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Clear cell renal cell carcinoma (ccRCC) is the main type of malignancy in kidney related to glucose metabolism. Primary single cell
culture and single cell sequencing are novel research technologies. In this study, we explored the diferentiation status of ccRCC cells and
its signifcance in prognosis and immunotherapeutic response through bioinformatics. We characterized distinct diferentiation states
and diferentiation-related genes (DRGs) in ccRCC cells through single cell RNA sequencing (scRNA-seq) analysis. Combinedwith bulk
RNA-seq data, we classifed patients into two clusters and found that this classifcation was closely correlated with patient prognosis and
immunotherapeutic responses. Based on machine learning, we identifed a prognostic risk model composed of 14 DRGs, including
BTG2, CDKN1A, COL6A1, CPM, CYB5D2, FOSB, ID2, ISG15, PLCG2, SECISBP2, SOCS3, TES, ZBTB16, and ZNF704, to predict the
survival rate of patients and then constructed a nomogrammodel integrating clinicopathological characteristics and risk score for clinical
practice. In the study of immune checkpoints, we found that patients in the high-risk group had a disposition to get worse prognosis and
better efects of immune checkpoint blocking therapies. Finally, we found the expression level of model DRGs was associated with
a tumor-immune microenvironment (TIME) pattern and the response of 83 compounds or inhibitors was signifcantly diferent in the
two risk groups. In a word, our study highlights the potential contribution of cell diferentiation in prognosis judgment and im-
munotherapy response and ofers promising therapeutic options for ccRCC patients.

1. Introduction

Clear cell renal cell carcinoma (ccRCC) is the main type of
RCC, accounting for about 70% of adult clinical cases.
ccRCC is characterized by the loss of von Hippel-Lindau and
the accumulation of robust lipid and glycogen [1]. Local
ccRCC can be detected early and successfully treated by
surgery, while metastatic ccRCC is almost always fatal. Te
lack of sensitivity to chemotherapy and radiation therapy has
brought great trouble to clinicians and also brought huge
burden to patients. Over the past decade, several targeted
agents and immunotherapies have been added to the
treatment plan of metastatic ccRCC [2–4]. Due to the high
heterogeneity of ccRCC, previous classifcations cannot
satisfactorily predict the prognosis of patients with the same
diagnosis [5, 6]. Furthermore, although countless prognostic

models with signifcant genes have been constructed, the
accuracy of their prediction performance still needs to be
further confrmed and improved in clinical practice [7–9].
Immunotherapy, as a new therapy, has been widely used in
multiple tumors [10]. Clinical practice has proved that im-
munotherapy had a good efect on most cancers and thus
immunotherapy for ccRCC has been paid increasing attention
by researchers [11, 12]. However, due to the lack of accurate
predictive biomarker selection, only a few ccRCC patients
have achieved an efective immune response in clinical trials
[13, 14]. Terefore, it is urgent to construct an efective
classifcation or biological prediction index to distinguish the
prognosis and immunotherapy response of ccRCC patients.

Compared with the traditional bulk RNA sequencing
technology, which can only refect the average variation level
of tumor for all cells in the sample, the single-cell sequencing
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(scRNA-seq) technology has provided unprecedented mo-
lecular resolution for researchers to study cancer [15, 16].
Tumor characteristics hidden in the heterogeneity of cell
population could be revealed through single-cell genomics and
trajectory analysis, which could ofer possible prognostic
biomarkers for better individualized treatment [17, 18].
However, the clinical samples of scRNA-seq research are
limited and cannot be associated with clinicopathological data.
In this case, the utilization of scRNA-seq data could be op-
timized by integrating bulk RNA-seq data. So far, few studies
have focused on the construction of prognostic risk based with
diferentiation-related genes (DRGs). It is also unclear whether
the novel classifcation based on cell diferentiation trajectory
is related to tumor biological behavior and whether cell dif-
ferentiation plays a part in predicting the prognosis and
immunotherapeutic response of ccRCC patients.

In this study, transcriptomic data of ccRCC samples
were used to test our deduction. First of all, we used scRNA-
seq data to identify ccRCC cell subsets in diverse diferen-
tiation states and signifcant DRGs through trajectory
analysis. Second, we employed bulk RNA-seq data to classify
ccRCC patients based on these DRGs and proved that this
novel classifcation showed signifcantly diferent prognoses
and immunotherapy responses. Tird, 14 DRGs were
identifed as key genes-related ccRCC prognosis and
a prognostic risk model was constructed by these DRGs.
Next, we comprehensively made an exploration of TIME
and drug sensitivity based on this 14-DRGs prognostic risk
model. At last, a clinically applicable nomogram integrating
clinicopathological characteristics and risk score was de-
veloped successfully for ccRCC patients.

