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Abstract

Structured latent curve models (SLCMs) for continuous repeated measures data have been

the subject of considerable recent research activity. In this paper, we develop a first-order

SLCM for repeated measures count data where the underlying change process is theorized

to develop in distinct phases. Parameters of the multiphase or piecewise growth model,

including changepoints, are allowed to vary across individuals. Exposure is allowed to vary

across both individuals and time. We demonstrate our modeling approach on empirical

expressive language data (grammatical morpheme counts) drawn from multiple distinct

corpora available in the Child Language Data Exchange System (CHILDES), where the

acquisition of grammatical morphology is understood to occur in distinct phases in

typically developing children. A multiphase SLCM is fit to summarize individuals’ data as

well as the average developmental pattern. Change in time-varying dispersion (unexplained

variability in morpheme counts) over the course of early childhood is modeled concurrently

to provide additional insights into acquisition. Unique characteristics of count data create

modeling, identification, estimation, and diagnostic challenges that are exacerbated by

incorporating growth models with nonlinear random effects. These are discussed at length.

We provide annotated software code for each of models used in the empirical example.

Keywords: Multivariate count data, piecewise growth models, nonlinear random

effects, structured latent curve models, morphemes, expressive language
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Multiphase Structured Latent Curve Models for Count Response Data:

A Re-Analysis of the Acquisition of Morphology in English

With advances in real-time data collection technology, multivariate count data are

collected with increasing frequency in the measurement of a latent construct over time,

where the underlying change process is often nonlinear. For example, the development of

grammar (i.e., morphology and syntax) in General American English (GAE) is understood

to follow a linear-linear multiphase process in typically developing children, with an initial

phase of rapid acquisition occurring between 2 and 4 years of age followed by a period of

more gradual, sustained development and mastery (e.g., Marchman & Bates, 1994;

Zukowski & Bernstein Ratner, 2024). One popular measure of GAE morphosyntactic

development involves counting the number of times various grammatical morphemes (see

Table 1) are correctly used within an oral language sample. Brown (1973) posited that

these 14 grammatical morphemes are acquired at different stages of GAE expressive

language development that track with chronological age in typically developing children,

where all 14 morphemes are usually attained by about 4 years of age.

[TABLE 1 ABOUT HERE]

Expressive language disorders may be identified when a child’s acquisition of these

morphemes falls below age expectations (e.g. Calder et al., 2022; Leonard & Schroeder,

2023). However, while collecting counts of Brown’s (1973) grammatical morphemes

(BGMs) has been expedited by technological advances in voice recording, transcribing, and

language analysis, substantial logistical challenges remain in analyzing these data for

clinical use on a large scale. Currently, a clinician must painstakingly review each language

sample from each child to evaluate the number of times each BGM was used correctly (i.e.,

in an “obligatory context”; Brown, 1973).

One potentially more tractable alternative might be to use piecewise growth models

(e.g., Cudeck & Harring, 2010; Kohli & Harring, 2013) to analyze change in the frequency

and unexplained variability with which BGMs are used while accounting for exposure (i.e.,
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the number of utterances defining the length of an oral language sample, which often varies

across individuals and measurement occasions) and individual variability in age(s) of

assessment, age of expressive language emergence, rate of grammar acquisition between 2

and 4 years of age, and the age at which a child transitions from acquisition to mastery.

Speech and expressive language disorders might then be identified by evaluating whether

predicted individual trajectories meaningfully deviate from the population average

trajectory in typically developing children, potentially facilitating large scale diagnosis and

treatment that can keep pace with data collection efforts. This quantitative approach

applied to a large sample drawn from multiple corpora may also yield additional insights

beyond what Brown (1973) was able to discover through his classic investigation of only

three children, as current clinical expectations for the timing and ordering of children’s

acquisition of BGMs continue to be based on samples typically smaller than 100 children

total (e.g., Paul & Alforde, 1993; Zukowski & Bernstein Ratner, 2024).

For example, of Brown’s (1973) 14 grammatical morphemes (Table 1), “in” is one of

the first morphemes acquired by typically developing native GAE-speakers. Although

production of “in” is known to be sensitive to input and language sampling context, issues

with production of “in” may foreshadow issues with both expressive language development

overall and more strictly grammatical (as opposed to lexical) morphemes that are typically

acquired later in childhood (e.g., Clark, 1973; Morgenstern & Sekali, 2009). Interestingly,

of Brown’s (1973) 14 grammatical morphemes, production of “in” also appears to follow

the most distinctly multiphasic trajectory over the course of early childhood in the

combined sample of children drawn from across multiple corpora. In the left-most panel of

Figure 1, one can see the frequency with which typically developing children produce the

morpheme “in” increases rapidly between 1.5 and 3 years of age but then levels off.

Simultaneously, in the right-most panel of Figure 1, unexplained variability in use of this

morpheme drops dramatically between 1.5 and 3 years of age and then remains low.

Collectively, these trajectories suggest acquisition of the morpheme “in” might be
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evidenced, among typically developing children, by an increase in explained use, which may

prove to be a facile manifestation of correct use. Facilitating scalable clinical evaluation of

the correct use of “in” may expedite early identification of broader developmental issues or

predict later grammatical issues, potentially providing the opportunity for earlier

intervention and better outcomes.

[FIGURE 1 ABOUT HERE]

Processes in which change occurs in distinct phases, such as the acquisition of GAE

grammar, can be modeled using piecewise or spline functions (e.g., Cudeck & Klebe, 2002;

Seber & Wild, 2003). Piecewise growth models are quite flexible and can accommodate a

variety of scenarios inadequately represented by mathematical functions for single-stage

change processes (Grimm et al., 2011; Sterba, 2014). Fitting these models to repeated

measures data that exhibit distinct phases allows one to evaluate when transitions from

phase-to-phase might occur while also permitting the growth trajectory within each phase

to be tailored to fit the localized data with growth parameters that directly relate to

characteristics of the underlying process.

With that said, the interpretation and utility of a multiphase model and freely

estimated changepoint(s) depend on the empirical context. In the evaluation of use of the

morpheme “in” over the course of early childhood, quantifying the population average age

of transition from an initial phase of rapid development (phase 1) to a subsequent period of

more gradual, sustained development and mastery (phase 2) in typically developing

children may help inform when children ought to be assessed for expressive language

disorders, such as late language emergence. More specifically, if (a) typically developing

children are expected to transition to slower, sustained development at a certain age and

(b) the leveling off of both frequency and unexplained variability in use of the morpheme

“in” at this age means acquisition of this morpheme is complete, then the population

average age of transition may be a reasonable time to consider evaluating a child’s

acquisition of the morpheme “in.” Assessing a child’s mastery of this morpheme too soon
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may result in a child being misidentified as potentially having an expressive language

disorder due to the rapid development that is still occurring, while assessing too long after

the population average age of transition may compromise the efficacy of targeted

interventions and potential future outcomes for the child. Comparing a child’s individual

trajectory and changepoint to the population average trajectory and changepoint among

typically developing children may help identify children who fall below age expectations.

For example, transitioning to slower, sustained development (phase 2) after the population

average age may correspond to the child settling into a potentially long-term

lower-than-average level of production of the morpheme “in.” For an individual morpheme,

this may not mean much in terms of a child’s overall level of morphosyntactic development,

but if a similar pattern is noted for other BGMs, further clinical evaluation and monitoring

may be warranted.

Although several statistical frameworks exist to accommodate piecewise functions,

we extend the structured latent curve model (SLCM; Browne, 1993) developed by Harring

et al. (2021) to account for potentially non-monotonic, nonlinear trajectories comprised of

two or more phases. These authors also demonstrated how transition times (knots,

changepoints) could be freely estimated model parameters that are either held fixed or

allowed to randomly vary across individuals. However, this SLCM approach has its own

(mathematical rather than logistical) challenges. Longitudinal BGM counts evaluated to

assess GAE morphosyntactic development, for instance, must be modeled as arising from a

counting process to avoid challenges interpreting parameter estimates, confidence intervals,

and predictions that imply negative morpheme counts, especially when counts are small, as

they generally are in very young children. Computational difficulties may arise when

estimating a nonlinear change process with linear and nonlinear random effects connected

to observed counts via a nonlinear link function with multiple, time-varying dispersion

parameters that may vary widely in magnitude and even follow their own trajectory.

The remainder of this article is divided into four major sections. First, we describe
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count data and how such data are generally modeled. We then introduce a first-order

multiphase SLCM for count response data in which the growth parameters—including

changepoints—are unknown and allowed to vary across individuals and exposure is

permitted to vary across both individuals and time/assessments. Although typical

acquisition of the morpheme “in” may follow a linear-linear trajectory in the empirical

example, the proposed model permits non-monotonic change over the entire measurement

period that may occur in more than two phases, where the functional form of change

within a given phase is tailored to adequately summarize the main characteristics of the

developmental process (Harring et al., 2021). We also demonstrate how to incorporate a

trajectory describing concurrent change in time-varying dispersion (unexplained variability

in morpheme counts) over the course of early childhood to provide additional insights into

acquisition. Second, we discuss at length a number of analytic challenges and

considerations surrounding model assumptions, the empirical evaluation of those

assumptions, model identification, and model estimation. Third, we present the count data

used in the empirical example, morpheme counts drawn from young children across

multiple distinct corpora (CHILDES; MacWhinney, 2000), in greater detail. The results of

an analysis of this data are presented, focusing on the interpretation of model parameters

and corresponding graphical representations of typical and individual behavior. The

proposed model is estimated using existing methods and software, and we highlight

particular decision points as we step through the analysis. Lastly, we provide concluding

remarks and discuss limitations and future directions, including how the basic SCLM can

be extended to second-order growth processes.

Modeling Counting Processes

The development of latent growth models (LGMs) for count responses—along with

corresponding estimation and fit assessment methods—has involved intertwining

advancements in the statistical literature of both observed and latent variable models. We

briefly review these developments and opportunities in modeling multiphasic latent growth
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measured by one or more count indicators assessed repeatedly over time by building the

complete model from the ground up—i.e., from the observed data up to the hypothesized

data-generating latent structure that is typically of primary interest, where the observed

and latent variables are connected by measurement models. First, we highlight key

characteristics of univariate count data and the processes by which they are generated. We

then describe measurement and structural models for count response data and consider

potential paths forward for extending count data LGMs to accommodate multiphasic

latent trajectories.

