thus, T\ is maximal since if {x,xa, xa2} is disjoint
with all elements of T\ then i must lie in D and hence xa € C, a contradiction.
Similarly

is a maximal set of X-admissible a-triples. In fact, T\ C\ T2 — 0 and they have the
same cardinal, namely No.

In [11, Chapter 3], Thomas tackles the problem of characterising products of three
proper idempotents in T(X) by observing that if a — <5i<52<J3 then a — fin where
/J2 = fi and P is a product of two idempotents. She then uses condition (2.1) and her
notion of complexity to examine the nature of a. This leads her to define two important
subsets of X which are related to a and have interesting combinatorial properties. In
turn, these enable her to solve the three-idempotent problem.

To indicate the main steps in this approach, we start with two simple results.
In what follows, we let E be the set of all proper idempotents in T(X) and put
E2 = {\fj.: \, ii € E).
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LEMMA 2 . Suppose X is any set and let a G T(X). If a = fifi where @
€ E2,fi G £ , par/3 = para and Xfj, — Xa then, for all x G X, x/3 ^ xa if and
onlyifxfie X\Xa.

PROOF: Clearly, x/3 G X \ Xa implies x/3 / xa. Conversely, if x/3 G l a then
(x/3)/x = x/3 (since /J is idempotent with range Xa) and hence xa = x/3. 0

LEMMA 3 . Suppose X is any set and let a G T{X). If a = fin where p

G E2,n G .E.par/? = para and X/x = Xa then, for all x G X, if x/3 G X \ C(a)
then x/3 = x.

PROOF: Note that C(/3) = C(a) since par ft - para. Therefore, if x/3 £ C(a)
then x/3 ^ C(/3) and hence (x/3)/9 = x/3 by condition (2.2). Consequently, x/3 = x
since x/3 g C(/3). D

Prom the above results, we deduce that if x G X and x/3 G X \ C(a) then either
xa = x/3 (in which case xa = x) or xa / x/3, in which case

x = x/3 G (X \ C(Q)) n (X \ Xa).

For any set X and any a G T(X), we write the image of this last set as

9(a)=[(X\C(a))n(X\Xa)]a,

and often abbreviate this in context to just 9 .

LEMMA 4. For any set X and any a G T(X), we have

d(a) = \C(a)\Xa\ + \e(a)\.

PROOF: Since a is injective on X \ C(a), the definition of 9(a) implies

|0(a)| = | ( X \ C ( a ) ) n ( X \ X a ) .

Now

X \ Xa = (C(a) \ Xa) 0 [(X \ C(a)) \ Xa]

= (C(a) \ Xa) u [(X \ C(a)) n (X \ Xa)],

and taking the cardinal of each side gives the result. D

Next, for any set X and any a G T(X), we define

~(a) = Xa \ (Fixa U 6 U 9a) ,
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and often abbreviate this in context to just S. It follows that

(6) Xa = E!UFixaU0U(0a\Fixa).

In fact, the sets on the right of (6) are pairwise disjoint. For, clearly S is disjoint
with the others, and Fix a is disjoint with 0 a \ Fix a . Also, if x € Fix a fl 0 then
ya~1 = {x} for some x G X \ Xa (since y € 0 ) and this implies x = y (since
y € Fix a ) , so x = xa, a contradiction. Therefore, Fix a and 0 are disjoint. Finally,
if y € 0 Pi 0 a then ya~x = {x} for some x € X \ Xa and also y — za for some
z € 0 C Xa. Hence z € y a " 1 C X \ Xa, a contradiction. Therefore, 0 and 0 a are
disjoint. Thus we have proved the following result.

LEMMA 5 . For any set X and any a € T(X), we have

r{a) = \E\ + fixa + |©| + |©a \ Fixa| .

The importance of S can be glimpsed by noting that if it is empty then a can be
written as /3/x for some /3 € E2 and fi.eE. For, suppose 5 = 0 and let

-•(:)•

Then {ci} = F ixaU0U(0a \F ixa) . Let J - {i £ I : Ci 6 FixaU©} and put
K = I\J. Choose ak e Ak n © for each k e K and define 0 € T(X) by

Ak

ak J '
Then ft is well-defined since no Cj equals any ak: for, if Cj — ak for some j , k then
both Cj and ak are in 0 , and a is injective on X\C(a), hence Aj — Ak and so j = k,

a contradiction. Also, ft satisfies condition (2.1): if y € X/3 and yfi / y then y must
lie in 0 and hence it equals xa for some x £ X\ Xa.

Now define an idempotent fj. € T(X) by

fcj {ck,ak} Y\
\CJ cfc y J '

where y eY = X \ ({CJ} U {cjfc,afc}) (if this is non-empty). This is also well-defined:

for, in addition, if ak — Q for some k,£ € K then c/ € 0 , contradicting the definition

of if. Moreover, a — fi(i as desired.

In effect, the characterisation in [6] of a £ E3 when Jf is finite uses the complexity

of a over all of X. The next result establishes a connection between that complexity

and the complexity of a over E. The proof is long and complicated, so we refer the

reader to [11, Lemma 3.5] for the details.
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T H E O R E M 6 . F o r a n y s e t X a n d any a € T ( X ) , i f E = E ( a ) t h e n

= |0a\Fixa| + coma|s-

This result provides an alternative characterisation of a G E3 when X is finite.

COROLLARY. Suppose \X\ - n < No and a e T(X). IfZ = E(a) then a is a
product of three proper idempotents in T(X) if and only if a is non-injective and

(7) |S| < |C(a) \Xa |+coma|2 .

PROOF: By Theorems 5 and 6, a £ E3 if and only if a is non-injective and

r(a) — fixa < [n — r(a)] + \Qa \Fixa | +coma|=

which, by Lemma 4, is equivalent to

r ( a ) - f i x a - |6o;\Fixa| < (\C{a) \ Xa\ + |6 | ) +coma|E,

which in turn, by Lemma 5, is equivalent to (7). D

Earlier we saw that if E(a) = 0 then a is a product of three proper idempotents.
Clearly this is a very special case of (7) being satisfied by a.

Surprisingly, (7) is precisely the condition which characterises products of three
idempotents of an arbitrary set. The proof is much longer and more complicated than
that of Theorem 6, so again we refer the reader to [11, Theorem 3.3] for the details.

THEOREM 7 . Suppose X is any set and a € T(X). Let

e-[(X\C(a))n(X\Ja)]a and E = Xa\ (FixaU 9u9a).

Then a is a product of three proper idempotents in T(X) if and only if a is non-

injective and \E\ < \C(a) \ Xa\ + coma|=.

Naturally, the above characterisation must be equivalent to that in Theorem 2. In
[11, Theorem 3.5], Thomas makes some progress towards proving this but the equiva-
lence is not yet entirely clear.

When X is infinite, Howie [2] showed that a product a of idempotents in T(X) is
determined by conditions on the cardinals d(a),s(a) and c(a). Clearly, condition (3.1)
does not involve cardinals, and the above result has a different character to Howie's
original work. It would therefore be interesting to know if a 6 E3 can be characterised
strictly in terms of some simpler cardinality conditions.
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