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LOCAL LIMIT THEOREM FOR A MARKOV ADDITIVE PROCESS ON ZD

WITH A NULL RECURRENT INTERNAL MARKOV CHAIN
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Abstract

In the classical framework, a random walk on a group is a Markov chain with indepen-
dent and identically distributed increments. In some sense, random walks are time and
space homogeneous. This paper is devoted to a class of inhomogeneous random walks
on Zd termed ‘Markov additive processes’ (also known as Markov random walks, ran-
dom walks with internal degrees of freedom, or semi-Markov processes). In this model,
the increments of the walk are still independent but their distributions are dictated by a
Markov chain, termed the internal Markov chain. While this model is largely studied in
the literature, most of the results involve internal Markov chains whose operator is quasi-
compact. This paper extends two results for more general internal operators: a local limit
theorem and a sufficient criterion for their transience. These results are thereafter applied
to a new family of models of drifted random walks on the lattice Zd .
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1. Introduction

In the classical framework, a random walk on a group G is a discrete-time stochastic pro-
cess (Zn)n≥0 defined as the product of independent and identically distributed (i.i.d.) random
variables (ξn)n≥1. Random walks on groups are Markov chains that are adapted to the group
structure in the sense that the underlying Markov operator is invariant under the group action of
G on itself. Thus, this homogeneity naturally gives rise to deep connections between stochastic
properties of the random walk and algebraic properties of the group. Starting with the seminal
paper of Pòlya [57], many of these connections have been studied (see [65] and references
therein), and this research area has remained in constant progress over the last two decades
(without claiming to be exhaustive, see [3, 4, 6, 11, 30, 36, 42, 43, 50, 56, 60]).

In this paper, we aim at investigating inhomogeneous random walks. It turns out that there
are at least two ways to introduce inhomogeneity. First, we can consider spatial inhomogene-
ity by weakening the group structure, replacing it, for instance, by a directed graph as in [7,
9, 10, 12, 24, 33, 34, 54]. Secondly, we can study temporal inhomogeneous random walks
by introducing a notion of memory as in the model of reinforced [53, 64], excited [5, 58],
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Local limit theorem for Markov additive processes 571

self-interacting [23, 55], or persistent random walks [17, 18, 19, 20, 21], or also the Markov
additive processes that are at the core of this paper. All these models belong to the larger class
of stochastic processes with long range dependency.

Markov additive processes are also known as random walks with internal degrees of free-
dom [47], semi-Markov processes, or Markov random walks—see, for instance, [2, 15, 16, 35,
45, 46, 51, 52, 62]. Roughly speaking, Markov additive processes are discrete-time Zd-valued
(or Rd) processes whose increments are still independent but no longer stationary. The distribu-
tion of an increment is then driven by a Markov chain termed the internal Markov chain. Most
results in the context of standard random walks are generalized to Markov additive processes
when the Markov operator of the internal chain is assumed to be quasi-compact on a suitable
Banach space: among them, a renewal theorem [2, 31, 32, 46], local limit theorem [27, 35,
37, 38, 40, 47], central limit theorem [27, 40], results on the recurrence set [1, 41, 59], large
deviations [51, 52], asymptotic expansion of the Green function [45, 62], one-dimensional
Berry–Essen theorem [27, 40, 39] with applications to M-estimation, and first passage
time [28].

However, assuming the internal operator to be quasi-compact is rather strong (see [48]).
Actually, beyond the technical difficulties inherent to the infinite dimension, there is no real
difference in nature from the finite dimension under this assumption. On the other hand, relax
this assumption and the study of Markov additive processes can be very challenging. Also, it is
worth noting that many (interesting) Markov additive processes do not admit a quasi-compact
internal operator, as illustrated by the examples considered in this paper.