Univariate Count Data

Count data may assume any nonnegative integer value and are typically highly

skewed. Count data can be empirically (unconditionally) equidispersed when the empirical

mean and variance are equal, empirically underdispersed when the empirical mean exceeds

the empirical variance, or empirically overdispersed when the empirical variance exceeds

the empirical mean. Realizations of a count variable may be directly observed or

unobserved (latent) and may be measured with error in either case (e.g., Cameron &

Trivedi, 2013). For example, a pedometer counts steps indirectly as a function of

movement (so that step count is latent) and the resulting counts are subject to

measurement error arising from the imperfect mapping between detected movement and

steps taken. Alternatively, counts of grammatical morphemes in a video-recorded and

transcribed oral language sample are directly measured with what is probably a very small

amount of error. Count data are also at the ratio level of measurement defined by ordered

categories with equal intervals and true zero, where the latter represents an absence of the

measured count variable. This is in contrast to the more commonly analyzed ordinal data,

whose numeric values, including zero, have no inherent meaning but rather indicate the

relative position/ordering of the various levels of the ordinal variable. In a measurement

context in which a latent variable gives rise to the observed count variable, a count of zero

may represent an absence of the underlying latent variable in addition to an absence of the
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observed count variable, depending on what the latent variable represents and the

probability distribution it is assumed to follow. Consider a latent variable representing

symptom severity, for instance. In this scenario, a count of zero may represent absence of

the symptom. Alternatively, for a normally distributed latent variable representing an

individual’s level of expressive language development, a count of zero may correspond to

levels of development falling below a certain threshold along the latent continuum.

In this article, we restrict our attention to count data arising from a single counting

process, although count data from multiple response processes can be accommodated. A

counting process is a stochastic process describing the non-negative integer number of

events we expect to observe within a given exposure, where the number of observed events

cannot decrease with increasing exposure. The exposure quantifies the length of time,

space, or number of trials over which events are recorded and must be either a positive real

number or a (positive) natural number (e.g., Cameron & Trivedi, 1998, 2013; Hilbe, 2011).

An exposure that may vary across observations (e.g., individuals, measurement occasions)

yields an exposure variable. Like counts themselves, an exposure variable (here: the

number of utterances sampled from a child at an assessment that defines the length of the

oral language sample) may be either directly observed or latent and may be measured with

error in either case. When an exposure variable cannot be measured directly, is

multi-faceted, and/or is not well-defined, it can sometimes be reconstructed (possibly with

error) as a function of a set of measured variables. Measurement error in counts and

exposure are considered at length by Cameron and Trivedi (2013, Ch. 13).

Despite the variability and/or measurement error that are commonly present in

exposure, probability distributions for count data implicitly assume an exposure that is

fixed and measured consistently across observations. When a consistently measured, fixed

exposure is used to collect each observation:

(a) all observed responses are on the same scale (a necessary condition for obtaining

correct values and interpretations for model parameters, including the event rate and
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expected count [the mean]);

(b) the properties of the maximum likelihood estimators of model parameters are

unaffected; and

(c) all variability in the observed count response variable is attributable to sampling

variability arising from individual differences in model parameters (e.g., Cameron &

Trivedi, 2013; Hilbe, 2011).

In count models, explicitly and properly accounting for an exposure that varies

across the units/observations comprising a sample is critical to obtaining correct inferences

by achieving (a) and (b) and parsing variability in (c) from sampling variability in the

observed responses due to varying exposure (e.g., Cameron & Trivedi, 1998). Failing to

properly account for a varying exposure will yield biased parameter estimates, standard

errors, and model fit statistics—leading to incorrect inferences—as neither (a), (b), nor (c)

will hold. Note, however, that including an exposure variable in a count model will only

yield correct inferences if the probability of observing an event per unit exposure is

constant (e.g., Cameron & Trivedi, 1998). The opportunity to explicitly incorporate an

exposure variable into the probability distribution governing the counting process presents

itself through the regression of the distribution mean parameter onto a set of covariates

that includes the exposure.

Probability Distributions for a Single Counting Process

Distributions modeling a single counting process lie within the exponential family

(summarized in Table 2). For each of these distributions, the mean parameter quantifies

the expected response and the variance is expressed as a function of the mean parameter,

possibly in addition to a dispersion or “nuisance” parameter. Depending on the

distribution, the mean parameter may also represent the expected event rate (e.g., the

Poisson and Negative Binomial distributions). Note that different variance functions yield

different probability distributions, and different distributions (models) imply different
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relationships between the mean and variance. For example, the Poisson distribution

(de Moivre, 1711, 1718; Poisson, 1837) implies a variance that equals the mean

(model-implied [conditional] equidispersion). Negative Binomial (NB) distributions (e.g.,

Cameron & Trivedi, 2013; Hilbe, 2011) imply a variance that exceeds the mean

(model-implied [conditional] overdispersion). Meanwhile, Katz (e.g., Katz, 1963), Double

Poisson (DP; e.g., Efron, 1986), Generalized Poisson (GP; e.g., Consul, 1989; Consul &

Famoye, 1992; Consul & Jain, 1973), and Conway–Maxwell–Poisson (CMP; e.g., Conway &

Maxwell, 1962; Guikema & Coffelt, 2008; Huang, 2017; Minka et al., 2003; Shmueli et al.,

2005) distributions can imply a variance that is less than the mean (model-implied

[conditional] underdispersion) as well as a variance that equals or exceeds the mean. With

that said, distributions other than the Poisson and Negative Binomial with quadratic

variance function (denoted as NB2; see Table 2) suffer from notable limitations that have

restricted their use in the literature to date.

[TABLE 2 ABOUT HERE]

Regression Models

Incorporating a regression model for the mean parameter of a counting process

distribution permits the expected response to be a function of exposure and other

predictors. For counting processes in the two-parameter exponential family, a regression

model for the dispersion parameter may also be specified, where the total set of regression

equations specified may or may not have predictors or coefficients in common. Regression

models for a count response arising from a single counting process distribution for which an

exact expression for the mean response is available, such as the Poisson and NB

distributions (see Table 2), can be formulated within a Generalized Linear Model (GLM),

Generalized Nonlinear Model (GNLM), Generalized Linear Mixed Model (GLMM), or

Generalized Nonlinear Mixed Model (GNLMM) framework, depending on whether the

relations among predictors are linear or nonlinear and whether the coefficients of the

predictors are fixed, random, or some combination thereof (e.g., Agresti, 2013; Cameron &

https://doi.org/10.1017/psy.2025.8 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.8


MULTIPHASE SLCMS FOR COUNT DATA 12

Trivedi, 2013; Fitzmaurice et al., 2011; Hilbe, 2011; McCullagh & Nelder, 1989; Nelder &

Wedderburn, 1972; Vonesh, 2012). With that said, few examples exist in the literature of a

nonlinear growth function of linear and nonlinear random effects connected to observed

counts via a nonlinear link function due to the computational difficulties that may arise in

model estimation.

For a GLM, GNLM, GLMM, or GNLMM regressed on the mean parameter of a

counting process distribution: (1) the systematic component may include an offset—the

natural log of an exposure variable with corresponding regression coefficient fixed at one;

(2) the random component is parameterized in terms of the mean and dispersion of the

counting process (see Table 2); and (3) a natural log link function is used to connect the

random and systematic components. Although other link functions that ensure the mean is

always positive may be used with count responses (e.g., Wedel et al., 2003), the natural log

link function is generally preferred as it is the canonical link function for the Poisson mean

parameter. Note that including an offset in the systematic component of the regression on

the mean response allows the mean to be expressed as the product of exposure and the

hazard rate quantifying the expected count per unit exposure, where either or both may be

functions of observed and/or latent variables (e.g., Cameron & Trivedi, 2013).

Note that one may observe equidispersion, overdispersion, or underdispersion under

a fitted model when the empirical (observed) variance equals, exceeds, or is less than the

model-implied (conditional) variance, respectively. (The discerning reader may observe the

distinction between under-, equi-, and overdispersion that is empirical, model-implied, or

arising when a model is fit to data is rarely made explicit in the literature.) The presence

of under- or overdispersion is understood to yield incorrect standard errors, incorrect model

fit statistics, and, as a result, fallacious inferences with real, practical implications (e.g.,

Cameron & Trivedi, 2013; Hilbe, 2011). Under- or overdispersion arising from model

misspecification may additionally yield incorrect inferences about the response process but

can be addressed through careful reconsideration of the systematic component of the
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regression model for the mean response and subsequent selection of a more appropriate

conditional probability distribution (see Table 2).

Given the computational challenges involved in implementing other counting

process distributions enumerated in Table 2, Poisson and NB2 distributions remain popular

choices across a variety of scientific applications. Furthermore, given the frequency with

which overdispersion is observed in practice, NB2 models present an attractive choice for

use in modeling change processes measured by the repeated measurement of a single count

variable over time. Using a conditional response distribution in the two-parameter

exponential family additionally permits investigation of the joint behavior of the mean

response and unexplained variability among responses (manifesting as overdispersion) over

time by fitting a first-order LGM to the mean responses and a separate trajectory (that

need not be a GLM or GNLM) to the time-varying dispersion parameters. As such,

although the proposed first-order LGM may be specified using any counting process

distribution in the exponential family, we illustrate our approach using the NB2

distribution.

First-Order Multiphase SLCM for Count Data

Typically, first-order LGMs are those that model a single observed indicator

repeatedly measured at a set of time points or occasions for a sample of individuals. We

begin this section by explicating the notation used to define the response data, the

measurement occasions, and individuals. For additional clarity, we couch explication of the

notation in the empirical example of modeling counts of Brown’s (1973) second

grammatical morpheme (BGM2) “in” (see Table 1) collected in the longitudinal assessment

of GAE morphosyntactic development over the course of early childhood (Figure 1).

Let yiwi
denote the number of “in” morphemes produced by child i out of xiwi

utterances sampled at chronological age twi
months. As implied by the notation, the

chronological ages (in months) at which children were assessed varied across children both

within and among corpora (see Table 3 and Figure 2). This is because, in each corpus, oral
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language was sampled at certain, planned chronological ages that differed across corpora,

and children within a corpus were sometimes also assessed at slightly different ages than

planned and/or were missing planned assessments.1 As implied by the notation xiwi
, the

number of sampled utterances (exposure) varied also across children and assessments

(Figure 4). A spaghetti plot of the rates at which the morpheme “in” is produced within

an oral language sample in the overall sample of children is given in Figure 2 with a lowess

smooth of the mean function superimposed.

[FIGURE 2 ABOUT HERE]

Let yi “ tyiwi
: wi “ 1, . . . ,Wiu, xi “ txiwi

: wi “ 1, . . . ,Wiu, and

ti “ ttiwi
: wi “ 1, . . . ,Wiu denote the sets of observed responses (BGM2 counts),

exposures (numbers of sampled utterances), and measurement times (chronological ages of

assessment in months), respectively, collected from the repeated measurement of a single

count item/indicator (i.e., the number of “in” morphemes produced) over the course of Wi

occasions for individual i, where the observed counts are nonnegative integers and the

exposures and measurement times are positive real numbers. The number of assessments

per child (Wi) ranged from 1 to 7, inclusive, with corresponding ages of assessment (tiwi
)

ranging from 18 to 71 months, inclusive (Table 3). Chronological age of assessment was

binned into 3-month assessment windows (intervals), yielding a total of W “ 18 unique

measurement occasions in the overall sample of N “ 1, 084 children: [18,21), [21,24),

[24,27), [27,30), [30,33), [33,36), [36,39), [39,42), [42,45), [45,48), [48,51), [51,54), [54,57),

[57,60), [60,63), [63,66), [66,69), and [69,72). In the analysis dataset, these measurement

windows were coded using the lower bound of each 3-month interval centered at age 18

months, yielding

t “ ttw : w “ 1, . . . ,W u “ t0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51u,

so that w indexes unique measurement occasion (unique chronological age of assessment)

within the overall sample of N individuals. As such, data collected within a given interval
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are treated as though collected at the chronological age indicated by the lower bound of

that interval in the analysis and interpretation of model parameters. For example, BGM2

counts collected at ages [18, 21) months are treated as though collected at age 18 months.