2. Methods

2.1. Data Acquisition. Te scRNA-seq data and bulk RNA-
seq data of ccRCC samples included in this study are
available in the Cancer Genome Atlas (TCGA, https://portal.
gdc.cancer.gov/) and the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) database [19, 20]. Bulk
RNA-seq data and available clinical information were
available for 519 samples in the TCGA-KIRC dataset and 39
samples in the GSE29609 dataset [21]. Te corresponding
clinicopathological characteristics are listed in the Supple-
mentary Tables 1 and 2. In addition, the scRNA-seq data
were obtained from the GSE156632 dataset and contained
35,433 cells from tumor tissues of 7 ccRCC patients. Sup-
plementary Table 3 presents the corresponding clinico-
pathological features.

2.2. Processing of the scRNA-seq Data. Te “Seurat” package
was employed for the scRNA-seq data processing, including
quality control, data exploration, statistical analysis, and
result visualization [22]. First, low quality cells were ex-
cluded according to the following quality control criteria: (1)
genes detected in <500 cells; (2) cells with <1,000 or >20,000
detected genes; and (3) cells with >10% of mitochondrial
expressed genes. Ten, the batch efects of the scRNA-seq
data were corrected by “harmony” package [23]. Tird, the

scRNA-seq data were normalized through “LogNormalize”
method and subsequently, top 1,000 highly variable genes
were identifed by “VST” package [24]. Next, principal
component analysis (PCA) was used for dimensionality
reduction of ccRCC cells to determine the signifcantly
available dimensions (P< 0.05) [25]. Based on top 11 PCs,
the uniform manifold approximation and projection
(UMAP) algorithm was utilized for dimensionality re-
duction and clustering across all ccRCC cells [26]. Genes
with the cutof criteria of adjusted P< 0.05 and |log2 fold
change (FC)|> 1 were regarded as the marker genes in each
cluster through “limma” package [27]. Finally, according to
the marker genes, these clusters were annotated using
“singleR” package and manually verifed and corrected
through the CellMarker database and references [28, 29].

2.3. Trajectory Analysis and DRGs Identifcation.
Trajectory analysis could reduce high-dimensional repre-
sentations to low-dimensional space by reducing master
map learning. Cells were casted into this space and arranged
as a trajectory with branch points. In addition, cells dis-
tributed in the same branch were considered to have similar
diferentiation status and characteristics. Tese genes with
diferent expression levels among branches were identifed
and defned as diferentiation-related genes (DRGs).
Terefore, this study analyzed the trajectories of renal tu-
bular and cancer cells by the “Monocle 2” package [30] and
the enrichment analysis for these DRGs in diferent branches
was performed using “clusterProfler” package [31].

2.4. Classifcation for ccRCC Patients According to DRGs.
Te data of the TCGA-KIRC dataset were performed to
make a transformation to transcripts per million (TPM)
values and merged with GSE29609 dataset as training cohort
[32]. Te training cohort was normalized with log2 scale
transformation and the batch efect was corrected by “SVA”
package [33]. Tese processed expressions of DRGs were
subsequently extracted for nonnegative matrix factorization
(NMF). Ten, “survival” package was employed for the cox
regression analysis to explore the correlation between the
expression patterns of all DRGs and overall survival. DRGs
with P< 0.01 were considered to be signifcantly associated
with prognosis and selected for further analysis. Next, the
unsupervised clustering method of NMF was carried out by
“NMF” package and the optimal number of clusters is se-
lected as the coexistence correlation coefcient [34]. Te
K–M survival analysis was performed to predict the diverse
prognosis of ccRCC patients under this novel classifcation
[35]. Te proportion of main clinicopathological charac-
teristics in each cluster was displayed as stacked histograms.
PCA was subsequently conducted to show the result of
DRGs clustering in diferent clusters. Finally, the gene set
variation analysis (GSVA) method was utilized to analyze
the diferences of molecular functions and pathways
enriched in diferent clusters [36]. |log2FC|> 0.1 and ad-
justed P< 0.05 were considered to be signifcant. Te KEGG
and ontology gene sets (c2.cp.kegg.v7.5.1.symbols.gmt,
c5.go.bp.v7.5.1.symbols.gmt, c5.go.cc.v7.5.1.symbols.gmt,
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c5.go.mf.v7.5.1.symbols.gmt) were all obtained from the
GSEA database (https://www.gsea-msigdb.org/gsea/index.
jsp) [37].

