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Abstract
We study the relation between the coregularity, the index of log Calabi–Yau pairs and the complements of Fano
varieties. We show that the index of a log Calabi–Yau pair (𝑋, 𝐵) of coregularity 1 is at most 120𝜆2, where 𝜆 is
the Weil index of 𝐾𝑋 + 𝐵. This extends a recent result due to Filipazzi, Mauri and Moraga. We prove that a Fano
variety of absolute coregularity 0 admits either a 1-complement or a 2-complement. In the case of Fano varieties
of absolute coregularity 1, we show that they admit an N-complement with N at most 6. Applying the previous
results, we prove that a klt singularity of absolute coregularity 0 admits either a 1-complement or 2-complement.
Furthermore, a klt singularity of absolute coregularity 1 admits an N-complement with N at most 6. This extends
the classic classification of 𝐴, 𝐷, 𝐸-type klt surface singularities to arbitrary dimensions. Similar results are proved
in the case of coregularity 2. In the course of the proof, we prove a novel canonical bundle formula for pairs with
bounded relative coregularity. In the case of coregularity at least 3, we establish analogous statements under the
assumption of the index conjecture and the boundedness of B-representations.
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1. Introduction

Fano varieties and Calabi–Yau varieties are two of the three building blocks of algebraic varieties. In
the former case, the canonical divisor is antiample, while in the latter case it is numerically trivial.
In this article, we study the coregularity of Fano and Calabi–Yau varieties. This invariant measures
the dimension of the dual complexes corresponding to log Calabi–Yau structures on the variety. We
show that if the coregularity is at most two, we can control the index of a Calabi–Yau variety and the
complements of a Fano variety. In [35], the third named author relates various problems about Fano
varieties with the concept of coregularity.

1.1. Log Calabi–Yau pairs

A log Calabi–Yau pair (𝑋, 𝐵) is a projective log canonical pair for which 𝐾𝑋 +𝐵 ≡ 0. By the abundance
conjecture, which is known in this special case [21], it is also known that 𝐾𝑋 + 𝐵 ∼Q 0. The index of
(𝑋, 𝐵) is the smallest positive integer I for which 𝐼 (𝐾𝑋 + 𝐵) ∼ 0. It is conjectured that the index I of
(𝑋, 𝐵) admits an upper bound depending on the dimension of X and the set of coefficients of B. This is
known as the index conjecture. For instance, if (𝑋, 𝐵) is two-dimensional and the coefficients of B are
standard (i.e., of the form 1 − 1

𝑚 for some 𝑚 ∈ Z>0), then 𝐼 (𝐾𝑋 + 𝐵) ∼ 0 for some 𝐼 ≤ 66 (see, e.g.,
[26, Theorem 4.11]). The bound 66 is optimal, and it can be obtained by considering nonsymplectic
finite actions on K3 surfaces [34]. In [9], the authors exhibit a sequence of klt Calabi–Yau varieties
𝑋𝑑 with index 𝑖𝑑 that grows doubly exponentially with the dimension d. The coregularity of a log
Calabi–Yau pair (𝑋, 𝐵) is defined to be dim 𝑋 − dimD(𝑋, 𝐵) − 1. Here, D(𝑋, 𝐵) is the dual complex
of (𝑋, 𝐵). This is a pseudo-manifold that encodes the combinatorial data of log canonical centers of a
dlt modification of (𝑋, 𝐵). The dimension dimD(𝑋, 𝐵) is independent of the chosen dlt modification,
so it is an intrinsic invariant of (𝑋, 𝐵). In the following subsection, we present theorems regarding the
index of log Calabi–Yau pairs of coregularity 0 and 1.

1.2. Index and coregularity of log Calabi–Yau pairs

First, we study log Calabi–Yau pairs of coregularity 0 and 1. We use the language of generalized
pairs as in [3, 11]. This gives a larger scope for the theorems and also facilitates inductive argu-
ments. In the case of generalized log Calabi–Yau pairs of coregularity 0, the following theorem is
proved in [13].
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Theorem 1. Let (𝑋, 𝐵,M) be a projective generalized log Calabi–Yau pair1 of coregularity 0, and let
be 𝜆 a positive integer. Assume that 𝜆(𝐾𝑋 + 𝐵 +M𝑋 ) is Weil. Then, we have that 2𝜆(𝐾𝑋 + 𝐵 +M𝑋 ) ∼ 0.

Note that in order to have a linear equivalence 𝐷 ∼ 0, the divisor D must be Weil. Hence, multiplying
𝐾𝑋 + 𝐵 + M𝑋 by 𝜆 is indeed needed to compute its index. In [13, Example 7.4], the authors give an
example for which (𝑋, 𝐵) is log Calabi–Yau of coregularity 0, B is a Weil divisor, 2(𝐾𝑋 + 𝐵) ∼ 0,
and 𝐾𝑋 + 𝐵 is not linearly equivalent to 0. Hence, the factor 2𝜆 in the previous theorem is optimal.
Indeed, the factor 2 is often related to the orientability of the pseudo-manifold D(𝑋, 𝐵) (see [13, §5]).
In [13], the authors use topological methods and birational geometry to prove the previous theorem. In
this article, we recover this statement using birational geometry and the theory of complements.

Our next theorem deals with the index of log Calabi–Yau pairs of coregularity 1. This is a general-
ization of the previous statement to the case of coregularity 1.

Theorem 2. Let (𝑋, 𝐵,M) be a projective generalized log Calabi–Yau pair of coregularity 1 and 𝜆 be
a positive integer. Assume the two following conditions hold:

◦ the generalized pair (𝑋, 𝐵,M) has Weil index 𝜆; and
◦ the variety X is rationally connected or M = 0.

Then, we have that 𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 0 for 𝐼 = 𝑚𝜆 with 𝑚 ≤ 120𝜆.

We emphasize that the previous theorem does not hold if X is not rationally connected and M is
nontrivial. For instance, we can let X be an elliptic curve and M be an I-torsion point in Pic0 (𝑋). Then,
we have that 𝐼 (𝐾𝑋 + M𝑋 ) ∼ 𝐼M𝑋 ∼ 0 is minimal and (𝑋,M) is a generalized log Calabi–Yau pair
of coregularity 1. Note that this is not an issue if X is rationally connected. In this case, the torsion
of components of the b-nef divisor is controlled by their Weil index. Theorem 1 and Theorem 2 are
still valid if the coefficients of B belong to a set of rational numbers satisfying the descending chain
condition (DCC) condition. This follows from the global ascending chain condition for generalized log
Calabi–Yau pairs with bounded coregularity (see [10, Theorem 2]). Finally, in the case of coregularity
1, we obtain the following statement.

Theorem 3. Let (𝑋, 𝐵,M) be a projective generalized log Calabi–Yau pair of coregularity 1. Assume
that the following conditions hold:

◦ the coefficients of B are standard;
◦ the divisor 2M is b-Cartier; and
◦ the variety X is rationally connected or M = 0.

Then, we have that 𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 0 for some 𝐼 ∈ {1, 2, 3, 4, 6}.

1.3. Fano varieties

Given a klt Fano variety X, the anticanonical divisor −𝐾𝑋 is ample. Hence, the linear system | − 𝑚𝐾𝑋 |

is basepoint free for m sufficiently large and divisible. In particular, we can find an effective divisor
𝐵 ∈ | − 𝑚𝐾𝑋 | such that the pair (𝑋, 𝐵/𝑚) is klt (Kawamata log terminal) and log Calabi–Yau. This
means that every Fano variety admits a log Calabi–Yau structure. In [3], Birkar showed that an n-
dimensional Fano variety X admits an 𝑁 (𝑛)-complement, that is, a boundary B for which (𝑋, 𝐵) is log
canonical and 𝑁 (𝑛) (𝐾𝑋 + 𝐵) ∼ 0. This can be thought of as an effective log Calabi–Yau structure on
X. In [15], Filipazzi, Moraga and Xu proved that a 3-fold that admits a Q-complement2 also admits a
𝑁3-complement.

Let X be an n-dimensional Fano variety. We can define the absolute coregularity to be:

ˆcoreg(𝑋) � min{coreg(𝑋, 𝐵) | (𝑋, 𝐵) is log Calabi–Yau}.

1A generalized log Calabi–Yau pair is a generalized lc pair (𝑋, 𝐵, M) with 𝐾𝑋 + 𝐵 + M𝑋 ∼Q 0.
2A Q-complement is a boundary B for which (𝑋, 𝐵) is lc and 𝐾𝑋 + 𝐵 ∼Q 0.
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By definition, the absolute coregularity of X is at most n. It is expected that a Fano variety of absolute
coregularity c admits an 𝑁 (𝑐)-complement (see, e.g., [35, Conjecture 4.1]). Indeed, following the phi-
losophy of Kawamata’s X-method, one expects to lift complements from minimal log canonical centers.
In the case of a Fano variety of absolute coregularity c, we can produce minimal log canonical centers
having dimension c [on a suitable dlt (divisorially log terminal) modification]. In the following subsec-
tion, we present some theorems regarding complements of Fano type varieties of absolute coregularity
0 and 1.

1.4. Complements and coregularity of Fano type varieties

Our main theorem in this direction states that a Fano type variety of absolute coregularity 0 admits a
1-complement or a 2-complement.

Theorem 4. Let (𝑋, 𝐵,M) be a projective generalized Fano type pair of absolute coregularity 0. Assume
that the following conditions hold:

◦ the coefficients of B are standard;
◦ the b-nef divisor 2M is b-Cartier.

Then, there exists a boundary 𝐵+ ≥ 𝐵 satisfying the following conditions:

◦ the generalized pair (𝑋, 𝐵+,M) is generalized log canonical;
◦ we have that 2(𝐾𝑋 + 𝐵+ + M𝑋 ) ∼ 0; and
◦ the equality coreg(𝑋, 𝐵+,M) = 0 holds.

In the case that 𝐵 = M = 0, the previous theorem says that, for a Fano variety X of absolute
coregularity 0, the linear system | − 2𝐾𝑋 | contains an element with nice singularities. In particular, the
linear system | − 2𝐾𝑋 | is nonempty. In [42, §8], Totaro investigates Fano varieties with large bottom
weight, which is the smallest positive integer m for which 𝐻0(𝑋,−𝑚𝐾𝑋 ) ≠ 0. In particular, [42, Theorem
8.1] implies the existence of a Fano 4-fold that does not admit an m-complement for 𝑚 ≤ 1799233. This
shows that the constant 𝑁 (4) obtained by Birkar in [3] is at least 1799233. More generally, [42, Theorem
8.1] shows that 𝑁 (𝑑) grows at least doubly exponentially with d. In contrast to this, our statement shows
that a Fano variety of absolute coregularity 0 either admits a 1-complement or a 2-complement. In [35,
Example 3.15], the third author gives an example of a Fano surface of absolute coregularity 0 for which
there is no 1-complement. Thus, the previous theorem is sharp. In the case of absolute coregularity 1,
we obtain a similar result.

Theorem 5. Let (𝑋, 𝐵,M) be a projective generalized Fano type pair of absolute coregularity 1. Assume
that the following conditions hold:

◦ the coefficients of B are standard;
◦ the b-nef divisor 2M is b-Cartier.

Then, there exists a boundary 𝐵+ ≥ 𝐵 satisfying the following conditions:

◦ the generalized pair (𝑋, 𝐵+,M) is generalized log canonical;
◦ we have that 𝑁 (𝐾𝑋 + 𝐵+ + M) ∼ 0, where 𝑁 ∈ {1, 2, 3, 4, 6}; and
◦ the equality coreg(𝑋, 𝐵+,M) = 1 holds.

In Table 1, we summarize the unconditional theorems regarding complements of Fano varieties. The
entry (𝑑, 𝑐) in the table corresponds to the minimum integer 𝑁𝑑,𝑐 for which every d-dimensional Fano
variety of coregularity c admits at most a 𝑁𝑑,𝑐-complement. In the blank spots, there set of such Fano
varieties is empty. Due to the work of Liu [33], we know that 𝑁2 ≤ 101011. However, it is expected that
we can take 𝑁2 = 66. By the work of Totaro [42], we know that 𝑁𝑑 grows at least doubly exponentially
with d.
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Table 1. Dimension, coregularity and complements.

1.5. Calabi–Yau pairs of higher coregularity

In the case of higher coregularity, we need to deal with klt Calabi–Yau varieties of higher dimensions.
We show that controlling the index of log Calabi–Yau pairs of coregularity c can be reduced to a problem
about c-dimensional klt Calabi–Yau pairs. In order to state our next theorem, we need to introduce two
conjectures about Calabi–Yau pairs. The first one is the boundedness of the index for klt Calabi–Yau
pairs.

Conjecture 1. Let d be a positive integer, and letΛ be a set of rational numbers satisfying the descending
chain condition. There exists a constant 𝐼 � 𝐼 (Λ, 𝑑), satisfying the following property. For every
projective d-dimensional klt log Calabi–Yau pair (𝑋, 𝐵) such that B has coefficients in Λ, we have that

𝐼 (Λ, 𝑑) (𝐾𝑋 + 𝐵) ∼ 0.

The previous conjecture is stated in [5, Conjecture 2.33]. The second conjecture is known as the
boundedness of B-representations. It predicts that the birational automorphism group of a log Calabi–
Yau pair acts on the sections of 𝐼 (𝐾𝑋 + 𝐵) ∼ 0 with bounded order (see, e.g., [18, Conjecture 3.2]).

Conjecture 2. Let d and I be two positive integers. There is a constant 𝑏 � 𝑏(𝑑, 𝐼) satisfying the
following property. For every projective d-dimensional klt log Calabi–Yau pair (𝑋, 𝐵) with 𝐼 (𝐾𝑋 +𝐵) ∼
0, the image of Bir(𝑋, 𝐵) in 𝐺𝐿(𝐻0 (𝐼 (𝐾𝑋 + 𝐵))) � K∗ is finite and has order at most b.

Now, we can state our main theorem about the index of log Calabi–Yau pairs. It shows that the
boundedness of the index of generalized log Calabi–Yau pairs of coregularity c can be reduced to the
previous two conjectures in dimension c.

Theorem 6. Let c and p be positive integers andΛ ⊂ Q be a set satisfying the descending chain condition.
Assume that Conjecture 1 and Conjecture 2 hold in dimension c. There is a constant 𝐼 � 𝐼 (Λ, 𝑐, 𝑝)
satisfying the following property. Let (𝑋, 𝐵,M) be a projective generalized log Calabi–Yau pair of
coregularity c for which:

◦ either X is rationally connected or M = 0;
◦ the coefficients of B are contained in Λ; and
◦ the b-nef divisor 𝑝M is b-Cartier.

Then, we have that 𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 0.

1.6. Fano varieties of higher coregularity.

In the case of Fano varieties of higher absolute coregularity, we get the boundedness of complements
of Fano type varieties with bounded absolute coregularity subject to the previous conjectures.
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Theorem 7. Let c and p be positive integers and Λ ⊂ Q be a closed set satisfying the descending
chain condition. Assume that Conjecture 1 and Conjecture 2 hold in dimension c. There is a constant
𝑁 � 𝑁 (Λ, 𝑐, 𝑝) satisfying the following. Let (𝑋, 𝐵,M) be a projective generalized Fano type pair of
absolute coregularity c for which:

◦ the divisor B has coefficients in Λ;
◦ the b-nef divisor 𝑝M is Cartier where it descends.

Then, there exists a boundary 𝐵+ ≥ 𝐵 satisfying the following conditions:

◦ the generalized pair (𝑋, 𝐵+,M) is generalized log canonical;
◦ we have that 𝑁 (𝐾𝑋 + 𝐵+ + M𝑋 ) ∼ 0; and
◦ the equality coreg(𝑋, 𝐵+,M) = 𝑐 holds.

We stress that Conjecture 1 is known up to dimension 3. On the other hand, Conjecture 2 is known
up to dimension 2. In particular, both Theorem 6 and Theorem 7 hold unconditionally in the case of
coregularity 2.

1.7. Coregularity and the canonical bundle formula

The canonical bundle formula plays a fundamental role in the theory of complements. In many cases,
we need to lift complements from the base of a log Calabi–Yau fibration. We will prove the following
statement that relates the canonical bundle formula with the coregularity.

Theorem 8. Let c and p be nonnegative integers and Λ ⊂ Q be a set satisfying the descending chain
condition. Assume that Conjecture 1 and Conjecture 2 hold in dimension at most 𝑐−1. There exists a set
Ω � Ω(Λ, 𝑐, 𝑝) ⊂ Q satisfying the descending chain condition and a positive integer 𝑞 � 𝑞(Λ, 𝑐, 𝑝),
satisfying the following property. Let 𝜋 : 𝑋 → 𝑍 be a Fano type morphism between projective varieties.
Let (𝑋, 𝐵,M) be a projective generalized pair of coregularity c for which:

◦ the generalized pair (𝑋, 𝐵,M) is log Calabi–Yau over Z;
◦ the coefficients of B belong to Λ;
◦ the b-nef divisor 𝑝M is Cartier where it descends;
◦ the b-nef divisor M is Q-trivial on the general fiber of 𝑋 → 𝑍;
◦ every generalized log canonical center of (𝑋, 𝐵,M) is a log canonical center of (𝑋, 𝐵); and
◦ every log canonical center of (𝑋, 𝐵) dominates Z.

Then, we can write

𝑞(𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 𝑞𝜋∗(𝐾𝑍 + 𝐵𝑍 + N𝑍 ),

where the following conditions hold:

◦ 𝐵𝑍 is the discriminant part of the adjunction for (𝑋, 𝐵,M) over Z;
◦ the coefficients of 𝐵𝑍 belong to Ω; and
◦ the b-nef divisor 𝑞N is b-Cartier.

1.8. Kawamata log terminal singularities

Finally, we show some applications of the previous theorems of this article to the study of klt singularities.
We obtain the following result about klt singularities of absolute coregularity 0.

Theorem 9. Let (𝑋; 𝑥) be a klt singularity of absolute coregularity 0. Then, there exists a boundary Γ
through x satisfying the following conditions:
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◦ we have that 2(𝐾𝑋 + Γ) ∼ 0 on a neighborhood of x;
◦ the coregularity of (𝑋, Γ) at x is equal to 0.

In particular, the pair (𝑋, Γ; 𝑥) is strictly log canonical at x.

Analogously, we obtain a similar result in the context of klt singularities of absolute coregularity 1.

Theorem 10. Let (𝑋; 𝑥) be a klt singularity of absolute coregularity 1. Then, there exists a boundary Γ
through x satisfying the following conditions:

◦ we have that 𝑁 (𝐾𝑋 + Γ) ∼ 0 for some 𝑁 ∈ {1, 2, 3, 4, 6};
◦ the coregularity of (𝑋, Γ) at x is equal to 1.

In particular, the pair (𝑋, Γ; 𝑥) is strictly log canonical at x.

The two previous theorems generalize the 𝐴, 𝐷, 𝐸-type classification of klt surface singularities
to higher-dimensional klt singularities. The A-type klt surface singularities are the toric surface sin-
gularities. In the Gorenstein case, these are the 𝐴𝑛-singularities. The A-type singularities are the klt
surface singularities of absolute coregularity 0 that admit a 1-complement. The D-type klt surface
singularities are quotients of toric singularities via an involution. In the Gorenstein case, these are 𝐷𝑛-
singularities. The D-type singularities are the surface singularities of absolute coregularity 0 that admit
a 2-complement but no 1-complement. The E-type klt surface singularities are the exceptional surface
singularities. In the Gorenstein case, these are exactly the 𝐸6, 𝐸7 and 𝐸8 singularities. These are the
klt surface singularities that have absolute coregularity 1. They admit a 3-, 4- or 6-complement but not
a 1-complement or 2-complement. The aforementioned results about complements and coregularity of
two-dimensional klt singularities are proved in [35, Section 3.2].

1.9. On the techniques of the article

The theory of complements was introduced by Shokurov in the early 2000s (see, e.g., [40]), although
these objects already appeared in the work of Keel and McKernan on quasi-projective surfaces [30]. In
this work, complements were called tigers. Since then, it has been understood that vanishing theorems,
the canonical bundle formula and the minimal model program are indispensable tools to produce
complements on a variety (see, e.g., [38, 37, 30]). Using the aforementioned techniques, the language
of generalized pairs and the boundedness of exceptional Fano varieties, Birkar proved the boundedness
of complements for Fano varieties [3]. Since then, the theory of complements has been expanded to
Fano pairs with more general coefficients [14, 24, 41], to log canonical Fano varieties [44] and to log
Calabi–Yau 3-folds [15]. In this article, we study the theory of complements through the lens of the
coregularity. The techniques are similar to the ones in the aforementioned papers. However, in order to
obtain novel results, we need to re-prove several parts of this theory keeping track of this new invariant.
The fact that our results are independent of dimension imposes an extra difficulty. At the same time, we
will need to use some recent results regarding the coregularity and its connections to singularities [10]
and Calabi–Yau pairs [13].

Strategy of the proof

In this section, we give a sketch of the proof of the main theorems of this article, namely Theorem 6,
Theorem 7 and Theorem 8. The other theorems will be obtained using the same strategy and an analysis
of the coefficients throughout the proof. We write Theorem 𝑋 (𝑐) for Theorem X in coregularity at
most c. Theorem 6(0) follows from [13, Theorem 1], while Theorem 8(0) is trivial. We will prove the
following four statements:

(i) Theorem 7(0) holds;
(ii) Theorem 7(𝑐 − 1) implies Theorem 8(𝑐);
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(iii) Theorem 8(𝑐) implies Theorem 6(𝑐); and
(iv) Theorem 6(𝑐) and Theorem 8(𝑐) imply Theorem 7(𝑐).

We write Theorem 𝑋 (𝑑, 𝑐) for Theorem X in dimension at most d and coregularity at most c. For
instance, Theorem 7(𝑑, 𝑐) is known by [3, Theorem 1.7]. Thus, we may write 𝑁 (Λ, 𝑑, 𝑐, 𝑝) for the
positive integer provided by Theorem 7(𝑑, 𝑐). We may suppress Λ and p from the notation whenever
they are clear from the context. Our aim is to show that, once we fix c, there is an upper bound 𝑁 (𝑐)
for all 𝑁 (𝑑, 𝑐). Similarly, Theorem 8(𝑑, 𝑐) is known due to [3, Proposition 6.3]. We write 𝑞(𝑑, 𝑐) for
the constant provided by Theorem 8(𝑑, 𝑐), and we show that 𝑞(𝑑, 𝑐) is bounded above by a constant
only depending on c. Theorem 6(𝑑, 𝑐) is not known even if we fix the dimension. In this case, the aim
is twofold: to prove the existence of an upper bound 𝐼 (𝑑, 𝑐) for fixed dimension d and to show that all
the 𝐼 (𝑑, 𝑐) are bounded above in terms of c. The proof of implication (i) is similar to that of (iv). In the
following three subsections, we sketch the proofs of (ii), (iii) and (iv).

A canonical bundle formula

Let (𝑋, 𝐵,M) → 𝑍 be as in the setting of Theorem 8(𝑑, 𝑐).
First, we show that for every 𝑧 ∈ 𝑍 closed, we may find a relative 𝑁 (𝑐−1)-complement for (𝑋, 𝐵,M)

over z. We pick an effective Cartier divisor E on Z through z. We let t be the largest positive number
for which (𝑋, 𝐵 + 𝑡𝜋∗𝐸,M) has generalized log canonical singularities around z. By the connectedness
theorem, the coregularity of (𝑋, 𝐵 + 𝑡𝜋∗𝐸,M) is at most 𝑐 − 1. Indeed, since all the generalized log
canonical centers of (𝑋, 𝐵,M) are horizontal over Z, introducing a vertical generalized log canonical
center will strictly decrease the coregularity. Taking a dlt modification of (𝑋, 𝐵 + 𝑡𝜋∗𝐸,M), we can
produce a new generalized pair (𝑋 ′, 𝐵′,M) such that z is contained in the image of a component S
of �𝐵′. By perturbing the coefficients, we may assume that the coefficients of 𝐵′ belong to Λ. We
replace (𝑋, 𝐵,M) by (𝑋 ′, 𝐵′,M) and assume there is a vertical divisorial log canonical center S. Notice
that this replacement changes the crepant birational class of the original generalized pair (𝑋, 𝐵,M) in
order to create a new log canonical center. Running a suitable Minimal Model Program (MMP) over
Z, we reduce to the case in which 𝑆 → 𝜋(𝑆) � 𝑧 is a Fano type morphism. The generalized pair
(𝑆, 𝐵𝑆 ,M𝑆) obtained by adjunction of (𝑋, 𝐵,M) to S has dimension at most 𝑑 − 1 and coregularity at
most 𝑐−1. If 𝑞(𝑆) = 𝑧, then we may apply Theorem 7(𝑑 −1, 𝑐−1) to conclude that (𝑆, 𝐵𝑆 ,M𝑆) admits
an 𝑁 (𝑑 − 1, 𝑐 − 1)-complement. Since we are assuming Theorem 7(𝑐 − 1), this is also an 𝑁 (𝑐 − 1)-
complement. If dim 𝜋(𝑆) ≥ 1, then we construct an 𝑁 (𝑐−1)-complement by induction on the dimension.
In any case, we obtain an 𝑁 (𝑐 − 1)-complement for (𝑆, 𝐵𝑆 ,M𝑆) around z. Using Kawamata–Viehweg
vanishing, we lift such complement to an 𝑁 (𝑐−1)-complement for (𝑋, 𝐵,M) around the fiber of 𝑧 ∈ 𝑍 .
The details of this proof can be found in §5, where we discuss relative complements. In §5.1, we explain
how to lift complements from divisors.

Now, we can assume the existence of bounded relative 𝑁 (𝑐 − 1)-complements for (𝑋, 𝐵,M) → 𝑍 .
The existence of bounded relative complements allows us to find q in the statement of Theorem 8(𝑑, 𝑐).
Indeed, we can take 𝑞(𝑑, 𝑐) = 𝑁 (𝑐 − 1). The main difficulty is to control the coefficients of N𝑍 in the
model where it descends. In order to do so, we will cut the base with hypersurfaces to reduce to the
case in which the base is a curve. Once the base is a curve C, we will study the coefficients of a relative
complement over a closed point 𝑐 ∈ 𝐶. Analyzing the coefficients of this relative complement will show
that 𝑞N𝑍 is integral. A similar argument on a suitable resolution 𝑍 ′ → 𝑍 proves that 𝑞N𝑍 ′ is integral,
where 𝑍 ′ is a model on which N𝑍 descends. This finishes the proof of Theorem 8(𝑐) using Theorem
7(𝑐 − 1). The details of this proof are given in §6.

Index of log Calabi–Yau pairs

Let (𝑋, 𝐵,M) be a generalized log Calabi–Yau pair as in Theorem 6(𝑑, 𝑐). By [10, Theorem 2], we may
assume that the set Λ in the statement of the theorem is finite. By [16, Theorem 4.2], we can replace
(𝑋, 𝐵,M) by a Kollár–Xu model (see §2.7). We have a Fano type contraction 𝑞 : 𝑋 → 𝑍 such that all
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the generalized log canonical centers of (𝑋, 𝐵,M) dominate the base Z. Both the index and Weil index
of 𝐾𝑋 +𝐵+M𝑋 are preserved by the Kollár–Xu model. We will proceed with the proof in three different
cases, depending on the dimension of the base of the Kollár–Xu model and the coefficient sets of B and
M. We argue by induction on the dimension d of X. The base of the induction is the klt case which
follows by Conjecture 1 (see, e.g., Lemma 2.30).

Case 1: the moduli part M = 0.
In this case, we know that 𝐾𝑋 + 𝐵 ∼Q 0. We do not assume that X is rationally connected. We

choose a component S of �𝐵 and run a (𝐾𝑋 + 𝐵 − 𝜖𝑆)-MMP. This minimal model program terminates
with a Mori fiber space on which S is ample over the base. Observe that the variety S may not be
normal. However, the pair obtained by adjunction (𝑆, 𝐵𝑆) is semilog canonical. In §4, we show that the
statement of Theorem 6(𝑑 − 1, 𝑐) holds for semilog canonical pairs provided it holds for log canonical
pairs. To do so, we use Conjecture 1 and Conjecture 2 in dimension c. Here, it is crucial that we work
with pairs instead of generalized pairs. Indeed, Conjecture 2 is not known for generalized pairs, even in
dimension 2. Hence, we conclude that 𝐼 (Λ, 𝑑 − 1, 𝑐, 0) (𝐾𝑆 + 𝐵𝑆) ∼ 0.

Thus, in this case, we conclude that the index of (𝑋, 𝐵) is at most 𝐼 (Λ, 𝑑 − 1, 𝑐, 0).

Case 2: the base Z of the Kollár–Xu model is positive-dimensional, the divisor {𝐵} + M𝑋 is trivial on
the general fiber of 𝑋 → 𝑍 and the b-nef divisor M is nontrivial.

In this case, we apply Theorem 8(𝑐). We can write

𝑞(𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 𝑞𝜋∗(𝐾𝑍 + 𝐵𝑍 + N𝑍 ). (1.1)

The variety Z has dimension at most c. The integer q only depends on Λ, 𝑐 and p. The coefficients of 𝐵𝑍

belong to a DCC set that only depends on Λ, 𝑐 and p. The b-nef divisor 𝑞N is b-Cartier. The variety X is
rationally connected, as we are assuming that the b-nef divisor M is nontrivial. Hence, Z is also rationally
connected. Let 𝑍 ′ → 𝑍 be the model where N𝑍 descends. In particular, 𝑍 ′ is rationally connected.
Note that in general, N𝑍 ′ may have torsion components. However, since 𝑍 ′ is rationally connected, the
q-th multiple of such torsion components are linearly equivalent to zero (see [13, Corollary 3.9]). Using
Conjecture 1, we will show that the index of 𝐾𝑍 +𝐵𝑍 +N𝑍 only depends onΛ, 𝑐 and p. Thus, by the linear
equivalence (1.1), we conclude that the index of (𝑋, 𝐵,M) is bounded above by a constant 𝐼0(Λ, 𝑐, 𝑝).

Case 3: the divisor {𝐵} + M𝑋 is nontrivial on the general fiber of 𝑋 → 𝑍 and the b-nef divisor M is
nontrivial.

We run a (𝐾𝑋 + �𝐵)-MMP over Z. Since 𝐾𝑋 + �𝐵 is not pseudo-effective over Z, this minimal
model program terminates with a Mori fiber space 𝑝 : 𝑋 ′ → 𝑊 over Z. We denote by 𝐵′ the push-
forward of B on 𝑋 ′. the divisor 𝐾𝑋 ′ + �𝐵′ is antiample over W. Since �𝐵 is big over Z, the divisor �𝐵′

has a component S that dominates W. By construction, the general fibers of 𝑆 → 𝑊 are of Fano type. In
this case, X and 𝑋 ′ are rationally connected, as we are assuming that the b-nef divisor M is nontrivial.
Hence, the image W of 𝑋 ′ is rationally connected. Since a general fiber of 𝑆 → 𝑊 is of Fano type, they
are rationally connected. Thus, S is rationally connected, being the base and general fibers of 𝑆 → 𝑊
rationally connected. In particular, if (𝑆, 𝐵𝑆 + M𝑆) is the generalized pair obtained by adjunction, then
we know that 𝐼 (Λ, 𝑑 − 1, 𝑐, 𝑝) (𝐾𝑆 + 𝐵𝑆 + M𝑆) ∼ 0. Here, we argued by induction on the dimension
and used Theorem 6(𝑑 − 1, 𝑐). Depending on the dimension of W, we either use Kawamata–Viehweg
vanishing or Kollár’s torsion-free theorem to conclude that 𝐼 (Λ, 𝑑 − 1, 𝑐, 𝑝) (𝐾𝑋 ′ + 𝐵′ + M𝑋 ′ ) ∼ 0.
Hence, the index of (𝑋, 𝐵,M) is at most 𝐼 (Λ, 𝑑−1, 𝑐, 𝑝). These lifting arguments are explained in §5.1.

In summary, a generalized log Calabi–Yau pair (𝑋, 𝐵,M) as in Theorem 6(𝑑, 𝑐) has index at most

max{𝐼0(Λ, 𝑐, 𝑝), 𝐼 (Λ, 𝑑 − 1, 𝑐, 𝑝), 𝐼 (Λ, 𝑑 − 1, 𝑐, 0)}.