Since not all children were assessed within each 3-month interval, the ages of assessment for

child i (ti) are a subset of the unique ages of assessment in the overall sample (t), such that

ti “ ttiwi
: wi “ 1, . . . ,Wi ď W “ 18u P t, where i “ 1, . . . , N.

If a child had more than one assessment within a 3-month interval, one of those

assessments was randomly selected for analysis so that each child contributed at most one

assessment per interval (i.e., data are cross-sectional within each 3-month assessment

window). Note that the use of age intervals spanning a few months is a fairly common

practice in the clinical assessment of expressive language development because of dynamic

and rapid growth in grammar acquisition during the earliest stages of child language

development (e.g. Carrow-Woolfolk, 2011; Leadholm & Miller, 1992; Miller & Chapman,

1981; Pavelko & Owens, 2017; Rice et al., 2010; Scarborough et al., 1991; Sparrow et al.,

2016). Here, 3-month intervals were used in order to balance (a) choosing intervals small

enough to maximize the amount of longitudinal data taken from each child, the number of

unique measurement occasions in the overall sample, and granularity with respect to

chronological age with (b) choosing intervals large enough to contain enough children to

permit the estimation of dispersion across children within each age interval.

Measurement Model

Due to the myriad of components unique to the modeling of count response data as

well as the complexity of the notation, we present an example of the proposed first-order

multiphase LGM as a path diagram in Figure 3. Following the typical structural equation

modeling convention for path diagrams, squares represent observed variable indicators,

circles represent latent variables, single-headed arrows denote directed relations among

observed and latent variables, and double-headed arrows denote variances of and
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covariances between variables. Other notation germane to the explication of the

measurement and structural components of the LGM in Figure 3 is detailed and explained

shortly.

[FIGURE 3 ABOUT HERE]

Suppose Yiwi
measures individual i’s level of target construct θ (e.g., level of

morphosyntactic development) at time tiwi
“ tw, where corresponding observed response

yiwi
is generated from a counting process distribution in the two-parameter exponential

family (2PEF) with density

f2PEF pyiwi
| ηiwi

, ϕwq “ exp tapηiwi
, ϕwq ` bpyiwi

, ϕwq ` cpηiwi
, ϕwqtpyiwi

qu (1)

with time-specific dispersion parameter ϕw and natural/canonical parameter ηiwi
“ lnµiwi

,

where µiwi
represents individual i’s expected response at occasion wi. For the empirical

example, we use the NB2pµiwi
, ϕwq density in Equation 2.

fNB2 pyiwi
| µiwi

, ϕwq “
Γ pyiwi

` ϕ´1
w q

Γ pyiwi
` 1q Γ pϕ´1

w q

„

ϕ´1
w

ϕ´1
w ` µiwi

ȷϕ´1
w

„

µiwi

ϕ´1
w ` µiwi

ȷyiwi

(2)

Individual i’s expected response at chronological age tiwi
“ tiw months is expressed

as a function (Equation 3) of exposure xiwi
, individual i’s levels of the target construct θiwi

,

item intercept ξ0, item slope ξ1, and error ϵiwi
.

ηiwi
“ lnµiwi

“ ln xiwi
` ξ0 ` ξ1θiwi

` ϵiwi
(3)

Note the subscript wi in θiwi
indicates Equation 3 applies to those chronological ages at

which child i is actually assessed, though the child’s latent construct exists continuously

across all chronological ages (including t), measured or not, so that θi “ pθi1, . . . , θiW qJ.

The item intercept quantifies the log expected response (expected count) per unit exposure

at the population average level of the target construct (i.e., when θiwi
“ 0), while the item

slope captures the strength of the (positive) linear relation between θiwi
and log expected

response, lnµiwij. Note that the expected count per unit exposure increases
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multiplicatively by an order of exp pξ0q as ξ0 increases, holding θiwi
constant. Also note

that item parameters ξ “ tξk : k “ 0, 1u do not vary across individuals or measurement

occasions to achieve measurement invariance.

The error, ϵiwi
, in the linear predictor of the mean response in Equation 3 may be

non-zero due to the omission of important predictors of the mean response,

misspecification of the structural model, and/or measurement error in the offset, ln xiwi
.

This error propagates down to the observed data level manifesting as overdispersion

(unexplained variability) in the observed responses (e.g., Cameron & Trivedi, 2013). The

set of time-specific errors for individual i, ϵi, is normally distributed with zero mean vector

and covariance matrix Ωi.

ϵi “ pϵi1, . . . , ϵiWi
q

J iid
„ N p0,Ωiq

The set of time-specific latent constructs for individual i follows a different multivariate

normal distribution with mean vector θ and covariance matrix Θ.

θi “ pθi1, . . . , θiW q
J iid

„ N pθ,Θq

Structural Model

Change in an individual’s level of the target construct over time follows a

theoretically-defensible growth model, f , expressed as a function of measurement times, t,

and individual latent growth factors, βi.

θi “ f pt,βiq ` δi (4)

The set of disturbances, δi “ tδiw : w “ 1, . . . ,W u, in Equation 4 represents the set of

time-specific regression errors induced by misspecifying the true (data-generating)

trajectory of θi over t. This could occur by omitting predictors of an individual’s level of

the target construct and/or misspecifying the functional form of f . The disturbances are

assumed to jointly follow a multivariate normal distribution with zero mean vector and
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covariance matrix Σ.

δi “ pδi1, . . . , δiW q
J iid

„ N p0,Σq

In Equation 5, we assume that f is a piecewise growth model having the general

form,

f pt,βiq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

f1 pt,βiq , t ď γ1i

f2 pt,βiq , γ1i ă t ď γ2i

... ...

fD pt,βiq , t ą γpD´1qi

. (5)

The trajectory in each of the D ą 1 phases may have a distinct functional form that need

not be a polynomial. Moreover, the trajectory need not be monotonic within a phase nor

over the entire measurement period. The changepoints (a.k.a., join points or knots,

denoted by γi “ tγid : d “ 1, . . . , D ´ 1u) indicate the times of transition from phase to

phase. These transition times may be unknown (i.e., parameters to be estimated from the

data) and may vary across individuals (i.e., have random effects). The transition from one

phase to the next may be discontinuous (e.g., a jump up or a drop down), continuous but

abrupt (zero-order continuity), or continuous and gradual/smooth (first-order continuity or

greater, where higher orders of continuity correspond to greater degrees of smoothness).

Individual growth factors βi “ pψJ
i ,φ

J
i qJ include p parameters, ψi, that enter the

function in Equation 5 linearly and q parameters, φi, that enter the function in a nonlinear

manner. Here, we define a growth parameter as being linear if the first partial derivative of

f taken with respect to the growth parameter does not include the parameter.

Alternatively, a growth parameter is considered to be nonlinear if the first partial derivative

of f taken with respect to the growth parameter includes the parameter. Nonlinear growth

factors include—but need not be limited to—unknown, individual-specific changepoints.

Individual linear and nonlinear growth factors may each be expressed as a linear
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combination of population growth parameters governing the population average

trajectory—linear and nonlinear fixed effects ψ and φ—and individual i’s linear and

nonlinear random effects, ui and gi, respectively. Random effects bi “ puJ
i ,gJ

i qJ are

assumed to jointly follow a multivariate normal distribution with zero mean vector and

symmetric covariance matrix T.

βi “

¨

˚

˝

ψi

φi

˛

‹

‚

“

¨

˚

˝

ψ

φ

˛

‹

‚

`

¨

˚

˝

ui

gi

˛

‹

‚

, where

¨

˚

˝

ui

gi

˛

‹

‚

iid
„ N

¨

˚

˝

»

—

–

0

0

fi

ffi

fl

,

»

—

–

Tuu Tug

Tgu Tgg

fi

ffi

fl

˛

‹

‚

. (6)

Note that elements of T may be constrained at zero for theoretical but also potentially

computational (pragmatic) reasons.

Following S. A. Blozis and Harring (2016) and S. A. Blozis and Harring (2017), the

growth function for individual i in Equation 5 can be reformulated as a SLCM defined by a

first-order Taylor series expansion taken with respect to the parameters of the mean

growth function and linearly weighted by a set of individual-specific weights (i.e., random

effects, bi).

f pt,βiq « fpt,βq ` Λpt,βqbi (7)

The columns (i.e., basis functions) of Λpt,βq are the the first-order partial derivatives of

the mean (i.e., target) function, fpt,βq.

Λ “ Λpt,βq “
Bfpt,βq

Bβ
“

ˆ

Bfpt,βq

Bψ1
¨ ¨ ¨

Bfpt,βq

Bψp

Bfpt,βq

Bφ1
¨ ¨ ¨

Bfpt,βq

Bφq

˙

(8)

As a SLCM, fpt,βq is assumed to be invariant to a constant scaling factor (see

Shapiro & Browne, 1987, Condition 2). Consequentially, there is a set of parameters,

denoted here by α, such that

fpt,βq “ Λα. (9)

Because Λ is the set of first-order partial derivatives of fpt,βq taken with respect to β (see
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Equation 9), elements of parameter vector α can be obtained by solving the linear

equations in Equation 9. It turns out that solving these linear equations results in setting

all parameters in α that enter nonlinearly to 0 (i.e., φ “ 0). This permits the recovery of

the target function (Preacher & Hancock, 2015). Then in the individual-level model in

Equation 7, Λα can be substituted for the mean function, fpt,βq. Thus, the

individual-level model can be re-expressed as

f pt,βiq “ Λα` Λbi “ Ληi

where ηi “ α` bi.

Note that when a single count indicator is measured at each occasion, the item

intercept is constrained at zero pξ0 “ 0q and item slope at one pξ1 “ 1q to achieve model

identification while preserving meaningful interpretation of the growth parameters.

ηiwi
“ lnµiwi

“ ln xiwi
` ξ0 ` ξ1 rf ptiwi

,βiq ` δiwi
s ` ϵiwi

“ ln xiwi
` f ptiwi

,βiq ` εiwi
, where tiwi

“ tw (10)

Additionally, regression disturbance δiwi
is absorbed into measurement error ϵiwi

, impacting

the interpretation of εiwi
and any resulting overdispersion.