2.5. Recognition of TIME and Immune Patterns According to
Novel Classifcation. ESTIMATE could use the unique
characteristics of cancer tissue transcription spectrum to
infer tumor cells and normal cells with diferent infltration
[38]. Four indicators, including immune score, stromal
score, ESTIMATE score, and tumor purity, were applied to
identify TIME of each sample through “ESTIMATE”
package. CIBERSORT, a deconvolution algorithm based on
gene expression pattern, was employed to quantify the
composition of cells involved in the immune response [39].
Te abundance of infltrating immune cells was measured to
identify immune patterns patients in diferent clusters. Te
main immune checkpoints of ccRCC patients were sum-
marized from relevant studies [1, 13, 40–43]. Moreover,
diferential analysis was conducted to reveal the diferent
expression levels of immune checkpoints. Te K–M analysis
was performed to explore the association between immune
patterns and patient survival. Diferent immunotherapeutic
scores of ccRCC patients in diferent clusters were also
calculated, and subsequently, the results were visualized
through “ggplot2” package [44].

2.6. Construction and Validation of a Prognostic Risk Model
BasedonDRGs. Temerged data consisting of TCGA-KIRC
dataset andGSE29609 dataset were treated as the training cohort
while the TCGA-KIRC dataset was treated as the validation
cohort. First, WGCNA was utilized to identify modules related
to the prognosis of ccRCC in the training cohort [45]. Sub-
sequently, the univariate cox regression analysis was employed
to select statistically signifcant DRGs (P< 0.01) and the
prognostic value in the critical module was evaluated through
“survival” package. Ten, the LASSO regression analysis was
carried out for further selection of prognosis-related DRGs and
a risk model with these DRGs was constructed to predict the
prognosis of ccRCC patients [46]. Te risk score of each sample
was calculated according to formula (1):

Risk score � ExpGENE1 × β1 + ExpGENE2 × β2 + . . . + ExpGENEn × βn.

(1)

In which “Exp” stands for the expression levels of DRGs
and “β” represents the regression coefcients of DRGs.
Based on the median risk score, all patients could be divided
into two types: low-risk and high-risk. Te K–M survival
analysis was performed to compare patient survival in the
two risk groups. Te concordance index and the ROC curve
analysis were applied to evaluate the accuracy of this risk
model [47]. In addition, the validation cohort was also used
to further verify the performance of this prognostic risk
model in predicting 1-year, 3-year, and 5-year survival rates.

2.7. Development and Evaluation of a Prognostic Nomogram.
Univariate and multivariate cox regression analyses were
performed in both the training cohort and the validation

cohort to determine which were independent clinicopath-
ological characteristics. Based on “rms” package, these in-
dependent characteristics and risk score were all used for the
development of a prognostic nomogram for clinical practice
[48]. Ten, the accuracy of this nomogram was identifed
through calibration curves and discrimination performance
was evaluated through C-index and ROC curves. Finally, this
nomogram was validated in validation cohort.

2.8. Prediction of the Immunotherapeutic Response and Drug
Sensitivity. TIDE (https://tide.dfci.harvard.edu/) is a com-
putational method that simulated tumor immune escape by
combining with the expression patterns of Tcell dysfunction
and rejection [49]. Based on the preprocessing data, the
TIDE algorithm was carried out to predict the clinical re-
sponse of immune checkpoint blocking (ICB) in ccRCC
patients. Furthermore, “pRRophetic” package was employed
to estimate the half maximum inhibitory concentration
(IC50) values of compounds or inhibitors as a reference for
clinical chemotherapy and targeted therapy of ccRCC pa-
tients in diferent risk groups or clusters [50].

3. Results

3.1. Identifcation of Cell Clusters Using scRNC-seq Data.
After the preprocessing of scRNA-seq data, including quality
control, normalization, and batch efect correction, 32,400
cells from the GSE156632 dataset were included in the
analysis (Figure 1(a)). Te number of genes detected was
signifcantly correlated with the sequencing depth (R� 0.94,
Figure 1(b)). Te dimensional reduction plot displayed the
batch efect after correction (Figure 1(c)).Ten, 14,285 genes
were identifed and top 1,000 genes were recognized as
highly variable genes through variance analysis
(Figure 1(d)). Available dimensions were determined
through a principal component analysis (PCA), and sub-
sequently, related genes were identifed in each principal
component (PC). Te dot plots and heatmaps showed the
expression levels of 30 signifcantly related genes in 6 top
PCs (Figures S1a–S1c). Cell cluster analysis was performed
on 11 PCs with a P value <0.05 (Figures S1c and S1d).