Thus, we have that

𝐼 (Λ, 𝑑, 𝑐, 𝑝) ≤ max{𝐼0(Λ, 𝑐, 𝑝), 𝐼 (Λ, 𝑑 − 1, 𝑐, 𝑝), 𝐼 (Λ, 𝑑 − 1, 𝑐, 0)}.
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Hence, there is an upper bound for 𝐼 (Λ, 𝑑, 𝑐, 𝑝) which only depends on Λ, 𝑐 and p. This finishes the
sketch of the proof of Theorem 6(𝑐) using Theorem 8(𝑐).

Complements on Fano varieties

Let (𝑋, 𝐵,M) be a Fano type pair as in Theorem 7(𝑑, 𝑐). In §3, we reduce to the case in which
Λ finite. This is crucial for lifting complements from divisors (see §5.1). By the assumption on the
absolute coregularity of (𝑋, 𝐵,M), we may find a generalized log Calabi–Yau structure (𝑋, 𝐵 + Γ,M)

of coregularity c. By dimensional reasons and the assumption on the absolute coregularity of (𝑋, 𝐵,M),
(𝑋, 𝐵 + Γ,M) may be generalized klt only if 𝑑 = 𝑐 and (𝑋, 𝐵,M) is exceptional; this case is settled by
[3, Theorem 1.7] in dimension c. Therefore, in the rest of this sketch, we may assume that (𝑋, 𝐵+Γ,M)

is not generalized klt. Let (𝑌, 𝐵𝑌 + Γ𝑌 + 𝐸,M) be a dlt modification of (𝑋, 𝐵 + Γ,M). Here, 𝐵𝑌 (resp.
Γ𝑌 ) is the strict transform of the fractional part of B (resp. Γ), while we set 𝐸 = �𝐵𝑌 + Γ𝑌 + 𝐸.
Since (𝑋, 𝐵 + Γ,M) is not generalized klt, we have 𝐸 ≠ 0. Since X is of Fano type, it easily follows
that so is Y. In particular, Y is a Mori dream space. We run a −(𝐾𝑌 + 𝐵𝑌 + 𝐸 + M𝑌 )-MMP. Note that
−(𝐾𝑌 +𝐵𝑌 +𝐸 +M𝑌 ) is a pseudo-effective divisor. Hence, this minimal model program must terminate
with a good minimal model Z. We let 𝐵𝑍 and 𝐸𝑍 be the push-forwards to Z of 𝐵𝑌 and E, respectively. In
order to produce a complement for (𝑋, 𝐵), it suffices to produce a complement for (𝑍, 𝐵𝑍 + 𝐸𝑍 ,M𝑍 ).
Replacing (𝑋, 𝐵,M) by (𝑍, 𝐵𝑍 + 𝐸𝑍 ,M𝑍 ), we may assume that −(𝐾𝑋 + 𝐵 + M𝑋 ) is semiample and
coreg(𝑋, 𝐵,M) = 𝑐. Notice that this reduction does not alter the coefficients set for the boundary part
of (𝑋, 𝐵,M), since the only divisors that may have been introduced in the boundary have coefficient 1.
Furthermore, by the choice of the MMP run, it follows that E cannot be contracted. In particular, after
this reduction, we may assume that �𝐵 ≠ 0. We will proceed in three different cases depending on the
dimension of the ample model W of the divisor −(𝐾𝑋 + 𝐵 + M𝑋 ).

Case 1: the dimension of W is 0.
In this case, we have that 𝐾𝑋 + 𝐵 + M𝑋 ∼Q 0. Hence, producing a complement for (𝑋, 𝐵,M) is the

same as controlling the index of the generalized pair. Thus, the statement follows from Theorem 6(𝑐).

Case 2: the dimension of W is d.
In this case, we have that −(𝐾𝑋 + 𝐵 +M𝑋 ) is semiample and big. Furthermore, the round-down �𝐵

is nontrivial. We pass to a suitable birational model of (𝑋, 𝐵,M) where a component S of �𝐵 is of
Fano type. Performing adjunction to S, we obtain a log Fano pair of dimension 𝑑 − 1 and coregularity
c. Using Theorem 7(𝑑 − 1, 𝑐), we produce an 𝑁 (Λ, 𝑑 − 1, 𝑐, 𝑝)-complement on S that can be lifted to
an 𝑁 (Λ, 𝑑 − 1, 𝑐, 𝑝)-complement of (𝑋, 𝐵).

Case 3: The dimension of W is positive and strictly less than d.
The fibration 𝜋 : (𝑋, 𝐵,M) → 𝑊 is a log Calabi–Yau fibration for (𝑋, 𝐵,M). If {𝐵} + M is big

over W, then by perturbing the coefficients of B we reduce to Case 2. Otherwise, we may replace W
with the ample model of {𝐵} + M over W. Doing so, we may assume {𝐵} + M is trivial on the general
fiber of 𝑋 → 𝑊 . If all the generalized log canonical centers of (𝑋, 𝐵) dominate W, then we are in
the situation of Theorem 8(𝑐). The generalized pair (𝑊, 𝐵𝑊 ,N𝑊 ) induced on the base is of Fano type
and exceptional. By [3, Theorem 1.7] in dimension c or less, we can find an 𝑁 (Ω, 𝑐)-complement for
(𝑊, 𝐵𝑊 ,N𝑊 ). Here, Ω only depends on Λ, 𝑐 and p. Then, we can pull the complement back via 𝜋 to
obtain an 𝑁 (Ω, 𝑐)-complement for (𝑋, 𝐵,M). Finally, we may assume that {𝐵} + M is trivial on the
general fiber of 𝑋 → 𝑊 and there is some component 𝑆 ⊂ �𝐵 that is vertical over W. In this case, 𝐵hor
is big over W. Here, 𝐵hor stands for the sum of the components of B which are horizontal over W. Again,
we can perturb the coefficients of B to reduce to Case 2.

In summary, a generalized pair (𝑋, 𝐵,M) as in Theorem 7(𝑑, 𝑐) admits an N-complement, where
𝑁 ≤ max{𝑁 (Ω, 𝑐), 𝑁 (Λ, 𝑑 − 1, 𝑐, 𝑝)}. Thus, we have

𝑁 (Λ, 𝑑, 𝑐, 𝑝) ≤ max{𝑁 (Ω, 𝑐), 𝑁 (Λ, 𝑑 − 1, 𝑐, 𝑝)}.

https://doi.org/10.1017/fms.2024.69 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.69


Forum of Mathematics, Sigma 11

Hence, there is an upper bound for 𝑁 (Λ, 𝑑, 𝑐, 𝑝) which only depends on Λ, 𝑐 and p. This finishes the
proof of Theorem 7(𝑐) using Theorem 6(𝑐) and Theorem 8(𝑐).

2. Preliminaries

We work over an algebraically closed field K of characteristic zero. Our varieties are connected and
quasi-projective unless otherwise stated. In this section, we introduce some preliminaries regarding
singularities, Fano varieties, Calabi–Yau pairs and coregularity.

2.1. Divisors, b-divisors and generalized pairs

In this subsection, we recall some basics about b-divisors and generalized pairs.

Definition 2.1. Let X be a normal variety. A b-divisor M on X is a function which associates any
birational map 𝑋 ′ � 𝑋 with an R-divisor M𝑋 ′ on 𝑋 ′. The set of divisors {M𝑋 ′ : 𝑋 ′ � 𝑋} satisfies the
following compatibility condition: If 𝑔 : 𝑋1 → 𝑋2 is a birational morphism over X, then 𝑔∗M𝑋1 = M𝑋2 .
We say that a b-divisor M on X descends on some birational model 𝑋 ′ of X if M𝑋 ′ is R-Cartier and M
is equivalent to (𝑋 ′ → 𝑋,M𝑋 ′ ). In other words, for any birational map ℎ : 𝑌 → 𝑋 ′ over X, we have
ℎ∗M𝑋 ′ = M𝑌 . In the previous case, we say that M is a b-R-Cartier divisor.

Let 𝑋 → 𝑍 be a projective morphism. The b-divisor M is said to be b-Cartier (resp. b-nef, b-nef/ Z) if
M𝑋 ′ is Cartier (resp. nef, relatively nef over Z) on some birational model 𝑋 ′ over X where M descends.

The b-Cartier closure of an R-Cartier divisor M is a b-divisor M whose trace on every birational
model 𝑓 : 𝑌 → 𝑋 is 𝑓 ∗𝑀 .

Definition 2.2. Let X be a normal variety and 𝜋 : 𝑋 → 𝑍 be a projective morphism. A generalized pair
on X over Z is a triple (𝑋, 𝐵,M) where

◦ B is an effective R-divisor on X;
◦ M is a b-nef/Z b-R-Cartier on X; and
◦ 𝐾𝑋 + 𝐵 + M𝑋 is R-Cartier.

When Z is a point, we simply call (𝑋, 𝐵,M) a generalized pair.

2.2. Singularities of generalized pairs

In this subsection, we define the notions of singularities for generalized pairs.

Definition 2.3. Let X be a normal variety and (𝑋, 𝐵,M) be a generalized pair on X. Let D be a divisor
over X. Pick a log resolution 𝑓 : 𝑋 ′ → 𝑋 of (𝑋, 𝐵) such that D is a divisor on 𝑋 ′ and M descends on
𝑋 ′. We can write

𝐾𝑋 ′ + 𝐵′ + M𝑋 ′ = 𝑓 ∗(𝐾𝑋 + 𝐵 + M𝑋 )

for some uniquely determined 𝐵′. Define the generalized log discrepancy 𝑎𝐷 (𝑋, 𝐵,M) to be 1 −

coeff𝐷 (𝐵′).
We say that (𝑋, 𝐵,M) is generalized log canonical (resp. generalized klt) if 𝑎𝐷 (𝑋, 𝐵,M) is nonneg-

ative (resp. positive) for any divisor D over X. A generalized non-klt place (resp. generalized log canon-
ical place) of (𝑋, 𝐵,M) is a prime divisor D over X with 𝑎𝐷 (𝑋, 𝐵,M) ≤ 0 (resp. 𝑎𝐷 (𝑋, 𝐵,M) = 0). A
generalized non-klt center of (𝑋, 𝐵,M) is the image of a generalized non-klt place. We denote the set
of generalized non-klt centers of (𝑋, 𝐵,M) by Nklt(𝑋, 𝐵,M). A generalized log canonical center of
(𝑋, 𝐵,M) is the image Z of a generalized non-klt place such that every generalized non-klt place whose
image on X contains Z is a generalized log canonical place.

We say that (𝑋, 𝐵,M) is generalized dlt if it is generalized log canonical and satisfies the following
condition: for any generalized log canonical center V of (𝑋, 𝐵,M), the pair (𝑋, 𝐵) is log smooth around
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the generic point of V and M descends on X in a neighborhood of the generic point of V. We say that
(𝑋, 𝐵,M) is generalized plt if it is generalized dlt and every connected component of �𝐵 is irreducible.

Let (𝑋, 𝐵,M) be a generalized log canonical pair over a base Z. Let 𝑓 : 𝑌 → 𝑋 be a birational
morphism and write

𝐾𝑌 + 𝐵𝑌 + M𝑌 = 𝑓 ∗(𝐾𝑋 + 𝐵 + M𝑋 ).

We say that (𝑌, 𝐵𝑌 ,M) is a Q-factorial generalized dlt modification of (𝑋, 𝐵,M) if the variety Y is Q-
factorial, (𝑌, 𝐵𝑌 ,M) is generalized dlt and every f -exceptional divisor appears in 𝐵𝑌 with coefficient 1.

Lemma 2.4 [16, Theorem 2.9]. Every generalized log canonical pair over a base Z has a Q-factorial
generalized dlt modification.

The following lemma states that the singularities of the pair (𝑋, 𝐵) are milder than the singularities
of (𝑋, 𝐵,M).

Lemma 2.5 [7, Remark 4.2.(3)]. Let (𝑋, 𝐵,M) be a generalized log canonical pair over Z. Suppose
𝐾𝑋 + 𝐵 is R-Cartier. Then for any divisor D over X, the log discrepancies satisfy

𝑎𝐷 (𝑋, 𝐵,M) ≤ 𝑎𝐷 (𝑋, 𝐵).

In particular, the pair (𝑋, 𝐵) is log canonical.

2.3. Crepant birational maps

In this subsection, we recall the notion of crepant birational map and group of crepant birational
automorphisms.

Definition 2.6. Let (𝑋1, 𝐵1,M) and (𝑋2, 𝐵2,M) be generalized pairs over Z. We say that they are crepant
if there exists a common resolution 𝛼1 : 𝑋 ′ → 𝑋1 and 𝛼2 : 𝑋 ′ → 𝑋2, where each 𝛼𝑖 is proper, such that

𝐾𝑋 ′ + 𝐵′
1 + M𝑋 ′ = 𝐾𝑋 ′ + 𝐵′

2 + M𝑋 ′ ,

holds, where we have 𝐾𝑋 ′ + 𝐵′
𝑖 + M𝑋 ′ = 𝛼∗

𝑖 (𝐾𝑋𝑖 + 𝐵𝑖 + M𝑋𝑖 ) for 𝑖 = 1, 2.

In the case of pairs, we recall the notion of B-birational map, originally due to Fujino [17, Definition
1.5]. Observe that, for our purposes in later sections, it is important to deal with possibly reducible
varieties.

Definition 2.7. Let (𝑋,Δ) = �(𝑋𝑖 ,Δ 𝑖) and (𝑋 ′,Δ ′) = �(𝑋 ′
𝑖 ,Δ

′
𝑖) be possibly reducible normal pairs.

We say that 𝑓 : 𝑋 � 𝑋 ′ is a B-birational map if (𝑋,Δ) and (𝑋 ′,Δ ′) are crepant. That is, X and 𝑋 ′ have
the same number of irreducible components, and there exists a permutation 𝜎 of the index set of the
irreducible component such that, for every i, the restriction 𝑓𝑖 : 𝑋𝑖 � 𝑋 ′

𝜎 (𝑖)
is birational and (𝑋𝑖 ,Δ 𝑖) is

crepant to (𝑋 ′
𝜎 (𝑖)

,Δ ′
𝜎 (𝑖)

).

Definition 2.8. Given a pair (𝑋,Δ) = �(𝑋𝑖 ,Δ 𝑖) as in Definition 2.7, we define

Bir(𝑋,Δ) � { 𝑓 | 𝑓 : (𝑋,Δ) � (𝑋,Δ) is 𝐵 − birational}.

The set Bir(𝑋,Δ) forms a group under composition.

We observe that Definition 2.7 and Definition 2.8 naturally extend to the case of generalized pairs.
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2.4. Complements

In this subsection, we introduce the notion of relative complements.
Definition 2.9. A contraction is a projective morphism of quasi-projective varieties 𝑓 : 𝑋 → 𝑍 such
that 𝑓∗O𝑋 = O𝑍 . Notice that, if X is normal, then so is Z. A fibration is a contraction 𝑋 → 𝑍 such that
dim 𝑍 < dim 𝑋 .
Definition 2.10. Let (𝑋, 𝐵) be a pair and 𝑋 → 𝑍 a contraction. We say that a pair (𝑋, 𝐵) is log Fano
(resp. weak log Fano or log Calabi–Yau) over Z if it is log canonical and −(𝐾𝑋 + 𝐵) is ample over Z
(resp. −(𝐾𝑋 + 𝐵) is nef and big over Z or 𝐾𝑋 + 𝐵 is R-trivial over Z).

We say that (𝑋, 𝐵) is of Fano type (resp. log Calabi–Yau type) over Z if (𝑋, 𝐵 + Δ) is klt and weak
log Fano (resp. log Calabi–Yau) for some choice of Δ ≥ 0.

If (𝑋, 0) is of Fano type (resp. log Calabi–Yau type) over Z, we say that 𝑋 → 𝑍 is a Fano type
morphism (resp. log Calabi–Yau type morphism). If (𝑋, 𝐵) is log Fano (resp. log Calabi–Yau, Fano
type, Calabi–Yau type) over a point, we simply say that (𝑋, 𝐵) is log Fano (resp. log Calabi–Yau, Fano
type, Calabi–Yau type).
Definition 2.11. Let 𝑋 → 𝑍 be a contraction and (𝑋, 𝐵,M) be a generalized pair over Z. Let N be a
positive integer. An N-complement of 𝐾𝑋 + 𝐵 +M𝑋 over a point 𝑧 ∈ 𝑍 is a divisor 𝐾𝑋 + 𝐵+ +M𝑋 such
that over some neighborhood of z, we have:
◦ (𝑋, 𝐵+,M) is generalized log canonical;
◦ 𝑁 (𝐾𝑋 + 𝐵+ + M𝑋 ) ∼𝑍 0;
◦ 𝑁M is b-Cartier; and
◦ 𝐵+ ≥ 𝐵.
If the above conditions hold for 𝐾𝑋 + 𝐵+ + M𝑋 over every 𝑧 ∈ 𝑍 , we say that 𝐾𝑋 + 𝐵+ + M𝑋 is an
N-complement of 𝐾𝑋 + 𝐵 +M𝑋 over Z. We say that 𝐾𝑋 + 𝐵+ +M𝑋 is a Q-complement of 𝐾𝑋 + 𝐵 +M𝑋

over 𝑧 ∈ 𝑍 (resp. Q-complement of 𝐾𝑋 + 𝐵 + M𝑋 over Z) it is a q-complement for some 𝑞 ∈ Z>0.
The following lemma states that complements can be pulled back via 𝐾𝑋 -positive birational contrac-

tions (see [3, 6.1.(3)]).
Lemma 2.12. Let (𝑋, 𝐵,M) be a generalized log canonical pair over a base Z. Suppose 𝑓 : 𝑋 � 𝑋 ′ is
a (𝐾𝑋 + 𝐵 + M𝑋 )-nonnegative birational contraction over Z. Let 𝐵′ = 𝑓∗𝐵 and N be a positive integer.
If 𝐾𝑋 ′ + 𝐵′ +M𝑋 ′ has an N-complement over 𝑧 ∈ 𝑍 , then 𝐾𝑋 + 𝐵 +M𝑋 also has an N-complement over
𝑧 ∈ 𝑍 .

The following lemma says that extracting divisors with small log discrepancy from a Fano type
variety preserves the Fano type property (see [3, 6.13.(7)]).
Lemma 2.13. Let 𝑋 → 𝑍 be a contraction. Let X be a Fano type variety over Z and (𝑋, 𝐵) a log
Calabi–Yau pair over Z. Let 𝑓 : 𝑌 → 𝑋 be a birational morphism. Suppose that every f-exceptional
divisor E satisfies 𝑎𝐸 (𝑋, 𝐵) < 1. Then Y is of Fano type over Z.

Furthermore, let 𝐾𝑌 + 𝐵𝑌 be the log pull-back of 𝐾𝑋 + 𝐵. If 𝐾𝑌 + 𝐵𝑌 has an N-complement over
𝑧 ∈ 𝑍 , then (𝑋, 𝐵) also has an N-complement over 𝑧 ∈ 𝑍 .

2.5. Coefficients under adjunction

In this subsection, we study the coefficients of a pair under adjunction.
Definition 2.14. Let R be a set of rational numbers. We define 𝐼R to be the minimal integer I such that
for any 𝑟 ∈ 𝑅 and 𝑛 ∈ N, we have that

�𝑛𝐼𝑟 ≥ 𝑛(𝐼 − 1)𝑟.

If there does not exist such an integer, we define 𝐼R to be 0.
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Note that when the set R is finite 𝐼R exists as the least common multiple of the denominators will
satisfy the previous inequality. When R is the set of standard coefficients 𝐼R=1. If R is finite, then 𝐼R
is bounded above by the least common multiple of the rational numbers in R that are not standard.

Definition 2.15. Let Λ be a set of real numbers in [0, 1]. Define the derived set of Λ as

𝐷 (Λ) �
{
𝑎 ∈ [0, 1] | 𝑎 =

𝑚 − 1 + 𝜆1 + · · · + 𝜆𝑛

𝑚
, where 𝑛 ∈ Z≥0, 𝑚 ∈ Z>0 and 𝜆1, . . . , 𝜆𝑛 ∈ Λ ∪ {0, 1}

}
.

We also define 𝐷𝜆0 (Λ) ⊂ 𝐷 (Λ) to be the subset in which, in the definition of a, at least one 𝜆𝑖

is equal to 𝜆0. The set Λ is said to be derived if Λ = 𝐷 (Λ). If 𝜆 is a positive integer, then we set
𝐷𝜆 � 𝐷

(
Z
[ 1

𝜆

]
∩ [0, 1]

)
.

For instance, the set of standard coefficients S � {1 − 1/𝑚 | 𝑚 ∈ Z>0} ∪ {1} is derived. The
following lemmata describe some properties of derived sets.

Lemma 2.16 [22, Proposition 3.4.1]. Let Λ be a set of real numbers in [0, 1]. Then 𝐷 (Λ) = 𝐷 (𝐷 (Λ)),
that is, 𝐷 (Λ) is a derived set.

The following lemma allows us to control the coefficients of the generalized pairs obtained by
divisorial adjunction. The lemma is a special case of [3, Lemma 3.3]; we refer to the proof of [13,
Lemma 3.8] for the details of this adaptation.

Lemma 2.17 [3, Lemma 3.3]. Let (𝑋, 𝐵,M) be a generalized log canonical pair over Z and Λ be a set
of rational numbers in [0, 1]. Suppose the coefficients of B and M𝑋 ′ belong to Λ for some model 𝑋 ′

where M descends. Let S be the normalization of a component of �𝐵. Write

(𝐾𝑋 + 𝐵 + M𝑋 ) |𝑆 ∼ 𝐾𝑆 + 𝐵𝑆 + N𝑆

for the generalized adjunction on S, where 𝐵𝑆 is the boundary part and N the moduli part. Then the
coefficients of 𝐵𝑆 and N𝑆′ belong to the derived set 𝐷 (Λ) for some model 𝑆′ where N descends.

The following lemma is used in the proof of Theorem 6.1 to control the coefficients of the discriminant
part of a log Calabi–Yau fibration over a curve.

Lemma 2.18. Let q be a positive integer. Let Λ be a set of nonnegative rational numbers. Suppose Λ
satisfies the DCC and has rational accumulation points. Then the set

Σ𝑞 �
{
𝑏+ − 𝑏

𝑚
≥ 0 | 𝑞𝑏+ ∈ Z>0, 𝑏

+ ≤ 1, 𝑚 ∈ Z>0, 𝑏 ∈ Λ

}
⊆ Q

satisfies the ascending chain condition and has rational accumulation points.

Proof. We first show that Σ𝑞 satisfies the ascending chain condition. Suppose in Σ𝑞 we can find an
increasing sequence

𝑏+1 − 𝑏1

𝑚1
<

𝑏+2 − 𝑏2

𝑚2
< · · · <

𝑏+𝑘 − 𝑏𝑘

𝑚𝑘
< · · ·

Since 𝑏+𝑘 ∈ {𝑖/𝑞 : 0 ≤ 𝑖 ≤ 𝑞} has only finitely many choices, we may assume, by passing to a
subsequence, that all 𝑏+𝑘 are the same and equal to the number 𝑏+. Furthermore, note that

𝑚𝑘 <
𝑚1(𝑏

+
𝑘 − 𝑏𝑘 )

𝑏+1 − 𝑏1
≤

𝑚1
𝑏+ − 𝑏1

.
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The second inequality holds as 1 ≥ 𝑏+𝑘 ≥ 𝑏+𝑘 − 𝑏𝑘 . Hence, the sequence 𝑚𝑘 is bounded above. Thus, by
passing to a subsequence we may assume that 𝑚𝑘 = 𝑚 for all k. Now, we obtain a decreasing sequence

𝑏1 > 𝑏2 > · · · > 𝑏𝑘 > · · · ,

which violates the descending chain condition of Λ. Thus, Σ𝑞 satisfies the ascending chain condition.
Let 𝑎 ≠ 0 be an accumulation point of Σ𝑞 . Since Σ𝑞 satisfies the ascending chain condition, we may

find a sequence

𝑏+1 − 𝑏1

𝑚1
≥

𝑏+2 − 𝑏2

𝑚2
≥ · · · ≥

𝑏+𝑘 − 𝑏𝑘

𝑚𝑘
≥ · · ·

whose limit is a. We may assume that 𝑏+𝑘 = 𝑏+ for all k. Then

𝑚𝑘 ≤
𝑏+𝑘 − 𝑏𝑘

𝑎
≤

1
𝑎
.

The second inequality holds as 1 ≥ 𝑏+𝑘 ≥ 𝑏+𝑘 −𝑏𝑘 . Hence, the sequence 𝑚𝑘 is bounded above. By passing
to a subsequence, we may assume that 𝑚𝑘 = 𝑚 for all k. Since Λ has rational accumulation points,

𝑎 = lim
𝑘→∞

𝑏+ − 𝑏𝑘

𝑚
=

𝑏+

𝑚
−

1
𝑚

lim
𝑘→∞

𝑏𝑘 ∈ Q,

as desired. �

2.6. Coregularity of pairs

In this subsection, we define the coregularity of a generalized pair and prove some of its properties.
Definition 2.19. Let (𝑋, 𝐵,M) be a generalized log canonical pair. Let 𝑓 : 𝑌 → 𝑋 be a generalized dlt
modification, and write

𝐾𝑌 + 𝐵𝑌 + M𝑌 = 𝑓 ∗(𝐾𝑋 + 𝐵 + M𝑋 ).

Let

�𝐵𝑌  = 𝐸1 + 𝐸2 + · · · + 𝐸𝑟

be a simple normal crossing divisor on Y.
The dual complex D(𝑌, 𝐵𝑌 + M𝑌 ) is a simplicial complex constructed as follows:

◦ For every 1 ≤ 𝑖 ≤ 𝑟 , there is a vertex 𝑣𝑖 in D(𝑌, 𝐵𝑌 + M𝑌 ) corresponding to the divisor 𝐸𝑖 . For
every subset 𝐼 ⊆ {1, 2, . . . , 𝑟} and every irreducible component Z of

⋂
𝑖∈𝐼 𝐸𝑖 , there is a simplex 𝑣𝑍

of dimension #𝐼 − 1 corresponding to Z;
◦ For every 𝐼 ⊆ {1, 2, . . . , 𝑟} and 𝑗 ∈ 𝐼, there is a gluing map constructed as follows. Let 𝑍 ⊆

⋂
𝑖∈𝐼 𝐸𝑖

be any irreducible component. Let W be the unique component of
⋂

𝑖∈𝐼\{ 𝑗 } 𝐸𝑖 containing Z. Them,
the gluing map is the inclusion of 𝑣𝑊 into 𝑣𝑍 as the face of 𝑣𝑍 that does not contain the vertex 𝑣𝑖 .

Define the dimension of D(𝑌, 𝐵𝑌 + M𝑌 ) to be the smallest dimension of the maximal simplex, with
respect to the inclusion, of D(𝑌, 𝐵𝑌 + M𝑌 ). When D(𝑌, 𝐵𝑌 + M𝑌 ) = ∅, set its dimension to be −1.

The dual complex D(𝑌, 𝐵𝑌 ,M𝑌 ) depends on the dlt modification Y. However, its PL-
homeomorphism type is independent of the dlt modification (see, e.g., [16, Theorem 1.6]).

Define the dual complex D(𝑋, 𝐵,M) associated to the generalized pair (𝑋, 𝐵,M) as the homeomor-
phism type of the complex D(𝑌, 𝐵𝑌 + M𝑌 ). Thus, for any dlt modification we have

dimD(𝑋, 𝐵,M) = dimD(𝑌, 𝐵𝑌 ,M𝑌 ).

When M = 0, we write D(𝑋, 𝐵) instead of D(𝑋, 𝐵, 0) for simplicity.
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Definition 2.20. Let (𝑋, 𝐵,M) be a generalized log canonical pair over Z. We define its coregularity
to be

coreg(𝑋, 𝐵,M) � dim 𝑋 − 1 − dimD(𝑋, 𝐵,M).

Definition 2.21. Let (𝑋, 𝐵,M) be a generalized log canonical pair over Z. We define the absolute
coregularity over Z of (𝑋, 𝐵,M), denoted by ˆcoreg(𝑋/𝑍, 𝐵,M), as follows:
◦ if (𝑋, 𝐵+,M) is not a generalized log Calabi–Yau pair over Z for every divisor 𝐵+ ≥ 𝐵, we set

ˆcoreg(𝑋/𝑍, 𝐵,M) to be ∞;
◦ otherwise, we set ˆcoreg(𝑋/𝑍, 𝐵,M) to be the smallest value of coreg(𝑋, 𝐵+,M), over all divisors

𝐵+ ≥ 𝐵 for which (𝑋, 𝐵+,M) is generalized log Calabi–Yau over Z.
Let 𝑧 ∈ 𝑍 be a point. We define the absolute coregularity of (𝑋, 𝐵,M) over 𝑧 ∈ 𝑍 , denoted by

ˆcoreg𝑧 (𝑋, 𝐵,M) to be the minimum of ˆcoreg(𝜋−1 (𝑈)/𝑈, 𝐵,M) where U runs over all neighborhoods
of 𝑧 ∈ 𝑍 .

By definition, we have that

ˆcoreg𝑧 (𝑋, 𝐵,M) ∈ {0, . . . , dim 𝑋,∞}.

If 𝑋 → 𝑍 is the structure morphism of X and coreg(𝑋, 𝐵,M) = dim 𝑋 , then we say that (𝑋, 𝐵,M) is
an exceptional generalized pair.

By the negativity lemma, the coregularity is preserved under certain MMP.
Lemma 2.22. Let (𝑋, 𝐵,M) be a generalized log canonical pair over Z. Let 𝑧 ∈ 𝑍 be a point. Suppose
𝑓 : 𝑋 � 𝑌 is a (𝐾𝑋 + 𝐵 + M𝑋 )-nonnegative birational contraction over Z. Write 𝐵𝑌 = 𝑓∗𝐵. Then

ˆcoreg𝑧 (𝑌, 𝐵𝑌 ,M) = ˆcoreg𝑧 (𝑋, 𝐵,M).

Proof. Up to shrinking Z around z, we can find a generalized log Calabi–Yau pair (𝑋, 𝐵 + Γ,M) over
Z that computes the absolute coregularity of (𝑋, 𝐵,M) over z. Let Γ𝑌 = 𝑓∗Γ. Since (𝑋, 𝐵 + Γ,M) is
generalized log Calabi–Yau over Z, we conclude that (𝑌, 𝐵𝑌 + Γ𝑌 ,M) is generalized log canonical.
As (𝑋, 𝐵 + Γ,M) and (𝑌, 𝐵𝑌 + Γ𝑌 ,M) are crepant equivalent, we conclude that they have the same
coregularity. Hence, we deduce that

ˆcoreg𝑧 (𝑌, 𝐵𝑌 ,M) ≤ ˆcoreg𝑧 (𝑋, 𝐵,M).

On the other hand, up to shrinking Z around z, we can find an effective divisor 𝐷𝑌 on Y that computes
the absolute coregularity of (𝑌, 𝐵𝑌 ,M) over z. Let 𝑝 : 𝑊 → 𝑋 and 𝑞 : 𝑊 → 𝑌 be a common resolution.
Write

𝐾𝑋 + 𝐵 + 𝐷 + M𝑋 = 𝑞∗𝑝
∗(𝐾𝑌 + 𝐵𝑌 + 𝐷𝑌 + M𝑌 ).