δi ` ϵi “ εi “ pεi1, . . . , εiWi
q

1 iid
„ N p0,Ξiq

Dispersion Trajectory

If a conditional distribution in the 2PEF, such as the NB2 distribution, is utilized

for the count response measured repeatedly over time, the magnitude of conditional

(model-implied) dispersion may notably vary over time and possibly even follow it’s own

trajectory. Let ϕ “ tϕw : w “ 1, . . . ,W u denote the complete set of freely estimated

dispersion parameters corresponding to the W unique measurement times

t “ ttw : w “ 1, . . . ,W u in the overall sample of N individuals. Where appropriate, one

may fit a trajectory with coefficients ω to time-varying dispersion parameters ϕ to describe
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change in dispersion over time.

ϕ “ g pt,ωq . (11)

The trajectory fit to the time-specific dispersion parameters need not be a GLM nor

utilize polynomial growth, but whatever function is ultimately used, it must capture the

essential characteristics of the freely estimated dispersion parameters across time. For

example, in modeling counts of Brown’s (1973) second grammatical morpheme (BGM2)

“in” (see Table 1) collected in the longitudinal assessment of GAE morphosyntactic

development over the course of early childhood (Figure 1), change in model-implied

overdispersion over time might be described by a linear function fit to the natural log of

the NB2 dispersion parameters

lnϕw “ ω1 ` ω2 tw (12)

where w “ 1, . . . , 18 and tw “ 0, . . . , 51. Alternatively, a more precipitous decline over the

first several months of early childhood might be achieved through an exponential decay

function with a nonzero asymptote (see Equation 13) to describe change in dispersion over

time, where ω1 ` ω3 quantifies the dispersion parameter at age 18 months when tw “ 0, ω2

is the decay factor such that the NB2 dispersion parameter decreases by 100p1 ´ ω2q% with

every 1 month increase in chronological age after age 18 months, and ω3 is the nonzero

asymptote quantifying the NB2 dispersion parameter as children age beyond early

childhood,

ϕw “ ω1
`

ωtw
2

˘

` ω3, where w “ 1, . . . , 18 and tw “ 0, . . . , 51. (13)

Note that the dispersion parameters are time-specific (as indicated by the subscript

w) but do not vary across individuals (as indicated by the omission of i from the

subscript). As such, any trajectory fit to the dispersion parameters exists only at the

population level and is specified by imposing constraints on the time-varying dispersion

parameters, reducing the number of freely estimated dispersion-specific parameters from W
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to the length of ω. As such, fitting a trajectory to the dispersion parameters may convey

notable parsimony in addition to the ability to describe a change process of substantive

interest, where gains in parsimony for a given function g increase as the number of unique

measurement occasions (W ) in the overall sample of N individuals increases.

Analytic Considerations

When fitting a statistical model to a set of data, one must ensure the model is

identifiable and that assumptions about the data generating process implied by the model

are both theoretically defensible and reasonably satisfied based on empirical evidence

generated through model fit assessment. First, we enumerate the assumptions implied by

the proposed first-order multiphase SLCM. Second, we summarize salient approaches to

evaluating the fit of latent variable models for count responses. Third and lastly, we discuss

necessary conditions to ensure the model is overidentified (has more observations than free

parameters) to obtain a unique set of parameter estimates and permit meaningful

evaluation of model fit.

Model Assumptions

As with any fully parametric latent growth model in which parametric probability

distributions are assumed for both the latent variables (random effects) and observed

variables (indicators/items), the following assumptions are implied when fitting the

proposed first-order multiphase SLCM to longitudinal count data. First, it is assumed that

the model is correctly specified (e.g., Agresti, 2013; Cameron & Trivedi, 1998, 2013; Hilbe,

2011; McCullagh & Nelder, 1989; McNeish & Kelley, 2019; Vonesh, 2012; Woods &

Thissen, 2006), including correct specification of:

1. The joint distribution of the random effects;

2. The fixed and random effects included in the linear predictor of the mean response

and the relations among them;

3. The conditional distribution assumed for the response; and
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4. The link function connecting the mean response to its linear predictor.

Additionally, several assumptions are made about the target population and sample

of individuals from whom the count responses are collected. First, the sample from which

model parameters are to be estimated is assumed to be both homogeneous (i.e., all sampled

individuals come from the same population; OECD, 2004) and representative (i.e., the

sample is selected probabilistically and the composition of the sample is “typical” of the

population with respect to certain, specified characteristics of interest upon which

inferences will be based; OECD, 2002). Second, sampled individuals are assumed to be

independent and sampled measurements (count responses) are assumed to be conditionally

independent within an individual (e.g., McCulloch, 2003; Vonesh, 2012; Woods & Thissen,

2006).

Several measurement-specific assumptions are also made. First, measurement

invariance is assumed across individuals and occasions. Second, the IRT/IFA assumption

of monotonicity applies here, which posits that the probability of endorsing a given

response category or higher increases as the level of the latent construct measured by the

item increases. For a count response, the assumption of monotonicity implies that the

expected response (expected count) increases as the level of the latent construct increases.

Third, as measurement error is not the focus of this research, it is assumed that count

responses and exposures are directly measured with, at most, minimal error that is

uncorrelated with predictors of the mean response (e.g., Cameron & Trivedi, 2013).

Lastly, combining the model-, sample-, and measurement-specific assumptions

enumerated above, we assume errors are uncorrelated (mutually independent) among

individuals at a given measurement time as well as across occasions within each individual

after conditioning on the growth trajectory, so that εiwi

iid
„ N p0, σ2

wq in Equation 10 at time
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tiwi
“ tw (such as is shown in Figure 2) and

Ξ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

σ2
1

σ2
2

. . .

σ2
W

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Model Fit Assessment

The goal of model fit assessment is to identify model assumptions that appear to be

notably violated based on available empirical data (that are, hopefully, homogeneous and

representative of the target population). Identifying sources of model-data misfit can, in

conjunction with theoretical considerations, inform re-specification of the model such that

more valid—and therefore more useful—inferences about the data-generation process may

be drawn.

Global Fit

For latent variable models fit to count response data, likelihood-based measures of

relative overall model-data fit—such as the Likelihood Ratio Test (LRT) for comparing

nested models and the Akaike Information Criterion (AIC; Akaike, 1974) and Bayesian

Information Criterion (BIC; Schwarz, 1978) for comparing non-nested models—have been

the most commonly utilized tools, to date, for detecting various sources of misspecification,

such as misspecification of the structural model (e.g., Magnus & Thissen, 2017; Man &

Harring, 2019; Wedel et al., 1993), misspecification of the measurement model (e.g.,

Forthmann et al., 2020; Hung, 2012; Magnus & Thissen, 2017), and violations of

measurement invariance (e.g. Baghaei & Doebler, 2019; van Duijn & Jansen, 1995).

Likelihood-based measures of relative overall model-data fit have also been used in the

GLM/GLMM literature to detect misspecification of: (a) the number of random effects and

their joint distribution (e.g., Dean & Nielsen, 2007; Vonesh, 2012); and (b) the conditional

response distribution, link function, and systematic component (e.g., Cameron & Trivedi,
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1998, 2013; Hilbe, 2011; Vonesh, 2012).

Item Fit

For latent variable models fit to count response data, targeted evaluation of whether

the measurement model is correctly specified has largely centered around graphical and

numerical comparisons of the empirical and model-implied marginal item response

distributions (e.g., Baghaei & Doebler, 2019; Forthmann et al., 2020; Magnus & Thissen,

2017; Verhelst & Kamphuis, 2009). Visual inspection of overlaid plots (e.g., histograms,

density plots) and/or side-by-side numeric summaries of the empirical and model-implied

marginal response frequencies for an item (e.g., Forthmann et al., 2020; Magnus & Thissen,

2017; Verhelst & Kamphuis, 2009) can yield information not just about whether the

assumed measurement model appears to be correct but also how it may be wrong (e.g.,

help detect under- or overdispersion and excess zeros). As such, these analyses can provide

insights into absolute item fit, albeit at the marginal item response level. Numeric

measures of alignment between two distributions described in the statistical

literature—such as the Kullback-Leibler divergence (KLD; Kullback & Leibler, 1951) and

Jensen-Shannon divergence (JSD) or distance—though not used with latent variable

models for count responses to date, might provide measures of relative fit at the marginal

item response level by quantifying recovery of each empirical marginal item response

distribution for use in model comparison.

However, evaluating the extent to which a fitted model recovers each empirical

marginal item response distribution does not provide clarity regarding the source(s) of

misspecification, such as the random and fixed effects included in the linear predictor, the

structural model to which the latent variables are tied, the conditional item response

distribution, or the link function. Fortunately, more informative targeted diagnostics have

been developed within the GLM/GLMM literature for detecting misspecification of the

link function (e.g., Cheng & Wu, 1994); conditional under-, equi-, or overdispersion (e.g.,

Breslow, 1990; Cameron & Trivedi, 1998, 2013; Hilbe, 2011; Lambert & Roeder, 1995),
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such as the Pearson statistic; misspecification of the variance function assumed for the NB

distribution (Hilbe, 2011); and misspecification of the conditional moments (e.g., Cameron

& Trivedi, 1998). Meanwhile, the evaluation of monotonicity has centered around visual

inspection of estimated item slopes and corresponding standard errors as well as graphical

representations of item characteristic curves (ICCs). Lastly, although not utilized in our

empirical example nor in the broader literature on LVMs for count responses to date,

various numerical and graphical methods in the GLMM literature might be adapted to

identify individuals whose response patterns suggest the calibration sample is not

homogeneous and representative (i.e., to evaluate person fit).

Model Identification

The mean structure of the proposed first-order multiphase SLCM fit to count

responses is comprised of all freely estimated population growth parameters in β. For

conditional response (counting process) distributions in the one-parameter exponential

family (e.g., the Poisson distribution), the covariance structure is comprised of all freely

estimated, unique growth factor variances and covariances (freely estimated unique

elements of T). For conditional response distributions in the two-parameter exponential

family (e.g., the NB2 distribution), the covariance structure additionally includes

occasion-specific dispersion parameters ϕ “ tϕw : w “ 1, . . . ,W u or, if a growth trajectory

is imposed on ϕ, the parameters of said trajectory (i.e., ω. Note that the elements of factor

loading matrix Λ are not freely estimated but rather are functions of measurement times t

and freely estimated population growth parameters in β. Likewise, expected counts

µ “ tµiwi
: wi “ 1, . . . ,Wi; i “ 1, . . . , Nu, linear predictors of the mean response

η “ tηiwi
: wi “ 1, . . . ,Wi; i “ 1, . . . , Nu, and error variances σ2 “ tσ2

w : w “ 1, . . . ,W u are

part of the hypothesized model but are not freely estimated model parameters.

Since the proposed first-order SLCM for count responses is a CFA model with a

mean structure (e.g., Browne, 1993; Kline, 2016), the number of observations is

W pW ` 3q{2, where, as previously noted, W is the number of observed (count) variables
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or, equivalently for this model, the number of unique measurement occasions in the overall

sample of N individuals (e.g., Rule 15.5 in Kline, 2016). Additionally, since “the

identification status of a mean structure must be considered separately from that of the

covariance structure” (Kline, 2016), the mean and covariance structures must each be

overidentified in order for the model as a whole to be overidentified. To ensure the mean

structure of the proposed model is overidentified, the total number of unique measurement

occasions W in the sample of N individuals must exceed the number of freely estimated

population growth parameters in β (e.g., Kline, 2016). Likewise, to ensure the covariance

structure is overidentified, W pW ` 1q{2 must exceed the number of freely estimated unique

elements of T and—for conditional response distributions in the 2PEF—the number of

occasion-specific dispersion parameters (W ) or dispersion-specific regression coefficients.