In the context of Markov additive processes, classical Fourier analysis can be extended by
introducing the Fourier transform operator which is a perturbation of the internal Markov oper-
ator in an appropriate Banach space. As in the classical context, the Fourier transform operator
characterizes the distribution of the additive part of Markov additive processes. By a contin-
uous perturbation argument (see, for instance, [44]), when the internal Markov operator is
quasi-compact, the Fourier transform operator remains quasi-compact for all sufficiently small
perturbations. It allows us, under suitable moment conditions on the distribution of increments,
to derive a Taylor expansion at the second order of the perturbed dominating eigenvalue, say
λ(t), t ∈ [−π, π )d, whose coefficients are given, roughly speaking, by the mean and the vari-
ance operators. Finally, under an assumption on the spectrum of the Fourier transform operator
for large perturbations, it can be concluded that all the required stochastic information is actu-
ally contained in the nature of the singularity at zero of (1 − λ(t))−1 (note that λ(0) = 1). For
instance, an integral test criterion, similar to the Chung–Fuchs criterion [22, 61], involving a
singularity of this kind is given in [19].

In this paper, the quasi-compactness condition is dropped and the internal Markov chain
is only assumed to be irreducible recurrent. The condition on the spectrum of the Fourier
transform operator for large perturbations remains similar, but the nature of the singularity at
the origin is analyzed considering the Taylor expansion of the quenched characteristic expo-
nent (in a wide sense) defined in Section 2.2. The terms of order one and two are termed the
quenched drift and the quenched dispersion respectively. These quantities are characteristics
of the increments of the process and naturally appear in the local limit in Theorem 3.1 and the
transience condition in Corollary 3.1.

The paper is organized as follows. Section 2 gathers the main notions involved in the state-
ment of Theorem 3.1 and Corollary 3.1. Section 3 is devoted to the statement of these two
results, while Section 4 is dedicated to the proof of Theorem 3.1. In Section 5, Theorem 3.1
and Corollary 3.1 are applied to various families of Markov additive processes, extending the
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models considered in [8, 12, 49]. Those models are simple random walks on directed graphs
built upon Z2. Various phenomena are observed, whether the directions are fixed periodically
or not. As is clear for the periodically directed model, it is possible to factorize a Markov
additive process without changing the distribution of the additive part (see Section 5). It is
concluded that a simple random walk on a periodically directed graph is a Markov additive
process with a finite internal Markov chain. As such, the internal Markov operator is a matrix
and is quasi-compact. For more general directions (random directions, for instance), such a
reduction is no longer possible.

2. Markov additive processes

2.1. Definitions

Let (�,F , P) be a probability space and X a countable set. The set X is naturally endowed
with the σ -algebra consisting of all subsets of X.

Definition 2.1 (Markov additive process). Let d ≥ 1 be an integer. A Markov additive pro-
cess (MAP) is a Markov chain ((Xn, Zn))n≥0 taking values in X×Zd defined on (�,F , P)
satisfying, for all n ≥ 0 and all bounded functions f : X×Zd →R,

E
[
f
(
Xn+1, Zn+1 − Zn

) | ((Xk, Zk
))

0≤k≤n

]=E
[
f
(
Xn+1, Zn+1 − Zn

) | Xn
]
.

From this equality, it follows immediately that (Xn)n≥0 is a Markov chain on X, termed the
internal Markov chain. The corresponding Markov kernel is denoted by P, namely Pf (x) :=
E[f (X1) | X0 = x] for any bounded function f : X→R (in symbols, f ∈ �∞(X)). Generally
speaking, there exists a σ -finite measure m dominating the family of probabilities (P(x, ·))x∈X,
i.e. m(y) = 0 implies P(x, y) = 0 for all x ∈X. If the internal Markov chain is irreducible and
recurrent, the invariant measure (unique up to a positive constant) is a natural choice for m.

The conditional distribution of Zn+1 − Zn given
(
Xn, Xn+1

)= (x, y) will be denoted by μx,y,
and the Fourier transform of μx,y by μ̂x,y. Then, for any t ∈Rd, the Fourier transform operator
Pt acting on the bounded function f : X→C is defined as

Ptf (x) := E
[
f (X1)ei〈t,Z1−Z0〉 | X0 = x

]=
∑
y∈X

P(x, y)f (y)μ̂x,y(t).