By the negativity lemma, we know that D is an effective divisor. Hence, (𝑋, 𝐵 + 𝐷,M) is a generalized
log Calabi–Yau pair over Z. As above, we conclude that the absolute coregularity of (𝑋, 𝐵,M) over
𝑧 ∈ 𝑍 is at most the absolute coregularity of (𝑌, 𝐵𝑌 ,M) over 𝑧 ∈ 𝑍 . This finishes the proof. �

The following lemma states the coregularity behaves well under adjunction for generalized log
Calabi–Yau pairs.
Lemma 2.23. Let (𝑋, 𝐵,M) be a generalized log Calabi–Yau pair over Z. Let 𝑧 ∈ 𝑍 be a point. Let S be
the normalization of a component of �𝐵 whose image on Z contains z. Let 𝐵𝑆 and N be the boundary
and moduli parts defined by generalized adjunction, so that (𝐾𝑋 + 𝐵 + M𝑋 ) |𝑆 ∼ 𝐾𝑆 + 𝐵𝑆 + N𝑆 . Then,
we have that

coreg(𝑆, 𝐵𝑆 ,N) = coreg(𝑋, 𝐵,M).

holds after possibly shrinking around 𝑧 ∈ 𝑍 .
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Proof. By passing to a generalized dlt modification, we may assume that both generalized pairs
(𝑋, 𝐵,M) and (𝑆, 𝐵𝑆 ,N) are generalized dlt. Since any minimal generalized log canonical center of
(𝑆, 𝐵𝑆 ,N) is a minimal generalized log canonical center of (𝑋, 𝐵,M), we have that coreg(𝑆, 𝐵𝑆 ,N) ≥

coreg(𝑋, 𝐵,M). On the other hand, let W be a minimal generalized log canonical center of (𝑋, 𝐵,M)

whose image on Z contains z. By [16, Theorem 1.4], (𝑆, 𝐵𝑆 ,N) admits a generalized log canoni-
cal center 𝑊𝑆 that is P1-linked to W, thus dim𝑊𝑆 = dim𝑊 . This implies that coreg(𝑋, 𝐵,M) ≥

coreg(𝑆, 𝐵𝑆 ,N). �

See [3, §3] for the construction of generalized adjunction. By altering the pairs, we can get the same
result for pairs with nef anticanonical class.

Lemma 2.24. Let (𝑋, 𝐵,M) be a generalized log canonical pair over Z. Assume that −(𝐾𝑋 + 𝐵 + M𝑋 )

nef over Z. Let S be the normalization of a component of �𝐵. Let 𝐵𝑆 and N be the boundary and moduli
parts defined by generalized adjunction so that (𝐾𝑋 + 𝐵 + M𝑋 ) |𝑆 ∼ 𝐾𝑆 + 𝐵𝑆 + N𝑆 . Then, we have that

coreg(𝑆, 𝐵𝑆 ,N) = coreg(𝑋, 𝐵,M).

Proof. Define 𝑃 � −(𝐾𝑋 + 𝐵 + M𝑋 ) and let P denote its b-Cartier closure. Then, P is a b-nef Q-
Cartier divisor. We can apply Lemma 2.23 to the generalized log Calabi–Yau pair (𝑋, 𝐵,M + P).
Therefore, coreg(𝑆, 𝐵𝑆 ,N + P|𝑆) = coreg(𝑋, 𝐵,M + P). Since P descends on S, we conclude that
coreg(𝑆, 𝐵𝑆 ,N + P|𝑆) = coreg(𝑆, 𝐵𝑆 ,N). Hence, coreg(𝑆, 𝐵𝑆 ,N) = coreg(𝑋, 𝐵,M). �

The following lemma will be used to cut down the dimension of the base Z in a fibration 𝑋 → 𝑍 .

Lemma 2.25. Let (𝑋, 𝐵) be a log canonical pair over Z and 𝜋 : 𝑋 → 𝑍 be a fibration with dim 𝑍 ≥ 2.
Suppose

◦ the pair (𝑋, 𝐵) is log Calabi–Yau over Z;
◦ 𝜙 is of Fano type over an open set U of Z;
◦ every log canonical center of (𝑋, 𝐵) dominates Z; and
◦ the coregularity of (𝑋, 𝐵) is at most c.

Let H be a general hyperplane section of Z and G be the pull-back of H to X. Write

(𝐾𝑋 + 𝐵 + 𝐺) |𝐺 = 𝐾𝐺 + 𝐵𝐺 .

Then we have

◦ the pair (𝐺, 𝐵𝐺) is log canonical;
◦ the pair (𝐺, 𝐵𝐺) is log Calabi–Yau over H;
◦ the induced map 𝐺 → 𝐻 is of Fano type over 𝑈 ∩ 𝐻;
◦ every log canonical center of (𝐺, 𝐵𝐺) dominates H; and
◦ the coregularity of (𝐺, 𝐵𝐺) is at most c.

Furthermore, let 𝐵𝑍 and 𝐵𝐻 denote the discriminant parts of the adjunction for (𝑋, 𝐵) over Z and
(𝐺, 𝐵𝐺) over H, respectively. Let D be a prime divisor on Z and C a component of 𝐷 ∩ 𝐻. Then

coeff𝐷 (𝐵𝑍 ) = coeff𝐶 (𝐵𝐻 ).

Proof. We follow the proof of [2, Lemma 3.2].
Since G is the pull-back of a general hyperplane section on Z, (𝑋, 𝐵 + 𝐺) is log canonical. Thus, by

adjunction, (𝐺, 𝐵𝐺) is log canonical and log Calabi–Yau over H. Moreover, every log canonical center
of (𝐺, 𝐵𝐺) is a component of the intersection of a log canonical center of (𝑋, 𝐵 +𝐺) and G, and hence
must dominate H. By 2.23, we have an equality

coreg(𝐺, 𝐵𝐺) = coreg(𝑋, 𝐵) ≤ 𝑐.
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Denote the map 𝐺 → 𝐻 by 𝜓. Let t be the log canonical threshold of 𝜋∗𝐷 with respect to (𝑋, 𝐵) over
the generic point of D. Then there is a non-klt center W of (𝑋, 𝐵 + 𝑡𝜋∗𝐷) which dominates D and the
pair (𝑋, 𝐵 + 𝑡𝜋∗𝐷) is lc over the generic point of D. Since G is a general pull-back, (𝑋, 𝐵 +𝐺 + 𝑡𝜋∗𝐷) is
also lc over the generic point of D. By inversion of adjunction [27], there exists a component of 𝐺 ∩𝑊
which is a non-klt center of (𝐺, 𝐵𝐺 + 𝑡𝜋∗𝐶) and (𝐺, 𝐵𝐺 + 𝑡𝜋∗𝐶) is lc near the generic point of C. Thus,
t is the log canonical threshold of 𝜓∗𝐶 with respect to (𝐺, 𝐵𝐺). In particular, we have

coeff𝐷 (𝐵𝑍 ) = 1 − 𝑡 = coeff𝐶 (𝐵𝐻 ). �

Definition 2.26. We say that a log canonical threshold 𝑡 = lct((𝑋, 𝐵); Γ) has coregularity c if
coreg(𝑋, 𝐵 + 𝑡Γ) = 𝑐 and the support of Γ contains the image on X of a c-dimensional log canonical
center on a dlt modification.

2.7. Kollár–Xu models for log Calabi–Yau pairs

In this subsection, we introduce the concept of Kollár–Xu models. Using a theorem due to Filipazzi and
Svaldi, we conclude that every generalized log Calabi–Yau pair admits a Kollár–Xu model.

Definition 2.27. Let (𝑋, 𝐵,M) be a projective generalized log Calabi–Yau pair. We say that (𝑋, 𝐵,M)

is a Kollár–Xu generalized pair if there exists a projective contraction 𝜋 : 𝑋 → 𝑍 for which the following
conditions are satisfied:

(1) the generalized pair (𝑋, 𝐵,M) is generalized dlt;
(2) every generalized log canonical center of (𝑋, 𝐵,M) dominates Z; and
(3) the divisor �𝐵 fully supports a 𝜋-big and 𝜋-semiample divisor.

In particular, the morphism 𝜋 : 𝑌 → 𝑍 is of Fano type.
Let (𝑋, 𝐵,M) be a generalized log Calabi–Yau pair. Let 𝜋 : 𝑌 � 𝑋 be a birational map. Assume that

𝜋 only extracts log canonical places of (𝑋, 𝐵,M) and is an isomorphism over 𝑋 \Supp�𝐵. If (𝑌, 𝐵𝑌 ,M)

is a Kollár–Xu generalized pair, then we say that 𝑌 � 𝑋 is a Kollár–Xu model for (𝑋, 𝐵,M). We may
also say that (𝑌, 𝐵𝑌 ,M), together with 𝜋, defines a Kollár–Xu model for (𝑋, 𝐵,M).

The following theorem is a generalization of [31, Theorem 49] to the context of generalized pairs.
We refer the reader to [16, Theorem 4.2]. It gives a first approximation for the existence of Kollár–Xu
models in the following theorem.

Theorem 2.28. Let (𝑋, 𝐵,M) be a projective Q-factorial generalized dlt log Calabi–Yau pair. Then,
there exists a crepant birational map 𝜙 : 𝑋 � 𝑋 , a generalized pair (𝑋, 𝐵,M) and a morphism
𝜋 : 𝑋 → 𝑍 such that:

(1) �𝐵 fully supports a 𝜋-ample divisor;
(2) every generalized log canonical center of (𝑋, 𝐵,M) dominates Z;
(3) 𝐸 ⊂ Supp�𝐵 for every 𝜙−1-exceptional divisor 𝐸 ⊂ 𝑋; and
(4) 𝜙−1 is an isomorphism over 𝑋 \ Supp�𝐵.

We observe that the model 𝑋 in Theorem 2.28 is not necessarily Q-factorial. However, using
Q-factorial dlt modifications, we construct a Kollár–Xu model.

Theorem 2.29. Let (𝑋, 𝐵,M) be a projective generalized log Calabi–Yau pair. Then, it admits a Kollár–
Xu model 𝑌 � 𝑋 . Furthermore, if (𝑋, 𝐵,M) has coregularity c, then so does (𝑌, 𝐵𝑌 ,M).

In the context of Theorem 2.29, if 𝑐 = 0, then 𝑍 = Spec(K) and Y is a variety of Fano type.
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Proof. Let (𝑋, 𝐵,M) be a generalized pair as in the statement. Then, we first consider a Q-factorial
generalized dlt modification and then apply Theorem 2.28 to such modification. Call (𝑋, 𝐵,M) the re-
sulting model and 𝜋 : 𝑋 → 𝑍 the morphism claimed in Theorem 2.28. Since (𝑋, 𝐵,M) has coregularity
c, then so does (𝑋, 𝐵,M). In particular, (𝑋, 𝐵,M) has a c-dimensional generalized log canonical cen-
ter. Then, by (2) in Theorem 2.28, it follows that Z has dimension at most c. By (1) in Theorem 2.28,
𝐵 fully supports a 𝜋-ample divisor, which we will denote by 𝐻. Now, let (𝑌, 𝐵𝑌 ,M) be a Q-factorial
generalized dlt modification of (𝑋, 𝐵,M), with morphism 𝑝 : 𝑌 → 𝑋 . We denote by 𝜋𝑌 the induced
morphism 𝜋𝑌 : 𝑌 → 𝑍 . Note that every generalized log canonical center of (𝑌, 𝐵𝑌 ,M) dominates Z.
Then, (2) in Definition 2.27 holds. By [16, Remark 4.3], we have Nklt(𝑋, 𝐵,M) = Supp�𝐵. Since p
only extracts generalized log canonical places, it then follows that every p-exceptional divisor has posi-
tive coefficients in 𝐻𝑌 � 𝜋∗𝐻 and that Supp 𝐻𝑌 = Supp�𝐵𝑌 . Then, it follows that �𝐵𝑌  fully supports
a 𝜋𝑌 -big and 𝜋𝑌 -semiample divisor. Thus, (3) in Definition 2.27 holds. The statements (1) and (3) in
Definition 2.27 hold by construction. We conclude that (𝑌, 𝐵𝑌 ,M), together with 𝜋𝑌 , are a Kollár–Xu
model of (𝑋, 𝐵,M). Lastly, (𝑌, 𝐵𝑌 ,M) has coregularity c, since it is crepant to a generalized pair of
coregularity c. �

2.8. Index of generalized klt pairs

In this subsection, we reduce the index conjecture for generalized klt pairs to the standard index
conjecture.

Lemma 2.30. Let d and p be two positive integers. Let Λ be a set of rational numbers satisfying
the descending chain condition. Assume Conjecture 1(𝑑) holds. Then, there exists a positive integer
𝐼 � 𝐼 (Λ, 𝑑, 𝑝), satisfying the following. Let (𝑋, 𝐵,M) be a generalized klt Calabi–Yau pair for
which:

◦ the variety X has dimension d;
◦ the coefficients of B belong to Λ;
◦ the divisor 𝑝M is Cartier where it descends.

Then, we have that 𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 0.

Proof. By the global ascending chain condition (ACC) [7, Theorem 1.6], we may assume that Λ is a
finite set of rational numbers. The statement is clear in dimension 1. We proceed by induction on the
dimension. If M = 0, then the statement follows from the conjecture. Since (𝑋, 𝐵,M) is generalized
klt, it admits a small Q-factorialization. Therefore, we may assume that X is Q-factorial. By the ACC
for generalized log canonical thresholds, we may assume (𝑋, 𝐵,M) is 𝜖-log canonical for some 𝜖 that
only depends on d, p and Λ. Then, it follows that X is itself 𝜖-log canonical. We run a 𝐾𝑋 -MMP which
terminates with a Mori fiber space 𝑋 � 𝑋 ′ → 𝑍 . If Z is zero-dimensional, then 𝑋 ′ belongs to a
bounded family by [4]. By [14, Theorem 1.2] (𝐾𝑋 ′ + 𝐵′ +M𝑋 ′ ) admits an I-complement for some I that
only depends on Λ, 𝑑 and p. Since 𝐾𝑋 ′ + 𝐵′ + M𝑋 ′ ∼Q 0, we conclude that 𝐼 (𝐾𝑋 ′ + 𝐵′ + M𝑋 ′ ) ∼ 0, so
the statement follows for X as well. Now, assume that Z is positive-dimensional. We write 𝜋′ : 𝑋 ′ → 𝑍
for the corresponding contraction. By [14, Lemma 5.4], we can write

𝑞(𝐾𝑋 ′ + 𝐵′ + M𝑋 ′ ) ∼ 𝑞𝜋∗(𝐾𝑍 + 𝐵𝑍 + N𝑍 ),

where the coefficients of 𝐵𝑍 belong to Ω which satisfies the DCC and only depends on Λ, 𝑑 and p.
Furthermore, q only depends on Λ, 𝑑 and p and 𝑞N is Cartier where it descends. The generalized pair
(𝑍, 𝐵𝑍 ,N) is generalized log canonical since it comes from the generalized canonical bundle formula
[11, Theorem 1.4]. By induction on the dimension, we know that 𝐼0(𝐾𝑍 +𝐵𝑍 +N𝑍 ) ∼ 0 for some 𝐼0 that
only depends on Λ, 𝑑 and p. Thus, we conclude that 𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 0, where 𝐼 = lcm(𝑞, 𝐼0). �
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2.9. Lifting sections using fibrations

In this subsection, we give some lemmata regarding the lifting of sections using fibrations.

Theorem 2.31. Let 𝜆, 𝑑 and c be nonnegative integers. Assume that Theorem 6(𝑑 − 1, 𝑐) holds, and
let 𝐼 � 𝐼 (𝐷𝜆, 𝑑 − 1, 𝑐, 𝜆) be the integer provided by this theorem. Let (𝑋, 𝐵,M) be a d-dimensional
rationally connected generalized log Calabi–Yau pair. Assume that the following conditions hold:

◦ X is Q-factorial and (𝑋, 𝐵,M) is generalized dlt;
◦ there is a fibration 𝑋 → 𝑊 , which is a (𝐾𝑋 + �𝐵)-Mori fiber space;
◦ a component 𝑆 ⊂ Supp�𝐵 is rationally connected and ample over W;
◦ the coefficients of B belong to 𝐷𝜆;
◦ we have that 𝜆M is b-Cartier; and
◦ the generalized pair (𝑋, 𝐵,M) has coregularity c.

Then, we have that 𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 0.

Proof. Let (𝑋, 𝐵,M), S, 𝑓 : 𝑋 → 𝑊 and 𝐼 � 𝐼 (𝐷𝜆, 𝑑 − 1, 𝑐, 𝜆) be as in the statement. First, we show
that we can apply the inductive hypothesis to S.

Since (𝑋, �𝐵) is dlt, S is normal. Furthermore, we have Nklt(𝑋, 𝑆) = 𝑆. Since −(𝐾𝑋 +𝑆) is f -ample,
by the connectedness principle [16], it follows that 𝑆 → 𝑊 has connected fibers. Now, let (𝑆, 𝐵𝑆 ,N) be
the generalized pair induced on S by generalized divisorial adjunction. By Lemma 2.23, (𝑆, 𝐵𝑆 ,N) has
coregularity c. Furthermore, by Lemma 2.17 and Lemma 2.16, it satisfies the assumptions of Theorem
6(𝑑 − 1, 𝑐) with constant I. Thus, we have

𝐼 (𝐾𝑆 + 𝐵𝑆 + N𝑆) ∼ 0. (2.1)

By [10, Theorem 3.1], the coefficients of 𝐵𝑆 belong to a finite set only depending on 𝜆 and c. In
particular, they are divisible by I, as so are the coefficients of N𝑆 . Then, these coefficients control the
coefficients of Diff𝑆 (0), as we explain in what follows. By [29, 3.35], along the codimension 2 points
of X contained in S, X has cyclic singularities.

Then, given a prime divisor P in S, an étale local neighbourhood of a general point 𝑝 ∈ 𝑃 is
isomorphic to

(𝑝 ∈ (𝑋, 𝐵,M)) � (0 ∈ (A2 = (𝑥, 𝑦), (𝑥 = 0) + 𝑐(𝑦 = 0)))/(Z/𝑚Z) × Adim 𝑋−2,

where 𝑍 � (A2 = (𝑥, 𝑦))/(Z/𝑚Z), 𝑆 = (𝑥 = 0) and 𝑆′ = (𝑦 = 0). Since the class group of Z is generated
by 𝑆′, there exists an integer 𝜇 such that

𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 𝜇𝑆′. (2.2)

By adjunction, 𝑆′ |𝑆 ∼Q
1
𝑚 {0}. We also have that 𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) |𝑆 ∼ 0, as the denominators of the

coefficients of 𝐵𝑆 and N𝑆 divide I and hence it is a Cartier divisor on a smooth germ.
Then, we can write

0 ∼ 𝐼 (𝐾𝑋 + 𝐵 + 𝑀) |𝑆 ∼ 𝜇𝑆′ |𝑆 ∼
𝜇

𝑚
{0}.

We conclude that m divides 𝜇. In particular, we have that 𝜇𝑆 is a Cartier divisor, as the Cartier index
of any Weil divisor of X through {0} divides m. By the linear equivalence (2.2), we conclude that the
divisor 𝐼 (𝐾𝑋 + 𝐵 + 𝑀) is Cartier at the generic point of P. Note that this argument is independent
of P, so we conclude that 𝐼 (𝐾𝑋 + 𝐵 + 𝑀) is Cartier at the generic point of every divisor on S. Thus,
𝐼 (𝐾𝑋 + 𝐵 + 𝑀) is Cartier along a set U that contains the generic point of every divisor of S.

Then, by [3, 2.41 and Lemma 2.42], we have the following short exact sequence

0 → O𝑋 (𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) − 𝑆) → O𝑋 (𝐼 (𝐾𝑋 + 𝐵 + M𝑋 )) → O𝑆 (𝐼 (𝐾𝑆 + 𝐵𝑆 + N𝑆)) → 0. (2.3)
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Since 𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) − 𝑆 ∼Q, 𝑓 −𝑆, the divisor −𝑆 is f -ample and dim𝑊 < dim 𝑋 , we have

𝑓∗O𝑋 (𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) − 𝑆) = 0.

Similarly, we write

𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) − 𝑆 ∼Q, 𝑓 −𝑆 ∼Q, 𝑓 𝐾𝑋 + (𝐵 − 𝑆 + M𝑋 ).

Note that X is klt and 𝐵−𝑆+M𝑋 = 𝐵<1+M𝑋 + (𝐵=1−𝑆) is f -ample since f is a Mori fiber space and the
divisor 𝐵<1 + M𝑋 is f -ample. Thus, by the relative version of Kawamata–Viehweg vanishing, we have

𝑅1 𝑓∗O𝑋 (𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) − 𝑆) = 0.

Therefore, by pushing forward (2.3) via f, we obtain

𝑓∗O𝑋 (𝐼 (𝐾𝑋 + 𝐵 + M𝑋 )) � 𝑓∗O𝑆 (𝐼 (𝐾𝑆 + 𝐵𝑆 + N𝑆)).

Now, taking global sections, we have

𝐻0(𝑋,O𝑋 (𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ))) = 𝐻0(𝑆,O𝑆 (𝐼 (𝐾𝑆 + 𝐵𝑆 + N𝑆))) = 𝐻0(𝑆,O𝑆) ≠ 0. (2.4)

By Lemma [13, Lemma 3.1], (2.4) implies that 𝐼 (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 0. �

Theorem 2.32. Let 𝜆, 𝑑 and c be nonnegative integers. Assume that Theorem 6(𝑑 − 1, 𝑐) holds, and let
𝐼 � 𝐼 (𝐷𝜆, 𝑑 − 1, 𝑐, 0) be the integer provided by this theorem. Assume that I is divisible by 2𝜆. Let
(𝑋, 𝐵) be a d-dimensional log Calabi–Yau pair. Assume that the following conditions hold:

◦ X is Q-factorial and klt;
◦ there is a fibration 𝑋 → 𝑊;
◦ S is a prime component of �𝐵 that is ample over W;
◦ (𝑋, 𝐵 − 𝑆) is dlt;
◦ the morphism 𝑆 → 𝑊 does not have connected fibers;
◦ the coefficients of B belong to 𝐷𝜆; and
◦ the pair (𝑋, 𝐵) has coregularity c.

Then, we have that 𝐼 (𝐾𝑋 + 𝐵) ∼ 0.

Proof. Let (𝑋, 𝐵), S, 𝑓 : 𝑋 → 𝑊 and 𝐼 � 𝐼 (𝐷𝜆, 𝑑 − 1, 𝑐, 𝜆) be as in the statement. We will proceed in
several steps.

Step 1: In this step, we observe that dim 𝑋 − dim𝑊 = 1, f is generically a P1-fibration and 𝐵hor = 𝑆.

Since (𝑋, 𝐵) is log canonical and X is Q-factorial, then (𝑋, 𝑆) is log canonical. By considering a
general fiber of f, the restriction of S induces a disconnected ample divisor. Therefore, by [25, Exercise
III.11.3], it follows that the general fiber of f is a curve. By the log Calabi–Yau condition and the fact
that 0 ≠ 𝐵hor ≥ 𝑆, it follows that f is generically a P1-fibration. Since 𝑆 → 𝑊 does not have connected
fibers and deg𝐾P1 = −2, it follows that S is the only component of Supp 𝐵 that dominates W, that is, we
have 𝐵hor = 𝑆. In particular, we may find a nonempty open subset 𝑈 ⊆ 𝑊 such that 𝐾𝑋 + 𝑆 ∼Q 0/𝑈.

Step 2: In this step, we show that dim𝑊 > 0.

By Step 1, 𝑋 → 𝑊 is generically a P1-fibration, and S determines two distinct points on the geometric
generic fiber of f. Thus, if dim𝑊 = 0, it would follow that (𝑋, 𝐵) � (P1, {0} + {∞}), with S identified
with {0} + {∞}. Since we assumed that S is a prime divisor, this leads to the sought contradiction.
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Step 3: In this step, we show that we may replace X birationally so that (𝑋, 𝑆) is plt, 𝐾𝑋 + 𝑆 ∼Q 0/𝑊
and f is a Mori fiber space.

Since (𝑋, 𝐵) is log canonical and X is Q-factorial, then (𝑋, 𝑆) is log canonical. Let 𝑋 ′ be a Q-
factorial dlt modification of (𝑋, 𝑆), and let 𝑆′ denote the strict transform of S. In particular, (𝑋 ′, 𝑆′) is
plt. By [23, Theorem 1.1], (𝑋 ′, 𝑆′) has a relatively good minimal model over W, which we denote by
( �̃�, 𝑆). Since 𝑆′ dominates W and dim 𝑋 − dim𝑊 = 1, 𝑆′ is relatively big over W. Therefore, 𝑆′ cannot
be contracted on �̃� , and therefore 𝑆 is a divisor. Since (𝑋 ′, 𝑆′) is plt, then so is ( �̃�, 𝑆). We denote by
�̃� the relatively ample model, which is birational to W. Now, we run a 𝐾�̃� -MMP with scaling over �̃� ,
which terminates with a Mori fiber space 𝑓 : �̂� → �̂� over �̃� . Since dim 𝑋 − dim𝑊 = 1, it follows that
�̂� → �̃� is birational. As before, since 𝑆 dominates �̃� and is relatively big over �̃� as dim 𝑋−dim𝑊 = 1,
it follows that 𝑆 cannot be contracted on �̂� . Let 𝑆 be its strict transform on �̂� . Lastly, as 𝐾�̃� + 𝑆 ∼Q 0/�̃�
and 𝑆 is the only log canonical place of ( �̃�, 𝑆), 𝑆 is the only log canonical place of ( �̂�, 𝑆). But then,
since 𝑆 is a divisor on �̂� , it follows that ( �̂�, 𝑆) is plt. In particular, 𝑆 is normal. Thus, by [13, Corollary
3.3], up to replacing X, S and Z with �̂� , 𝑆 and �̂� , respectively, in the following of the proof, we may
further assume that (𝑋, 𝑆) is plt, 𝐾𝑋 + 𝑆 ∼Q 0/𝑊 and f is a Mori fiber space.

Step 4: In this step, we introduce a suitable pair structure on the base W.

Let (𝑆, 𝐵𝑆) denote the pair induced by adjunction from (𝑋, 𝐵) to S. By Lemma 2.23, (𝑆, 𝐵𝑆) has
coregularity c. Then, by Lemma 2.17, the inductive hypothesis applies to (𝑆, 𝐵𝑆) for the same value
of I. We also let (𝑆,Diff𝑆 (0)) be the pair structure induced from (𝑋, 𝑆) to S. By Step 1, 𝑓𝑆 : 𝑆 → 𝑊
is generically 2:1 and hence Galois. By [29, Proposition 4.37.(3)], (𝑆,Diff𝑆 (0)) is invariant under the
rational Galois involution. Then, since 𝐾𝑋 + 𝑆 ∼Q 0/𝑊 and f is a Mori fiber space, it follows that 𝐵 − 𝑆
is the pull-back of a Q-divisor on W. Then, it follows that also (𝑆, 𝐵𝑆) is Galois invariant. Then, by
considering the Stein factorization of 𝑆 → 𝑊 and descending the pair structure thanks to the fact that
𝐾𝑆 +𝐵𝑆 ∼Q 0, it follows that we can induce a pair structure (𝑊, 𝐵𝑊 ) such that 𝑓 ∗𝑆 (𝐾𝑊 +𝐵𝑊 ) = 𝐾𝑆 +𝐵𝑆 .
Since (𝑆, 𝐵𝑆) has coregularity c, by [13, Proposition 3.11], then so does (𝑊, 𝐵𝑊 ). Furthermore, since
(𝑆, 𝐵𝑆) has coefficients in 𝐷𝜆, then so does (𝑊, 𝐵𝑊 ). Indeed, at the codimension 1 points of W where
𝑆 → 𝑊 is étale, we will have the same coefficients on 𝐵𝑊 and 𝐵𝑆 for the corresponding divisors. Then,
we can consider a prime divisor 𝑄 ⊂ 𝑊 such that 𝑆 → 𝑊 ramifies of order 2 at the generic point of Q.
Then, over the generic point of Q, by the Riemann–Hurwitz formula, we have

𝐾𝑆 + 𝑐𝑃 = 𝑓 ∗𝑆

(
𝐾𝑊 +

1
2
𝑄 +

𝑐

2
𝑄

)
,

where P is the unique prime divisor in S dominating Q, in other words coeff𝑃 (𝐵𝑆) = 𝑐 ∈ 𝐷𝜆 and
coeff𝑄 (𝐵𝑊 ) = 1+𝑐

2 . By the definition of 𝐷𝜆, we must have 𝑐 = 𝑚−1+𝑎𝜆−1

𝑚 for some 𝑚 ∈ Z>0 and
𝑎 ∈ Z≥0, and it follows that

1
2
+
𝑚 − 1 + 𝑎𝜆−1

𝑚
=

2𝑚 − 1 + 𝑎𝜆−1

2𝑚
∈ 𝐷𝜆.

Thus, by the inductive hypothesis, we have

𝐼 (𝐾𝑊 + 𝐵𝑊 ) ∼ 0. (2.5)

Step 5: In this step, we introduce a suitable generalized pair structure on W, and we compare it with
(𝑊, 𝐵𝑊 ).

By the canonical bundle formula, the lc-trivial fibration 𝑓 : (𝑋, 𝐵) → 𝑊 induces a generalized pair
structure (𝑊,Δ𝑊 ,N) on W. By [38, §7.5, (7.5.5)] and the fact that the generic fiber of 𝑓 : (𝑋, 𝐵) → 𝑊
is a conic with two points, we have
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𝐾𝑋 + 𝐵 ∼ 𝑓 ∗(𝐾𝑊 + Δ𝑊 + N𝑊 ). (2.6)

Furthermore, the representatives of the b-divisor N are determined up to Z-linear equivalence.
By [20, proof of Theorem 1.1], in an lc-trivial fibration (𝑌, Γ) → 𝐶, the total space of the fibration

and a minimal (with respect to inclusion) log canonical center Ξ dominating the base C induce the same
generalized pair on the base space. More precisely, they induce the same boundary divisor as Q-Weil
divisor and the same moduli divisor as Q-b-divisor class. Yet, this comparison is possible after the
base change induced by the Stein factorization of Ξ → 𝐶, as Ξ → 𝐶 may not have connected fibers.
We observe that the identification between the boundary divisors can also be obtained by inversion of
adjunction together with the connectedness principle.

In our situation, this implies that (𝑋, 𝐵) and (𝑆, 𝐵𝑆) induce the same generalized pair on W, up
to pull-back to the Stein factorization on 𝑆 → 𝑊 . In this case, S is generically a 2:1 cover of W.
Thus, it follows that (𝑊,Δ𝑊 ,N) and (𝑊, 𝐵𝑊 ) agree once pulled back to S. By construction, we have
𝑓 ′∗𝑆 (𝐾𝑊 + 𝐵𝑊 ) = 𝐾𝑆 + 𝐵𝑆 , and the moduli b-divisor is trivial. In turn, this implies that Δ𝑊 = 𝐵𝑊 and
𝑓 ∗𝑆 N𝑊 ∼ 0. As for the moduli b-divisor, we only claim Z-linear equivalence, as a representative of the
b-divisorial class can be replaced in the Z-linear equivalence class.

Let 𝑆′ denote the Stein factorization of 𝑆 → 𝑊 , with induced morphism 𝑓𝑆′ : 𝑆′ → 𝑊 . Then, 𝑓𝑆′ is
a finite Galois morphism of degree 2, 𝑓 ∗𝑆′N𝑊 ∼ 0. By construction, 𝑓 ∗𝑆′N𝑊 is Galois invariant since it
is the Q-Cartier pull-back of a Q-divisor on W via the finite morphism 𝑓𝑆′ . We observe that this implies
that 2N𝑊 is a Z-divisor and that 2 𝑓 ∗𝑆′N𝑊 is the integral pull-back of the integral divisor 2N𝑊 .

Now, let s be a trivializing section of 𝑓 ∗𝑆′N𝑊 , and let 𝜏 be the nontrivial element in the Galois group
of 𝑆′ → 𝑊 . By the invariance of 𝑓 ∗𝑆′N𝑊 , we have that 𝑓 ∗𝑆′N𝑊 + 𝜏∗ 𝑓 ∗𝑆′N𝑊 = 2 𝑓 ∗𝑆′N𝑊 . But then, 𝑠 ⊗ 𝜏∗𝑠
is a Galois invariant trivializing section of 2 𝑓 ∗𝑆′N𝑊 . Then, this section descends to W, thus implying
that

2N𝑊 ∼ 0. (2.7)

Step 6: In this step, we conclude the proof.