Model Estimation

The estimation of latent variable models (and GLMMs) for count responses can be

challenging because each variable in the systematic component for the mean response has a

nonlinear relationship with the conditional mean due to the use of a non-identity link

function (e.g., Olsen & Schafer, 2001; Vonesh, 2012). As a result, there is generally no

closed form solution to either the marginal log-likelihood or marginal moments, so that

contemporary model estimation approaches aim to either:

1. Approximate the marginal moments of an approximate quasi-likelihood function or

approximate the marginal quasi-likelihood function corresponding to specified first-

and possibly also second-order conditional moments through linearization (via Taylor

series expansion);

2. Maximize the marginal log-likelihood via numerical integration or simulation; or

3. Approximate the posterior distribution for the model parameters given the observed

data via fully Bayesian approaches, where—like the log-likelihood—the posterior

distribution typically does not have a closed form solution.
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These different estimation strategies have different analytic objectives and require different

assumptions. A thorough treatment of these various approaches to model estimation may

be found in, for example, Vonesh (2012), Bolker et al. (2009), and Hoff (2009).

Of these different approaches, the most popular by far for latent variable models for

count responses has been marginal maximum likelihood (MML) estimation implemented

via numerical integration (e.g., Beisemann, 2022; Beisemann et al., 2024; Forthmann &

Doebler, 2021; Forthmann et al., 2020; Hung, 2012; Jansen, 1995; Jansen & van Duijn,

1992; Jansen, 1994; H. Liu, 2007; Magnus & Thissen, 2017; Rabe-Hesketh et al., 2004;

Shiyko et al., 2012; Wang, 2010). Fully parametric MML via numerical integration can

yield consistent and asymptotically unbiased parameter estimates, even when data are

missing at random (MAR; Rubin, 1976) or otherwise unbalanced (e.g., Asparouhov &

Muthén, 2012; De Boeck & Wilson, 2004; Gunes & Chen, 2014; H. Liu, 2007;

Rabe-Hesketh et al., 2004; Vonesh, 2012) or when counts are small or underdispersed (and

therefore manifestly more discrete; e.g., Vonesh, 2012). In addition, MML permits the

computation of likelihood-based information criteria (e.g., the LRT, AIC, and BIC), which

remain the most powerful diagnostic tools available for use with multivariate count data,

greatly facilitating the detection of model-data misfit (e.g., Magnus & Thissen, 2017;

Vonesh, 2012). Lastly, although MML estimation via numerical integration can be

computationally intensive, it need not be prohibitively so. Smith and Blozis (2014), for

example, demonstrate that very few quadrature nodes may be needed, especially when

adaptive Gauss-Hermite (AGH) quadrature is used.

Empirical Application: Modeling Morpheme Counts

Speech-language pathologists often analyze the number of individual BGMs

produced in an oral language sample to identify specific grammatical targets for clinical

intervention (e.g. Bland-Stewart & Fitzgerald, 2001; Paul & Alforde, 1993; Tommerdahl &

Kilpatrick, 2014). To this end, we demonstrate the feasibility and utility of fitting the

proposed first-order multiphase SLCM to germane empirical data by applying the model to
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counts of Brown’s (1973) second grammatical morpheme (BGM2) “in” (e.g., “Juice in

cup”; Table 1) collected in the longitudinal assessment of GAE morphosyntactic

development in young children who are typically developing with respect to expressive

language. We estimate the population average trajectory to describe expected development

with respect to use of the morpheme “in”. We estimate individual trajectories to

demonstrate how comparing individual curves to the population average curve can help

inform inferences about individual development. By examining unexplained variability in

use of the morpheme “in” over the course of early childhood among typically developing

young children, we additionally demonstrate how the unexplained variability with which

this morpheme is used appears to track inversely with chronological age and the frequency

with which it is used, potentially signalling acquisition, which Brown (1973) defined as

occurring when a child knows when and how to use a particular morpheme type.

Data

Expressive language data were taken from oral language sampled from 1,084

typically developing monolinguistic native speakers of GAE aged 1.5 to 5 years, inclusive

(i.e., aged r18, 71s months), drawn from across 23 corpora in the Child Language Data

Exchange System (CHILDES; MacWhinney, 2000). Sample characteristics are provided in

Table 3.

[TABLE 3 ABOUT HERE]

The number of children sampled from each corpus varied notably across corpora.

The percentages of male and female children also varied across corpora but were

comparable in the overall sample (46.86% male, 45.20% female, and 7.93% not reported).

Oral language was sampled through engagement in either a toy play, narrative, group,

book, or meal activity, where the range of activities varied across and sometimes also

within corpora. The number of sampled utterances (exposure) varied across corpora,

children within corpora, and assessments within child. Sampled assessments were required

to contain a minimum of 25 utterances of sufficient quality (i.e., at least 25 “mean length of
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utterance (MLU)-eligible” utterances) to ensure a child had sufficient opportunity to

demonstrate his/her level of morphosyntactic development. No notable relationship was

discerned between a child’s chronological age in months (strongly related to level of

morphosyntactic development in typically developing young children) and the number of

sampled utterances in either the overall sample or within corpora (Figure 3), facilitating

stable model estimation, the selection of an appropriate model (through stable parameter

estimates, accurate standard errors, and the resulting apparent significance of individual

parameter estimates), and the interpretation of estimated growth parameters as intended.

[FIGURE 4 ABOUT HERE]

Analysis

Expressive language data were retrieved from North American English corpora in

CHILDES (see Table 3) at TalkBank.org and extracted using Computerized Language

ANalysis (CLAN) software (MacWhinney, 2000). To inform the selection of an appropriate

conditional response distribution (and thus measurement model), several analyses were

conducted, where candidate distributions included the Poisson and NB2.2 First, the

empirical mean and variance of the number of “in” morphemes produced were computed

within each 3-month age interval and plotted over time (i.e., over the course of early

childhood) to check for empirical under-, equi-, or overdispersion. Second, Poisson and

NB2 models were fit to the cross-sectional data within each 3-month age bracket in R (R

Core Team, 2023) using the glm function in the stats package and glm.nb function in the

MASS package (Venables & Ripley, 2002), respectively, with the number of sampled

utterances (the exposure) included in the linear predictor of the mean response (Equation

14). The relative fit of the Poisson and NB2 models was evaluated by visually comparing

corresponding KLD, Pearson, AIC, and BIC statistics within each 3-month age interval.

Note that likelihood-based information criteria are being used to compare the overall fit of

the Poisson and NB2 models instead of the LRT as the Poisson distribution is not a special

case (i.e., a constrained version) of the NB2 distribution. Rather, it is a limiting
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distribution as the strictly positive NB2 dispersion parameter tends to zero (e.g., Casella &

Berger, 2002).

η̂iwi
“ ylnµiwi

“ ln xiwi
` ξ̂0w, where tiwi

“ tw. (14)

After selecting a measurement model, scatterplots and cubic smoothing splines of

the cross-sectionally estimated model-implied mean log expected BGM2 counts and, if

applicable, dispersion parameters were plotted over time to inform the selection of the

functional form of the population average trajectory and, if applicable, the dispersion

trajectory, respectively. A multiphase SLCM was subsequently fit to the longitudinal data

in Mplus© Version 8.53 using MML estimation with parameter estimates and corresponding

standard errors robust to both nonnormality of the count responses and dependence among

observations by specifying TYPE=COMPLEX and ESTIMATOR=MLR in the

ANALYSIS command in conjunction with use of the CLUSTER option in the VARIABLE

command (Muthén & Muthén, 2017). Robust standard errors were computed using a

sandwich estimator and—by default—the observed information matrix evaluated at the

maximum likelihood estimates of model parameters (i.e., the Hessian matrix; Muthén &

Muthén, 2017). MML estimation was implemented via the Expectation-Maximization

(EM) algorithm (e.g., Bock & Aitkin, 1981) with adaptive Gauss-Hermite quadrature (e.g.,

Cai, 2010; Rabe-Hesketh et al., 2004; Schilling & Bock, 2005; Vonesh, 2012; Wang, 2010)

with the default of 15 integration points per dimension of integration.

Because the number of sampled utterances (the exposure) varied across children and

assessments within child, each measurement model fit to BGM2 counts throughout this

analysis included an offset in the linear predictor of the mean response (the expected

BGM2 count) constructed as the natural log of the number of utterances sampled from a

child at an assessment with regression coefficient fixed at one. An alpha level of 0.05 was

used for all hypothesis tests. All tables and figures were produced in R version 4.3.1 (R

Core Team, 2023). Likewise, all data processing/management and descriptive and
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exploratory analyses were conducted in version 4.3.1 (R Core Team, 2023). Mplus© model

results were harvested and read into R using the MplusAutomation package (Hallquist &

Wiley, 2018) and analyzed using the MASS package (Venables & Ripley, 2002). All

datasets, computer code, and supplementary material are provided on the OSF website for

this project at: https://osf.io/j6rp7/?view_only=c6a9f74add0d476dbeb1e7abd6a76cb2.

Results

Results are reported in the order in which they were obtained, as we build the

complete model from the ground up—i.e., from the observed data (e.g., chronological ages,

BGM2 counts, sampled utterance counts) up to the hypothesized data-generating latent

structure, where the observed and latent variables are connected by measurement

models—and then proceed to make inferences based on the final, full model. First, we

select appropriate measurement and structural models, where the latter includes

trajectories for both the mean (expected count) and dispersion. Second, we demonstrate

identification of the complete model. Third, we discuss individual and population-level

inferences about expressive language development based on the fitted model.

Measurement Model

Recall that measurement invariance is assumed across individuals and occasions.

One key aspect of ensuring measurement invariance over the chronological ages of

assessment is specifying the same measurement model in each 3-month age interval. As

such, when selecting an appropriate measurement model, we must consider both theoretical

(e.g., clinical) justification and empirical fit across the entire span of early childhood (i.e.,

between 1.5 and 5 years of age, inclusive).

First, visual inspection of the empirical mean and variance over time revealed

empirical overdispersion within each 3-month age interval (Figure 5a). Second, the KLD

for the NB2 model was notably lower than that of the Poisson model, suggesting the NB2

model consistently better described the shape of the conditional response distribution (i.e.,

provided a better fit to the data; Figure 5b). Third, the Pearson statistic for the Poisson
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model was notably higher in each 3-month age interval than the corresponding degrees of

freedom (see, e.g., Cameron & Trivedi, 2013), suggesting the presence of substantial

overdispersion under the Poisson model (Figure 5c). In contrast, the Pearson statistic for

the NB2 model and the corresponding degrees of freedom were closely aligned over the

course of early childhood, suggesting the NB2 model capably captured both the mean and

variability in observed BGM2 counts across the chronological ages of assessment (Figure

5c). Note that the degrees of freedom for the Poisson and NB2 models in a given 3-month

age interval differ only by one (for the NB2 dispersion parameter)—a difference that

cannot be readily discerned in Figure 5c given the y-axis scale. As such, to make Figure 5c

easier to visually decipher, only the degrees of freedom (i.e., the “criterion”) for the NB2

model are plotted as the degrees of freedom for the Poisson model are practically

overlapping for a given age bracket.