Afterward, the UMAP algorithm was applied to classify
32,400 cells into 23 clusters (Figure 2(a)). Te top 5 dif-
ferentially expressed marker genes of each cluster were vi-
sualized as a dot plot (Figure S2a). According to these
marker genes, the cells distributed in 23 clusters were an-
notated (Figure 2(b)). Te expression of major marker genes
representing diferent cell types was visualized as dot plots
(Figures 2(c) and 2(d)). As a result, clusters 0 and 21 with
4,297 cells were annotated as fbroblasts; clusters 1, 5, 6, 8, 14,
and 22 with 10,015 cells were annotated as endothelial cells;
clusters 4, 9, and 17 with 4,266 cells were annotated as renal
tubule cells; cluster 19 with 185 cells was annotated as
mesangial cells; clusters 11 and 18 with 1,642 cells were
annotated as cancer cells; clusters 2, 3, 7, and 15 with 8,356
cells were annotated as macrophages; cluster 10 with 1,369
cells was annotated as neutrophils; clusters 12 and 13 with
1,721 cells were annotated as Tcells; cluster 16 with 391 cells
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was annotated as B cells; and cluster 20 with 158 cells was
annotated as dendritic cells.

3.2. Trajectory Analysis and DRGs Identifcation. Previous
studies have shown that cancer cells are mostly diferentiated
from renal tubular epithelial cells in ccRCC. Trajectory

analysis was conducted on renal tubule cells and cancer cells.
We identifed 3 branches with diverse diferentiation sta-
tuses, termed branch I, II, and III. Most renal tubule cells
were distributed in branch I (state 4) while cancers cells were
mainly located in branches II and III (state 1 and 5).
Terefore, branch I could be regarded as the root of dif-
ferentiation trajectory and then diferentiated into branches

5000

4000

3000

2000

1000

20000

15000

10000

5000

nFeature_RNA

RC
C1

t

RC
C2

t

RC
C3

t

RC
C4

t

RC
C5

t

RC
C6

t

RC
C7

t

Identity
RC

C1
t

RC
C2

t

RC
C3

t

RC
C4

t

RC
C5

t

RC
C6

t

RC
C7

t

Identity

nCount_RNA

(a)

nF
ea

tu
re

_R
N

A

5000

4000

3000

2000

1000

0.94

50
00

10
00

0

15
00

0

20
00

0

nCount_RNA

Identity
RCC1t
RCC2t
RCC3t
RCC4t

RCC5t
RCC6t
RCC7t

(b)

20

10

10

0

0

-10

-10

ha
rm

on
y_

2

harmony_1

orig.ident

RCC1t
RCC2t
RCC3t
RCC4t

RCC5t
RCC6t
RCC7t

(c)

30

20

10

0

St
an

da
rd

iz
ed

 V
ar

ia
nc

e

JCHAIN
IGKC

RARRES1 COL1A1
TFPI2 HBB

SPP1PTGDS
TPSB2CXCL10

1e–02 1e+00 1e+02
Average Expression

Non–variable count: 13285
Variable count: 1000

(d)

Figure 1: Preprocessing of the scRNA-seq data: (a) violin plots of the RNA information of processed scRNA-seq data, (b) scatter plot of the
correlation between the numbers of detected genes and sequencing depth, (c) scatter plot of the batch efect after correction, and (d) scatter
plot of 1,000 highly variable genes.
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Figure 2: Continued.
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II and III. Interestingly, cancer cells in branch II, named type
I cancer cells, were totally from cluster 11 and cancer cells in
branch III, named type II cancer cells, were totally from
cluster 18 (Figures 2(e)–2(g)). Based on the gene set en-
richment analysis, we obtained distinct molecular mecha-
nisms and pathways of two types of cancer cells (Figures S2b
and S2c). In detail, type I cancer cells were related to the
occurrence and development of cancer while type II cancer
cells were involved in energy and material metabolism.
Diferential analysis was performed to identify pseudotime-
dependent marker genes. Finally, a total of 715 marker genes
were defned as DRGs and brought into the following
analysis (Supplementary Table 4).

3.3. Classifcation for ccRCC Patients According to DRGs.
All ccRCC patients were divided into 2 clusters with the
coexistence correlation coefcient (K� 2) by the NMF clus-
tering analysis (Figures 3(a) and 3(b)). K–M survival analysis
showed that patients in cluster 2 had worse overall survival
compared with patients in cluster 1 (Figure 3(c)). PCA
demonstrated that this classifcation could distinguish ccRCC
patients signifcantly (Figure 3(d)). Patients in cluster 2 had
the clinicopathological features of higher levels of age, grade,
and stage, which was consistent with the survival analysis
(Figure 4(a)). Finally, diferential analyses of biological pro-
cess, molecular function, cellular component, and pathway
were performed on 2 clusters and the results manifested that,
diferent from cluster 1, ccRCC of cluster 2 was mainly related
to immune responses and tumor mechanisms (Figure 4(b)).
In general, the fndings mentioned above showed that this
novel classifcation of ccRCC patients based on DRGs was
reliable and could be useful to distinguish survival outcomes
of diferent populations in clinical practice.