Combining the previous steps and using the fact that 2|𝐼, we have

𝐼 (𝐾𝑋 + 𝐵) ∼ 𝐼 𝑓 ∗(𝐾𝑊 + 𝐵𝑊 + N𝑊 )

∼ 𝐼 𝑓 ∗(𝐾𝑊 + 𝐵𝑊 ) + 𝐼 𝑓 ∗N𝑊

∼ 𝑓 ∗(𝐼 (𝐾𝑊 + 𝐵𝑊 )) + 𝑓 ∗𝐼N𝑊

∼ 𝑓 ∗0 + 𝑓 ∗0 ∼ 0,

where the first linear equivalence follows from Equation (2.6), the second one follows from the fact that
𝐾𝑊 + 𝐵𝑊 is Q-Cartier, the third one follows from the definition of pull-back of Q-divisors, while the
last line follows from Equations (2.5) and (2.7). This concludes the proof. �

3. Finite coefficients

In this section, we explain how to reduce the problem of boundedness of complements from pairs with
DCC coefficients to pairs with finite coefficients. First, we prove two lemmata that will be used in the
proof of the main proposition of this section.

Lemma 3.1. Let 𝜙 : 𝑋 → 𝑍 be a contraction from a projective Q-factorial variety X. Let (𝑋, 𝐵,M) be
a generalized dlt pair over Z. Assume (𝑋, 𝐵,M) is generalized log Calabi–Yau over Z. Assume there
is a component 𝑆 ⊆ �𝐵 that is vertical over Z. Then, there exists a birational contraction 𝑋 � 𝑋 ′

over Z
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(𝑋, 𝐵,M) ���������

𝜙
���

��
��

��
��

(𝑋 ′, 𝐵′,M)

𝜙′

�����
���

���
�

𝑍

satisfying the following conditions:

(i) the generalized pair (𝑋 ′, 𝐵′,M) is generalized log canonical;
(ii) the strict transform 𝑆′ of S in 𝑋 ′ is a divisorial generalized log canonical center of (𝑋 ′, 𝐵′,M);

(iii) we have that 𝜙′−1(𝜙(𝑆)) = 𝑆′ holds set-theoretically; and
(iv) the generalized pair obtained by adjunction of (𝑋 ′, 𝐵′,M) to 𝑆′ is generalized semilog canonical.

Proof. By [36, Lemma 3.5], we may run an MMP for (𝑋, 𝐵 − 𝑆,M) over Z with scaling of an ample
divisor A. By the negativity lemma, the divisor S is not contracted by this MMP. Furthermore, this
MMP is (𝐾𝑋 + 𝐵 +M𝑋 )-trivial. Hence, conditions (i) and (ii) hold for any model in this minimal model
program.

We argue that after finitely many steps condition (iii) holds. Let 𝑋𝑖 � 𝑋𝑖+1 be the i-th step of this
MMP and 𝜙𝑖 : 𝑋𝑖 → 𝑍 be the induced projective morphism. We let 𝜆𝑖 the positive real number for which
the birational map 𝑋𝑖 � 𝑋𝑖+1 is (𝐾𝑋𝑖 + 𝐵𝑖 − 𝑆𝑖 +M𝑋𝑖 + 𝜆𝑖𝐴𝑖)-trivial. Let 𝜆∞ = lim𝑖 𝜆𝑖 . If 𝜆∞ > 0, then
the previous MMP is also an MMP for (𝑋, 𝐵−𝑆+𝜆∞𝐴,M). By [36, Lemma 3.7], this is also an MMP for
a klt pair with big boundary over Z which must terminate by [6]. Let 𝑋 ′ be the model where this MMP
terminates. In 𝑋 ′, we have that −𝑆′ is nef over Z. So 𝑆′ must be the set-theoretic preimage of 𝜙′(𝑆′).

From now on, we assume that 𝜆∞ = 0. Let 𝑊1, . . . ,𝑊𝑘 be the irreducible components of 𝜙−1(𝜙(𝑆))
different than S. Note that every step of the MMP is S-positive. Thus, if the strict transform of any
component 𝑊 𝑗 is contained in the exceptional locus of 𝑋𝑖 � 𝑋𝑖+1, then the number of components
of 𝜙−1

𝑖 (𝜙(𝑆)) drops. Henceforth, it suffices to show that each such component is eventually contained
in the exceptional locus of a step of the MMP. Assume 𝜙(𝑊1) ⊆ 𝜙(𝑆) is maximal among the sets
𝜙(𝑊 𝑗 )’s with respect to the inclusion. Let 𝑧 ∈ 𝜙(𝑊1) be a general point. Up to reordering the 𝑊 𝑗 ’s,
since 𝑋 → 𝑍 has connected fibers, we may assume that 𝜙−1(𝑧) ∩𝑊1 ∩ 𝑆 is nonempty. Hence, for a
general point 𝑤 ∈ 𝜙−1(𝑧) ∩𝑊1, we can find a curve C such that 𝑤 ∈ 𝐶, 𝐶 � 𝑆, and C intersects S
nontrivially. In particular, we have that 𝐶 ⊆ Bs−(𝐾𝑋 + 𝐵 − 𝑆 + M𝑋/𝑍). In particular, since we have
𝑤 ∈ 𝐶, it follows that 𝑤 ∈ Bs−(𝐾𝑋 + 𝐵 − 𝑆 + M𝑋/𝑍). Since w is a general point in 𝜙−1(𝑧) ∩ 𝑊1,
we also get that 𝜙−1(𝑧) ∩ 𝑊1 ⊆ Bs−(𝐾𝑋 + 𝐵 − 𝑆 + M𝑋/𝑍). Since z is general, we conclude that
𝑊1 ⊂ Bs−(𝐾𝑋 + 𝐵 − 𝑆 + M𝑋/𝑍). For 𝜆1 > 0 small enough, we have that

𝑊1 ⊂ Bs(𝐾𝑋 + 𝐵 − 𝑆 + 𝜆1𝐴 + M𝑋/𝑍).

Since 𝜆∞ = 0, we conclude that for some i the birational map 𝑋 � 𝑋𝑖 is a minimal model for
(𝑋, 𝐵− 𝑆 +𝜆1𝐴,M/𝑍). In particular, 𝑊1 must be contained in the exceptional locus of 𝑋 � 𝑋𝑖 . Hence,
after finitely many steps of this MMP, condition (iii) is satisfied.

Let 𝑋 ′ be a model where condition (iii) holds. By construction, the generalized pair (𝑋 ′, 𝐵′,M) is
obtained by a partial run 𝑋 � 𝑋 ′ of the MMP for (𝑋, 𝐵 − 𝑆,M). In particular, (𝑋 ′, 𝐵′ − 𝑆′,M) is
generalized dlt and Q-factorial. Hence, (𝑋 ′, 𝐵′ − 𝜖 �𝐵′) is klt, where 0 < 𝜖 � 1. By [19, Example 2.6],
the pair obtained by adjunction of (𝑋 ′, 𝐵′ − 𝜖 �𝐵′ + 𝜖𝑆′) to 𝑆′ is semilog canonical. In turn, by letting
𝜖 → 0, it follows that the pair obtained by adjunction of (𝑋 ′, 𝐵′) to 𝑆′ is semilog canonical. Hence, the
generalized pair obtained by adjunction of (𝑋 ′, 𝐵′,M) to 𝑆′ is generalized semilog canonical. �

Lemma 3.2. Let c and p be nonnegative integers and Λ ⊂ Q>0 be a closed set satisfying the DCC. There
exists a finite subset R � R(𝑐, 𝑝,Λ) ⊆ Λ satisfying the following. Let (𝑋, 𝐵,M) be a generalized log
canonical pair over Z and 𝑋 → 𝑍 be a fibration for which the following conditions hold:

◦ the generalized pair (𝑋, 𝐵,M) is log Calabi–Yau over Z;
◦ the generalized pair (𝑋, 𝐵,M) has coregularity c;
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◦ 𝑝M is b-Cartier; and
◦ the coefficients of B belong to Λ.

Then, the coefficients of 𝐵hor belong to R.

Proof. Let (𝑋𝑖 , 𝐵𝑖 ,M𝑖) be a sequence of generalized pairs as in the statement and 𝜙𝑖 : 𝑋𝑖 → 𝑍𝑖 be the
corresponding contractions. Assume there exist prime divisors 𝑃𝑖 ⊂ 𝑋𝑖 for which 𝑑𝑖 � coeff𝑃𝑖 (𝐵𝑖)

is strictly increasing and 𝑃𝑖 dominates 𝑍𝑖 . Assume that some generalized log canonical center of
(𝑋𝑖 , 𝐵𝑖 ,M𝑖) is vertical over 𝑍𝑖 . We may replace (𝑋𝑖 , 𝐵𝑖 ,M𝑖) with a generalized dlt modification
and assume there is a component 𝑆𝑖 ⊆ �𝐵𝑖 that is vertical over 𝑍𝑖 . Furthermore, up to choosing a
different vertical component possibly dominating a different subset of 𝑍𝑖 , we may assume that there is
a generalized log canonical center of (𝑋𝑖 , 𝐵𝑖 ,M𝑖) dimension c contained in 𝑆𝑖 . By Lemma 3.1, up to
losing the dlt property for (𝑋𝑖 , 𝐵𝑖 ,M𝑖), we may assume that 𝑆𝑖 is the set-theoretic preimage of 𝜙. Let
𝑊𝑖 be the normalization of 𝑆𝑖 , and let 𝑊𝑖 → 𝑍𝑊𝑖 be the fibration obtained by the Stein factorization of
𝑊𝑖 → 𝜙𝑖 (𝑆𝑖). Let (𝑊𝑖 , 𝐵𝑖 ,N𝑖) be the generalized pair obtained by generalized adjunction of (𝑋𝑖 , 𝐵𝑖 ,M𝑖)

to𝑊𝑖 . Note that 𝑃𝑖 ∩𝑆𝑖 dominates 𝜙(𝑆𝑖). Hence, there is a component of 𝐵𝑊𝑖 with coefficient in 𝐷𝑑𝑖 (Λ)
which is horizontal over 𝑍𝑊𝑖 (see Lemma 2.17). Observe that the following conditions hold:

◦ the generalized pair (𝑊𝑖 , 𝐵𝑖 ,N𝑖) is log Calabi–Yau over 𝑍𝑊𝑖 ;
◦ the generalized pair (𝑊𝑖 , 𝐵𝑖 ,N𝑖) has coregularity c;
◦ 𝑝N𝑖 is b-Cartier;
◦ the coefficients of 𝐵𝑊𝑖 belong to 𝐷 (Λ); and
◦ there is a component 𝑄𝑖 of 𝐵𝑊𝑖 horizontal over 𝑍𝑖 whose coefficient belong to 𝐷𝑑𝑖 (Λ).

We replace (𝑋𝑖 , 𝐵𝑖 ,M𝑖) with (𝑊𝑖 , 𝐵𝑊𝑖 ,N𝑖) and 𝑃𝑖 with 𝑄𝑖 . After finitely many replacements, we may
assume that for every i the generalized log canonical centers of (𝑋𝑖 , 𝐵𝑖 ,M𝑖) are horizontal over 𝑍𝑖 . [10,
Theorem 2] applied to the general fiber of 𝑋𝑖 → 𝑍𝑖 implies that the coefficients of 𝐵hor belong to an
ACC set. Thus, we conclude that the coefficients of 𝐵hor belong to a finite set R which only depends on
c, p and Λ. �

The proof of the following corollary is verbatim from the previous proof by replacing [10, Theorem 2]
with [13, Corollary 3].

Corollary 3.3. Let (𝑋, 𝐵,M) be a generalized log canonical pair over Z and 𝑋 → 𝑍 be a fibration for
which the following conditions hold:

◦ the generalized pair (𝑋, 𝐵,M) is log Calabi–Yau over Z;
◦ the generalized pair (𝑋, 𝐵,M) has coregularity 0;
◦ 2M is b-Cartier; and
◦ the coefficients of B belong to S .

Then, the coefficients of 𝐵hor belong to {1, 1
2 }.

Notation 3.4. Let Λ ⊂ Q>0 be a closed set of rational numbers satisfying the DCC. Given a natural
number 𝑚 ∈ Z>0, we consider the partition

P𝑚 �
{(

0,
1
𝑚

]
,

(
1
𝑚
,

2
𝑚

]
, . . . ,

(
𝑚 − 1
𝑚

, 1
]}

of the interval [0, 1]. Denote by 𝐼 (𝑏, 𝑚) the interval of P𝑚 containing 𝑏 ∈ Λ. Define the number

𝑏𝑚 � sup{𝑥 | 𝑥 ∈ 𝐼 (𝑏, 𝑚) ∩ Λ} ∈ Λ.
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For every positive integer m and every 𝑏 ∈ Λ, we have that 𝑏 ≤ 𝑏𝑚 as 𝑏 ∈ Λ∩ 𝐼 (𝑏, 𝑚). If 𝑏 ∈ Λ is fixed
and m divisible enough, we have that 𝑏 = 𝑏𝑚. The set C𝑚 � {𝑏𝑚 | 𝑏 ∈ Λ} is finite, and we have that
the set

Λ =
⋃

𝑚∈Z>0

C𝑚

satisfies the DCC. Given a boundary divisor 𝐵 ≥ 0 on a quasi-projective variety X, we can write
𝐵 =

∑
𝑗 𝑏

( 𝑗)𝐵 ( 𝑗) in a unique way such that the 𝐵 ( 𝑗) ’s are pairwise different prime divisors on X. If the
coefficients of B belong to Λ, we define

𝐵𝑚 �
∑

𝑗

𝑏
( 𝑗)
𝑚 𝐵 ( 𝑗) .

It follows that 𝐵 ≤ 𝐵𝑚.

Theorem 3.5. Let c and p be nonnegative integers and Λ ⊂ Q>0 be a set satisfying the DCC with
rational accumulation points. There exists a finite subset R � R(𝑐, 𝑝,Λ) ⊂ Λ̄ ⊂ Q>0 satisfying the
following. Let (𝑋, 𝐵,M) be a generalized log canonical pair over Z, 𝑋 → 𝑍 be a contraction and 𝑧 ∈ 𝑍
be a point. Assume the following conditions are satisfied:

◦ the variety X is of Fano type over Z;
◦ the divisor B has coefficients in Λ;
◦ 𝑝M is b-Cartier;
◦ the generalized pair (𝑋, 𝐵,M) has coregularity c around z; and
◦ the divisor −(𝐾𝑋 + 𝐵 + M𝑋 ) is nef over Z.

There exists a birational transformation 𝑋 � 𝑋 ′ over Z and a generalized pair (𝑋 ′, Γ′,M) satisfying
the following:

◦ the coefficients of Γ′ belong to R;
◦ the pair (𝑋 ′, Γ′,M) has coregularity c over z;
◦ the divisor −(𝐾𝑋 ′ + Γ′ + M𝑋 ′ ) is nef over a neighborhood of 𝑧 ∈ 𝑍; and
◦ if (𝑋 ′, Γ′,M) is N-complemented over 𝑧 ∈ 𝑍 , then (𝑋, 𝐵,M) is N-complemented over 𝑧 ∈ 𝑍 .

Proof. Let (𝑋, 𝐵,M) be a generalized pair as in the conditions of the theorem. By passing to a
Q-factorial generalized dlt modification, we may assume the considered generalized pairs are gdlt and
Q-factorial. We denote by 𝑚(𝑋, 𝐵,M) the minimal m for which R = C𝑚 satisfies the statement of the
theorem for (𝑋, 𝐵,M). Since 𝐵𝑚 = 𝐵 for m large enough, then 𝑚(𝑋, 𝑏,M) is finite. It suffices to show
that 𝑚(𝑋, 𝐵,M) is bounded above by a constant that only depends on c, p and Λ. Assume that this is
not the case. Then, we may find a sequence of generalized pairs (𝑋𝑖 , 𝐵𝑖 ,M𝑖), contractions 𝑋𝑖 → 𝑍𝑖 and
closed points 𝑧𝑖 ∈ 𝑍𝑖 , satisfying the conditions of the theorem, for which 𝑚𝑖 � 𝑚(𝑋𝑖 , 𝐵𝑖 ,M𝑖) − 1 is
strictly increasing. In particular, we have that 𝐵𝑖,𝑚𝑖 −𝐵𝑖 is a nontrivial effective divisor. Let 𝑃𝑖 be a prime
component of 𝐵𝑖,𝑚𝑖 − 𝐵𝑖 that intersects the fiber over z. We study how the singularities of (𝑋𝑖 , 𝐵𝑖 ,M𝑖)

over 𝑧𝑖 ∈ 𝑍𝑖 and the nefness of −(𝐾𝑋𝑖 + 𝐵𝑖 + M𝑖) over 𝑍𝑖 change as we increase the coefficient at 𝑃𝑖 .

Step 1: For the generalized pair (𝑋𝑖 , 𝐵𝑖 ,M𝑖), we will produce a positive real number 𝑡𝑖 which either
computes a log canonical threshold or a pseudo-effective threshold.

For each generalized pair (𝑋𝑖 , 𝐵𝑖 ,M𝑖), we will define a real number 𝑡𝑖 as follows. We consider the
generalized pairs

(𝑋𝑖 , 𝐵𝑖,𝑡 ,M𝑖) � (𝑋𝑖 , 𝐵𝑖 + 𝑡 (coeff𝑃𝑖 (𝐵𝑖,𝑚𝑖 − 𝐵𝑖))𝑃𝑖 ,M𝑖). (3.1)
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Let 𝑡𝑖,0 be the largest real number for which the generalized pair (3.1) is generalized log canonical over
𝑧𝑖 ∈ 𝑍𝑖 and

−(𝐾𝑋𝑖 + 𝐵𝑖 + 𝑡 (coeff𝑃𝑖 (𝐵𝑖,𝑚𝑖 − 𝐵𝑖))𝑃𝑖 + M𝑖,𝑋𝑖 )

is nef over a neighborhood of 𝑧𝑖 ∈ 𝑍𝑖 . Assume that 𝑡𝑖,0 < 1. Then, for 𝑡 > 𝑡𝑖,0 close enough to 𝑡𝑖,0 one
of the following conditions hold:

(i) the generalized pair (𝑋𝑖 , 𝐵𝑖,𝑡 ,M𝑖) is not generalized log canonical over 𝑧𝑖 ∈ 𝑍𝑖; or
(ii) the divisor −(𝐾𝑋𝑖 + 𝐵𝑖,𝑡 + M𝑖,𝑋𝑖 ) is not pseudo-effective over a neighborhood of 𝑧𝑖 ∈ 𝑍𝑖 and

(𝑋𝑖 , 𝐵𝑖,𝑡 ,M𝑖) is generalized log canonical over a neighborhood of 𝑧𝑖 ∈ 𝑍𝑖; or
(iii) the divisor −(𝐾𝑋𝑖 + 𝐵𝑖,𝑡 + M𝑖,𝑋𝑖 ) is pseudo-effective, but it is not nef over every neighborhood of

𝑧𝑖 ∈ 𝑍𝑖 and (𝑋𝑖 , 𝐵𝑖,𝑡 ,M𝑖) is generalized log canonical over a neighborhood of 𝑧𝑖 ∈ 𝑍𝑖 .

Assume that case (i) holds. Then, we set

𝑡𝑖 � 𝑡𝑖,0coeff𝑃𝑖 (𝐵𝑖,𝑚𝑖 − 𝐵𝑖) + coeff𝑃𝑖 (𝐵𝑖) ∈ [coeff𝑃𝑖 (𝐵𝑖), coeff𝑃𝑖 (𝐵𝑖,𝑚𝑖 )).

We show that 𝑡𝑖 computes a generalized log canonical threshold of coregularity at most c. Indeed, we
have that

𝑡𝑖 = glct((𝑋𝑖 , 𝐵𝑖 − coeff𝑃𝑖 (𝐵𝑖)𝑃𝑖 ,M𝑖); 𝑃𝑖),

so 𝑡𝑖 is a generalized log canonical threshold over 𝑧𝑖 ∈ 𝑍𝑖 . By construction, the support of 𝑃𝑖 contains a
generalized log canonical center of the generalized pair (𝑋𝑖 , 𝐵𝑖 + 𝑡𝑖𝑃𝑖 ,M𝑖). Set N𝑖 � −(𝐾𝑋𝑖 +𝐵𝑖 + 𝑡𝑖𝑃𝑖 +

M𝑖) as a nef b-divisor over 𝑍𝑖 , that is, we set N𝑖 to be the b-Cartier closure of −(𝐾𝑋𝑖 +𝐵𝑖 + 𝑡𝑖𝑃𝑖 +M𝑖,𝑋𝑖 ).
Then, we have that

(𝑋𝑖 , 𝐵𝑖 + 𝑡𝑖𝑃𝑖 ,M𝑖 + N𝑖) (3.2)

is a generalized log Calabi–Yau pair over 𝑍𝑖 . Furthermore, the generalized log canonical centers of
Equation (3.2) are the same as the generalized log canonical centers of (𝑋𝑖 , 𝐵𝑖 + 𝑡𝑖𝑃𝑖 ,M𝑖). By [16,
Theorem 1.4], up to replacing (𝑋𝑖 , 𝐵𝑖 + 𝑡𝑖𝑃𝑖 ,M𝑖) with a generalized dlt modification, the support of 𝑃𝑖

contains a generalized log canonical center of (𝑋𝑖 , 𝐵𝑖 + 𝑡𝑖𝑃𝑖 ,M𝑖) of dimension at most c. Hence, 𝑡𝑖 is a
generalized log canonical threshold of coregularity at most c.

Assume that case (ii) holds. Then, we set

𝑡𝑖 � 𝑡𝑖,0coeff (𝐵𝑖,𝑚𝑖 − 𝐵𝑖) + coeff𝑃𝑖 (𝐵𝑖) ∈ [coeff𝑃𝑖 (𝐵𝑖), coeff𝑃𝑖 (𝐵𝑖,𝑚𝑖 )).

In this case, we can find a Mori fiber space structure 𝑋 ′
𝑖 → 𝑊𝑖 over 𝑍𝑖 such that the following conditions

are satisfied:

◦ the generalized pair (𝑋 ′
𝑖 , 𝐵

′
𝑖 − coeff𝑃′

𝑖
(𝐵′

𝑖)𝑃
′
𝑖 + 𝑡𝑖𝑃

′
𝑖 ,M𝑖) is generalized log Calabi–Yau over 𝑊𝑖;

◦ the prime divisor 𝑃′
𝑖 is ample over 𝑊𝑖 .

Note that (𝑋 ′
𝑖 , 𝐵

′
𝑖 −coeff𝑃′

𝑖
(𝐵′

𝑖)𝑃
′
𝑖 + 𝑡𝑖𝐵

′
𝑖 ,M𝑖) has coregularity at most c. We have that 𝑡𝑖 is the coefficient

of a component of 𝐵′
𝑖 − coeff𝑃′

𝑖
(𝐵′

𝑖) + 𝑡𝑖𝑃
′
𝑖 which is horizontal over 𝑊𝑖 .

From now on, we assume that (i) and (ii) do not happen. Assume that (iii) holds. Then, there exists a
birational contraction 𝑋𝑖 � 𝑋 ′

𝑖 which is (𝐾𝑋𝑖 +𝐵𝑖,𝑡𝑖,0 +M𝑖,𝑋𝑖 )-trivial. Indeed, this contraction is defined
by the partial −(𝐾𝑋𝑖 + 𝐵𝑖,𝑡′ + M𝑖,𝑋𝑖 )-MMP with scaling of 𝑃𝑖 , for 𝑡 ′ close enough to 𝑡𝑖,0 as in (iii). By
construction, the first scaling factor is 𝑡 ′ − 𝑡𝑖,0, and since −(𝐾𝑋𝑖 + 𝐵𝑖,𝑡′ +M𝑖,𝑋𝑖 ) is pseudo-effective over
𝑍𝑖 and 𝑋𝑖 → 𝑍𝑖 is of Fano type, this MMP terminates with a good minimal model. In particular, at the
last step of this MMP, the scaling factor is 0. Then, 𝑋 ′

𝑖 is the outcome of the last step where the scaling
factor is 𝑡 ′ − 𝑡𝑖,0. In particular, we have that −(𝐾𝑋 ′

𝑖
+ 𝐵′

𝑖,𝑡 +M𝑖,𝑋 ′
𝑖
) is nef over 𝑍𝑖 for 𝑡 > 𝑡𝑖,0 close enough

to 𝑡𝑖,0. Note that an N-complement of (𝑋 ′
𝑖 , 𝐵

′
𝑖,𝑡𝑖,0

,M𝑋 ′
𝑖
) induces an N-complement of (𝑋𝑖 , 𝐵𝑖,𝑡𝑖,0 ,M𝑖)
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by pulling back, and so an N-complement of (𝑋𝑖 , 𝐵𝑖 ,M𝑖). Henceforth, we may replace 𝑋𝑖 with 𝑋 ′
𝑖 and

keep increasing t. Since 𝑋𝑖 is of Fano type over 𝑍𝑖 , there are only finitely many birational contractions
𝑋𝑖 � 𝑋 ′

𝑖 . Therefore, we can replace 𝑋𝑖 with 𝑋 ′
𝑖 only finitely many times. Thus, after finitely many

birational contractions, we either have that 𝑡𝑖,0 = 1, that 𝑡𝑖 < 1 is a log canonical threshold or that 𝑡𝑖 < 1
is a pseudo-effective threshold.

We assume that 𝑡𝑖,0 = 1. Then there exists a birational contraction 𝑋𝑖 � 𝑋 ′
𝑖 and a generalized log

canonical pair

(𝑋 ′
𝑖 , 𝐵

′
𝑖 − (coeff𝑃𝑖𝐵

′
𝑖 + coeff𝑃𝑖𝐵

′
𝑖,𝑚𝑖

)𝑃𝑖 ,M𝑖) (3.3)

for which the divisor

−(𝐾𝑋 ′
𝑖
+ 𝐵′

𝑖 − (coeff𝑃𝑖𝐵
′
𝑖 + coeff𝑃𝑖𝐵

′
𝑖,𝑚𝑖

)𝑃𝑖 + M𝑖,𝑋 ′
𝑖
)

is nef over 𝑍𝑖 . Note that the coefficients of the boundary of the generalized pair (3.3) belong to Λ and
the variety 𝑋 ′

𝑖 is of Fano type over 𝑍𝑖 . The b-nef divisor 𝑝M𝑋 ′
𝑖

is b-Cartier. By construction, if the
generalized pair (3.3) admits an N-complement, then so does (𝑋𝑖 , 𝐵𝑖 ,M𝑖). We can replace (𝑋𝑖 , 𝐵𝑖 ,M𝑖)

with the generalized pair (3.3). By doing so, we decrease the number of components of 𝐵𝑖,𝑚𝑖 − 𝐵𝑖 . By
the choice of 𝑚𝑖 , the divisor 𝐵𝑖,𝑚𝑖 − 𝐵𝑖 cannot be zero after this replacement. Thus, we may pick a new
component and start increasing its coefficient (to this end, notice that 𝑋 ′

𝑖 is Q-factorial by construction).
Note that this process must terminate either with 𝑡𝑖 < 1 a log canonical threshold or 𝑡𝑖 < 1 a pseudo-
effective threshold. Otherwise, we contradict the definition of 𝑚𝑖 .

Step 2: We show that a subsequence of the 𝑡𝑖’s is strictly increasing.

Up to passing to a subsequence, we may assume that 𝑡𝑖 is either strictly increasing, strictly decreasing
or it stabilizes. The condition 𝑡𝑖 ∈ [coeff𝑃 (𝐵𝑖), coeff𝑃 (𝐵𝑖,𝑚𝑖 )) implies that 𝑡𝑖 must be strictly increasing.

Step 3: We finish the proof of the statement.

If case (i) happens infinitely many times, then we get a contradiction to the ACC for generalized
log canonical thresholds with bounded coregularity [10, Theorem 1]. If case (ii) happens infinitely
many times, then we get a contradiction to Lemma 3.2. In any case, we get a contradiction. Hence, the
sequence 𝑚𝑖 has an upper bound. �

4. Semilog canonical pairs

In this section, we discuss the index of semilog canonical pairs. We show that to control the index of
a semilog canonical log Calabi–Yau pair of coregularity c it suffices to control the index of dlt log
Calabi–Yau pairs of coregularity c. To prove the main statement of this section, we will need to use the
language of admissible and preadmissible sections. The preliminary results for this section are taken
from [19, 17, 44].

The following definition is due to Fujino [17, Definition 4.1].

Definition 4.1. Let (𝑋, 𝐵) be a possibly disconnected projective semi-dlt pair of dimension n, and
assume that 𝑁 (𝐾𝑋 + 𝐵) is Cartier. Let (𝑋 ′, 𝐵′) be its normalization and 𝐷𝑛 ⊂ 𝑋 ′ be the normalization
of �𝐵′. As usual, we denote by (𝐷𝑛, 𝐵𝐷𝑛 ) the dlt pair obtained by adjunction of (𝑋 ′, 𝐵′) to 𝐷𝑛. We
define the concept of preadmissible and admissible sections in 𝐻0(𝑋,O𝑋 (𝐼 (𝐾𝑋 + 𝐵))) by induction on
the dimension using the two following rules:

1. we say that a section

𝑠 ∈ 𝐻0 (𝑋,O𝑋 (𝐼 (𝐾𝑋 + 𝐵)))
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is preadmissible if 𝑠 |𝐷𝑛 ∈ 𝐻0 (𝐷𝑛,O𝐷𝑛 (𝐼 (𝐾𝐷𝑛 + 𝐵𝐷𝑛 ))) is admissible. This set is denoted by
𝑃𝐴(𝑋, 𝐼 (𝐾𝑋 + 𝐵)); and

2. we say that

𝑠 ∈ 𝐻0(𝑋,O𝑋 (𝐼 (𝐾𝑋 + 𝐵))

is admissible if s is preadmissible and 𝑔∗(𝑠 |𝑋 ′
𝑖
) = 𝑠 |𝑋 ′

𝑗
holds for every crepant birational map

𝑔 : (𝑋 ′
𝑖 , 𝐵𝑋 ′

𝑖
) � (𝑋 ′

𝑗 , 𝐵𝑋 ′
𝑗
), where 𝑋 ′ = �𝑋 ′

𝑖 are the irreducible components of 𝑋 ′. The set of
admissible sections is denoted by 𝐴(𝑋, 𝐼 (𝐾𝑋 + 𝐵)).

The following lemma is due to Gongyo [21, Remark 5.2].

Lemma 4.2. Let (𝑋, 𝐵) be a projective semi-dlt pair for which 𝐼 (𝐾𝑋 +𝐵) ∼ 0. Let 𝜋 : (𝑋 ′, 𝐵′) → (𝑋, 𝐵)
be its normalization. Then, a section 𝑠 ∈ 𝐻0 (𝑋,O𝑋 (𝐼 (𝐾𝑋 + 𝐵))) is preadmissible (resp. admissible) if
and only if 𝜋∗𝑠 ∈ 𝐻0(𝑋 ′,O𝑋 (𝐼 (𝐾𝑋 ′ + 𝐵′))) is preadmissible (resp. admissible).

The following lemma allows us to descend linear equivalence from normal varieties to semilog
canonical varieties (see, e.g., [17, Lemma 4.2]).

Lemma 4.3. Let (𝑋, 𝐵) be a projective semilog canonical pair for which 𝐼 (𝐾𝑋 + 𝐵) is an integral
divisor. Let (𝑋 ′, 𝐵′) → (𝑋, 𝐵) be its normalization and (𝑌, 𝐵𝑌 ) a Q-factorial dlt modification of
(𝑋 ′, 𝐵′). Assume that 𝐼 (𝐾𝑌 + 𝐵𝑌 ) is Cartier. Then, a section 𝑠 ∈ 𝑃𝐴(𝐼 (𝐾𝑌 + 𝐵𝑌 )) descends to
𝐻0 (𝑋,O𝑋 (𝐼 (𝐾𝑋 + 𝐵))). In particular, if we have that 𝐼 (𝐾𝑌 + 𝐵𝑌 ) ∼ 0, and there exists a nowhere
vanishing section 0 ≠ 𝑠 ∈ 𝑃𝐴(𝐼 (𝐾𝑌 + 𝐵𝑌 )), then we have that 𝐼 (𝐾𝑋 + 𝐵) ∼ 0.