[FIGURE 5 ABOUT HERE]

Fourth and lastly, Akaike and Bayesian information criteria were compared between

the Poisson and NB2 models in each 3-month age interval. Figure 5d shows the AIC values

obtained under the Poisson and NB2 models in each 3-month age interval. Since almost

identical results were obtained using the BIC as only a single additional parameter is

estimated under the NB2 model, this plot has been omitted. As can be seen in Figure 5d,

the NB2 model yields a lower AIC value (better overall fit) in each 3-month age interval

except for the last one, in which the Poisson and NB2 models appear to provide comparable

overall fit to the data. Note that the differences between these two models do not seem

quite as drastic when using these measures of relative overall fit as compared to the more

targeted investigations reported earlier evaluating the ways in which the Poisson and NB2

distributions meaningfully differ (i.e., in terms of the model-implied variance and shape).

Collectively, these findings suggested the NB2 model provided a better fit to the

BGM2 counts in each 3-month age interval than the Poisson model. The NB2 model also

had the additional appeal of permitting the investigation of concurrent changes in the
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frequency (quantified by the mean) and unexplained variability (quantified by the

dispersion parameter) with which typically developing children produce the morpheme “in”

over the course of early childhood, where collective change in explained use may reflect

correct use and acquisition. As such, BGM2 counts were assumed to conditionally follow a

NB2 distribution within each 3-month interval (Equation 15).

Yiwi
„ NB2 pµiwi

, ϕwq , where tiwi
“ tw (15)

Mean Trajectory

Visual inspection of individual empirical trajectories of the rate at which the

morpheme “in” is produced within an oral language sample and the cubic smoothing spline

fit to the overall sample suggested frequency of use may follow a linear-linear trajectory

over the course of early childhood with the transition from phase 1 to phase 2 occurring

somewhere between 27 and 36 months of age, confirming Brown’s (1973) observations based

on only 3 children (Figure 4). Similarly, subsequent visual inspection of the scatterplots

and cubic smoothing splines of the cross-sectionally estimated NB2 mean log expected

BGM2 production rate over time (tξ̂0wuW “18
w“1 in Equation 14) also suggested a linear-linear

trajectory over the course of early childhood, with a continuous, smooth/gradual transition

from phase to phase at the population level occurring somewhere between 27 and 39

months of age (Figure 1). This apparent linear-linear development process aligns with the

linear-linear process by which GAE grammar is understood to develop in typically

developing young children, with an initial phase of rapid development (phase 1) followed by

a period of slower, sustained development (phase 2), with a continuous, smooth/gradual

transition from phase-to-phase and where the age of transition from phase 1 to 2 may vary

widely. Moreover, the apparent transition age range of r27, 39s months encompasses the

typical age of acquisition of 27 to 30 months posited by Brown (1973) (see Table 1).

Note that a quadratic trajectory was not considered in this case due to challenges

with interpreting quadratic functions, including the unrealistic implication that typically

developing children decline in level of morphosyntactic development (and thus also the rate
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at which the morpheme “in” is produced within an oral language sample) after a certain

chronological age. Other potentially salient functions for the mean trajectory include

negative exponential (e.g., Sterba, 2014), Jenss–Bayley (e.g., J. Liu, 2022), and Gompertz

functions. However, one of the limitations of these alternative functions is the lack of freely

estimated changepoints. As previously discussed, quantifying the population average age of

transition from an initial phase of rapid development to a subsequent period of more

gradual, sustained development and mastery in typically developing children may help

inform when children ought to be assessed for expressive language disorders, such as late

language emergence; and comparing a child’s individual trajectory and changepoint to the

population average trajectory and changepoint among typically developing children may

help identify children who fall below age expectations and warrant further clinical

evaluation, intervention, and monitoring.

A linear-linear LGM was therefore considered for the log expected counts in which

all growth parameters were allowed to vary across individuals due to the high degree of

variability in expressive language development clinically expected among typically

developing children. The model for individual i to be fit to the data is comprised of linear

predictor

ηiwi
“ lnµiwi

“ ln xiwi
` f ptiwi

,βiq ` εiwi
(16)

where

εiwi

iid
„ N p0, σ2

wq and tiwi
“ tw,

with linear-linear growth function

f ptw,βiq “

$

’

’

&

’

’

%

ψ1i ` ψ2itw, tw ď γi

ψ3i ` ψ4itw, tw ą γi

. (17)

It is presumed, at least initially, that an individual’s growth parameters are the sum of
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fixed and random effects

βi “ β ` bi “

¨

˚

˝

ψ

γ

˛

‹

‚

`

¨

˚

˝

ui

gi

˛

‹

‚

, where bi “

¨

˚

˝

ui

gi

˛

‹

‚

iid
„ N

¨

˚

˝

»

—

–

0

0

fi

ffi

fl

,

»

—

–

Tuu Tug

Tgu Tgg

fi

ffi

fl

˛

‹

‚

. (18)

The linear-linear trajectory in Equation 17 contains a total of five freely estimated

individual growth parameters: four that enter the function linearly, ψ1i, ψ2i, ψ3i, and ψ4i,

and one, the changepoint γi, that enters the function in a nonlinear fashion.

Exponentiated phase 1 intercept exppψ1iq captures the rate at which child i is

expected to produce the morpheme “in” within an oral language sample at age 18 months.

Shifted changepoint 18 ` γi quantifies the chronological age (in months) at which child i is

expected to transition developmentally from phase 1 (rapid development) to phase 2

(slower, sustained development). Exponentiated phase 2 intercept exppψ3iq captures the

rate at which child i is expected to produce the morpheme “in” within an oral language

sample at anticipated transition age 18 ` γi months. Lastly, the rate at which child i is

expected to produce the morpheme “in” within an oral language sample increases

multiplicatively by an order of exppψ2iq with every one month increase in chronological age

between 18 and 18 ` γi months, inclusive, and by an order of exppψ4iq with every one

month increase in chronological age after age 18 ` γi months.

The population growth parameters β “ pψ1, ψ2, ψ3, ψ4, γqJ “ pψ, γqJ are interpreted

similarly to the corresponding individual growth parameters and describe the population

average trajectory for typically developing monolinguistic native speakers of GAE aged 1.5

to 5 years, inclusive. For example, exponentiated phase 1 intercept exppψ1q captures the

rate at which typically developing children are expected to produce the morpheme “in”

within an oral language sample at age 18 months, on average, while shifted changepoint

18 ` γ quantifies the chronological age (in months) at which typically developing children

are expected to transition developmentally from phase 1 to phase 2 on average. Random

effects bi are assumed to jointly follow a multivariate normal distribution with zero mean
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vector and unstructured, symmetric covariance matrix, T (Equation 18).

A continuous though abrupt transition from phase 1 to phase 2 was created by

imposing zero-order continuity (Cudeck & Klebe, 2002) at the changepoint, although

examination of Figures 1 and 4 suggested a smooth/gradual transition from phase to

phase. Zero-order continuity is the highest order of continuity that can be imposed at the

knot when a first-order polynomial is used to describe growth in each adjacent phase. This

restriction permits the elimination of one linear growth parameter from the set of freely

estimated model parameters for child i. Phase 2 intercept ψ3i was selected for elimination

in this case as its interpretation is less clinically useful than that of the other linear growth

parameters.

ψ1i ` ψ2iγi “ ψ3i ` ψ4iγi

ψ1i ` ψ2iγi ´ ψ4iγi “ ψ3i

The resulting trajectory is provided in Equation 19. Note that ψ3i can readily be computed

using estimates of the other individual growth parameters.

f ptw,βiq “

$

’

’

&

’

’

%

ψ1i ` ψ2itw, tw ď γi

ψ1i ` ψ2iγi ` ψ4i ptw ´ γiq , tw ą γi

(19)

The linear-linear trajectory for child i now contains only four freely estimated

individual growth parameters: βi “ pψ1i, ψ2i, ψ4i, γiq
J. The random effects covariance

matrix T is likewise reduced to

T “

¨

˚

˚

˚

˚

˚

˚

˚

˝

τ11

τ21 τ22

τ31 τ32 τ33

τ41 τ42 τ43 τ44

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

Var pu1iq

Cov pu2i, u1iq Var pu2iq

Cov pu3i, u1iq Cov pu3i, u2iq Var pu3iq

Cov pgi, u1iq Cov pgi, u2iq Cov pgi, u3iq Var pgiq

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (20)

The nonlinear growth model in Equation 19 can be reformulated as an SLCM by

taking by taking a first-order Taylor series expansion around the population growth
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parameters and setting the population average changepoint to zero (γ “ 0):

f pt,βiq “ Λα` Λbi, (21)

where the wth row of factor loading matrix, Λ, is

rΛsw¨
“

„

Bf ptw,βq

Bβ

ȷ

“

„

Bfptw,βq

Bψ
,

Bfptw,βq

Bγ

ȷ

“

„

Bfptw,βq

Bψ1
,

Bfptw,βq

Bψ2
,

Bfptw,βq

Bψ4
,

Bfptw,βq

Bγ

ȷ

“

„

1, min ptw, γq , max ptw ´ γ, 0q , pψ2 ´ ψ4q

ˆ

max ptw ´ γ, 0q

tw ´ γ

˙ȷ

(22)

Here, the minimum and maximum functions (Seber & Wild, 2003)
`

minpu, vq “ 1
2ru ` v ´

a

pu ´ vq2s and maxpu, vq “ 1
2ru ` v `

a

pv ´ uq2s, where u and v

are real numbers
˘

are utilized and directly coded into the factor loading matrix.

Dispersion Trajectory

Having specified a structural model (in this case, an SLCM) describing change in

the log expected rate of “in” morpheme production over the course of early childhood, we

now turn our attention to the time-varying NB2 dispersion parameters. Recall that the

NB2 dispersion parameter in a given 3-month age interval quantifies the level of variability

in BGM2 counts unexplained by the mean (and predictors thereof) across the individuals

assessed within that age window. The dispersion parameters are not individual-level

parameters but population-level parameters that may vary over time and perhaps even

follow a recognizable functional form across chronological age. As such, the trajectory

specified for the dispersion parameters does not have parameters that vary across or within

individuals (and thus no random effects and variance components). Instead, there is only

the population-level trajectory to be specified by imposing constraints on the time-varying

dispersion parameters.