3.4. Recognition of TIME and Immune Patterns According to
Novel Classifcation. ESTIMATE algorithm calculated the
diferent abundance of immune and stromal cells and tumor
purity in 2 clusters. Compared with ccRCC patients in
cluster 1, ccRCC patients in cluster 2 had the higher

immune, stromal, and ESTIMATE score and lower tumor
purity (Figure 5(a)). Te K–M survival analysis explored the
correlation of TIME and overall survival in 2 clusters and the
results indicated that ccRCC patients in cluster 1 tended to
have a better prognosis (Figure 5(b)). Correlation analysis
shows that both levels of infltrating immune cells and
stromal cells were negatively related to the level of tumor
purity (Figure 5(c)). Based on the functional enrichment
analysis of diferentially expressed genes between diferent
tumor purity levels, we found that the main GO and KEGG
terms were all related immune reaction (Figure 5(d)).
Moreover, the CIBERSORT algorithm was employed to
make a further analysis of immune cell infltration. From the
analysis results, Naive B cells, plasma cells, CD4 memory
resting T cells, regulatory T cells, M0 macrophages, and
neutrophils were signifcantly more abundant in cluster 2
while CD4 memory activated T cells, resting NK cells,
monocytes, M1 macrophages, resting dendritic cells, and
resting mast cells were signifcantly more abundant in
cluster 1 (Figure 5(e)). Patients with higher infltration of
memory B cells, M0 macrophages, M1 macrophages, acti-
vated NK cells, plasma cells, CD8 T cells, follicular helper
Tcells, and regulatory Tcells got worse overall survival while
patients with higher infltration of activated dendritic cells,
resting dendritic cells, eosinophils, M2 macrophages, resting
mast cells, monocytes, and CD4 memory resting T cells got
better overall survival (Figure S3). According to the analysis
of immune checkpoints, the expression levels of CD28,
CD80, IL23A, and TNRSF18 were higher in cluster 2 pa-
tients (Figure 5(f )). Patients with lower expression levels of
CD80, CTLA4, IL23A, LAG3, PDCD1, TNFRSF9,
TNFRSF14, and TNFRSF18 or higher expression levels of
ARID2, BRD7, BTLA, CD274, HAVCR2, HLA-G, and
PDCD1LG2 tended to have a better overall survival rate
(Figure S4). Finally, the diferent efects of anti-PD1 and
anti-CTLA4 immunotherapies were estimated across 2
clusters (Figure 5(g)). Te scores of each type immuno-
therapy in cluster 1 were signifcantly higher than those in
cluster 2 and it indicated that cluster 1 patients were more
likely to beneft from immunotherapy.
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Figure 2: Cell clustering and trajectory analysis based on the scRNA-seq data: (a) scatter plot of 23 clusters processed by the UMAP
algorithm, (b) scatter plot of 10 cell types obtained through annotation, (c–d) dot plot of the expression of major marker genes in diferent
clusters and cell types, and (e–g) diferentiation trajectory of 3 branches with diverse pseudotime, cell types, and states.
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3.5. Construction and Validation of DRGs Based on a Prog-
nostic Risk Model. Te WGCNA algorithm was carried out
to determine modules related to prognosis of ccRCC
(Figures 6(a) and 6(b)). Based on the average linkage hi-
erarchical clustering and soft threshold power, 4 modules
were identifed and the turquoise module was signifcantly
associated with all clinicopathological characteristics of
ccRCC patients (Figure 6(c)). Subsequently, the univariate
cox analysis was employed to screen out all DRGs with
prognostic values in the turquoise module. Te result of the
univariate cox analysis is listed in Supplementary Table 5.