Proof. The first part of the statement is [17, Lemma 4.2]. Now, 𝑠 ∈ 𝑃𝐴(𝐼 (𝐾𝑌 +𝐵𝑌 )) is nowhere vanish-
ing, it descends to a nowhere vanishing section ofO𝑋 (𝐼 (𝐾𝑋 +𝐵)), thus showing that 𝐼 (𝐾𝑋 + 𝐵) ∼ 0. �

In the context of connected dlt pairs, the set of admissible sections is the same as the set of
preadmissible sections (see, e.g., [17, Proposition 4.7]).

Lemma 4.4. Let (𝑋, 𝐵) be a connected projective dlt pair with �𝐵 ≠ 0. Assume that 𝐼 (𝐾𝑋 + 𝐵) ∼ 0
and I is even. Then, we have that

𝑃𝐴(𝐼 (𝐾𝑋 + 𝐵)) = 𝐴(𝐼 (𝐾𝑋 + 𝐵)).

On the other hand, in the dlt setting, we can lift admissible sections from the boundary to preadmissible
sections on the whole pair (see, e.g., [44, Lemma 3.2.14]).

Lemma 4.5. Assume that (𝑋, 𝐵) is a possibly disconnected projective dlt pair. Assume that 𝐼 (𝐾𝑋+𝐵) ∼ 0
and I is even. Assume that

0 ≠ 𝑠 ∈ 𝐴(�𝐵, 𝐼 (𝐾𝑋 + 𝐵) | �𝐵 ).

Then, there exists

0 ≠ 𝑡 ∈ 𝑃𝐴(𝑋, 𝐼 (𝐾𝑋 + 𝐵))

for which 𝑡 | �𝐵 = 𝑠.

The following lemma states that the boundedness of indices for klt Calabi–Yau pairs together with the
boundedness of B-representations imply the existence of admissible sections (see, e.g., [44, Proposition
3.2.7]).

Lemma 4.6. Let c be a nonnegative integer and Λ be a set of rational numbers satisfying the descending
chain condition. Assume Conjecture 1 and Conjecture 2 in dimension c. There is a constant 𝐼 (Λ, 𝑐),
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only depending on Λ and c, satisfying the following. Let (𝑋, 𝐵) be a projective klt log Calabi–Yau pair
with coefficients in Λ and dimension c. Then, there is a section

0 ≠ 𝑠 ∈ 𝐴(𝑋, 𝐼 (Λ, 𝑐) (𝐾𝑋 + 𝐵)).

Note that for a klt log Calabi–Yau pair an admissible section is nothing else than a section which is
invariant under the pull-back via crepant birational transformations.

Finally, we prove the following lemma that allows us to produce admissible sections on possibly
disconnected dlt pairs, once we know the existence of admissible sections on connected dlt pairs. The
proof is similar to that of [44, Proposition 3.2.8].

Lemma 4.7. Let d be a positive integer. Let (𝑋, 𝐵) be a possibly disconnected projective dlt log
Calabi–Yau pair. Assume that for every component (𝑋𝑖 , 𝐵𝑖) of (𝑋, 𝐵), we have a nontrivial section on
𝐴(𝑋𝑖 , 𝐼 (𝐾𝑋𝑖 + 𝐵𝑖)). Then, we have that 𝐴(𝑋, 𝐼 (𝐾𝑋 + 𝐵)) admits a nowhere vanishing section.

Proof. Let (𝑋, 𝐵) be a possibly disconnected projective dlt log Calabi–Yau pair. We write (𝑋𝑖 , 𝐵𝑖) for
its components for 𝑖 ∈ {1, . . . , 𝑘}. By assumption, for each i, we have

0 ≠ 𝑠𝑖 ∈ 𝐴(𝑋𝑖 , 𝐼 (𝐾𝑋𝑖 + 𝐵𝑖)).

For 𝜆𝑖 ∈ C, we define

𝑠 � (𝜆1𝑠1, . . . , 𝜆𝑘 𝑠𝑘 ) ∈ 𝐻0 (𝑋, 𝑁 (𝐾𝑋 + 𝐵)).

Let 𝐺 = Bir(𝑋, 𝐵). We claim that the image of G in 𝐺𝐿(𝐻0 (𝑋,O𝑋 (𝐼 (𝐾𝑋 +𝐵)))) is finite. We denote by

𝜌𝐼 : Bir(𝑋, 𝐵) → 𝐺𝐿(𝐻0 (𝑋,O𝑋 (𝐼 (𝐾𝑋 + 𝐵))))

the usual map induced by pulling back sections. Thus, we want to show that 𝜌𝐼 (𝐺) is finite. By [19], the
finiteness of 𝜌𝐼 (𝐺) is known if X is connected. Thus, we need to reduce the disconnected case to the
connected one. Note that for every 𝑔 ∈ 𝐺, we have that 𝜌𝐼 (𝑔)

𝑘! has finite order by [19, Theorem 3.15]
and the fact that the order of any permutation in 𝑆𝑘 divides 𝑘!. Hence, we conclude that 𝜌𝐼 (𝐺) is a finitely
generated subgroup of finite exponent of a general linear group, where the bound is determined by 𝑘!
and the least common multiple of the orders of the pluricanonical representations of each irreducible
component. Indeed, notice that 𝜌𝐼 (𝐺) is finitely generated, as it is the extension of two finite groups:
the image via 𝜌𝐼 of the subgroup fixing the irreducible components of X, which is isomorphic to the
product of the pluricanonical representations of each irreducible component (hence, a finite group by
[19]), and a subgroup of 𝑆𝑘 . By a theorem due to Burnside, known as the bounded Burnside problem
for linear groups [8, Theorem 6.13], we conclude that 𝜌𝐼 (𝐺) is finite.

Consider the section

𝑡 �
∑
𝜎∈𝐺

𝜎(𝑠).

By construction, we have that 𝑡 ∈ 𝐴(𝑋, 𝐼 (𝐾𝑋 + 𝐵)). Indeed, t is invariant under the action of any
birational transformation of (𝑋, 𝐵). Thus, the restriction of t to every log canonical center is also
invariant. It suffices to show that t is nontrivial on each component of X. By considering orbits of the
action, we may assume that Bir(𝑋, 𝐵) acts transitively on the components of X. Consider the basis
((0, . . . , 𝑠𝑖 , . . . , 0))1≤𝑖≤𝑘 of 𝐻0(𝑋,O𝑋 (𝐼 (𝐾𝑋 + 𝐵))). Since the sections 𝑠𝑖 are admissible, in this basis,
the action of 𝜌𝐼 (𝑔) is represented by a matrix whose diagonal entries are either 0 (if 𝑔(𝑋𝑖) ≠ 𝑋𝑖) or
1 (if 𝑔(𝑋𝑖) = 𝑋𝑖). Hence, by observing that the matrix associated to the identity element of G is the
identity matrix, it follows that the action of

∑
𝜎∈𝐺 𝜎 in this basis is given by a nontrivial matrix whose

diagonal entries are all integers greater than or equal to 1. By the transitivity of the action and the fact
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that the action of
∑

𝜎∈𝐺 𝜎 is given by a matrix whose diagonal are positive integers, we deduce that we
can find 𝜆𝑖 ∈ C for which t is nonzero on all components. �

Now, we are ready to prove the main theorem of this section.

Theorem 4.8. Let c be a nonnegative integer andΛ be a set of rational numbers satisfying the descending
chain condition. Assume Conjecture 1 and Conjecture 2 in dimension c. There is a constant 𝐼 (Λ, 𝑐), only
depending on Λ and c, satisfying the following. Let (𝑋, 𝐵) be a projective dlt pair with coefficients in Λ
and coregularity c. Assume that 𝐼 (Λ, 𝑐) (𝐾𝑋 + 𝐵) ∼ 0. Then, there is a nowhere vanishing admissible
section

0 ≠ 𝑠 ∈ 𝐴(𝑋, 𝐼 (Λ, 𝑐) (𝐾𝑋 + 𝐵)).

Proof. Let 𝐼 (Λ, 𝑐) be the positive integer given by Lemma 4.6. Without loss of generality, we may
assume that 𝐼 (Λ, 𝑐) is even.

By induction on i, we prove that every i-dimensional log canonical center V of (𝑋, 𝐵) satisfies that

0 ≠ 𝑠𝑉 ∈ 𝐴(𝑉, 𝐼 (Λ, 𝑐) (𝐾𝑉 + 𝐵𝑉 )), (4.1)

where (𝑉, 𝐵𝑉 ) is the pair obtained by dlt adjunction of (𝑋, 𝐵) to V. If 𝑖 = 𝑐, then the pair is klt and the
statement follows from Lemma 4.6.

Now, assume that the statement holds for every irreducible i-dimensional dlt center of (𝑋, 𝐵). Let
W be a log canonical center of (𝑋, 𝐵) of dimension 𝑖 + 1. The pair (𝑊, 𝐵𝑊 ) obtained from adjunction
is dlt of dimension 𝑖 + 1 and it holds that 𝐼 (Λ, 𝑐) (𝐾𝑊 + 𝐵𝑊 ) ∼ 0. Let 𝑊0 be the union of all the log
canonical centers of (𝑊, 𝐵𝑊 ). Let (𝑊0, 𝐵𝑊0) be the pair obtained by performing adjunction of (𝑊, 𝐵𝑊 )

to (𝑊0, 𝐵𝑊0). Hence, (𝑊0, 𝐵𝑊0) is an i-dimensional semi-dlt pair with 𝐼 (Λ, 𝑐) (𝐾𝑊0 +𝐵𝑊0) ∼ 0. Observe
that 𝑊0 may have multiple irreducible components. Let 𝑛𝑈 : 𝑈 → 𝑊0 be the normalization of 𝑊0. Let
(𝑈, 𝐵𝑈 ) be the pair obtained by log pull-back of (𝑊0, 𝐵𝑊0) to U. Then, we have that (𝑈, 𝐵𝑈 ) is a
possibly disconnected projective dlt pair of dimension i and coregularity c. By [16, Theorem 1.4], we
know that every component has coregularity c. Furthermore, we have that 𝐼 (Λ, 𝑐) (𝐾𝑈 + 𝐵𝑈 ) ∼ 0. By
Equation (4.1) in dimension i, we have that each irreducible component 𝑈 𝑗 of U satisfies that

0 ≠ 𝑠𝑈, 𝑗 ∈ 𝐴(𝑈 𝑗 , 𝐼 (Λ, 𝑐) (𝐾𝑈 𝑗 + 𝐵𝑈 𝑗 )).

By Lemma 4.7, we conclude that there exists a nowhere vanishing section

0 ≠ 𝑠𝑈 ∈ 𝐴(𝑈, 𝐼 (Λ, 𝑐) (𝐾𝑈 + 𝐵𝑈 )).

By Lemma 4.3, we conclude that this section descends to 𝑠𝑊0 ∈ 𝐻0 (𝑊0,O𝑊0 (𝐼 (Λ, 𝑐) (𝐾𝑊0 + 𝐵𝑊0))).
Note that we have 𝑛∗𝑈 𝑠𝑊0 = 𝑠𝑈 . By Lemma 4.2, we conclude that 𝑠𝑊0 ∈ 𝐴(𝑊0, 𝐼 (Λ, 𝑐) (𝐾𝑊0 + 𝐵𝑊0)).
By Lemma 4.5, we conclude that there exists

0 ≠ 𝑡𝑊 ∈ 𝑃𝐴(𝑊, 𝐼 (Λ, 𝑐) (𝐾𝑊 + 𝐵𝑊 )).

Finally, since W is connected, we conclude by Lemma 4.4, that there is a section

0 ≠ 𝑡𝑊 ∈ 𝐴(𝑊, 𝐼 (Λ, 𝑐) (𝐾𝑊 + 𝐵𝑊 )).

This finishes the inductive step.
We conclude, that for every 𝑖 ∈ {𝑐, . . . , dim 𝑋}, every i-dimensional log canonical center of

(𝑋, 𝐵) admits an admissible section. In particular, we get a nowhere vanishing section 0 ≠ 𝑠𝑋 ∈

𝐴(𝑋, 𝐼 (Λ, 𝑐) (𝐾𝑋 + 𝐵)) as claimed. �

The previous theorem allows controlling the index of semilog canonical pairs once we can control
the index of their normalization.
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Theorem 4.9. Let c be a nonnegative integer andΛ be a set of rational numbers satisfying the descending
chain condition. Assume Conjecture 1 and Conjecture 2 in dimension c. There is a constant 𝐼 (Λ, 𝑐), only
depending on Λ and c, satisfying the following. Let (𝑋, 𝐵) be a projective semilog canonical pair with
coefficients in Λ and coregularity c. Let (𝑌, 𝐵𝑌 ) be a Q-factorial dlt modification of a normalization of
(𝑋, 𝐵). Assume that 𝐼 (Λ, 𝑐) (𝐾𝑌 + 𝐵𝑌 ) ∼ 0. Then, we have that 𝐼 (Λ, 𝑐) (𝐾𝑋 + 𝐵) ∼ 0.

Proof. We can consider 𝐼 (Λ, 𝑐) as in Theorem 4.8. By Theorem 4.8 and Lemma 4.7, we know that
there exists a nowhere vanishing preadmissible section

0 ≠ 𝑠𝑌 ∈ 𝑃𝐴(𝑌, 𝐼 (Λ, 𝑐) (𝐾𝑌 + 𝐵𝑌 )).

By Lemma 4.3, we conclude that the linear equivalence 𝐼 (Λ, 𝑐) (𝐾𝑋 + 𝐵) ∼ 0 holds. �

In the case of dimension 0, Conjecture 1 and Conjecture 2 are trivial. Indeed, the only variety of
interest is Spec(K), no boundary is allowed for dimensional reasons, and Bir(Spec(K)) is trivial. Thus,
we get the following statement.

Theorem 4.10. Let (𝑋, 𝐵) be a projective semilog canonical Calabi–Yau pair of coregularity 0 and
𝜆 be its Weil index. Let (𝑌, 𝐵𝑌 ) be a Q-factorial dlt modification of a normalization of (𝑋, 𝐵). If
2𝜆(𝐾𝑌 + 𝐵𝑌 ) ∼ 0, then 2𝜆(𝐾𝑋 + 𝐵) ∼ 0.

Finally, Conjecture 1 and Conjecture 2 are known in the case of klt pairs of dimension 1 or 2 (see,
e.g., [44]). We get the following statement.

Theorem 4.11. Let Λ be a set of rational numbers satisfying the descending chain condition. There
exists a constant 𝐼 (Λ), only depending on Λ, satisfying the following. Let (𝑋, 𝐵) be a projective semilog
canonical Calabi–Yau pair of coregularity 1 (resp. 2) such that B has coefficients in Λ. Let (𝑌, 𝐵𝑌 ) be a
Q-factorial dlt modification of a normalization of (𝑋, 𝐵). If 𝐼 (Λ) (𝐾𝑌 +𝐵𝑌 ) ∼ 0, then 𝐼 (Λ) (𝐾𝑋 +𝐵) ∼ 0.

Let us note that Conjecture 1 is known for klt 3-folds (see, e.g., [44]). However, Conjecture 2 is still
unknown in the case of klt Calabi–Yau 3-folds.

4.1. Lifting complements from nonnormal divisors in fibrations

In this subsection, we prove a statement about lifting complements from nonnormal divisors in fibrations.

Theorem 4.12. Let 𝜆, d and c be nonnegative integers. Assume that Conjecture 1(𝑐) and Conjecture 2(𝑐)
hold. Let 𝐼 � 𝐼 (𝐷𝜆, 𝑑 −1, 𝑐, 0) be the integer provided by Theorem 6(𝑑 −1, 𝑐). Up to replacing I with a
bounded multiple, further assume that I is divisible by the integer provided by Theorem 4.9(𝐷𝜆, 𝑐). Let
(𝑋, 𝐵) be a projective d-dimensional log Calabi–Yau pair. Assume that the following conditions hold:

◦ X is Q-factorial and klt;
◦ there is a fibration 𝑋 → 𝑊 , which is a (𝐾𝑋 + 𝐵 − 𝑆)-Mori fiber space;
◦ a component 𝑆 ⊂ �𝐵 which is ample over the base and (𝑋, 𝐵 − 𝑆) is dlt;
◦ the morphism 𝑆 → 𝑊 has connected fibers;
◦ the coefficients of B belong to 𝐷𝜆; and
◦ the pair (𝑋, 𝐵) has coregularity c.

Then, we have that 𝐼 (𝐾𝑋 + 𝐵) ∼ 0.

Proof. The proof is formally identical to the proof of Theorem 2.31, with the only difference that we
need to appeal to the results in §4 since S may not be normal. For completeness, we include a full proof
of the statement.

Let (𝑋, 𝐵), S, 𝑓 : 𝑋 → 𝑊 and 𝐼 � 𝐼 (𝐷𝜆, 𝑑 − 1, 𝑐, 𝜆) be as in the statement. First, we show that we
can apply the inductive hypothesis to S.

By [19, Example 2.6], the pair obtained by adjunction of (𝑋, 𝐵−𝜖 �𝐵 +𝜖𝑆) to S is semilog canonical.
In particular, S is 𝑆2. In turn, by letting 𝜖 → 0, it follows that the pair obtained by adjunction of (𝑋, 𝐵)
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to S is semilog canonical. In particular, let (𝑆, 𝐵𝑆) denote the pair obtained by adjunction from (𝑋, 𝐵),
and let (𝑆𝜈 , 𝐵𝑆𝜈 ) denote its normalization. By [10, Lemma 2.28], (𝑆𝜈 , 𝐵𝑆𝜈 ) has coregularity c. Then,
by Lemma 2.17, (𝑆𝜈 , 𝐵𝑆𝜈 ) satisfies the assumptions of Theorem 6(𝑑 − 1, 𝑐) with constant I. Then, by
Theorem 4.9, we have

𝐼 (𝐾𝑆 + 𝐵𝑆) ∼ 0. (4.2)

By [29, Proposition 4.32], S is seminormal. Then, by [12, Lemma 2.3] and the fact that 𝑆 → 𝑊 has
connected fibers, we have 𝑓∗O𝑆 = O𝑊 . Lastly, we observe that, if dim 𝑋 − dim𝑊 = 1, since 𝑆 → 𝑊
has connected fibers, it follows that (𝐵 − 𝑆)hor ≠ 0.

Now, consider the short exact sequence

0 → O𝑋 (𝐼 (𝐾𝑋 + 𝐵) − 𝑆) → O𝑋 (𝐼 (𝐾𝑋 + 𝐵)) → O𝑆 (𝐼 (𝐾𝑆 + 𝐵𝑆)) → 0. (4.3)

The exactness of Equation (4.3) follows verbatim as the exactness of Equation (2.3). Since 𝐼 (𝐾𝑋 + 𝐵) −
𝑆 ∼Q, 𝑓 −𝑆, the divisor −𝑆 is f -ample and dim𝑊 < dim 𝑋 , we have

𝑓∗O𝑋 (𝐼 (𝐾𝑋 + 𝐵) − 𝑆) = 0.

Similarly, we write

𝐼 (𝐾𝑋 + 𝐵) − 𝑆 ∼Q, 𝑓 −𝑆 ∼Q, 𝑓 𝐾𝑋 + (𝐵 − 𝑆).

First, assume that 𝐵hor ≠ 𝑆. Note that X is klt and 𝐵 − 𝑆 is f -ample since f is a Mori fiber space and the
assumption that 𝐵hor ≠ 𝑆. Thus, by the relative version of Kawamata–Viehweg vanishing, we have

𝑅1 𝑓∗O𝑋 (𝐼 (𝐾𝑋 + 𝐵) − 𝑆) = 0.

Now, assume that 𝐵hor = 𝑆. By the equality 𝐵hor = 𝑆 and the fact that f is a Mori fiber space, we have

𝐼 (𝐾𝑋 + 𝐵) − 𝑆 ∼Q, 𝑓 −𝑆 ∼Q, 𝑓 𝐾𝑋 + (𝐵 − 𝑆) ∼Q, 𝑓 𝐾𝑋 + 𝐵ver ∼Q, 𝑓 𝐾𝑋 .

Thus, we obtain

𝐼 (𝐾𝑋 + 𝐵) − 𝑆 − 𝐾𝑋 ∼Q, 𝑓 0.

Since X is a klt variety, by [28, Theorem 1-2-7], we have that 𝑅1 𝑓∗O𝑋 (𝐼 (𝐾𝑋 + 𝐵) − 𝑆) is torsion
free. To conclude that it vanishes, it suffices to show that it has rank 0. As observed at the end of the
previous paragraph, we have that dim 𝑋 ≥ dim 𝑍 + 2 under the additional assumption 𝐵hor = 𝑆. Then,
by applying Kawamata–Viehweg vanishing to a general fiber [30, Theorem 2.70], we conclude that the
rank of 𝑅1 𝑓∗O𝑋 (𝐼 (𝐾𝑋 + 𝐵) − 𝑆) is 0, thus implying that 𝑅1 𝑓∗O𝑋 (𝐼 (𝐾𝑋 + 𝐵) − 𝑆) = 0.

Therefore, by pushing forward Equation (4.3) via f, we obtain

𝑓∗O𝑋 (𝐼 (𝐾𝑋 + 𝐵)) � 𝑓∗O𝑆 (𝐼 (𝐾𝑆 + 𝐵𝑆)).

Now, taking global sections, we have

𝐻0 (𝑋,O𝑋 (𝐼 (𝐾𝑋 + 𝐵))) = 𝐻0(𝑆,O𝑆 (𝐼 (𝐾𝑆 + 𝐵𝑆))) = 𝐻0(𝑆,O𝑆) ≠ 0. (4.4)

By [13, Lemma 3.1], (4.4) implies that 𝐼 (𝐾𝑋 + 𝐵) ∼ 0. �
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5. Relative complements

In this section, we prove an inductive statement regarding the existence of complements for Fano type
morphisms with bounded coregularity.

5.1. Lifting sections from a divisor

In this subsection, we introduce some tools to lift complements from a divisor of a log Fano pair. Let X
be a Fano type variety and (𝑋, 𝐵,M) be a generalized log canonical pair for which −(𝐾𝑋 + 𝐵 + M𝑋 )

is nef. The main theorem of this subsection implies that we can lift complements for (𝑋, 𝐵,M) from a
component S of �𝐵 under some suitable conditions explained in the following theorem.

Theorem 5.1. Let d, c and p be nonnegative integers and R ⊂ Q>0 be a finite set. Let 𝑁 � 𝑁 (𝐷 (R),
𝑑 − 1, 𝑐, 𝑝) be the integer provided by Theorem 7(𝑑 − 1, 𝑐). Assume that N is divisible by p and by
𝐼R. Let 𝜋 : 𝑋 → 𝑍 be a Fano type morphism, where X is a d-dimensional variety. Let (𝑋, 𝐵,M) be a
generalized log canonical pair over Z and 𝑧 ∈ 𝑍 a point satisfying the following conditions:

◦ the generalized pair (𝑋, 𝐵,M) has coregularity at most c over z;
◦ the divisor B has coefficients in R;
◦ 𝑝M is b-Cartier; and
◦ the divisor −(𝐾𝑋 + 𝐵 + M𝑋 ) is nef over Z.

Assume that there exists 𝐵1 ≤ 𝐵 and 𝛼 ∈ (0, 1] for which:

◦ the generalized pair (𝑋, 𝐵1, 𝛼M) is generalized log canonical but it is not generalized klt over z;
◦ the divisor −(𝐾𝑋 + 𝐵1 + 𝛼M𝑋 ) is big and nef over Z.

Then, (𝑋, 𝐵,M) admits an N-complement over z.

In order to prove the main theorem of this section, we take inspiration from [3, §6.6]. In particular,
we will first prove a weaker statement.

Proposition 5.2. Let d, c and p be nonnegative integers and R ⊂ Q>0 be a finite set. Let
𝑁 � 𝑁 (𝐷 (R), 𝑑 − 1, 𝑐, 𝑝) be the integer provided by Theorem 7(𝑑 − 1, 𝑐). Assume that N is divis-
ible by p and by 𝐼R. Let 𝜋 : 𝑋 → 𝑍 be a Fano type morphism, where X is a d-dimensional variety.
Let (𝑋, 𝐵,M) be a Q-factorial generalized log canonical pair over Z and 𝑧 ∈ 𝑍 a point satisfying the
following conditions:

◦ the generalized pair (𝑋, 𝐵,M) has coregularity at most c over z;
◦ the divisor B has coefficients in R;
◦ 𝑝M is b-Cartier; and
◦ the divisor −(𝐾𝑋 + 𝐵 + M𝑋 ) is nef over Z.

Assume there exists a boundary Γ on X and 𝛼 ∈ (0, 1) for which:

◦ the generalized pair (𝑋, Γ, 𝛼M) is generalized plt over z;
◦ we have that 𝑆 = �Γ ⊂ �𝐵 intersects the fiber over z; and
◦ the divisor −(𝐾𝑋 + Γ + 𝛼M𝑋 ) is ample over Z.

Then, (𝑋, 𝐵,M) admits an N-complement over z.

Proof. We will proceed by induction on the dimension, keeping the coregularity constant. Over several
steps, we will lift a complement from a divisor. Since the statement is local over 𝑧 ∈ 𝑍 , in the course
of the proof we are free to shrink Z around z. In particular, all linear equivalences that are relative to Z
can be assumed to hold globally. We add the fractions with denominator p to the set R. This does not
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change the value of N, hence proving the statement for this new finite set is the same as proving it for
the original R.

Step 1. In this step, we reduce to the case where (𝑋, 𝐵,M) is Q-factorial generalized dlt.

Let (𝑋 ′, 𝐵′,M) be a Q-factorial dlt modification of (𝑋, 𝐵,M). Pick E exceptional such that −𝐸 is
ample over X. Notice that the existence of E is guaranteed by the hypothesis that X is Q-factorial. Also,
let (𝑋 ′, Γ′, 𝛼M) be the trace of (𝑋, Γ,M) on 𝑋 ′. We observe that Γ′ may no longer be effective.

Since (𝑋, Γ, 𝛼M) is generalized plt with �Γ ⊂ �𝐵 and 𝑋 ′ → 𝑋 only extracts divisor that appear
with coeffcient 1 in 𝐵′, for 0 < 𝜆 � 1, the datum of (𝑋 ′, (1 − 𝜆)𝐵′ + 𝜆Γ′, (1 − 𝜆 + 𝜆𝛼)M) is actually
a generalized pair (i.e., its boundary is effective) and it is generalized plt with 1 − 𝜆 + 𝜆𝛼 ∈ (0, 1).
Furthermore,

−(𝐾𝑋 ′ + (1 − 𝜆)𝐵′ + 𝜆Γ′ + (1 − 𝜆 + 𝜆𝛼)M𝑋 ′ )

is the pull-back of a divisor on X that is relatively ample over Z. Thus, for 𝜀 > 0 small enough, we have
that

−(𝐾𝑋 ′ + (1 − 𝜆)𝐵′ + 𝜆Γ′ + 𝜀𝐸 + (1 − 𝜆 + 𝜆𝛼)M𝑋 ′ )

is ample over Z. Hence, up to replacing (𝑋, 𝐵,M) with (𝑋 ′, 𝐵′,M) and (𝑋, Γ, 𝛼M) with (𝑋 ′, (1 −

𝜆)𝐵′ + 𝜆Γ′ + 𝜀𝐸, (1 − 𝜆 + 𝜆𝛼)M) we can assume that X is Q-factorial and (𝑋, 𝐵,M) is generalized dlt.

Step 2. In this step, we prove that 𝑆 → 𝜋(𝑆) is a contraction.

As 𝛼M𝑋 is the push-forward of a divisor that is nef over Z, its diminished base locus does not contain
any divisor. Let 𝜋 : 𝑋 ′ → 𝑋 be a model where M descends. Let 𝐾𝑋 ′ +Γ′ +𝛼M𝑋 ′ be the crepant pullback
of 𝐾𝑋 + Γ + 𝛼M𝑋 (this Γ′ is different from the one defined in step 1). For any 0 < 𝛿 < 1, we can write

(1 − 𝛿) (𝐾𝑋 ′ + Γ′ + 𝛼M𝑋 ′ ) = 𝐾𝑋 ′ + Γ′ + (𝛼M𝑋 ′ − 𝛿(𝐾𝑋 ′ + Γ′ + 𝛼M𝑋 ′ )).

As 𝛼M𝑋 ′ is nef and −(𝐾𝑋 ′ + Γ′ + 𝛼M𝑋 ′ ) is big and nef over Z, by [32, Example 2.2.19] there exists
an effective divisor 𝐸 ′ such that 𝛼M𝑋 ′ − 𝛿(𝐾𝑋 ′ + Γ′ + 𝛼M𝑋 ′ ) ∼Q 𝐴′

𝑘 +
1
𝑘 𝐸

′, for all positive integers k,
where each 𝐴′

𝑘 is ample over Z.
So, we can write (1 − 𝛿) (𝐾𝑋 ′ + Γ′ + 𝛼M𝑋 ′ ) ∼Q 𝐾𝑋 ′ + Γ′ + 𝐴′

𝑘 + 1
𝑘 𝐸

′. If we choose k large enough
and 𝐴′

𝑘 generically, then the subpair (𝑋 ′, Γ′ + 𝐴′
𝑘 +

1
𝑘 𝐸

′) is sub-plt. With those choices fixed, we define
𝐴 = 𝜋∗𝐴

′
𝑘 , 𝐸 = 1

𝑘 𝜋∗𝐸
′. Therefore,

(1 − 𝛿) (𝐾𝑋 + Γ + 𝛼M𝑋 ) ∼Q 𝐾𝑋 + Γ + 𝐴 + 𝐸,

with (𝑋, 𝐴 + 𝐸 + Γ) being plt. Call 𝐺 � 𝐴 + 𝐸 + Γ. For 𝛿 small enough, we have that −(𝐾𝑋 + 𝐺) is
ample over Z and �𝐺 = 𝑆. From the exact sequence

0 → O𝑋 (−𝑆) → O𝑋 → O𝑆 → 0,

we get the exact sequence

𝜋∗O𝑋 → 𝜋∗O𝑆 → 𝑅1𝜋∗O𝑋 (−𝑆).

Since −𝑆 = 𝐾𝑋 + 𝐺 − 𝑆 − (𝐾𝑋 + 𝐺), with (𝑋, 𝐺 − 𝑆) being klt and −(𝐾𝑋 + 𝐺) being ample over
Z, we have that 𝑅1𝜋∗O𝑋 (−𝑆) = 0 by the relative Kawamata–Viehweg vanishing theorem. Therefore,
𝜋∗O𝑋 → 𝜋∗O𝑆 is surjective.

Let 𝑔 ◦ 𝜋′ : 𝑆 → 𝑍 ′ → 𝑍 be the Stein factorization of 𝜋 : 𝑆 → 𝑍 . Then O𝑍 = 𝜋∗(O𝑋 ) →

𝜋∗O𝑆 = 𝑔∗O𝑍 ′ is surjective. As O𝑍 → 𝑔∗O𝑍 ′ factors as O𝑍 → O𝜋 (𝑆) → 𝑔∗O𝑍 ′ , the morphism
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O𝜋 (𝑆) → 𝑔∗(O𝑍 ′ ) is surjective. Then, it is an isomorphism, as the map 𝑍 ′ → 𝑍 is finite. Hence,
𝑍 ′ → 𝜋(𝑆) is an isomorphism and 𝑆 → 𝜋(𝑆) is a contraction. Restricting 𝐾𝑋 + 𝐺 to S shows that S is
of Fano type over 𝜋(𝑆).

Step 3. In this step, we use adjunction and consider a complement on S.

Consider a log resolution 𝑓 : 𝑋 ′ → 𝑋 of (𝑋, 𝐵,M) such that M descends on 𝑋 ′, and write𝐾𝑋 ′+𝐵𝑋 ′ �
𝑓 ∗(𝐾𝑋 + 𝐵). Let 𝑆′ be the strict transform of S and 𝑔 : 𝑆′ → 𝑆 be the induced morphism. Let (𝑆, 𝐵𝑆 ,N)

be the generalized pair obtained by adjunction of (𝑋, 𝐵,M) to S. By Lemma 2.17, the coefficients of
𝐵𝑆 are in 𝐷 (R) and the b-divisor 𝑝N is b-Cartier. By Lemma 2.24, the coregularity of (𝑆, 𝐵𝑆 ,N) is at
most c. By Theorem 7(𝑑 − 1, 𝑐) if dim 𝜋(𝑆) = 0 or by the inductive hypothesis if dim 𝜋(𝑆) > 0, the
divisor 𝐾𝑆 + 𝐵𝑆 + M𝑆 has an N complement 𝐵+

𝑆 over z with coregularity at most c. In the following
steps, we will lift 𝐵+

𝑆 to an N-complement 𝐵+
𝑋 of 𝐾𝑋 + 𝐵 + M𝑋 over z with coregularity at most c.