Recall also that visual inspection of the scatterplots and cubic smoothing splines of
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the cross-sectionally estimated NB2 dispersion parameter (ϕ̂w) over time suggested the

dispersion parameters follow a linear-linear trajectory with a continuous, smooth transition

from phase to phase at the population level mirrors (from below) the population average

trajectory in expected BGM2 counts over the course of early childhood (Figure 1).

Initially, a linear function was fit to the natural log of the NB2 dispersion parameters

(Equation 12). This function is highly parsimonious while also capturing many key features

of the change in dispersion over time—the steep decline prior to 40 months of age, the

leveling off thereafter, and the smooth transition from the former phase to the latter.

However, fitting the regression model in Equation 12 to the time-varying dispersion

parameters yielded a decline prior to age 40 months that was too gradual and, critically, an

asymptote of zero, which is not compatible with the parameter space of the strictly

positive NB2 dispersion parameter. Thus, alternatives were considered. An exponential

decay function with a nonzero asymptote (Equation 13) was ultimately selected due to its

parsimony (only 3 parameters), interpretability (as previously discussed), and capability of

capturing all salient features of the change in dispersion over time: a precipitous decline

prior to 40 months of age, the leveling off thereafter to a nonzero asymptote, and the

smooth transition from the former phase to the latter.

Model Identification

The mean structure of the resulting first-order linear-linear SLCM consists of the

four freely estimated growth factor means (β “ pψ1, ψ2, ψ4, γqJ in Equation 18), while the

covariance structure contains a total of 13 free parameters—10 growth factor variances and

covariances (unique elements of T in Equation 20) and 3 parameters for the exponential

decay trajectory with nonzero asymptote fit to the time-varying NB2 dispersion parameters

(ω “ pω1, ω2, ω3qJ in Equation 13). With W “ 18 unique measurement occasions in the

overall sample of N “ 1, 084 children, the mean structure is overidentified (W “ 18 ą 4)

and the covariance structure is overidentified (W pW ` 1q{2 “ 18p19q{2 “ 171 ą 13). As

such, the model as a whole is overidentified, permitting us to obtain a unique set of
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parameter estimates and to meaningfully evaluate model fit (e.g., Kline, 2016).

The final overall model was fit to the data with the trajectory for the NB2

dispersion parameters in Equation 13 fit by imposing model constraints on the freely

estimated time-varying dispersion parameters. Note that using model constraints to fit the

exponential decay trajectory to the time-varying dispersion parameters changes their

estimated values while also notably reducing the number of freely estimated parameters in

the covariance structure. Note also that although the fitted first-order linear-linear NB2

SLCM is overidentified in the overall sample, for this and other LGMs, empirical

identification may be compromised depending on the number of assessments and ages of

assessment per child. As in most real-world observational studies conducted using young

children, there is a fair amount of missing data in the overall sample. In this case, much of

this “missingness” is an artifact of (a) the misalignment among corpora in planned ages of

assessment and (b) children within a corpus sometimes being assessed at slightly different

ages than were planned.1 Population parameter estimates, standard errors, and p-values

are provided in Table 4.

[TABLE 4 ABOUT HERE]

The population average trajectory for the log expected rate of “in” morpheme production

and the exponential decay trajectory fit to the dispersion parameters are provided in

Figure 6.

[FIGURE 6 ABOUT HERE]

Model-Implied Development at the Population Level

Looking at the left-most panel of Figure 6, one can see the frequency with which

typically developing monolinguistic native speakers of GAE produce the morpheme “in”

increases rapidly between 1.5 and 2.5 years of age but then levels off. More specifically, on

average, typically developing children are expected to produce approximately 3 “in”

morphemes within an oral language sample of 1,000 utterances at age 18 months (since
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exppψ̂1q “ expp´5.799q “ 0.003), transition from rapid development (phase 1) to slower,

sustained development (phase 2) at age 18 ` γ̂ “ 18 ` 9.958 “ 27.958 « 28 months, and

produce about 33 “in” morphemes within an oral language sample of 1,000 utterances at

the expected age of transition from phase 1 to phase 2 of 28 months (since

exppψ̂3q “ expp´3.402q “ 0.033) (see Table 4). On average, for every additional one month

increase in chronological age between ages 18 and 28 months, inclusive (i.e., during

developmental phase 1), the rate at which “in” is produced in an oral language sample is

expected to increase multiplicatively by an order of exppψ̂2q “ expp0.246q “ 1.279. In

contrast, the rate at which “in” is produced is not expected to change with increasing

chronological after age 28 months (i.e., in developmental phase 2, since ψ̂4 “ 0.006 with

p “ 0.469).

With that said, the log expected rate at which the morpheme “in” is produced

within an oral language sample does not significantly vary across children at age 18 months

(τ̂11 “ 0.983, p “ 0.211). Likewise, the chronological age at which children transition from

phase 1 to phase 2 does not significantly vary (τ̂44 “ 0.558, p “ 0.730), and the rate of

change in the log frequency with which the morpheme “in” is produced does not

significantly vary across children in either phase 1 (τ̂22 “ 0.004, p “ 0.470) or phase 2

(τ̂33 “ 0.000, p “ 0.441). Moreover, none of the four freely estimated growth factors (phase

1 intercept and slope, phase 2 slope, and changepoint) significantly covary (i.e., all

off-diagonal elements of T are essentially zero).

Simultaneously, looking at the right-most panel of Figure 6, unexplained variability

in use of the morpheme “in” drops dramatically between 1.5 and 2.5 years of age and then

remains low. More specifically, the estimated coefficients of the exponential decay function

fit to the time-varying NB2 dispersion parameters imply the dispersion parameter is

expected to be ω̂1 ` ω̂3 “ 3.541 ` 0.205 “ 3.746 at age 18 months (tw “ 0), decrease by

100p1 ´ ω̂2q% “ 100p1 ´ 0.837q% “ 16.300% with every 1 month increase in chronological

age, and approach nonzero asymptote ω̂3 “ 0.204 as children reach the end of early
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childhood at 5 to 6 years of age.

Collectively, these population level trajectories suggest acquisition of the morpheme

“in” might be evidenced, among typically developing monolinguistic native speakers of

GAE aged 1.5 to 5 years, inclusive, by an increase in explained use, which may prove to be

a facile manifestation of correct use. Moreover, the statistical insignificance of the growth

factor variances and covariances suggests the process by which children learn to use the

morpheme “in” may be highly consistent among typically developing young children. This

consistency among typically developing children may facilitate the identification of

atypically developing children when comparing individual fitted curves to the population

average curve quantifying age expectations in typical expressive language development.

Model-Implied Individual Development

Example individual fitted trajectories are provided in Figure 7. Although generally

the functional form of the fitted individual trajectories need not be the same as that of the

population average trajectory (S. A. Blozis & Harring, 2015), in this particular case both

are linear-linear (Figures 6 and 7). An individual’s fitted trajectory describes that

individual’s model-implied production of the morpheme “in” over the course of early

childhood. These individual fitted trajectories can be compared to the population average

trajectory to help support clinical inferences about individual development and to

potentially help identify children who may benefit from interventions targeted at use of the

morpheme “in” in GAE. For example, failure to observe any use of the morpheme “in” in

an oral language sample of 100 utterances after age 28 months should motivate a closer

examination of the child for high suspicion of language delay.

[FIGURE 7 ABOUT HERE]

For example, the model-implied trajectories for children 8 and 14 in Figure 7 imply

these children are developmentally on track (i.e., developing according to age expectations

throughout early childhood). Alternatively, the model-implied trajectories for children 12

and 436 in Figure 7 imply these children are developing slightly above age expectations
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throughout early childhood—although not to a degree that is clinically meaningful as all

sampled children were considered to be typically developing with respect to expressive

language at the time(s) of assessment. This above average production of the morpheme

“in” appears to be largely driven by these two children entering early childhood with a

higher-than-average production rate despite subsequent slower than average increases in

production during the initial phase of rapid development (phase 1). Indeed, of the 453

(41.79%) children in the overall sample whose fitted trajectories imply they are producing

“in” more frequently than average when they enter early childhood, the vast majority

(93.38%) subsequently experience slower than average growth in phase 1 (though generally

not slow enough to fall to or below age expectations). In contrast, the model-implied

trajectories for children 4 and 437 in Figure 7 imply these children are developing slightly

below age expectations throughout early childhood (although, again, not to a degree that

is clinically meaningful as all sampled children were typically developing). This below

average production of the morpheme “in” appears to be largely driven by these two

children entering early childhood producing fewer “in” morphemes than average despite

subsequent faster than average increases in production during phase 1. Indeed, of the 630

(58.12%) children in the overall sample whose fitted trajectories imply they are producing

fewer “in” morphemes than average as they enter early childhood, the vast majority

(99.21%) experience faster than average growth in phase 1, though generally not fast

enough to catch up to age expectations.

Collectively, these findings would seem to suggest that for typically developing

children, the frequency with which a child produces “in” within an oral language sample at

age 18 months may predict the frequency with which this morpheme is used for the

duration of early childhood (and possibly beyond). Combined with the potential for issues

with the production of “in” to foreshadow broader issues with a child’s overall level of

expressive language development as well as issues using more strictly grammatical (as

opposed to lexical) morphemes that are typically acquired later in childhood (e.g., Clark,
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1973; Morgenstern & Sekali, 2009), use of the morpheme “in” in early childhood may be a

fairly efficient, accessible, and early proxy for the child’s overall level of expressive language

development. (In clinical science, proxies are quite useful as they are easier to measure but

predict clinical outcomes of interest.) This may permit clinicians to more effectively target

early interventions for children at risk for language delay—a significant early warning

symptom of a wide variety of developmental disorders (e.g., Roberts et al., 2023).

Discussion

In the social and behavioral sciences, latent growth modeling, or one of its many

variants, for continuous repeated measures data remains a predominant modern approach

to better understand developmental processes thought to undergird many human

behaviors, traits and attributes. Research studies employing LGM, often share common

research objectives. Particularly, to gain an understanding of typical behavior of the

underlying phenomena as represented by the parameters of a model, to assess the degree to

which these parameters and hence the phenomena vary across individuals, and to

investigate the extent that this variation can be explained by individual characteristics.

Despite its popularity coupled with an abundance of available categorical data,

applications of latent growth modeling utilizing discrete data were disappointingly rare.

The primary purposes of this article were to introduce a first-order multiphase

SLCM for count response data and to apply the model to grammatical morpheme counts, a

clinical measure of expressive language development. The growth parameters of the

model—including changepoints—were unknown and allowed to vary across individuals, and

exposure was permitted to vary across both individuals and time/assessments. Although

typical acquisition of the morpheme “in” appeared to follow a linear-linear trajectory in the

empirical example, the proposed model provides much more modeling flexibility, permitting

non-monotonic change over the entire measurement period that may occur in more than

two phases, where change within a given phase may be non-polynomial (Harring et al.,

2021). We also demonstrated how to incorporate a trajectory describing concurrent change
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in time-varying dispersion (unexplained variability in morpheme counts) over the course of

early childhood to provide additional insights into acquisition. We presented the

motivating clinical context for the proposed model, the empirical data, analytic challenges

and considerations, and analysis results. We demonstrated how to estimate the proposed

model using existing methods and software, highlighting particular decision points as we

stepped through the analysis.