Finally, a prognostic risk model with 14 DRGs, including
BTG2, CDKN1A, COL6A1, CPM, CYB5D2, FOSB, ID2,
ISG15, PLCG2, SECISBP2, SOCS3, TES, ZBTB16, and
ZNF704, was established using the LASSO regression
algorithm (Figure 6(d)). A total of 284 patients were
included in the high-risk group and the rest were included
in the low-risk group. Tese 14 DRGs with corresponding
coefcients are listed in Supplementary Table 6. Te ex-
pression levels of 14 DRGs were diverse among diferent
cell types (Figure S5a). Te risk scores of patients could be
calculated according to this model. Terefore, taking the
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median risk score as the threshold, all patients can be
divided into the two risk groups. Te association among
data source, classifcation, risk score, and survival status is
shown as a Sankey diagram (Figure S5b). Patients in the
cluster 2 had signifcantly higher risk scores than those in
the cluster 1 (Figure S5c). Te expression levels of SOCS3,
ISG15, and COL6A1 were proportionate to the risk scores.
It indicated these 3 DRGs may act as risk genes. On the
contrary, other DRGs were regarded as protective genes.
Te risk score had a negative correlation with the survival
time and survival status of patients (Figures 6(e) and 6(f )).
It was clear that the risk score statistically correlated with
grade, stage, survival time, and status (Figure 6(g)).
Moreover, the expression levels of these 14 DRGs were
signifcantly diferent between patients of the two risk
groups (Figure S6a). Enrichment analysis indicated
functional signifcance of DRGs in ccRCC. (Figure 7(a)).
Te K–M survival analysis demonstrated that patients

with high-risk scores had a worse overall survival rate than
those with a low-risk score either in the training or val-
idation cohort (Figure 7(b)). Receiver operating charac-
teristic (ROC) analysis manifested that this model showed
excellent performance in predicting overall survival rate
of ccRCC patients. Te areas under the ROC curves
(AUC) to predict 1-year, 3-year, and 5-year overall sur-
vival were 0.802, 0.765, and 0.765 in training cohort, and
0.826, 0.790, and 0.790 in validation cohort (Figure 7(c)),
respectively. Te efect of grade or stage as a subvariable to
predict overall survival was also better (Figure S6b).
Comparing published prognostic risk models with our
model, the accuracy of our model was proved to be better
than others. In detail, the AUC value of the best model to
predict 1-year, 3-year, and 5-year overall survival was
0.713, 0.688, and 0.702 in training cohort and 0.755, 0.712,
and 0.724 in validation cohort (Figures 7(d)–7(f )),
respectively.
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Genetics Research 9

https://doi.org/10.1155/2022/8422339 Published online by Cambridge University Press

https://doi.org/10.1155/2022/8422339


3.6. Development and Validation of a Prognostic Nomogram.
In the training cohort, the univariate cox analysis showed
that age, grade, stage, and risk score all had a prognostic
value. Te multivariate cox analysis indicated that all vari-
ables can be independent features to predict the prognosis of
ccRCC patients (Figure 8(a)). Subsequently, the same results
were obtained from the validation cohort (Figure 8(b)).
Ten, a prognostic nomogram integrating age, grade, stage,
and risk score was developed to ofer a clinically applicable
method for the prediction of individual prognosis
(Figure 8(c)). Te ROC curves showed an excellent ability of
this model for the prediction of 1-year, 3-year, and 5-year
overall survival rates in the training cohort and the AUC
values were 0.875, 0.843, and 0.801, respectively. Te cali-
bration curves for predicting 1-year, 3-year, and 5-year
overall survival were also close to the actual observations
(Figure 8(d)). Of course, the same analysis was conducted in
the validation cohort (Figure 8(e)).

3.7. Prediction of the Immunotherapeutic Response and Drug
Sensitivity. Correlation analysis manifested the expression
of 14 model DRGs was signifcantly correlated with the
abundance of infltrating immune cells in both the training
and validation cohorts. In particular, ISG15 had a diferent

TIME pattern from other DRGs. (Figures 9(a) and 9(b)).
Compared with ccRCC patients with a low-risk score, pa-
tients with high-risk score tended to have a better respond to
immunotherapy.Te similar results were also obtained from
the validation cohort (Figures 9(c) and 9(d)). Furthermore,
the response of 83 compounds or inhibitors was signifcantly
diferent in the two risk groups, in which 31 compounds or
inhibitors had a better drug response in the high-risk group
while 52 compounds or inhibitors had a better drug response
in the low-risk group (Supplementary Table 7). Meanwhile,
a total of 70 compounds or inhibitors were signifcantly
diferent in 2 clusters, in which 41 compounds or inhibitors
had a better drug response in cluster 1 (Supplementary
Table 8).