Step 4. In this step, we introduce some divisors and prove some properties of these divisors.

Define Ω𝑋 ′ � 𝐵𝑋 ′ − �𝐵≥0
𝑋 ′  and 𝑇𝑋 ′ � 𝑁Ω𝑋 ′ − �(𝑁 + 1)Ω𝑋 ′ − 𝑁 (𝐾𝑋 ′ + 𝐵𝑋 ′ + M𝑋 ′ ). We write

𝐾𝑋 ′ + Γ𝑋 ′ � 𝑓 ∗(𝐾𝑋 + Γ). Now, we define a divisor 𝑃𝑋 ′ in the following way. For any prime divisor
𝐷𝑋 ′ ≠ 𝑆′, we set coeff𝐷𝑋′ (𝑃𝑋 ′ ) = − coeff𝐷𝑋′ �Γ𝑋 ′ + 𝑁Ω𝑋 ′ − �(𝑁 + 1)Ω𝑋 ′ and coeff𝑆′ (𝑃𝑋 ′ ) = 0.
Hence, 𝑃𝑋 ′ is an integral divisor such that 𝐽𝑋 ′ � Γ𝑋 ′ + 𝑁Ω𝑋 ′ − �(𝑁 + 1)Ω𝑋 ′ + 𝑃𝑋 ′ is a boundary,
(𝑋 ′, 𝐽𝑋 ′ , 𝛼M𝑋 ′ ) is generalized plt and �𝐽𝑋 ′ = 𝑆′. For 𝐷𝑋 ′ ≠ 𝑆′ not exceptional over X, as 𝑁𝐵 is
integral, we have that coeff𝐷𝑋′ (𝑁Ω𝑋 ′ ) is an integer. Thus, coeff𝐷𝑋′ �(𝑁 + 1)Ω𝑋 ′ = coeff𝐷𝑋′ (𝑁Ω𝑋 ′ ).
So, coeff𝐷𝑋′ (𝑃𝑋 ′ ) = − coeff𝐷𝑋′ (Γ𝑋 ′ ) = 0. We conclude that 𝑃𝑋 ′ is exceptional over X.

Step 5. In this step, we lift sections from 𝑆′ to 𝑋 ′ using Kawamata–Viehweg vanishing.

Observe that:

𝑇𝑋 ′ + 𝑃𝑋 ′ = 𝑁Ω𝑋 ′ − �(𝑁 + 1)Ω𝑋 ′ − 𝑁 (𝐾𝑋 ′ + 𝐵𝑋 ′ + M𝑋 ′ ) + 𝑃𝑋 ′

= 𝐾𝑋 ′ + Γ𝑋 ′ − (𝐾𝑋 ′ + Γ𝑋 ′ ) + 𝑁Ω𝑋 ′ − �(𝑁 + 1)Ω𝑋 ′ − 𝑁 (𝐾𝑋 ′ + 𝐵𝑋 ′ + M𝑋 ′ ) + 𝑃𝑋 ′

= 𝐾𝑋 ′ + 𝐽𝑋 ′ − (𝐾𝑋 ′ + Γ𝑋 ′ ) − 𝑁 (𝐾𝑋 ′ + 𝐵𝑋 ′ + M𝑋 ′ ).

Then, we have that −(𝐾𝑋 ′ + Γ𝑋 ′ + 𝛼M𝑋 ′ ) − 𝑁 (𝐾𝑋 ′ + 𝐵𝑋 ′ + M𝑋 ′ ) + 𝛼M𝑋 ′ is big and nef over Z and
(𝑋 ′, 𝐽𝑋 ′ − 𝑆′) is klt. Therefore, up to shrinking Z around z, the relative Kawamata–Viehweg vanishing
theorem implies that ℎ1(𝑋 ′,O𝑋 ′ (𝑇𝑋 ′ + 𝑃𝑋 ′ − 𝑆′)) = 0. So, we obtain

𝐻0 (𝑋 ′,O𝑋 ′ (𝑇𝑋 ′ + 𝑃𝑋 ′ )) → 𝐻0 (𝑋 ′,O𝑋 ′ ( (𝑇𝑋 ′ + 𝑃𝑋 ′ ) |𝑆′ )) → 𝐻1 (𝑋 ′,O𝑋 ′ (𝑇𝑋 ′ + 𝑃𝑋 ′ − 𝑆′)) = 0.

This means that we can lift sections of (𝑇𝑋 ′ + 𝑃𝑋 ′ ) |𝑆′ from 𝑆′ to 𝑋 ′.

Step 6. In this step, we introduce a divisor 𝐺𝑆′ which is linearly equivalent to (𝑇𝑋 ′ + 𝑃𝑋 ′ ) |𝑆′ .

We have −𝑁 (𝐾𝑆 + 𝐵𝑆 + N𝑆) = −𝑁 (𝐾𝑆 + 𝐵+
𝑆 + 𝐵𝑆 − 𝐵+

𝑆 + N𝑆) ∼ −𝑁 (𝐵𝑆 − 𝐵+
𝑆) = 𝑁 (𝐵+

𝑆 − 𝐵𝑆) ≥ 0.
Define𝐾𝑆′ +𝐵𝑆′ +N𝑆′ � 𝑔∗(𝐾𝑆+𝐵𝑆+N𝑆). Then, we have that−𝑁 (𝐾𝑆′ +𝐵𝑆′ +N𝑆′ ) ∼ 𝑁𝑔∗(𝐵+

𝑆−𝐵𝑆) ≥ 0.
Then, it follows that −𝑁 (𝐾𝑋 ′ +𝐵𝑋 ′ +M𝑋 ′ ) |𝑆′= −𝑁 (𝐾𝑆′ +𝐵𝑆′ +N𝑆′ ) ∼ 𝑁𝑔∗(𝐵+

𝑆−𝐵𝑆). We define 𝐺𝑆′ �
𝑁𝑔∗(𝐵+

𝑆 − 𝐵𝑆) + 𝑁Ω𝑋 ′ |𝑆′ −�(𝑁 + 1)Ω𝑋 ′ |𝑆′ + 𝑃𝑋 ′ |𝑆′ . By definition, we have 𝐺𝑆′ ∼ (𝑇𝑋 ′ + 𝑃𝑋 ′ ) |𝑆′ .

Step 7. In this step, we prove that 𝐺𝑆′ is effective and that it lifts to an effective divisor 𝐺𝑋 ′ on 𝑋 ′.

Assume 𝐺𝑆′ is not effective, then there exists some prime divisor 𝐶𝑆′ with coeff𝐶𝑆′
(𝐺𝑆′ ) < 0. As

𝑁𝑔∗(𝐵+
𝑆−𝐵𝑆) and 𝑃𝑋 ′ are effective, we must have that coeff𝐶𝑆′

(𝑁Ω𝑋 ′ |𝑆′ −�(𝑁+1)Ω𝑋 ′ |𝑆′ ) is negative.
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Since 𝑋 ′ is a log resolution, we have that the restriction to 𝑆′ commutes with taking the integral (resp.
fractional) part of a divisor whose support is involved in the log resolution. In particular, observe that

coeff𝐶𝑆′
(𝑁Ω𝑋 ′ |𝑆′ −�(𝑁 + 1)Ω𝑋 ′ |𝑆′ ) = coeff𝐶𝑆′

(−Ω𝑋 ′ |𝑆′ +{(𝑁 + 1)Ω𝑋 ′ |𝑆′ }) ≥ − coeff𝐶𝑆′
(Ω𝑋 ′ |𝑆′ ) > −1.

As 𝐺𝑆′ is integral by the previous inequality its coefficients cannot be negative. Therefore, by Step 4,
we can lift 𝐺𝑆′ to an effective divisor 𝐺𝑋 ′ ∼ 𝑇𝑋 ′ + 𝑃𝑋 ′ with support not containing 𝑆′ and such that
𝐺𝑋 ′ |𝑆′= 𝐺𝑆′ .

Step 8. In this step, we introduce a divisor 𝐵+ ≥ 𝐵 for which 𝑁𝐵+ ∼ −𝑁 (𝐾𝑋 + M𝑋 ).

Since 𝑁𝐵 is integral, �(𝑁 + 1)Ω = 𝑁Ω, where Ω is the push-forward of Ω𝑋 ′ . Similarly, we call T,
P and G the push-forwards of 𝑇𝑋 ′ , 𝑃𝑋 ′ and 𝐺𝑋 ′ , respectively. We have that 𝑃 = 0 as 𝑃𝑋 ′ is exceptional
and therefore 𝑇 = 𝑇 +𝑃 ∼ 𝐺. Hence, we have that −𝑁 (𝐾𝑋 + 𝐵 +M𝑋 ) = 𝑇 = 𝑇 +𝑃 ∼ 𝐺 ≥ 0. Therefore,
𝑁 (𝐾𝑋 + 𝐵+ + M𝑋 ) ∼ 0, where we define 𝐵+ � 𝐵 + 1

𝑁 𝐺.

Step 9. In this step, we prove that (𝑋, 𝐵+,M) is generalized log canonical over some neighbourhood of
z, thus proving that 𝐵+ is an N-complement for (𝑋, 𝐵,M) over z.

We first prove that 1
𝑁 𝐺 |𝑆= 𝐵+

𝑆 −𝐵𝑆 . Note that we have the following chain ofQ-linear equivalences:

𝑅𝑋 ′ � 𝐺𝑋 ′ − 𝑃𝑋 ′ + �(𝑁 + 1)Ω𝑋 ′  − 𝑁Ω𝑋 ′ ∼ 𝑇𝑋 ′ + �(𝑁 + 1)Ω𝑋 ′  − 𝑁Ω𝑋 ′ = −𝑁 𝑓 ∗ (𝐾𝑋 + 𝐵 + M𝑋 ) ∼Q 0/𝑋.

Since 𝑁Ω is integral, we have that �(𝑁 + 1)Ω = 𝑁Ω. Therefore, as 𝑃𝑋 ′ is f -exceptional, 𝑓∗(𝑅𝑋 ′ ) = 𝐺

and 𝑅𝑋 ′ is the pull-back of G. Observe that

𝑁𝑔∗ (𝐵+
𝑆 − 𝐵𝑆) = 𝐺𝑆′ − 𝑃𝑆′ + �(𝑁 + 1)Ω𝑋 ′ |𝑆′  − 𝑁Ω𝑋 ′ |𝑆′= (𝐺𝑋 ′ − 𝑃𝑋 ′ + �(𝑁 + 1)Ω𝑋 ′  − 𝑁Ω𝑋 ′ ) |𝑆′= 𝑅𝑋 ′ |𝑆′ .

Therefore, 𝑔∗(𝐵+
𝑆 − 𝐵𝑆) = 1

𝑁 𝑅𝑋 ′ |𝑆′= 𝑔∗( 1
𝑁 𝐺 |𝑆), implying that 𝐵+

𝑆 − 𝐵𝑆 = 1
𝑁 𝐺 |𝑆 .

We now have that𝐾𝑆+𝐵
+
𝑆+N𝑆 = 𝐾𝑆+𝐵𝑆+𝐵

+
𝑆−𝐵𝑆+N𝑆 = (𝐾𝑋+𝐵+

1
𝑁 𝑅+M𝑋 ) |𝑆= (𝐾𝑋+𝐵

++M𝑋 ) |𝑆 .
By inversion of adjunction, (𝑋, 𝐵+,M) is generalized log canonical near S. Moreover, it has coregularity
c by [10, Lemma 2.30].

If (𝑋, 𝐵+,M) is not generalized log canonical near the fiber over z, then (𝑋, 𝑎𝐵+ + (1 − 𝑎)Γ),M) is
also not generalized log canonical near the fiber over z for 𝑎 < 1 close enough to 1. The generalized pair
(𝑋, 𝐵+,M) is generalized log canonical near S, therefore a component of the generalized non-klt locus
of (𝑋, 𝑎𝐵++(1−𝑎)Γ),M) is not near S. But S is also a component of the generalized log canonical locus.
Hence, the generalized non-klt locus of (𝑋, 𝑎𝐵+ + (1 − 𝑎)Γ),M) is disconnected near the fiber over z.
This is a contradiction as −(𝐾𝑋 +𝑎𝐵+ + (1−𝑎)Γ+M) = −𝑎(𝐾𝑋 +𝐵+ +M) − (1−𝑎) (𝐾𝑋 +Γ+M), is big
and nef over Z, so the connectedness principle can be applied (see, e.g., [3, Lemma 2.14]). Therefore,
(𝑋, 𝐵+,M) is generalized log canonical near the fiber over z. �

Proof of Theorem 5.1. We will proceed in several steps to reduce to Proposition 5.2. Without loss of
generality, we may replace X with a small Q-factorial modification.

Step 1. In this step, we define a boundary divisor 𝐵2 ≤ 𝐵1 and reduce to the case where −(𝐾𝑋 + 𝐵2 +
𝛼𝑏M𝑋 ) is big and nef for some 𝑏 ∈ (0, 1).

For any 0 < 𝑎 < 1, we have that

𝑎(𝐾𝑋 + 𝐵 + M𝑋 ) + (1 − 𝑎) (𝐾𝑋 + 𝐵1 + 𝛼M𝑋 ) = 𝐾𝑋 + (𝑎𝐵 + (1 − 𝑎)𝐵1) + (𝑎 + (1 − 𝑎)𝛼)M𝑋

is antibig and anti-nef, hence we can replace 𝐵1 by 𝑎𝐵 + (1 − 𝑎)𝐵1 and 𝛼 by 𝑎 + (1 − 𝑎)𝛼 to obtain 𝐵1
with coefficients as close as needed to the coefficients of B.
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Let 𝐵2 � 𝑏𝐵1 for some 𝑏 < 1. Since X is of Fano type over Z, −(𝐾𝑋 + 𝐵1 + 𝛼M𝑋 ) defines a
contraction 𝑋 → 𝑉 over Z. We run an MMP on −(𝐾𝑋 + 𝐵2 + 𝛼𝑏M𝑋 ) over V. In the resulting model
−(𝐾𝑋 ′ +𝐵′

2+𝛼𝑏M𝑋 ′ ) is big and nef over V. By the definition of V, −(𝐾𝑋 ′ +𝐵′
2+𝛼𝑏M𝑋 ′ ) (1− 𝑡) − (𝐾𝑋 ′ +

𝐵′
1+𝛼M𝑋 ′ )𝑡 is nef over Z for t close enough to 1, which is equivalent to saying that−(𝐾𝑋 ′ +𝐵′

2+𝛼𝑏M𝑋 ′ )

is nef over Z for b close enough to 1.
By taking a close enough to 1, we have that 𝐾𝑋 + 𝐵 + M𝑋 is nonnegative over V, hence the MMP

we ran is (𝐾𝑋 + 𝐵 + M𝑋 )-nonnegative. So, by Lemma 2.22 the coregularity of (𝑋, 𝐵,M𝑋 ) remains
unchanged.

Then, we can replace (𝑋, 𝐵,M) with (𝑋 ′, 𝐵′,M), 𝐵1 with 𝐵′
1 and 𝐵2 with 𝐵′

2 to have also that
−(𝐾𝑋 ′ + 𝐵′

2 + 𝛼𝑏M𝑋 ′ ) is big and nef over Z. As −(𝐾𝑋 + 𝐵1 + 𝛼M𝑋 ) is big and nef over Z, we have that
there is A ample and E effective, such that −(𝐾𝑋 + 𝐵1 + 𝛼M𝑋 ) ∼Q,𝑍 𝐴 + 𝐸 .

Step 2. In this step, we separate into cases depending on whether the generalized log canonical centers
of (𝑋, 𝐵1, 𝛼M) are contained in the support of E.

We can take a generalized dlt modification of (𝑋, 𝐵1, 𝛼M𝑋 ), so we can assume that (𝑋, 𝐵1, 𝛼M𝑋 )

is generalized dlt. If Supp 𝐸 contains no generalized log canonical center of (𝑋, 𝐵1, 𝛼M), then (𝑋, 𝐵1 +
𝜀𝐸, 𝛼M) is generalized dlt for 𝜀 > 0 small enough.

We have that −(𝐾𝑋 + 𝐵1 + 𝜀𝐸 + 𝛼M𝑋 ) ∼Q.𝑍 (1 − 𝜀) ( 𝜀
1−𝜀 𝐴 + −(𝐾𝑋 + 𝐵1 + 𝛼M𝑋 )) is ample over

Z. Hence, by altering the coefficients of 𝐵1 + 𝜀𝐸 , we can produce a divisor Γ that lets us conclude by
Proposition 5.2.

If Supp 𝐸 does contain some generalized log canonical center of (𝑋, 𝐵1, 𝛼M), then for 0 < 𝑟 < 1
we define 𝐵𝑟 � 𝑟𝐵1 + (1 − 𝑟)𝐵2 and 𝛼𝑟 � (𝑟 + 𝑏(1 − 𝑟))𝛼. Then, we define 𝑡𝑟 to be the generalized
log canonical threshold of 𝐸 + 𝐵1 − 𝐵𝑟 with respect to (𝑋, 𝐵𝑟 , 𝛼𝑟 M) over z. Since X is of Fano type,
it is klt. Furthermore, since (𝑋, 𝐵,M) is generalized log canonical and 0 < 𝑏, 𝑟 < 1, it follows that
(𝑋, 𝐵𝑟 , 𝛼𝑟 M) is generalized klt. In particular, we have 𝑡𝑟 > 0. We have

−(𝐾𝑋 + 𝐵𝑟 + 𝑡𝑟 (𝐸 + 𝐵1 − 𝐵𝑟 ) + 𝛼𝑟 M𝑋 ) = −(𝐾𝑋 + 𝐵1 + 𝛼M𝑋 ) + 𝐵1 − 𝐵𝑟 − 𝑡 (𝐸 + 𝐵1 − 𝐵𝑟 ) + (𝛼 − 𝛼𝑟 )M𝑋

∼R,𝑍 𝐴 + 𝐸 + (1 − 𝑡𝑟 )(𝐵1 − 𝐵𝑟 ) − 𝑡𝐸 + (𝛼 − 𝛼𝑟 )M𝑋

= 𝑡𝑟 𝐴 + (1 − 𝑡𝑟 )(𝐴 + 𝐸 + (𝐵1 − 𝐵𝑟 )) + (𝛼 − 𝛼𝑟 )M𝑋

∼R,𝑍 𝑡𝑟 𝐴 − (1 − 𝑡𝑟 )(𝐾𝑋 + 𝐵𝑟 + 𝛼M𝑋 ) + (𝛼 − 𝛼𝑟 )M𝑋

∼R,𝑍 𝑡𝑟 𝐴 − (1 − 𝑡𝑟 )(𝐾𝑋 + 𝐵𝑟 + 𝛼𝑟 M𝑋 ) + 𝑡𝑟 (𝛼 − 𝛼𝑟 )M𝑋

= 𝑡𝑟 (𝐴 + (𝛼 − 𝛼𝑟 )M𝑋 ) − (1 − 𝑡𝑟 )(𝐾𝑋 + 𝐵𝑟 + 𝛼𝑟 M𝑋 ).

If we pick r close enough to 1, then 𝛼−𝛼𝑟 tends to 0, hence 𝐴− (𝛼−𝛼𝑟 )M𝑋 is ample over Z for r close
enough to 1. Fixing such an r, it follows that −(𝐾𝑋 + 𝐵𝑟 + 𝑡𝑟 (𝐸 + 𝐵1 − 𝐵𝑟 ) + 𝛼𝑟 M𝑋 ) is ample over Z.

Step 3. In this step, we separate into cases according to the round-down of the divisor Θ � 𝐵𝑟 + 𝑡𝑟 (𝐸 +

𝐵1 − 𝐵𝑟 ).

If we have �Θ = 0, then we let (𝑋 ′,Θ′, 𝛼𝑟 M) be a dlt modification of (𝑋,Θ, 𝛼𝑟 M). We can
assume that every component of �Θ′ intersects the fiber over z, after shrinking Z. Furthermore,
since (𝑋, 𝐵𝑟 , 𝛼𝑟 M) is generalized klt, �Θ′ is the exceptional divisor of 𝑋 ′ → 𝑋 . An MMP on
𝐾𝑋 ′ + �Θ′ + 𝛼𝑏M𝑋 ′ over X ends with X, as �Θ′ is the exceptional divisor of 𝑋 ′ → 𝑋 and X is klt and
Q-factorial. The last step of this MMP would be a divisorial contraction 𝑋 ′′ → 𝑋 contracting one prime
divisor 𝑆′′ with (𝑋 ′′, 𝑆′′, 𝛼𝑟 M𝑋 ′′ ) generalized plt and −(𝐾𝑋 ′′ +𝑆′′ +𝛼𝑟 M𝑋 ′′ ) ample over X. Furthermore
𝑆′′ is a component of both Θ′′ and 𝐵′′

1 , where 𝐾𝑋 ′′ + Θ′′ and 𝐾𝑋 ′′ + 𝐵′′
1 are the pull-backs of 𝐾𝑋 + Θ

and 𝐾𝑋 + 𝐵1, respectively.
As−(𝐾𝑋+Θ+𝛼𝑟 M𝑋 ) is ample over Z and−(𝐾𝑋 ′′ +𝑆′′+𝛼𝑟 M𝑋 ′′ ) is ample over X, a linear combination

of 𝑆′′ and Θ′′ yields Γ′′ such that −(𝐾𝑋 ′′ + Γ′′ + 𝛼𝑟 M𝑋 ′′ ) is ample over Z and (𝑋 ′′, Γ′′, 𝛼𝑟 M𝑋 ′′ ) is

https://doi.org/10.1017/fms.2024.69 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.69


Forum of Mathematics, Sigma 39

plt with �Γ′′ = 𝑆′′. We can apply Proposition 5.2 here. As an N-complement on 𝑋 ′′ would induce an
N-complement on X, we have reduced to the case where �Θ ≠ 0.

It only remains to deal with the case where �Θ ≠ 0. In this case, there is a component S of
�Θ ≤ �𝐵1 ≤ �𝐵. On a dlt modification of (𝑋, 𝑆, 𝛼𝑟 M𝑋 ), we can perturb the coefficients of Θ′ to get
that �Θ′′ is irreducible and −(𝐾𝑋 ′ + Γ + 𝛼𝑟 M𝑋 ) is ample. Therefore, we can obtain the N-complement
by Proposition 5.2, as desired. As an N-complement on 𝑋 ′′ induces an N-complement on X, we are
done. �

5.2. Relative complements

In this subsection, we study the existence of complements in the relative setting. The main theorem of
this subsection states that we can lift complements from lower coregularity pairs when all the generalized
log canonical centers are horizontal over the base.

Theorem 5.3. Let d, c and p be nonnegative integers and Λ ⊂ Q be a closed set satisfying the DCC.
Assume Theorem 7(𝑐 − 1) holds. There exists a constant 𝑁 � 𝑁 (Λ, 𝑐, 𝑝) satisfying the following.

Let 𝜋 : 𝑋 → 𝑍 be a Fano type morphism, where X is a d-dimensional variety, and dim 𝑍 > 0.
Let (𝑋, 𝐵,M) be a generalized log canonical pair over Z and 𝑧 ∈ 𝑍 a point satisfying the following
conditions:

◦ the generalized pair (𝑋, 𝐵,M) has coregularity at most c over z;
◦ the coefficients of B belong to Λ;
◦ every generalized log canonical center of (𝑋, 𝐵,M) dominates Z;
◦ 𝑝M is b-Cartier; and
◦ the divisor −(𝐾𝑋 + 𝐵 + M𝑋 ) is nef over Z.

Then, there exists an N-complement for (𝑋, 𝐵,M) over z.

Proof. We will proceed in several steps to be able to lift complements using Theorem 5.1.

Step 1. In this step, we reduce to the case in which the boundary coefficients belong to a finite set,
(𝑋, 𝐵,M) has coregularity 𝑐 − 1 over, and �𝐵 has a vertical component intersecting the fiber over 𝑧.

By Theorem 3.5, there exists a finite set R and a relative pair (𝑋 ′, 𝐵′,M) with coeff (𝐵′) ⊂ R such
that if (𝑋 ′, 𝐵′,M) is N-complemented, then so is (𝑋, 𝐵,M). So, we can replace our generalized pair
(𝑋, 𝐵,M) with (𝑋 ′, 𝐵′,M). Hence, we may assume the coefficients of B belong to the finite set R. Up
to taking a Q-factorial dlt modification, we may further assume that X is Q-factorial.

We pick an effective Cartier divisor N on Z passing through z. We let t be the generalized log canonical
threshold of 𝑞∗𝑁 with respect to (𝑋, 𝐵,M) over z. By the connectedness principle [16, Theorem 1.7]
and the assumption that all the generalized log canonical centers of (𝑋, 𝐵,M) dominate Z, we know
that the coregularity of (𝑋, 𝐵 + 𝑡𝑞∗𝑁,M) is at most 𝑐 − 1.

Let (𝑋 ′, 𝑇 ′,M) be a generalized dlt modification of (𝑋, 𝐵 + 𝑡𝑞∗𝑁,M) over z. Let 𝐵′ be the strict
transform of B on 𝑋 ′. Let Ω′ be a boundary such that 𝐵′ ≤ Ω′ ≤ 𝑇 ′, coeff (Ω′) ⊂ R and some
component S of �Ω′ is vertical over Z intersecting the fiber 𝜋−1 (𝑧). Let Ω = 𝜋∗Ω′.

We run an MMP over Z on−(𝐾𝑋 ′ +Ω′+M𝑋 ′ ). As−(𝐾𝑋 ′ +Ω′+M𝑋 ′ ) = −(𝐾𝑋 ′ +𝑇 ′+M𝑋 ′ ) + (𝑇 ′−Ω′),
with −(𝐾𝑋 ′ +𝑇 ′ +M′.) nef over Z and (𝑇 ′ −Ω′) effective, the MMP ends with a minimal model, which
we denote by 𝑋 ′′.

If (𝑋 ′′,Ω′′,M𝑋 ′′ ) has an N-complement over z, then (𝑋 ′,Ω′,M𝑋 ′ ) has an N-complement over z by
Lemma 2.12. As 𝐵 ≤ Ω, we have that also (𝑋, 𝐵,M𝑋 ) has an N-complement by Lemma 2.13. So, we
can replace (𝑋, 𝐵,M𝑋 ) with (𝑋 ′′,Ω′′,M𝑋 ′′ ), to obtain �𝐵 having a component intersecting the fiber
over z, with −(𝐾𝑋 +𝐵+M𝑋 ) nef over Z. Notice that, after this reduction, the coregularity has decreased,
and it is no longer the case that all generalized log canonical centers dominate Z.
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Step 2. In this step, we define a divisor 𝐵1 which satisfies the hypothesis of Theorem 5.1.

For any prime divisor D that vertical is over Z, we set coeff𝐷 (𝐵1) � coeff𝐷 (𝐵). For any prime
divisor D horizontal over Z, we set coeff𝐷 (𝐵1) � coeff𝐷 (𝑎𝐵) for 𝑎 < 1, close enough to 1.

As X is of Fano type over Z, we have that −𝐾𝑋 is big over Z. Therefore, −(𝐾𝑋 + 𝑎𝐵 + 𝑎M𝑋 ) =
−𝑎(𝐾𝑋 +𝐵+M𝑋 )−(1−𝑎)𝐾𝑋 and−(𝐾𝑋 +𝐵1+𝑎M𝑋 ) are big over Z. The generalized pair (𝑋, 𝐵1, 𝑎M) is
generalized log canonical as 𝐵1 ≤ 𝐵 and �𝐵1 contains the same vertical component as �𝐵 intersecting
the fiber of z.

Step 3. In this step, we reduce to the case in which −(𝐾𝑋 + 𝐵1 + M𝑋 ) is big and nef over Z.

Since 𝜋 is a Fano type morphism and −(𝐾𝑋 + 𝐵 +M𝑋 ) is nef over Z, −(𝐾𝑋 + 𝐵 +M𝑋 ) is semiample
over Z. Let 𝑋 → 𝑉 over Z be the contraction defined by −(𝐾𝑋 + 𝐵 + M𝑋 ). We run an MMP on
−(𝐾𝑋 + 𝐵1 + 𝑎M𝑋 ) over V. In the resulting model −(𝐾 ′

𝑋 + 𝐵′
1 + 𝑎M𝑋 ′ ) is big and nef over V. By the

definition of V, −(𝐾𝑋 ′ + 𝐵′
1 + 𝑎M𝑋 ′ ) (1 − 𝑡) − (𝐾𝑋 ′ + 𝐵′ + M𝑋 ′ )𝑡 is nef over Z for t close enough to 1,

which is equivalent to picking a close enough to 1. We have that 𝐾𝑋 + 𝐵 + M𝑋 is trivial over V, hence
the MMP is (𝐾𝑋 +𝐵+M𝑋 )-nonnegative. Applying Lemma 2.22, the coregularity of (𝑋, 𝐵,M) remains
unchanged after this MMP. Thus, we can replace (𝑋, 𝐵,M), with (𝑋 ′, 𝐵′,M) and 𝐵1 with 𝐵′

1 with a
close enough to 1.

Step 4. In this step, we conclude by applying Theorem 5.1.

Let 𝑁 (R, 𝑐 − 1, 𝑝) be the positive integer provided by Theorem 7(𝑐 − 1). Taking N to be the least
common multiple of 𝑁 (R, 𝑐 − 1, 𝑝), 𝐼R and p. Hence, N depends only on Λ, 𝑐 − 1 and p. Indeed, R
only depends on Λ, 𝑐 and p. By Theorem 5.1 the generalized pair (𝑋, 𝐵,M) admits an N-complement,
where N only depends on Λ, c and p. �

6. Canonical bundle formula

In this section, we prove a special version of the canonical bundle formula. We obtain an effective
canonical bundle formula that is independent of the dimension of the domain. It only depends on the
coregularity of the fibers.

Theorem 6.1. Let d, c be nonnegative integers and Λ ⊂ Q be a closed set satisfying the descending
chain condition. Assume Theorem 7(𝑐 − 1) holds. There exists a set Ω � Ω(Λ, 𝑐) ⊂ Q satisfying the
descending chain condition and a positive integer 𝑞 � 𝑞(Λ, 𝑐) satisfying the following. Let 𝜋 : 𝑋 → 𝑍
be a fibration from a d-dimensional projective variety X to a projective base Z with dim 𝑍 > 0. Let
(𝑋, 𝐵) be a log canonical pair satisfying the following conditions:

◦ the fibration 𝜋 is of Fano type over a nonempty open set U of Z;
◦ every log canonical center of (𝑋, 𝐵) is horizontal over Z;
◦ the pair (𝑋, 𝐵) is log Calabi–Yau over Z;
◦ the coefficients of B are in Λ; and
◦ the coregularity of (𝑋, 𝐵) is at most c.

Then, we can write

𝑞(𝐾𝑋 + 𝐵) ∼ 𝑞𝜋∗(𝐾𝑍 + 𝐵𝑍 + N𝑍 ),

where (𝑍, 𝐵𝑍 ,N) is a generalized log canonical pair such that

◦ 𝐵𝑍 is the discriminant part of the adjunction for (𝑋, 𝐵) over Z;
◦ the coefficients of 𝐵𝑍 belong to Ω; and
◦ the divisor 𝑞N is b-nef and b-Cartier.
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Proof. The proof is given in several steps. In Step 1, we make a choice of q and N. In Steps 2–4, we find
Ω and show that the coefficients of 𝐵𝑍 belong to Ω. We also prove that 𝑞N𝑍 is integral. In Step 5, we
show that 𝑞N is b-Cartier. We observe that, by the assumptions on the log canonical centers of (𝑋, 𝐵)
and on the coregularity of (𝑋, 𝐵), it follows that dim 𝑍 ≤ 𝑐.

Step 1. In this step, we find q and make a choice of N.