Other methodological articles have also recognized the challenges with analyzing

multivariate count data and have sought to help bridge the gaps between theoretical model

development and their applications to real-world data. For example, in a recent article,

Seddig (2024) showed how to fit first-order latent growth models to longitudinal count

response data and over-dispersed zero-inflated response data using Mplus©. Seddig (2024)

focused attention on model specification using the software, parameter interpretation and

model selection using global fit statistics and model comparison procedures.

We extended the basic models presented by Seddig (2024) in numerous ways. For

example, Seddig (2024) limited discussion to polynomial growth functions with examples

restricted to linear and quadratic trajectories with growth parameters interpreted with

respect to post-baseline measurement occasion rather than time (e.g., age) itself. Varying

exposure was not discussed nor was the possibility of specifying a trajectory for

time-varying/time-specific dispersion parameters. We note that the growth trajectory

presented for the inflation factor in zero-inflated count models is not analogous to a

dispersion parameter trajectory because the dispersion parameter impacts the variance but

not the mean of the count distribution and is defined across individuals at a given

measurement occasion so that the trajectory is defined only at the population level (as

constraints on the time-varying dispersion parameters).

We extend the growth models to include nonlinear functions such as the bilinear

model. The linear-linear function discussed in this article need not be monotonic nor

defined by a polynomial within a given phase, with freely estimated nonlinear growth
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parameters (including changepoints) that may vary across individuals, an exposure variable

in the linear predictor of the mean response, and factor loadings constructed as functions of

time and freely estimated growth parameters (as per Harring et al., 2021), permitting

unequally spaced and potentially individual measurement occasions and yielding growth

parameters that are interpreted with respect to time itself rather than measurement

occasion. As previously noted, few examples exist in the literature of a nonlinear growth

function of linear and nonlinear random effects connected to observed counts via a

nonlinear link function due to the computational difficulties that may arise in model

estimation. In this paper, we offer one such example by fitting the proposed first-order

SLCM to multivariate morpheme counts.

Of course, even the first-order LGM model we presented can be embellished and

advanced in several ways including (1) incorporating both observed and latent

time-invariant covariates to explain differences in characteristics of growth (i.e., the

parameters defining the linear-linear growth model), (2) adding individual attributes to

account for systematic associations inherent in the modeling of growth and/or the

dispersion parameter, and (3) relating growth characteristics to some distal outcome

measure that might be predictive of grammatical morpheme development. One interesting

extension would permit a nonlinear mixed effects model (Davidian & Giltinan, 2003;

Vonesh, 2012) to be fitted as the growth modeling framework. This type of GLMM could

be fitted within the functionality of SAS NLMIXED or in modules in R (see, e.g., Grimm

& Stegmann, 2019, for a fairly comprehensive listing).

Multiple measures (or items) are sometimes present at each measurement occasion

because they are believed to be indicators of the same latent construct (i.e., counts of

multiple morphemes thought to measure expressive language). In this scenario the

researcher is likely to be interested in the change of the latent construct underlying those

measures rather than the measures themselves. In such cases, one may analyze

second-order latent growth models (Hancock et al., 2001; Sayer & Cumsille, 2001). For
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example, Figure 8 shows a path diagram of a second-order linear-linear LGM, which might

be more feasibly estimated in two-tier formation using a Schmid-Leiman transformation

(Figure 9; e.g., Cai, 2010; Rijmen, 2010; Schmid & Leiman, 1957).

[FIGURES 8 AND 9 ABOUT HERE]

The central differences between the second-order models depicted in Figures 8 and 9

and the first-order model in Figure 3 is that now inferences can be made about a child’s

level of GAE morphosyntactic development overall rather than use of a specific morpheme.

While the latter may be useful for identifying specific grammatical targets for clinical

intervention, the former may be more helpful for identifying children who are developing

atypically with respect to expressive language to help expedite treatment delivery for

improved long-term outcomes. For example, to this end, Yang et al. (2022) fit linear-linear

trajectories to score data from various measures of lexical diversity from typically

developing (TD) and developmentally language delayed (DLD) children aged 2 to 6 years.

Lastly, fitting a second-order model allows us to parse regression error in the latent

construct arising from misspecification of the population growth curve or other aspects of

the structural model (δi in Equation 4) from error in the linear predictor (ϵi in Equation 3)

arising from the omission of and/or measurement error in predictors of the mean response.

As such, variability in these two different levels/sources of error can be separated and freely

estimated, which may be useful for substantive reasons but also permits interpretation of

the dispersion parameters as quantifying specifically the latter source of error rather than

any/all sources of regression error.

Over realistic spans of time, many human behaviors, traits, and attributes develop

or change nonlinearly. At the heart of the SLCM is a nonlinear growth function whose

parameters can be tied to, and often derived to characterize, interesting features of the

development under investigation. We demonstrated how a theoretically-driven linear-linear

piecewise growth model could effectively summarize GAE morphosyntactic development

captured by multivariate count data. An in-depth analysis was conducted with an
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emphasis on parameter interpretation, model-assessment and refinement. Our primary

purpose was not to make substantive claims regarding the findings on how the grammatical

morpheme “in” changed over time, but rather, to suggest a road map to help researchers

successfully navigate a fairly involved set of analytic activities with several junctures

requiring thoughtful decision-making. Future directions include employing the proposed

first-order SLCM to examine additional BGMs that are more closely associated with

expressive language delay and chronic language disorder in early childhood, such as those

marking tense (e.g., past tense markers), agreement (e.g., third person singular marker),

and aspect (e.g., Leonard et al., 2004; Rice, 2003). Additionally, the second-order extension

of the proposed model (discussed earlier) could be fit to counts of all 14 BGMs in the

assessment of a child’s overall level of expressive language development to yield additional

insights beyond what Brown (1973) was able to discover with only 3 children, including

further quantitative evaluation of the extent to which a child’s use of “in” may be a proxy

for overall level of expressive language development in early childhood.
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Notes

1. Refer to the Supplemental Material available on the companion OSF website at:

https://osf.io/j6rp7/?view_only=c6a9f74add0d476dbeb1e7abd6a76cb2.

2. Inflated and hurdle count models (such as Zero-Inflated Poisson and Negative Binomial Hurdle models)

were not considered in this analysis as they suppose that at a certain level of morphosyntactic development

a child will produce at least one “in” morpheme regardless of how many utterances are sampled. This

assumption is not particularly tenable when one considers the impact of oral language sampling context on

how many of which morphemes are produced and that the total number of morphemes a child can produce

within a fixed number of utterances must be shared across morpheme types. In contrast, in this study, zero

counts are considered to arise when a child’s level of morphosyntactic development lies below some latent

threshold and/or an insufficient number of utterances has been sampled, where both may depend on the

language sampling context. Dispersion parameters, on the other hand, were of clinical (substantive)

interest as they permit one to investigate concurrent changes in the frequency and unexplained variability

with which typically developing children produce the morpheme “in” over the course of early childhood,

where collective change in explained use may reflect correct use and acquisition.

3. The proposed first-order multiphase SLCM for count response data involves a nonlinear growth function

comprised of linear and nonlinear random effects connected to observed counts via a nonlinear link

function, with an exposure that varies across both individuals and measurement occasions in the linear

predictor of the mean response, and factor loadings constructed as nonlinear functions of population

growth parameters and chronological age at time of assessment. Mplus© Version 8.5 was used to fit this

model to the empirical data due to its ability to handle all of these model features simultaneously.
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Table 1

Brown’s (1973) Grammatical Morphemes (BGMs) in Order of Acquisition

Morpheme
Type
(Item)

Morpheme Example Typical Age
of Acquisition
(in Months)

Brown’s (1973)
Developmental
Stage

1 Present progressive Baby crying. 27–30 II
2 In Juice in cup. 27–30 II
3 On Book on table. 27–30 II
4 Regular plural Daddy have tools. 27–30 II
5 Irregular past Dog ate bone. 31–34 III
6 Possessive Jake’s apple. 31–34 III
7 Uncontractible copula This is mine. 31–34 III
8 Articles A red apple. 35–40 IV
9 Regular past He jumped high. 35–40 IV
10 Regular third person Susie drinks. 35–40 IV
11 Irregular third person Kitty has a toy. 41–46 V
12 Uncontractible auxiliary She was running. 41–46 V
13 Contractible copula It’s cold outside. 41–46 V
14 Contractible auxiliary Mommy’s crying. 41–46 V

Note: Adapted from Table 38 in Brown (1973) as well as Marchman and Bates (1994), Miller and
Chapman (1981), and Zukowski and Bernstein Ratner (2024). For Stages II–V, Brown (1973) defined
the criterion for acquisition of a morpheme type as when that morpheme type is used in at least 90% of
“obligatory contexts” in “three successive samples” of oral language. An in-depth discussion of obligatory
contexts may be found in Brown (1973), particularly pages 254–255.
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Figure 2

Rate at Which Morpheme “In” Is Produced Within An Oral Language Sample by
Chronological Age and Corpus
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Note: Brown’s (1973) grammatical morphemes are summarized in Table 1. Sample characteristics are
provided in Table 3.
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Figure 3

Path Diagram for a First-Order Linear-Linear Latent Growth Model Fit to Repeated
Measurements of a Single Count Response Variable That Conditionally Follows a
Distribution in the Two-Parameter Exponential Family at Each Measurement Occasion
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Note: A solid, single-line, black arrow indicates a structural relationship with an identity link func-
tion. A solid, single-line, red arrow indicates a structural relationship with a non-identity (e.g., natural log)
link function. A dashed black arrow from A to B indicates A gives rise to B directly and/or indirectly. A
solid, double-line, black arrow from A to B indicates A generates B.
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Figure 7

Example Individual Fitted Trajectories
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Figure 8

Path Diagram for Three-Tier Formation of a Second-Order Linear-Linear Latent Growth
Model Fit to Repeated Measurements of Multiple Count Response Variables That Each
Conditionally Follow a 2PEF Distribution at Each Measurement Occasion
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Note: Much of the notation used in Figure 8 is the same as the notation used in Figure 3. A solid, single-
line, red arrow indicates a structural relationship with a non-identity (e.g., natural log) link function. A dashed
black arrow from A to B indicates A gives rise to B directly and/or indirectly. A solid, double-line, black arrow
from A to B indicates A generates B.
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Figure 9

Path Diagram for Two-Tier Formation of a Second-Order Linear-Linear Latent Growth
Model Fit to Repeated Measurements of Multiple Count Response Variables That Each
Conditionally Follow a 2PEF Distribution at Each Measurement Occasion
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Note: Much of the notation used in Figure 9 is the same as the notation used in Figure 3. A solid, single-
line, red arrow indicates a structural relationship with a non-identity (e.g., natural log) link function. A dashed
black arrow from A to B indicates A gives rise to B directly and/or indirectly. A solid, double-line, black arrow
from A to B indicates A generates B.
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