4. Discussion

ccRCC is the most common and fatal renal system tumor
with high levels of intratumor heterogeneity [51, 52]. In
recent years, intratumor heterogeneity is regarded as one of
the potential causes of therapeutic drug resistance [53].
Terefore, it is necessary to explore cellular heterogeneity in
ccRCC samples using the scRNA-seq analysis. So far, the
study on the diferentiation of ccRCC cells is still very
limited and it is also unclear whether the diferentiation
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Figure 5: Identifcation of diverse TIME, immune gene pattern, and immunotherapeutic response in 2 clusters: (a) violin plots of 4
indicators of TIME between C1 and C2, including immune score, stromal score, ESTIMATE score, and tumor purity; (b) K–M survival
analysis for high and low TIME score ccRCC patients; (c) scatter plots of the correlation between immune, stromal score and tumor purity;
(d) bar plots of the results of functional enrichment analysis; (e) box plots of the abundances of diferent infltrating immune cells; (f ) box
plots of the expression levels of immune checkpoints; and (g) violin plots of the immunotherapy scores.
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status of ccRCC cells is associated with the prognosis and
therapy response [1, 54]. In this study, we employed the
scRNA-seq data in GEO database to reveal the diferenti-
ation status of ccRCC cells. Based on novel classifcation,
ccRCC patients could be divided into 2 clusters with diverse
clinicopathological characteristics. At the same time, TIME,
immune gene expression, and immunotherapeutic response
represented signifcant diference in 2 clusters. Subsequently,
a risk model composed of 14 prognostic DRGs was estab-
lished to predict the prognosis of ccRCC patients and
a nomogram model integrating clinicopathological char-
acteristics and risk score was constructed for clinical
practice. Finally, we compared the immunotherapeutic re-
sponse and drug sensitivity of ccRCC patients in the two risk
groups to explore the possibility of clinical therapy.

Intratumor heterogeneity is characterized by cells with
diferent features in a single tumor. Tese cells show dif-
ferent cell collections with diferent molecular characteristics
or diferentiation status [55]. A total of 23 cell clusters were
identifed and subsequently 10 cell types were obtained
through annotation. In view of the fact that most cancer cells
were considered to be derived from renal tubular epithelial
cells, we chose renal tubular cells and cancer cells for dif-
ferentiation trajectory analysis. Te diferentiation trajectory
showed that renal tubular cells was the root of diferentiation
and then diferentiated into 2 diverse branches representing
2 diferent types of cancer cells. According to the expression
patterns of DRGs, a novel classifcation with diferent
clinicopathological characteristics was performed on ccRCC
patients. Te association between classifcation and difer-
entiation status indicated that the prognosis and immu-
notherapy response were related to the cell diferentiation
status. Te study of DRGs recognition could be helpful to
better understand the occurrence and development of
ccRCC. Numerous studies have showed that cellular sig-
naling pathways and transcriptional cascades involved in
diferentiation process were associated with the occurrence

and development of malignant tumors [56–58]. Diferen-
tiation therapy provided a new idea for the therapy of
malignant tumors which induced cancer cells by trans-
forming signal events and then guided them to a status of
higher diferentiation and lower malignancy [59, 60]. Al-
though great progress has been made in the diferentiation
therapy in ccRCC, the specifc molecular mechanism and
therapy targets needed to be further studied [61, 62]. In this
study, we identifed prognosis-related DRGs to provide
more reference for clinical therapy. So far, few studies have
focused on the correlation between diferentiation status and
TIME in ccRCC. In our study, patients in cluster 2 tended to
have a higher level of infltrating immune cells and lower
level of tumor purity compared with patients in cluster 1.
Moreover, patients in cluster 2 were sensitive to immuno-
therapy and it was consistent with the result that patients
with high risk tended to have a better immunotherapeutic
response. From the published studies, we found that 5 model
DRGs were proved to be associated with ccRCC. In detail,
Sima et al. have investigated the impact of BTG2 on growth,
migration, and invasion of ccRCC cells and found overex-
pressed BTG2 could inhibit proliferation, migration, and
invasion of ccRCC cells [63]. PANDAR, promoter of
CDKN1A antisense DNA damage activated RNA, had
signifcantly upregulated expression in tumor tissues and
could serve as an independent predictor of overall survival in
ccRCC [64]. Moreover, Zhu et al. studied the therapeutic
potential of LSD1 inhibitors in ccRCC treatment and dis-
covered that inhibition of LSD1 could decrease the H3K4
demethylation at the CDKN1A gene promoter and it was
associated with P21 upregulation and cell cycle arrest at G1/S
in ccRCC cells [65]. Te COL6A1 was a gene encoding the
alpha 1 polypeptide subunit of collagen 6 and ccRCC pa-
tients were discovered to have signifcantly higher COL6A1
scores and intensities [66]. Like us, Wan et al. included
ISG15 as one of the prognostic predictors in a constructed
risk model of ccRCC [67]. Urbschat et al. observed
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Figure 9: Prediction of immunotherapeutic response and drug sensitivity: (a–b) heatmaps of correlation between the expression levels of 14
DGRs and the abundance of infltrating immune cells in training and validation cohorts and (c–d) violin plots of immunotherapeutic
response in diferent risk groups based on training and validation cohorts.
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signifcantly lower SOCS3 messenger RNA levels in tumor
tissues compared to healthy tissues and concluded SOCS3,
as a negative regulator, participated in regulation of ccRCC
together with STAT3 [68]. At present, it was the frst time
to fnd other model DRGs, including CPM, CYB5D2,
FOSB, ID2, PLCG2, SECISBP2, TES, and ZBTB16, were
related to ccRCC, which needed further study. To sum up,
all fndings emphasized the possibility to predict TIME and
immunotherapeutic response of ccRCC patients based on
prognostic DRGs.