Let q be the integer N in the statement of Theorem 5.3(𝑑, 𝑐−1). Here, we assumed Theorem 7(𝑐−1).
Fix a general closed point 𝑧 ∈ 𝑈. Let H be a general hyperplane section of U passing through z. Then
(𝑋, 𝐵 + 𝜋∗𝐻) is log Calabi–Yau and satisfies

coreg(𝑋, 𝐵 + 𝜋∗𝐻) ≤ 𝑐 − 1.

This implies that the absolute coregularity of (𝑋, 𝐵) over z is at most 𝑐 − 1. By Theorem 5.3(𝑑, 𝑐 − 1),
there is a q-complement 𝐾𝑋 + 𝐵+ of 𝐾𝑋 + 𝐵 over z with 𝐵+ ≥ 𝐵. Note that q only depends on Λ and
c. Since 𝐾𝑋 + 𝐵 is Q-trivial over Z, 𝐵+ − 𝐵 ∼Q 0 over z and hence 𝐵+ = 𝐵 near the generic fiber of 𝜋.
Therefore, 𝑞(𝐾𝑋 + 𝐵) ∼ 0 over the generic point of Z. Thus, we can find a rational function s on X such
that 𝑞𝐿 � 𝑞(𝐾𝑋 + 𝐵) + Div(𝑠) is zero over the generic point of Z. Note that 𝐿 ∼Q 0 over Z, so we can
write 𝐿 = 𝜋∗𝐿𝑍 for some Q-Cartier Q-divisor 𝐿𝑍 on Z. Define

N𝑍 � 𝐿𝑍 − (𝐾𝑍 + 𝐵𝑍 ),

where 𝐵𝑍 is the discriminant part of adjunction for (𝑋, 𝐵) over Z. Similarly, for any birational morphism
𝑔 : 𝑍 ′ → 𝑍 , we can define N𝑍 ′ as follows. Let 𝑓 : 𝑋 ′ → 𝑋 be a higher birational model of X such that
the rational map 𝑋 ′ � 𝑍 ′ is a morphism. Write 𝐾𝑋 ′ + 𝐵𝑋 ′ for the pull-back of 𝐾𝑋 + 𝐵 and 𝐵𝑍 ′ be the
discriminant part of adjunction for (𝑋 ′, 𝐵𝑋 ′ ) over 𝑍 ′. We define

N𝑍 ′ � 𝑔∗𝐿𝑍 − (𝐾𝑍 ′ + 𝐵𝑍 ′ ).

The data of N𝑍 ′ , for all birational models 𝑍 ′ → 𝑍 , determine a b-divisor N on Z.

Step 2. In this step, we reduce to the case when the base Z is a curve.

Assume dim 𝑍 ≥ 2. Let H be a general hyperplane section of Z and G be the pull-back of H to X. By
adjunction, we can write

(𝐾𝑋 + 𝐵 + 𝐺) |𝐺 = 𝐾𝐺 + 𝐵𝐺

for some divisor 𝐵𝐺 on G. By Lemma 2.17, there exists a set Λ′ satisfying the DCC, having rational
accumulation points and depending only on Λ such that the coefficients of 𝐵𝐺 belong to Λ′. We may
replace Λ with Λ′ to assume that the coefficients of 𝐵𝐺 belong to Λ. Since dim 𝑍 ≤ 𝑐, this replacement
can only happen at most 𝑐 − 1 times and is hence allowed. By Lemma 2.25, the pair (𝐺, 𝐵𝐺) over H
satisfies the same conditions as (𝑋, 𝐵) over Z in the statement of this theorem. Furthermore, let 𝐵𝐻

denote the discriminant part of the adjunction for (𝐺, 𝐵𝐺) over H. Let D be any prime divisor on Z and
C a component of 𝐷 ∩ 𝐻. Then

coeff𝐷 (𝐵𝑍 ) = coeff𝐶 (𝐵𝐻 ).

Pick a general 𝐻 ′ ∼ 𝐻, and let 𝐾𝐻 = (𝐾𝑍 +𝐻 ′) |𝐻 , which is properly defined as a Weil divisor. Define

N𝐻
′ = (𝐿𝑍 + 𝐻 ′) |𝐻 − (𝐾𝐻 + 𝐵𝐻 ).
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Similarly to the way we defined the b-divisor N on Z, we can define N′ as a b-divisor on H. Then, we have

𝑞(𝐾𝐺 + 𝐵𝐺) ∼ 𝑞(𝐿 + 𝐺) |𝐺 ∼ 𝑞𝜓∗(𝐿𝑍 + 𝐻 ′) |𝐻 ∼ 𝑞𝜓∗(𝐾𝐻 + 𝐵𝐻 + N𝐻
′).

Thus, N𝐻
′ is the moduli part of (𝐺, 𝐵𝐺) over H. Moreover, we have 𝐵𝐻 + N𝐻

′ = (𝐵𝑍 + N𝑍 ) |𝐻 .
This implies that coeff𝐶 (𝐵𝐻 + N𝐻

′) = coeff𝐷 (𝐵𝑍 + N𝑍 ) and hence coeff𝐶 (N𝐻
′) = coeff𝐷 (N𝑍 ). In

particular, 𝑞N𝐻
′ is integral if and only if 𝑞N𝐻 is integral.

As a result, to prove that coeff (𝐵𝑍 ) belongs to a fixed set Ω and that 𝑞N𝑍 is integral, we may replace
(𝑋, 𝐵) → 𝑍 with (𝐺, 𝐵𝐺) → 𝐻. By repeating this process until the base of the fibration is a curve, we
may assume that dim 𝑍 = 1.

Step 3. In this step, we show the existence of Ω.

By Step 2, we can assume dim 𝑍 = 1. By [3, Lemma 2.11], the variety X is of Fano type over Z.
Pick any closed point 𝑧 ∈ 𝑍 . Let t be the log canonical threshold of 𝜋∗𝑧 with respect to (𝑋, 𝐵) around
z. Set Γ = 𝐵 + 𝑡𝜋∗𝑧, and let (𝑋 ′, Γ′) be a Q-factorial dlt modification of (𝑋, Γ). Then 𝐾𝑋 ′ + Γ′ ∼Q 0
over Z and Γ′ has a component with coefficient 1 mapping to z. Pick a boundary 𝐵′ on 𝑋 ′ satisfying the
following conditions:

◦ we have �̃� ≤ 𝐵′ ≤ Γ′, where �̃� is the strict transform of B on 𝑋 ′;
◦ the coefficients of 𝐵′ are in Λ; and
◦ the divisors 𝐵′ and Γ′ have the same round-down, that is, �𝐵′ = �Γ′.

By construction, Supp(Γ′ − 𝐵′) is contained in the strict transform of Supp(𝜋∗𝑧). If 𝑡 < 1, �𝐵′ has a
component T mapping to z which is exceptional over X. Note that 𝑋 ′ is of Fano type over Z. We run a
−(𝐾𝑋 ′ + 𝐵′)-MMP with scaling over Z. Since −(𝐾𝑋 ′ + 𝐵′) ∼Q Γ′ − 𝐵′ is pseudo-effective, this MMP
terminates with a model (𝑋 ′′, 𝐵′′) such that −(𝐾𝑋 ′′ +𝐵′′) is semiample over Z by [1, Theorem 1.1]. The
divisor T is not contracted by this MMP because 𝑇 � Supp(Γ′ − 𝐵′). Furthermore, by Lemma 2.22, we
have

coreg(𝑋 ′′, 𝐵′′) = coreg(𝑋 ′, 𝐵′) ≤ coreg(𝑋 ′, Γ′) ≤ 𝑐.

As a result, up to losing the dlt condition, we may replace (𝑋 ′, 𝐵′) by (𝑋 ′′, 𝐵′′) to assume that the
following properties hold:

◦ 𝑋 ′ is Fano type over Z;
◦ (𝑋 ′, 𝐵′) is a log canonical pair over Z;
◦ the coefficients of 𝐵′ are in Λ;
◦ coreg(𝑋 ′, 𝐵′) ≤ 𝑐;
◦ −(𝐾𝑋 ′ + 𝐵′) is semiample over Z; and
◦ �𝐵′ has a component mapping to z.

If 𝑡 = 1, we may simply take 𝐵′ = Γ′ so the above conditions hold as well for (𝑋 ′, 𝐵′).
By Theorem 5.1 and our choice of q, the pair (𝑋 ′, 𝐵′) has a q-complement (𝑋 ′, 𝐵+) over z with

𝐵′+ ≥ 𝐵′. Pushing forward 𝐵′+ to X gives a q-complement (𝑋, 𝐵+) of (𝑋, 𝐵) over z with 𝐵+ ≥ 𝐵.
Furthermore, 𝐾𝑋 + 𝐵+ has a non-klt center mapping to z, since its pull-back 𝐾𝑋 ′ + 𝐵′+ does. Note that
𝐵+ − 𝐵 ∼Q 0 over z, so 𝐵+ − 𝐵 must be a multiple of 𝜋∗𝑧 over z. This implies that 𝐵+ = 𝐵 + 𝑡𝜋∗𝑧 over z
since 𝐾𝑋 + 𝐵+ has a non-klt center mapping to z.

Pick a component S of 𝜋∗𝑧. Let b, 𝑏+ and m be the coefficients of S in B, 𝐵+ and 𝜋∗𝑧, respectively.
Then 𝑏+ = 𝑏 + 𝑡𝑚 and 𝑡 = 𝑏+−𝑏

𝑚 . By construction, 𝑞𝑏+ and m are integers, 𝑏+ ≤ 1 and 𝑏 ∈ Λ. By
Lemma 2.18, t belongs to a fixed set Σ (depending only on 𝐼,Λ) which satisfies ACC and has rational
accumulation points. Since the coefficient of z in 𝐵𝑍 is 1 − 𝑡, it belongs to a set Ω depending only on I
and Λ such that Ω satisfies DCC and has rational accumulation points.
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Step 4. In this step, we show that 𝑞N𝑍 is integral.

By Step 2, we can assume that Z is a curve. By Step 1, the equivalence 𝑞(𝐾𝑋 + 𝐵) ∼ 0 holds over
some nonempty open subset 𝑉 ⊆ 𝑍 such that Supp 𝐵𝑍 ⊆ 𝑍 \𝑉 . Let

Θ = 𝐵 +
∑

𝑧∈𝑍\𝑉

𝑡𝑧𝜋
∗𝑧,

where 𝑡𝑧 is the log canonical threshold of 𝜋∗𝑧 with respect to (𝑋, 𝐵) over z. Note that 𝐾𝑋 +Θ ∼Q 0 over
Z. Let Θ𝑍 be the discriminant part of adjunction for (𝑋,Θ) over Z. Then

Θ𝑍 = 𝐵𝑍 +
∑

𝑧∈𝑍\𝑉

𝑡𝑧𝑧 =
∑

𝑧∈𝑍\𝑉

𝑧

is an integral divisor. Moreover, by Step 3, the pair (𝑋,Θ) is a q-complement of (𝑋, 𝐵) over each
𝑧 ∈ 𝑍 \ 𝑉 . Over V, we have 𝑞(𝐾𝑋 + Θ) ∼ 𝑞(𝐾𝑋 + 𝐵) ∼ 0. Thus, 𝑞(𝐾𝑋 + Θ) ∼ 0 over Z by [3, Lemma
2.4]. Furthermore, from the equalities

𝑞(𝐾𝑋 + Θ) = 𝑞(𝐾𝑋 + 𝐵) + 𝑞(Θ − 𝐵) ∼ 𝑞𝜋∗(𝐾𝑍 + 𝐵𝑍 + N𝑍 ) + 𝑞𝜋∗(Θ𝑍 − 𝐵𝑍 ) ∼ 𝑞𝜋∗(𝐾𝑍 + Θ𝑍 + N𝑍 ),

we obtain that 𝑞(𝐾𝑍 + Θ𝑍 + N𝑍 ) is an integral divisor and hence 𝑞N𝑍 is integral.

Step 5. In this step, we show that 𝑞N𝑍 ′ is nef Cartier on some resolution 𝑍 ′ → 𝑍 .

The nefness follows from [3, Theorem 3.6], so we just need to show that 𝑞N𝑍 ′ is integral. Denote
the birational morphism 𝑍 ′ → 𝑍 by g. As in Step 1, let 𝑓 : 𝑋 ′ → (𝑋, 𝐵) be a log resolution such
that the rational map 𝜋′ : 𝑋 ′ � 𝑍 ′ is a morphism. Let 𝑈0 ⊆ 𝑈 be a nonempty open set such that
𝑈 ′

0 � 𝑔−1(𝑈0) → 𝑈0 is an isomorphism. Let Δ ′ be the sum of the birational transform of B and reduced
exceptional divisors of f but with all components mapping outside of 𝑈0 removed. Then, the generic
point of every log canonical center of (𝑋 ′,Δ ′) lies inside 𝑈0.

Let T be the normalization of the main component of 𝑍 ′ ×𝑍 𝑋 . Run an MMP on 𝐾𝑋 ′ + Δ ′ over T
with scaling of some ample divisor. This MMP terminates with a Q-factorial dlt pair (𝑋 ′′,Δ ′′) such
that 𝐾𝑋 ′′ + Δ ′′ is nef over T. Let 𝑋0 = 𝜋−1 (𝑈0). Over 𝑈0 � 𝑈 ′

0, we have 𝑍 ′ ×𝑍 𝑋 � 𝑋0, and hence
𝐾𝑋 ′′ + Δ ′′ is nef over 𝑋0 ⊆ 𝑋 . By the negativity lemma, over 𝑈 ′

0, the divisor 𝐾𝑋 ′′ + Δ ′′ is equal to the
log pull-back of 𝐾𝑋 + 𝐵. This shows that (𝑋 ′′,Δ ′′) is a dlt modification of (𝑋, 𝐵) over𝑈0. In particular,
𝑋 ′′ is Fano type over 𝑈 ′

0. Furthermore, every log canonical center of (𝑋 ′′,Δ ′′) dominates 𝑈 ′
0. Indeed,

(𝑋, 𝐵) satisfies the same property and the generic point of every log canonical center of (𝑋 ′′,Δ ′′) lies
inside 𝑈 ′

0. Thus, we have

coreg(𝑋 ′′,Δ ′′) = coreg(𝑋, 𝐵) ≤ 𝑐.

By [1, Theorem 1.4], we can run an MMP on 𝐾𝑋 ′′ + Δ ′ over 𝑍 ′ which terminates with a good minimal
model over 𝑍 ′. Since this MMP is trivial over 𝑈 ′

0, the dual complex and hence the coregularity of
(𝑋 ′′,Δ ′′) does not change under this MMP. Abusing the notation, we again denote the good minimal
model by 𝑋 ′′. Let 𝜋′′ : 𝑋 ′′ → 𝑍 ′′ over 𝑍 ′ be the morphism induced by the relatively semiample divisor
𝐾𝑋 ′′ + Δ ′′. Since 𝐾𝑋 ′′ + Δ ′′ ∼Q 0 over 𝑈 ′

0, 𝑍 ′′ → 𝑍 ′ is birational and 𝑈 ′′
0 , the preimage of 𝑈 ′

0 in 𝑍 ′′, is
isomorphic to 𝑈 ′

0. Thus, every log canonical center of (𝑋 ′′,Δ ′′) also dominates 𝑍 ′′.
Let W be a common resolution of X and 𝑋 ′′, and set 𝛼 : 𝑊 → 𝑋 and 𝛽 : 𝑊 → 𝑋 ′′. By construction,

over the preimage of 𝑈0 in W, we have 𝛼∗(𝐾𝑋 + 𝐵) = 𝛽∗(𝐾𝑋 ′′ +Δ ′′). Write 𝐾𝑋 ′′ + 𝐵′′ = 𝛽∗𝛼
∗(𝐾𝑋 + 𝐵)

and 𝐿 ′′ = 𝛽∗𝛼
∗𝐿, where 𝑞𝐿 = 𝑞(𝐾𝑋 + 𝐵) + Div(𝑠) as in Step 1. Let 𝑃′′ = Δ ′′ − 𝐵′′, which is Q-trivial

over 𝑍 ′′ and supported outside of 𝑈 ′′
0 . Hence, 𝑃′′ = 𝜋′′ ∗ 𝑃𝑍 ′′ for some Q-divisor 𝑃𝑍 ′′ on 𝑍 ′′. Let Δ𝑍 ′′

be the discriminant part of adjunction for (𝑋 ′′,Δ ′′) on 𝑍 ′′. Let 𝐵𝑍 ′′ = Δ𝑍 ′′ − 𝑃𝑍 ′′ , then 𝐵𝑍 ′′ is the
discriminant part of adjunction for (𝑋 ′′, 𝐵′′) on 𝑍 ′′. By the definition of N in Step 1, we have
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𝑞(𝐾𝑋 ′′ + Δ ′′) = 𝑞(𝐾𝑋 ′′ + 𝐵′′ + 𝑃′′) ∼ 𝑞𝜋′′ ∗ (𝐾𝑍 ′′ + 𝐵𝑍 ′′ + N𝑍 ′′ + 𝑃𝑍 ′′ ) ∼ 𝑞𝜋′′ ∗ (𝐾𝑍 ′′ + Δ𝑍 ′′ + N𝑍 ′′ ).

Here, 𝐿𝑍 ′′ is the pull-back of 𝐿𝑍 in Step 1. This shows that N𝑍 ′′ is the moduli part of (𝑋 ′′,Δ ′′) over
𝑍 ′′. Since the coefficients of Δ ′′ are in Λ and the coregularity of (𝑋 ′′,Δ ′′) is at most c, we may apply
Steps 2–4 to show that 𝑞N𝑍 ′′ is an integral divisor. Thus, 𝑞N𝑍 ′ is also an integral divisor and hence
Cartier as 𝑍 ′ is smooth. �

We show that Theorem 6.1 also holds for generalized pairs (𝑋, 𝐵,M) in the special case that M𝑋 ∼Q 0
over the base Z.

Theorem 6.2. Let d, c and p be nonnegative integers andΛ ⊂ Q be a closed set satisfying the descending
chain condition. Assume Theorem 7(𝑐 − 1) holds. There exists a set Ω � Ω(Λ, 𝑐, 𝑝) ⊂ Q satisfying the
descending chain condition and a positive integer 𝑞 � 𝑞(Λ, 𝑐, 𝑝), both Ω and q only depending on Λ
and c, and satisfying the following. Let 𝜋 : 𝑋 → 𝑍 be fibration from a d-dimensional projective variety
X to a projective base Z with dim 𝑍 > 0. Let (𝑋, 𝐵,M) be a generalized pair for which

◦ the generalized pair (𝑋, 𝐵,M) is generalized log canonical;
◦ the fibration 𝜋 is of Fano type over a nonempty open set U of Z;
◦ every generalized log canonical center of (𝑋, 𝐵,M) is horizontal over Z;
◦ the divisors 𝐾𝑋 + 𝐵 + M𝑋 and M𝑋 are Q-trivial over Z;
◦ the coefficients of B are in Λ,
◦ 𝑝M is b-Cartier; and
◦ the coregularity of (𝑋, 𝐵) is at most c.

Then, we can write

𝑞(𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 𝑞𝜋∗(𝐾𝑍 + 𝐵𝑍 + N𝑍 ),

where (𝑍, 𝐵𝑍 ,N) is a generalized log canonical pair such that

◦ 𝐵𝑍 is the discriminant part of the adjunction for (𝑋, 𝐵,M) over Z;
◦ the coefficients of 𝐵𝑍 belong to Ω; and
◦ the divisor 𝑞N is b-nef and b-Cartier.

Proof. We proceed in several steps. In the first step, we apply the canonical bundle formula for pairs.
In the rest of the proof, we show that M is the pull-back of a b-nef divisor on the base and control the
Cartier index of this b-nef divisor where it descends.

Step 1. We show that the pair (𝑋, 𝐵) satisfies the conditions in the statement of Theorem 6.1.

By Lemma 2.5, (𝑋, 𝐵) is log canonical. Furthermore, every log canonical center of (𝑋, 𝐵) is also a
log canonical center of (𝑋, 𝐵,M), and hence it dominates U.

Thus, by Theorem 6.1, there exists Ω and I, depending only on Λ and c such that

𝑞(𝐾𝑋 + 𝐵) ∼ 𝑞𝜋∗(𝐾𝑍 + 𝐵𝑍 + P𝑍 ),

where 𝐵𝑍 and P are the discriminant and moduli part of adjunction for the fibration (𝑋, 𝐵) → 𝑍 . Since
(𝑋, 𝐵) is log canonical, (𝑍, 𝐵𝑍 ,P) is generalized log canonical. Furthermore, the coefficients of 𝐵𝑍

belong to Ω and 𝑞P is nef Cartier on any high resolution of Z. By replacing q with 𝑝𝑞, we can assume
that q is a multiple of p.

Step 2. In this step, we express M as a pull-back of some b-divisor from Z.

Let 𝑔 : 𝑍 ′ → 𝑍 be a log resolution of (𝑍, 𝐵𝑍 + P) such that P descends on 𝑍 ′ and P𝑍 ′ is nef. Let
𝑓 : 𝑋 ′ → 𝑋 be a resolution such that the rational map 𝜋′ : 𝑋 ′ � 𝑍 ′ is a morphism and M𝑋 ′ is nef. By
the negativity lemma, we can write
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𝑓 ∗M𝑋 = M𝑋 ′ + 𝐸𝑋 ′

for some effective f -exceptional Q-divisor 𝐸𝑋 ′ . Since M𝑋 ∼Q 0 over Z, 𝐸𝑋 ′ is vertical over Z, so there
is a nonempty subset of U over which 𝐸𝑋 ′ = 0 and M𝑋 ′ ∼Q 0. Since 𝜋 is of Fano type over U, the
general fibers of 𝜋 are of Fano type and hence rationally connected. Thus, the general fibers of 𝜋′ are
also rationally connected. By [3, Lemma 2.44], after replacing 𝑋 ′ and 𝑍 ′ with possibly higher birational
models, we can write

𝑝M𝑋 ′ ∼ 𝑝𝜋′ ∗ 𝑇𝑍 ′

for some Q-divisor 𝑇𝑍 ′ on 𝑍 ′ such that 𝑝𝑇𝑍 ′ is nef Cartier. Let T be the b-divisor on Z with the data
𝑔 : 𝑍 ′ → 𝑍 and 𝑇𝑍 ′ (i.e., T descends on 𝑍 ′ as 𝑇𝑍 ′).

Step 3. In this step, we show that 𝑞M𝑋 ∼ 𝑞𝜋∗T𝑍 .

As in Step 2, write

𝑓 ∗M𝑋 = M𝑋 ′ + 𝐸𝑋 ′ .

Then 𝐸𝑋 ′ is vertical and Q-linearly trivial over 𝑍 ′ (since M𝑋 ′ ∼Q 0 over 𝑍 ′), so we can write
𝐸𝑋 ′ = 𝜋′ ∗ 𝐸𝑍 ′ for some effective Q-divisor 𝐸𝑍 ′ . If 𝐸𝑍 ′ has a component 𝐷𝑍 ′ which maps onto a
divisor D in Z, then 𝐸𝑋 ′ = 𝜋′ ∗ 𝐸𝑍 ′ has a component mapping onto D, contradicting the fact that 𝐸𝑋 ′

is f -exceptional. Thus, 𝐸𝑍 ′ is g-exceptional. Note that 𝜋′ ∗ (T𝑍 ′ + 𝐸𝑍 ′ ) = M𝑋 ′ + 𝐸𝑋 ′ ∼Q 0 over Z, so
T𝑍 ′ + 𝐸𝑍 ′ ∼Q 0 over Z. This implies that 𝑔∗T𝑍 = T𝑍 ′ + 𝐸𝑍 ′ . Now, we have

𝑞 𝑓 ∗M𝑋 = 𝑞(M𝑋 ′ + 𝐸𝑋 ′ ) ∼ 𝑞𝜋′ ∗ (T𝑍 ′ + 𝐸𝑍 ′ ) = 𝑞𝜋′ ∗ 𝑔∗T𝑍 = 𝑞 𝑓 ∗𝜋∗T𝑍

and hence 𝑞M𝑋 ∼ 𝑞𝜋∗T𝑍 . In particular, 𝑞T is a b-Cartier divisor. From now on, we consider (𝑍, 𝐵𝑍 ,P+

T) as a generalized pair, with moduli part P + T.

Step 4. In this step, we show that the generalized pair (𝑍, 𝐵𝑍 ,P + T) is generalized log canonical.

Write 𝐾𝑋 ′ + 𝐵𝑋 ′ = 𝑓 ∗(𝐾𝑋 + 𝐵). Let 𝐵𝑍 ′ be the discriminant part of the adjunction for (𝑋 ′, 𝐵𝑋 ′ ) over
𝑍 ′. We can assume that (𝑍 ′, Supp 𝐵𝑍 ′ +Supp 𝐸𝑍 ′ +Supp P𝑍 ′ +Supp T𝑍 ′ ) is log smooth. By construction,
we have

𝐾𝑍 ′ + 𝐵𝑍 ′ + 𝐸𝑍 ′ + P𝑍 ′ + T𝑍 ′ = 𝑔∗(𝐾𝑍 + 𝐵𝑍 + P𝑍 + T𝑍 ).

Thus, it suffices to show that every coefficient of 𝐵𝑍 ′ + 𝐸𝑍 ′ is at most one. Let D be a prime divisor
on 𝑍 ′. Let 𝑡𝐷 be the log canonical threshold of (𝑋 ′, 𝐵𝑋 ′ ) with respect to 𝜋′ ∗ 𝐷 over the generic point
of D. Since (𝑋, 𝐵,M) is generalized log canonical, (𝑋 ′, 𝐵𝑋 ′ + 𝐸𝑋 ′ ) is sublog canonical. Furthermore,
𝐸𝑋 ′ = 𝜋′ ∗ 𝐸𝑍 ′ , so the coefficient of D in 𝐸𝑍 ′ is at most 𝑡𝐷 (otherwise 𝐸𝑋 ′ ≥ (𝑡𝐷 + 𝜖)𝜋′ ∗ 𝐷 for some
𝜖 > 0 and this violates the sublog canonical condition). By definition, coeff𝐷 (𝐵𝑍 ′ ) = 1 − 𝑡𝐷 . Thus,
coeff𝐷 (𝐵𝑍 ′ + 𝐸𝑍 ′ ) ≤ 1 − 𝑡𝐷 + 𝑡𝐷 = 1, as desired.

Step 5. In this step, we conclude that the generalized pair (𝑍, 𝐵𝑍 ,P +T) satisfies the desired properties.

By Step 1, the coefficients of 𝐵𝑍 belong to Ω and 𝑞P is b-nef and b-Cartier. By Steps 2 and 3,
𝑞T is b-Cartier. By Step 4, (𝑍, 𝐵𝑍 ,P + T) is generalized log canonical. Finally, by Steps 1 and 3,
we have

𝑞(𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 𝑞𝜋∗(𝐾𝑍 + 𝐵𝑍 + P𝑍 + T𝑍 ). �

Proposition 6.3. Assume that Theorem 7(𝑐 − 1) holds. Then, Theorem 8(𝑐) holds.
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Proof. Theorem 7(𝑐 − 1) implies that Theorem 6.2(𝑐) holds.
Let (𝑋, 𝐵,M) be a generalized pair in the statement of Theorem 8(𝑐). We may replace (𝑋, 𝐵,M) by a

Q-factorial generalized dlt modification and assume that (𝑋, 𝐵,M) is Q-factorial generalized dlt. Since
X is of Fano type over Z, we can run an MMP on M𝑋 over Z to get a model (𝑋 ′, 𝐵′,M) such that M𝑋 ′ is
semiample over Z. After replacing (𝑋, 𝐵,M) with (𝑋 ′, 𝐵′,M), up to losing the generalized dlt property
for (𝑋, 𝐵,M), we may assume that M𝑋 is semiample over Z. Let 𝑋 → 𝑍 ′ be the morphism induced by
M. Since M is trivial on a general fiber of 𝜋, the morphism 𝑍 ′ → 𝑍 is birational. After replacing Z with
𝑍 ′, we may assume that M ∼Q 0 over Z. Now, the result follows from Theorem 6.2(𝑐). �

7. Proof of the theorems

In this section, we prove the main theorems of this article. In this section, we use the notation from Sec-
tion: ‘Strategy of the Proof’, we write Theorem 𝑋 (𝑑, 𝑐) for Theorem X in dimension d and coregularity
at most c. The following is the boundedness of complements for Fano type pairs of coregularity 0. Note
that the following theorem is an unconditional version of Theorem 7(0).

Theorem 7.1. Let p be a positive integer. Let Λ ⊂ Q be a closed set satisfying the descending chain
condition. There exists a constant 𝑁 � 𝑁 (Λ, 𝑝) satisfying the following. Let X be a Fano type variety
and (𝑋, 𝐵,M) be a generalized pair of absolute coregularity 0. Assume that the following conditions
hold:

◦ the coefficients of B belong to Λ;
◦ 𝑝M is b-Cartier.

Then, there exists a boundary 𝐵+ ≥ 𝐵 such that

◦ the generalized pair (𝑋, 𝐵+,M) is generalized log canonical;
◦ we have that 𝑁 (𝐾𝑋 + 𝐵+ + M) ∼ 0; and
◦ the equality coreg(𝑋, 𝐵+,M) = 0 holds.

Proof. First, we replace Λ with its derived closure (see Lemma 2.16). We let R � R(Λ, 0, 𝑝) ⊂ Λ be
the finite subset provided by Theorem 3.5. This finite subset only depends on Λ and p.

By [14, Theorem 1.2], there is a constant 𝑁 (Λ, 𝑑, 0, 𝑝) such that every generalized pair (𝑋, 𝐵,M) as
in the statement and of dimension at most d admits an 𝑁 (Λ, 𝑑, 0, 𝑝)-complement. We will proceed by
induction on d. We may assume that 𝑁 (Λ, 𝑑, 0, 𝑝) is divisible by 𝐼 (Λ) and p for every d. Throughout
the proof, we assume that 𝑁 (Λ, 𝑑, 0, 𝑝) is minimal with such properties.

By Theorem 3.5, we may assume that the coefficients of B belong to R. Let 𝐵+Γ be aQ-complement
of (𝑋, 𝐵,M) of coregularity 0. Let (𝑌, 𝐵𝑌 + Γ𝑌 ,M) be a generalized dlt modification of (𝑋, 𝐵 + Γ,M).
Here, Γ𝑌 is the strict transform of the fractional part of Γ and 𝐵𝑌 is the reduced exceptional plus the strict
transform of 𝐵 + �Γ. By Lemma 2.13, Y is a Fano type variety. Thus, we may run a −(𝐾𝑌 + 𝐵𝑌 +M𝑌 )-
MMP which terminates with a good minimal model Z since −(𝐾𝑌 + 𝐵𝑌 + M𝑌 ) ∼Q Γ𝑌 is effective.
Let 𝐵𝑍 be the strict transform of 𝐵𝑌 on Z and M𝑍 be the trace of M on Z. Note that (𝑍, 𝐵𝑍 ,M)

is a generalized pair of coregularity 0 and −(𝐾𝑍 + 𝐵𝑍 + M𝑍 ) is a semiample divisor. In order to
produce an N-complement for (𝑋, 𝐵,M), it suffices to produce an N-complement for (𝑍, 𝐵𝑍 ,M)

(see Lemma 2.12 and Lemma 2.13). Hence, we may replace (𝑋, 𝐵,M) with (𝑍, 𝐵𝑍 ,M) and assume
that −(𝐾𝑋 + 𝐵 + M𝑋 ) is semiample and that (𝑋, 𝐵,M) has coregularity 0. By [14, Theorem 1.2],
then this reduction shows that Theorem 7(𝑑, 0) holds for any d; this will be used to then appeal to
Theorem 5.1.

If 𝐾𝑋 + 𝐵 + M𝑋 ∼Q 0, then the statement follows from [13, Theorem 1]. Hence, we may assume
that the ample model W of −(𝐾𝑋 + 𝐵 + M𝑋 ) is positive-dimensional. Since (𝑋, 𝐵,M) has coregularity
0 and dim𝑊 > 0, then some generalized log canonical center of (𝑋, 𝐵,M) is vertical over W. We may
replace (𝑋, 𝐵,M) with a generalized dlt modification and assume that some 𝑆 ⊂ Supp�𝐵 is vertical
over W. Write Ξ = 𝐵 − 𝑆. Let 𝑋 ′ be the ample model of Ξ + M𝑋 over W. Notice that, since X is of Fano
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type and S is vertical over W, 𝑋 � 𝑋 ′ is a birational contraction. Let Ξ′, 𝐵′ be the push-forward of Ξ, 𝐵
on 𝑋 ′. Note that S is not contained in Bs(Ξ + M𝑋/𝑊). Hence, S is a generalized log canonical place
of (𝑋 ′, 𝐵′ − 𝜖Ξ′, (1 − 𝜖)M) for every 𝜖 > 0 small enough. Let (𝑌, 𝐵𝑌 ,M) be a Q-factorial generalized
dlt modification of (𝑋 ′, 𝐵′,M). Let 𝜋 : 𝑌 → 𝑋 ′ be the associated projective morphism. We write
Ξ𝑌 + M𝑌 = 𝜋∗(Ξ + M𝑋 ).

By construction, the following conditions hold:

◦ the generalized pair (𝑌, 𝐵𝑌 ,M) is generalized dlt and −(𝐾𝑌 + 𝐵𝑌 + M𝑌 ) is nef;
◦ the generalized pair (𝑌, 𝐵𝑌 − 𝜖Ξ𝑌 , (1 − 𝜖)M) is generalized dlt, it is not generalized klt, and the

divisor −(𝐾𝑌 + 𝐵𝑌 − 𝜖Ξ𝑌 + (1 − 𝜖)M𝑌 ) is big and nef.

By Lemma 2.12 and Lemma 2.13, an N-complement of (𝑌, 𝐵𝑌 ,M) induces an N-complement of
(𝑋, 𝐵,M). By Theorem 5.1, we conclude that (𝑌, 𝐵𝑌 ,M) admits an 𝑁 (𝐷 (R), 𝑑−1, 0, 𝑝)-complement.
Notice that we can rely on Theorem 5.1 in lower dimension, since we are proceeding by induction on
d, and the conjectures to which Theorem 5.1 is conditional are known in coregularity 0 (by the remarks
under the statement of Theorem 7). Hence, (𝑋, 𝐵,M) admits a 𝑁 (𝐷 (R), 𝑑−1, 0, 𝑝)-complement. Note
that 𝐷 (R) ⊂ Λ. So this is also a 𝑁 (Λ, 𝑑−1, 0, 𝑝)-complement. Thus, by the minimality of 𝑁 (Λ, 𝑑, 0, 𝑝),
we have that

𝑁 (Λ, 𝑑, 0, 𝑝) ≤ 𝑁 (Λ, 𝑑 − 1, 0, 𝑝).

This implies that 𝑁 (Λ, 𝑑, 0, 𝑝) is bounded above by 𝑁 (Λ, 1, 0, 𝑝). This finishes the proof. �

Proof of Theorem 4. We follow the notation of the proof of Theorem 7.1. By [13, Corollary 3], a log
Calabi–Yau pair with standard coefficients and coregularity 0 has coefficients in

{ 1
2 , 1

}
. In particular,

a generalized log canonical threshold with standard coefficients and coregularity 0 belongs to
{ 1

2 , 1
}

(see Definition 2.26 and [10, Theorem 4.3]). On the other hand, by Corollary 3.3, a generalized pseudo-
effective threshold with standard coefficients and coregularity 0 is either 1

2 or 1. In the proof of Theorem
3.5, the set R(S , 0, 2) only consists of log canonical thresholds of coregularity 0 and pseudo-effective
thresholds of coregularity 0. Hence, by the proof of Theorem 3.5, we may assume that the coefficients
of B belong to { 1

2 , 1}, that is, we have that

R0 � R(S , 0, 2) =
{

1
2
, 1
}
.

Note that 𝐼S = 1 (see Definition 2.14) and 𝑝 = 2 in this case. By the proof of Theorem 7.1, we conclude
that

𝑁 (S , 𝑑, 0, 2) = 𝑁 (R0, 𝑑, 0, 2) ≤ 𝑁 (R0, 𝑑 − 1, 0, 2),

for every 𝑑 ≥ 2. Then, the proof follows as 𝑁 (S , 1, 0, 2) = 2. �

Proposition 7.2. Assume that Theorem 8(𝑐) holds. Then, Theorem 6(𝑐) holds.

Proof. By Lemma 2.16, we may assume that Λ is derived. By [13, Theorem 2], we may assume that
the coefficients of B belong to a finite subset Λ0 ⊂ Λ. Let 𝜆0 be the smallest positive integer such that
𝜆0Λ0 ⊂ Z and p divides 𝜆0. Let 𝐼 (Λ0, 𝑐, 𝑑, 𝑝) be the smallest positive integer that is divisible by the
index of all the generalized pairs as in the statement of dimension at most d. A priori, 𝐼 (Λ0, 𝑐, 𝑑, 𝑝)
may not exist. However, due to Conjecture 1 and Lemma 2.30, we know that 𝐼 (Λ0, 𝑐, 𝑐, 𝑝) is finite.
We proceed by induction on the dimension d. Assume that 𝐼 (Λ0, 𝑑 − 1, 𝑐, 𝑝) is finite. We may assume
that 𝐼 (Λ0, 𝑑 − 1, 𝑐, 𝑝) is divisible by 𝜆0. Let (𝑋, 𝐵,M) be a d-dimensional generalized pair as in the
statement. We write 𝐼 (𝑋, 𝐵,M) for the index of this generalized log Calabi–Yau pair.

By Theorem 2.29, we may replace (𝑋, 𝐵,M) with a Kollár–Xu model and assume the following
conditions hold:
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◦ the generalized pair (𝑋, 𝐵,M) is generalized dlt;
◦ there is a contraction 𝜋 : 𝑋 → 𝑍 for which �𝐵 fully supports a 𝜋-semiample and 𝜋-big divisor; and
◦ every generalized log canonical center of (𝑋, 𝐵,M) dominates Z.

In particular, we know that Z has dimension at most c.
We will proceed in two different cases, depending on the coefficients of 𝐵 + M𝑋 and the rational

connectedness of X.

Case 1: We assume that M is numerically nontrivial and X is rationally connected.

We will proceed in two different sub-cases, depending on the coefficients of {𝐵} + M𝑋 .

Case 1.1: We assume that {𝐵} + M𝑋 is Q-trivial on the general fiber of 𝜋.

We observe that, given the running assumption that M is numerically nontrivial, in this subcase we
have dim 𝑍 > 0. By Theorem 8(𝑐), we can write

𝑞(𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 𝑞𝜋∗(𝐾𝑍 + 𝐵𝑍 + N𝑍 ),

where (𝑍, 𝐵𝑍 ,N) is a generalized klt log Calabi–Yau pair and the positive integer q only depends on
Λ0, c and p. The coefficients of 𝐵𝑍 belong to a set Ω, which satisfies the DCC, and only depends on Λ0,
c and p. Finally, the divisor 𝑞N is b-Cartier. We conclude that

𝐼 (𝑋, 𝐵,M) ≤ lcm(𝑞, 𝐼 (Ω, 𝑐, 𝑐, 𝑞)).

Note that the value on the r.h.s. only depends on Λ0, 𝑐 and p.

Case 1.2: We assume that {𝐵} + M𝑋 is nontrivial on the general fiber of 𝜋.

We run a (𝐾𝑋 + �𝐵)-MMP over Z. Since 𝐾𝑋 + �𝐵 is not pseudo-effective over Z, this minimal model
program terminates with a Mori fiber space 𝜋′ : 𝑋 ′ → 𝑊 over Z. We denote the push-forward of B to 𝑋 ′

by 𝐵′. We may replace (𝑋, 𝐵,M) with (𝑋 ′, 𝐵′,M) and assume that 𝐾𝑋 + �𝐵 is antiample over W. In
this reduction, we may give up the generalized dlt property for (𝑋, 𝐵,M), while (𝑋, �𝐵,M) remains
generalized dlt. By the reduction to the Kollár–Xu model, the divisor �𝐵 contains a prime component
S which dominates W. By construction, the general fiber of 𝑆 → 𝑊 is rationally connected. Since W is
rationally connected, we conclude that S is rationally connected. Since (𝑋, �𝐵,M) is generalized dlt,
S is normal. Let (𝑆, 𝐵𝑆 ,N) be the generalized pair obtained by adjunction. Then, by Lemma 2.17 and
[10, Theorem 2], we know that the coefficients of 𝐵𝑆 belong to Λ0 and 𝑝N is b-Cartier. We conclude that

𝐼 (Λ0, 𝑑 − 1, 𝑐, 𝑝) (𝐾𝑆 + 𝐵𝑆 + N𝑆) ∼ 0.

By Theorem 2.31, we conclude that

𝐼 (Λ0, 𝑑 − 1, 𝑐, 𝑝) (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 0.

Putting Case 1.1 and Case 1.2 together, we conclude that if M is numerically nontrivial and X is
rationally connected, then we have that

𝐼 (𝑋, 𝐵,M) ≤ max{𝐼 (Λ0, 𝑑 − 1, 𝑐, 𝑝), lcm(𝑞, 𝐼 (Ω, 𝑐, 𝑐, 𝑞))}.

Case 2: We assume that either M is the trivial b-divisor or M is numerically trivial and X is rationally
connected.

In the latter case, by [13, Lemma 3.9] we know that 𝑝M𝑋 ′ ∼ 0 where 𝑋 ′ → 𝑋 is a resolution on
which M descends. Replacing M with 𝑝M, we may assume that the first case holds.
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Let (𝑋, 𝐵) be a log Calabi–Yau pair as in the statement. We assume that the coefficients of B belong
to Λ0. We may assume that 𝑑 > 𝑐. We replace (𝑋, 𝐵) with aQ-factorial dlt modification. Let 𝑆 ⊂ �𝐵 be
a prime component. We run a (𝐾𝑋 +𝐵−𝑆)-MMP. This terminates with a Mori fiber space 𝜋′ : 𝑋 ′ → 𝑊 .
We denote by 𝐵′ the push-forward of B to 𝑋 ′. We replace (𝑋, 𝐵) with (𝑋 ′, 𝐵′). Note that S is ample
over the base W and (𝑋, 𝐵 − 𝑆) is dlt. Let (𝑆, 𝐵𝑆) be the pair obtained by adjunction. Then, (𝑆, 𝐵𝑆) is
a semilog canonical log Calabi–Yau pair by [19, Example 2.6]. Furthermore, by Lemma 2.17 and [10,
Theorem 2], the coefficients of 𝐵𝑆 belong to Λ0. By Theorem 4.9, up to replacing 𝐼 (Λ0, 𝑑 − 1, 𝑐) with
lcm(𝐼 (Λ0, 𝑑 − 1, 𝑐), 𝐼𝑎 (Λ0, 𝑐)), we may assume that

𝐼 (Λ0, 𝑑 − 1, 𝑐, 0) (𝐾𝑆 + 𝐵𝑆) ∼ 0.

Here, 𝐼𝑎 (Λ0, 𝑐) is the constant from Theorem 4.9. By construction, we have that (𝑋, 𝐵 − 𝑆) is dlt, X is
Q-factorial and klt, and 𝑆 ⊂ �𝐵 is ample over W. If the fibers of 𝑆 → 𝑊 are connected, then we can
apply Theorem 4.12, to conclude that

𝐼 (Λ0, 𝑑 − 1, 𝑐, 0) (𝐾𝑋 + 𝐵) ∼ 0.

Otherwise, we can apply Theorem 2.32, to conclude that

𝐼 (Λ0, 𝑑 − 1, 𝑐, 0) (𝐾𝑋 + 𝐵) ∼ 0.

Putting Case 1 and Case 2 together, we conclude that every generalized pair (𝑋, 𝐵,M) of dimension
d as in the statement satisfies that

𝐼 (𝑋, 𝐵,M) ≤ max{𝐼 (Λ0, 𝑑 − 1, 𝑐, 𝑝), lcm(𝑞, 𝐼 (Ω, 𝑐, 𝑐, 𝑞))}.

Hence, we have that

𝐼 (Λ0, 𝑑, 𝑐, 𝑝) ≤ max{𝐼 (Λ0, 𝑑 − 1, 𝑐, 𝑝), lcm(𝑞, 𝐼 (Ω, 𝑐, 𝑐, 𝑞))}.

Proceeding inductively, we conclude that

𝐼 (Λ0, 𝑑, 𝑐, 𝑝) ≤ max{𝐼 (Λ0, 𝑐, 𝑐, 𝑝), 𝑞𝐼 (Ω, 𝑐, 𝑐, 𝑐)}.

The r.h.s. does not depend on d. This finishes the proof of the proposition. �

Lemma 7.3. Let 𝜆 be a positive integer. Let (P1, 𝐵P1 ,MP1) be a generalized log Calabi–Yau pair. Assume
that the coefficients of 𝐵P1 belong to 𝐷𝜆 and 2𝜆MP1 is Weil. Then, 𝐼 (𝐾1

P
+𝐵P1+MP1) ∼ 0 for some 𝐼 = 𝑚𝜆,

where 𝑚 ≤ 120𝜆 is an even positive integer. Furthermore, if MP1 = 0, then 𝐻0(P1,OP1 (𝐼 (𝐾1
P
+ 𝐵P1 )))

admits an admissible section.

Proof. We prove the second statement. Let 𝐺 = Aut(P1, 𝐵P1). The group G is a finite extension of a
torus. First, we assume that G is finite, which turns to imply that 𝐵P1 is supported in at least three points.
Let (P1, 𝐵P1) → (P1, 𝐵′

P1 ) be the quotient by G given by the Hurwitz formula. By pulling back to P1, it
suffices to show that

ℎ0 (P1,OP1 (𝐼 (𝐾P1 + 𝐵′
P1 ))) ≠ 0

for some 𝐼 = 𝑚𝜆, where 𝑚 ≤ 120𝜆. We write

𝐵′
P1 =

𝑘∑
𝑖=1

���1 −
1
𝑚𝑖

+

∑𝑙𝑘
𝑗=1

𝑝 𝑗,𝑘

𝜆

𝑚𝑖

���{𝑝𝑖},
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where the 𝑝 𝑗 ,𝑘 ’s are positive integers. We may assume that 𝑚1 ≥ · · · ≥ 𝑚𝑘 . If 𝑚1 ≤ 5, then for 𝐼 = 120𝜆,
we have that 𝐼𝐵′

P1 is Weil. If 𝑚1 > 5, then 𝑚3 = · · · = 𝑚𝑘 = 1. If 𝑚2 > 2𝜆, then 𝑚1 > 2𝜆 and

coeff 𝑝1 (𝐵
′
P1) + coeff 𝑝2 (𝐵

′
P1 ) + coeff 𝑝3 (𝐵

′
P1) >

(
1 −

1
2𝜆

)
+

(
1 −

1
2𝜆

)
+

1
𝜆
= 2.

This leads to a contradiction. Hence, we may assume that 𝑚2 ≤ 2𝜆. In this case, we have that 𝑚2𝜆𝐵
′
P1

is Weil. Thus, it suffices to take 𝐼 = 𝑚2𝜆 with 𝑚2 ≤ 2𝜆.
Now, we assume that G is a finite extension of a torus. This implies that 𝐵P1 is supported in two

points, so we may assume that 𝐵P1 = {0} + {∞} and that 𝐺 � G𝑚 � Z2. Note that G𝑚 acts trivially on
B-representations as it is connected. Hence, in this case, 2(𝐾P1 + 𝐵P1 ) admits an admissible section.

In the first statement, we need to control the index of the generalized pair. The same argument we
used in the previous paragraph to control the index of (P1, 𝐵′

P1 ) applies to (P1, 𝐵P1 ,MP1 ). The only
difference is that due to the presence of M, it could be that 𝐵P1 is supported at only one point or it could
even be empty. In this case, 2𝜆(𝐾P1 + 𝐵P1 + MP1) is integral, and the claims follow. �

Proof of Theorem 2. Let (𝑋, 𝐵,M) be a d-dimensional generalized log Calabi–Yau pair as in the state-
ment. We follow the proof of Proposition 7.2. In Case 1.1, we can write

𝑞(𝜆) (𝐾𝑋 + 𝐵 + M𝑋 ) ∼ 𝑞(𝜆)𝜋∗(𝐾P1 + 𝐵P1 + MP1),

where (P1, 𝐵P1 ,MP1) is a generalized log Calabi–Yau pair for which the coefficients of 𝐵P1 belong
to a DCC set Ω and 2𝜆MP1 is Weil. Here, we can take 𝑞(𝜆) = 2𝜆. Indeed, the constant 𝑞(𝜆) in the
canonical bundle formula depends on the existence of bounded complements with standard coefficients
and relative absolute coregularity 0. By Theorem 5.3 and Theorem 4 such relative complement can be
chosen to be a 2𝜆-complement. On the other hand, we can take Ω = 𝐷𝜆. Indeed, in this case, (𝑋, 𝐵,M)

admits a log canonical center which has a finite dominant map to P1. Thus, the coefficients of 𝐵P1

can be computed by the adjunction formula and Riemann–Hurwitz. By Lemma 7.3, we conclude that
𝐼 (𝐾P1 +𝐵P1 +MP1 ) ∼ 0 for some integer 𝐼 = 𝑚𝜆 where 𝑚 ≤ 120𝜆. We conclude that 𝐼 (𝐾𝑋 +𝐵+M𝑋 ) ∼ 0
for the same choice of I.

In Case 1.2 and Case 2, the index of (𝑋, 𝐵,M) divides the index of a possibly nonnormal log Calabi–
Yau pair of coregularity 1 and dimension 𝑑 − 1. Inductively, we reduce to the one-dimensional case
which follows by Theorem 4.9 and Lemma 7.3. �

Proof of Theorem 3. In a similar fashion as the proof of Theorem 2, this follows from the proof of
Proposition 7.2 and the classification of log Calabi–Yau pair structures on P1 with standard coefficients.

�

Proposition 7.4. Assume that Theorem 6(𝑐) holds and Theorem 8(𝑐) holds. Then, Theorem 7(𝑐) holds.

Proof. By Lemma 2.16, we may assume that Λ is derived. Let 𝑁 (Λ, 𝑑, 𝑐, 𝑝) be the smallest positive
integer for which every generalized pair (𝑋, 𝐵,M) of dimension d as in the statement admits an
N-complement. By Theorem 3.5, there exists a finite subset R ⊂ Λ for which

𝑁 (R, 𝑑, 𝑐, 𝑝) = 𝑁 (Λ, 𝑑, 𝑐, 𝑝)

for every d. We proceed by induction on d. We may assume that every complement throughout the proof
is divisible by p and 𝐼R. We write 𝑁 (𝑋, 𝐵,M) for the smallest positive integer for which (𝑋, 𝐵,M)

admits an N-complement of coregularity c. Let 𝐵 + Γ be a Q-complement of (𝑋, 𝐵,M) that computes
the absolute coregularity. Let (𝑌, 𝐵𝑌 + Γ𝑌 + 𝐸,M) be a generalized Q-factorial dlt modification of
(𝑋, 𝐵 + Γ𝑌 ,M), where 𝐵𝑌 (resp. Γ𝑌 ) is the strict transform of the fractional part of B (resp. Γ). Then,
the generalized pair (𝑌, 𝐵𝑌 + 𝐸,M) has coregularity c. We run a −(𝐾𝑌 + 𝐵𝑌 + 𝐸)-MMP with scaling,
which terminates with a good minimal model Z. By Lemma 2.22, the generalized pair (𝑍, 𝐵𝑍 + 𝐸𝑍 )

has coregularity c. By Lemma 2.13 and Lemma 2.12, we have that 𝑁 (𝑋, 𝐵,M) ≤ 𝑁 (𝑍, 𝐵𝑍 + 𝐸𝑍 ,M).
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In order to give an upper bound for 𝑁 (𝑋, 𝐵,M), we may replace (𝑋, 𝐵,M) with (𝑍, 𝐵𝑍 + 𝐸𝑍 ,M).
Thus, we may assume that coreg(𝑋, 𝐵,M) = 𝑐 and −(𝐾𝑋 + 𝐵 +M𝑋 ) is semiample. Let W be the ample
model of −(𝐾𝑋 + 𝐵 + M𝑋 ). We proceed in three different cases, depending on the dimension of W.

Case 1: In this case, we can assume that dim𝑊 = 0.

Then, we have that 𝑁 (𝐾𝑋 +𝐵+M𝑋 ) ∼ 0 for some N that only depends onΛ, c and p by Theorem 6(𝑐).

Case 2: In this case, we assume that dim𝑊 = dim 𝑋 .

In this case, we have that −(𝐾𝑋 + 𝐵 +M𝑋 ) is a nef and big divisor. We may assume that (𝑋, 𝐵,M) is
Q-factorial and generalized dlt. By Theorem 5.1, we conclude that 𝑁 (𝑋 ′, 𝐵′,M) ≤ 𝑁 (Λ, 𝑑 − 1, 𝑐, 𝑝) =
𝑁 (R, 𝑑 − 1, 𝑐, 𝑝). In this case, we conclude that

𝑁 (𝑋, 𝐵,M) ≤ 𝑁 (Λ, 𝑑 − 1, 𝑐, 𝑝) = 𝑁 (R, 𝑑 − 1, 𝑐, 𝑝).

Case 3: In this case, we assume that 0 < dim𝑊 < dim 𝑋 .

We run a ({𝐵} + M𝑋 )-MMP over W which terminates with a good minimal model 𝑋 � 𝑋 ′ → 𝑊
over W. By Lemma 2.22, the coregularity of (𝑋, 𝐵,M) is unaffected by this MMP. Let 𝑊 ′ → 𝑊 be the
ample model of {𝐵} +M𝑋 over the base. First, assume that dim𝑊 ′ = dim 𝑋 . In this case, {𝐵′} +M𝑋 ′ is
big over W. Hence, for 𝜖 > 0 small enough, we have that the generalized pair (𝑋 ′, 𝐵′ − 𝜖{𝐵′}, (1− 𝜖)M)

is generalized log canonical but not generalized klt and the divisor

−(𝐾𝑋 ′ + 𝐵′ − 𝜖{𝐵′} + (1 − 𝜖)M𝑋 ′ )

is big and nef. Note that 𝑁 (𝑋, 𝐵,M) = 𝑁 (𝑋 ′, 𝐵′,M). By Theorem 5.1, we conclude that

𝑁 (𝑋, 𝐵,M) ≤ 𝑁 (Λ, 𝑑 − 1, 𝑐, 𝑝) = 𝑁 (R, 𝑑 − 1, 𝑐, 𝑝).

From now on, we assume that 0 < dim𝑊 ′ < dim 𝑋 . We separate in two cases, depending on the log
canonical centers of (𝑋 ′, 𝐵′,M).

Case 3.1: In this case, we assume that there is a generalized log canonical center of (𝑋 ′, 𝐵′,M) that is
vertical over 𝑊 ′.

We may assume that (𝑋 ′, 𝐵′,M) is generalized dlt. Let 𝑆′ ⊂ �𝐵′ be a prime component that is
vertical over 𝑊 ′. In this case, 𝐵′

hor is big over the base. We run a 𝐵′
hor-MMP over 𝑊 ′ which terminates

with a good minimal model 𝑋 ′
0, and we consider its ample model 𝑋 ′′ over 𝑊 ′. We have the following

commutative diagram:

(𝑋, 𝐵,M) �����

��

(𝑋 ′, 𝐵′,M) �����

𝜋′

��

(𝑋 ′
0, 𝐵

′
0,M)

𝜓 ��

�����
���

���
��

(𝑋 ′′, 𝐵′′,M)

�������
�����

�����
�����

�����

𝑊 𝑊 ′.��

Note that all the previous models are crepant. Hence, we have that

𝑁 (𝑋, 𝐵,M) = 𝑁 (𝑋 ′, 𝐵′,M) = 𝑁 (𝑋 ′′, 𝐵′′,M). (7.1)

By construction, the following conditions are satisfied:

◦ the variety W is an ample model for −(𝐾𝑋 + 𝐵 + M𝑋 );
◦ the variety 𝑊 ′ is an ample model for {𝐵′} + 𝑀𝑋 ′ over W;
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◦ the variety 𝑋 ′
0 is a good minimal model for 𝐵′

0,hor over 𝑊 ′; and
◦ the variety 𝑋 ′′ is an ample model for 𝐵′′

hor over 𝑊 ′.
We conclude that the divisor

−(𝐾𝑋 ′′ + 𝐵′′ − 𝜖{𝐵′′} − 𝛿𝐵′′
hor + (1 − 𝜖)M𝑋 ′′ )

is ample for 𝜖 � 𝛿 > 0 small enough. We claim that the generalized pair

(𝑋 ′′, 𝐵′′ − 𝜖{𝐵′′} − 𝛿𝐵′′
hor, (1 − 𝜖)M)

is generalized log canonical but not generalized klt. Note that (𝑋 ′
0, 𝐵

′
0 − 𝜖{𝐵′

0} − 𝛿𝐵′
0,hor, (1 − 𝜖)M) is

generalized log canonical and not generalized klt as 𝑆′0 is a component of �𝐵′
0 − 𝜖{𝐵′

0} − 𝛿𝐵′
0,hor. The

morphism 𝜓 is (𝐾𝑋 ′
0
+ 𝐵′

0 − 𝜖{𝐵′
0} − 𝛿𝐵′

0,hor + (1 − 𝜖)M𝑋 ′
0
)-trivial, so the claim follows. By Theorem

5.1 and the sequence of equalities (7.1), we conclude that

𝑁 (𝑋, 𝐵,M) ≤ 𝑁 (Λ, 𝑑 − 1, 𝑐, 𝑝) = 𝑁 (R, 𝑑 − 1, 𝑐𝑝).

Thus, in this case, we have that 𝑁 (𝑋, 𝐵,M) ≤ 𝑁 (R, 𝑑 − 1, 𝑐).

Case 3.2: In this case, we assume that all the generalized log canonical centers of (𝑋 ′, 𝐵′,M) are
horizontal over 𝑊 ′.

Let 𝜋′ : 𝑋 ′ → 𝑊 ′ be the projective contraction. We may apply Theorem 8(𝑐) to obtain a linear
equivalence:

𝑞(𝐾𝑋 ′ + 𝐵′ + M𝑋 ′ ) ∼ 𝑞𝜋′ ∗ (𝐾𝑊 ′ + 𝐵𝑊 ′ + N𝑊 ′ ),

where the following conditions are satisfied:
◦ the generalized pair (𝑊 ′, 𝐵𝑊 ′ ,N) is of Fano type, has dimension 𝑑𝑊 ′ ≤ 𝑐 and is exceptional (i.e., its

absolute coregularity is equal to its dimension 𝑑𝑊 ′);
◦ the positive integer q only depends on Λ, c and p;
◦ the coefficients of 𝐵𝑊 ′ belong to a DCC set Ω which only depends on Λ, c and p; and
◦ the b-nef divisor 𝑞N is b-Cartier.
Indeed, if (𝑊 ′, 𝐵𝑊 ′ ,N) is not exceptional, by pulling back a non-klt complement of it, we obtain a
complement for (𝑋 ′, 𝐵′,M) of coregularity strictly less than c. This leads to a contradiction. By [14,
Theorem 1.2], any generalized pair (𝑊 ′, 𝐵𝑊 ′ ,N) as above admits an 𝑁 (Ω, 𝑑𝑊 ′ , 𝑑𝑊 ′ , 𝑞)-complement.
By pulling back, we obtain an N-complement for (𝑋 ′, 𝐵′,M) for some

𝑁 ≤ lcm(𝑞, 𝑁 (Ω, 𝑑𝑊 ′ , 𝑑𝑊 ′ , 𝑞)).

Putting Case 1 through Case 3 together, we conclude that

𝑁 (𝑋, 𝐵,M) ≤ max{𝑁 (R, 𝑑 − 1, 𝑐, 𝑝), lcm(𝑞, 𝑁 (Ω, 1, 1, 𝑞)), . . . , lcm(𝑞, 𝑁 (Ω, 𝑐, 𝑐, 𝑞))}.

for every d-dimensional generalized pair (𝑋, 𝐵,M) as in the statement. Proceeding inductively, we
conclude that every generalized pair (𝑋, 𝐵,M) as in the statement of the theorem satisfies that

𝑁 (𝑋, 𝐵,M) ≤ max{𝑁 (R, 𝑐, 𝑐, 𝑝), lcm(𝑞, 𝑁 (Ω, 1, 1, 𝑞)), . . . , lcm(𝑞, 𝑁 (Ω, 𝑐, 𝑐, 𝑞))}.

Observe that the number on the r.h.s. only depends on Λ, 𝑐 and p. This finishes the proof of the
implication. �

Lemma 7.5. Let (P1, 𝐵P1 ,MP1) be a generalized log Calabi–Yau pair for which coeff (𝐵P1 ) ∈ 𝐷𝑡 (Z>0)
and 2MP1 is Cartier. If 𝑡 > 5

6 , then 𝑡 = 1.
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Proof. Each coefficient of 𝐵P1 is either standard or of the form

1 −
1
𝑚

+
𝑡

𝑚
> 1 −

1
6𝑚

> 5/6. (7.2)

The only sets of standard coefficients whose sum is less than 7
6 are {1} and { 1

2 ,
1
2 }. Thus, 𝐵P1 is supported

in at most 3 points and 𝑡 = 1. �

Proof of Theorem 5. Let (𝑋, 𝐵,M) be a d-dimensional generalized pair as in the statement. Following
Step 1 of the proof of Theorem 3.5, let t be a log canonical threshold of coregularity 1 (or a pseudo-
effective threshold) of a prime divisor with respect to (𝑋, 𝐵,M). By [10, Lemma 3.2] (or proof of
Lemma 3.2 in the case where t is a pseudo-effective threshold), we can construct a generalized log
Calabi–Yau pair

(P1, 𝐵P1 ,MP1)

for which coeff (𝐵P1 ) ∈ 𝐷𝑡 ({1}) and 2MP1 is Cartier. By Lemma 7.5, we conclude that 𝑡 = 1 provided
that 𝑡 > 5/6. Hence, by the proof of Theorem 3.5, we may assume that the coefficients of B belong to

R1 �
{

1
2
,

2
3
,

3
4
,

4
5
,

5
6

}
.

Proceeding as in the proof of Proposition 7.4, we conclude that

𝑁 (𝑋, 𝐵,M) ≤ 𝑁 (R1, 𝑑, 1, 2) ≤ lcm(2, 𝑁 (R1, 1, 1, 2)).

Note that we can take 𝑞 = 2 due to Theorem 1. We conclude that 𝑁 ∈ {2, 4, 6}. �

We prove the three main theorems of the article. The theorems are proved together inductively.

Proof of Theorems 6, 7 and 8. Note that Theorem 8(0) is trivial. By [13, Theorem 1], we conclude that
Theorem 6(0) holds. By Theorem 7.1, we know that Theorem 7(0) holds. Assume that Theorem 6(𝑐−1),
Theorem 7(𝑐 − 1) and Theorem 8(𝑐 − 1) hold. By Proposition 6.3, we conclude that Theorem 8(𝑐)
holds. By Proposition 7.2, we conclude that Theorem 6(𝑐) holds. By Proposition 7.4, we conclude that
Theorem 7(𝑐) holds. This finishes the proof of the theorems. �

Finally, we prove the application to klt singularities.

Proof of Theorem 9. Let (𝑋; 𝑥) be a klt singularity of absolute coregularity 0. Let (𝑋, Γ0; 𝑥) be a strictly
log canonical pair of coregularity 0 at x. By [43, Lemma 1], there exists a plt blow-up 𝜋 : 𝑌 → 𝑋 that
extracts a unique exceptional divisor E that is a log canonical place of (𝑋, Γ0; 𝑥).3 In particular, the
pair (𝐸,Diff𝐸 (0)) is a Fano pair of absolute coregularity 0 and with standard coefficients (see, e.g.,
[39, Proposition 3.9]). By Theorem 4, (𝐸,Diff𝐸 (0)) admits a 1- or 2-complement. By Steps 4–9 of the
proof of Proposition 5.2, we can lift this complement to a 1- or 2-complement of (𝑋; 𝑥) at x. �

Proof of Theorem 10. The proof is analogous to the one of Theorem 9 by replacing Theorem 4 with
Theorem 5. �
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