Compared to the AUC value of other prognosis risk
models, our model showed a higher accuracy to predict
the prognosis of ccRCC patients. Te TIDE analysis
showed that patients with high risk responded better to
immunotherapy than patients with low risk. It indicated
that risk score could also be applied as an indicator for the
prediction of immunotherapeutic response. In addition,
we found that the response of 83 compounds or inhibitors
was signifcantly diferent in the two risk groups which
could be used as a reference for clinical therapy. We
focused on 32 compounds or inhibitors showing better
response in the high-risk group. Fortunately, several re-
sults of compounds or inhibitors were consistent with
published studies. For example, in the presence of AKT
inhibitor VIII, a pan-AKT inhibitor, ART reduced more
ccRCC cell proliferation, migration, and invasion than in
the absence of AKT inhibitor VIII [69]. AZD6482 selec-
tively inhibited migration, invasiveness, and colony for-
mation of ccRCC cells with SETD2 mutations [70]. In the
xenotransplantation model of mice, AZD8055 achieved
signifcantly better tumor growth inhibition and pro-
longed survival time of mice than sirolimus or excipients
[71]. Gao et al. have provided evidence to elucidate that
miR-200c could sensitize ccRCC cells to sorafenib or
imatinib to inhibit cell proliferation, at least partly by
targeting HO-1 [72]. von Hippel-Lindau (VHL) gene
mutation was the driving force of various forms of ccRCC
and MG-132 mediated proteasome inhibition could make
VHL wild type cells sensitive to zafrlukast-induced cell
death [73]. Te synergistic efect of sAXL with pazopanib
and axitinib could reduce the growth of xenograft derived
from ccRCC patients, which supported the combination
of AXL inhibitors and antiangiogenic agents in the
treatment of ccRCC [74]. Tapsigargin had the highest
performance in the treatment of early metastatic ccRCC
and could be used as an efective small molecule drug to
treat early metastatic ccRCC [75]. Meanwhile, the role of
other compounds or inhibitors in ccRCC needed for
further confrmation.

Te current study had some drawbacks. First of all, all
data were obtained from the published database rather
than our own dataset. Tus, the detailed clinical in-
formation was incomplete and could not be included in
the nomogram model. Given that the lack of available
data, more validation should be performed on other
ccRCC cohorts. On the other hand, the specifc mecha-
nism of most DRGs was not clear in ccRCC and our study
needed to be further verifed through cellular biological
experiments.

5. Conclusion

Tis study highlighted the cell diferentiation trajectory of
ccRCC cells and manifested a potential impact on the
prediction of the prognosis and immunotherapeutic re-
sponse in ccRCC patients. In detail, a novel classifcation of
ccRCC patients was constructed and proved to be reliable in
the prediction of diverse prognosis, TIME pattern, and
immunotherapeutic response. Cell diferentiation-related
genes were identifed; then, a prognostic risk model with
these genes was constructed to predict the prognosis and
immunotherapeutic response of ccRCC patients with dif-
ferent risk scores. We also established a nomogram com-
posed of clinicopathological characteristics and risk score for
diagnosis and estimated the drug sensitivity of ccRCC pa-
tients with diferent risk scores for treatment.

5.1. Statistical Analysis Methods. Te comparison in mul-
tiple groups was performed using the Kruskal–Wallis test
and the comparison between the two groups was based on
Wilcoxon test. Te Pearson correlation test was used to
study the correlation between normally distributed variables
while the correlation between nonnormally distributed
variables was evaluated by using the Spearman correlation
test. Te Chi square test was used to analyze the distribution
of categorical variables among subgroups, and the Student’s
t-test was used to compare continuous data between the two
subgroups. In the K–M analysis, the log rank test was carried
out to examine statistical diference. All data analysis and
visualization were completed using R version 4.0.3.
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