From the Markov property, it follows that, for all n ≥ 1,

Pn
t f (x) =E

[
f (Xn)ei〈t,Zn−Z0〉 | X0 = x

]
.

Moreover, Pn
t 1(x) =∑

z∈Zd ei〈t,z〉P(Zn − Z0 = z | X0 = x). Consequently, the function Rd 
 t →
Pn

t 1(x) ∈C is the Fourier transform of the conditional distribution of Zn − Z0 given X0 = x.
By periodicity, it is sufficient to consider the operator Pt for t ∈Td = [−π, π )d. In addition,

Td∗ will stand for Td \ {0}.

2.2. Conditional characteristic exponent, conditional drift, and conditional dispersion

Proposition 2.1. For any MAP, we have the identity, for all n ≥ 0,

P(Zn − Z0 = z | X0 = x) = 1

(2π )d

∫
Td

e−i〈t,z〉Pn
t 1(x) dt,

and Pn
t 1(x) =E[�n(t) | X0 = x], where �n(t) := ∏n−1

k=0 E
[
ei〈t,Zk+1−Zk〉 | Xk, Xk+1

]
.

https://doi.org/10.1017/jpr.2022.73 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.73


Local limit theorem for Markov additive processes 573

The proof of Proposition 2.1 relies on a result from [26, (8)], which is restated here.

Lemma 2.1. For all m ≥ n ≥ p ≥ 0,

E
[
ei〈t,Zn−Zp〉 | σ (Xj, p ≤ j ≤ n)

]
E
[
ei〈t,Zm−Zn〉 | σ (Xj, n ≤ j ≤ m)

]
=E

[
ei〈t,Zm−Zp〉 | σ (Xj, p ≤ j ≤ m)

]
.

Proof of Proposition 2.1. By inverse Fourier transform,

(2π )dP(Zn − Z0 = z | X0 = x) =
∫
Td

Pn
t 1(x)e−i〈t,z〉 dt.

Then, by Lemma 2.1, setting Gn = σ (X�, 0 ≤ � ≤ n), n ≥ 1,

Pn
t 1(x) =E

[
E

[
n−1∏
k=0

ei〈t,Zk+1−Zk〉 | Gn

]
| X0 = x

]

=E

[
n−1∏
k=0

E
[
ei〈t,Zk+1−Zk〉 | Xk, Xk+1

] | X0 = x

]
.

Proposition 2.1 follows immediately. �

As a matter of fact, �n is an almost surely continuous C-valued function of Td satisfying
�n(0) = 1. Hence, in a neighborhood of the origin, the logarithm of �n is well defined. We
may call log �n the quenched characteristic exponent (with a slight abuse of terminology,
since log �n is not defined on Rd in general). Its second-order Taylor expansion at t = 0 then
exhibits two important quantities:

Un :=
n−1∑
�=0

E[Z�+1 − Z� | X�, X�+1], Vn := 1

n

n−1∑
�=0

Cov(Z�+1 − Z� | X�, X�+1).

The latter are respectively called the quenched drift and quenched dispersion of the additive
component.

Remark 2.1. The normalization factor for the quenched dispersion is chosen as the approxi-
mate growth rate of the sum. In particular, its eigenvalues remain bounded and away from zero
almost surely (a.s.), as illustrated in (5.3).

2.3. Spectral condition

Definition 2.2. (Spectral condition.) A MAP is said to satisfy the spectral condition if, for any
compact K ⊂Td with 0 /∈ K, there exist constants C > 0 and γ ∈ (0, 1) such that, for all n ≥ 1,
‖Pn

t 1‖�∞(X) ≤ Cγ n.

Proposition 2.2. Assume that the family (μx,y)x,y∈X of probability measures is uniformly
aperiodic, i.e. for all t ∈Td∗, supx,y∈X |μ̂x,y(t)| < 1; then the MAP fulfills the spectral condition.

Proof. For all x ∈X and all f ∈ �∞(X),

|Ptf (x)| =
∣∣∣∣∣∑

y∈X
P(x, y)μ̂x,y(t)f (y)

∣∣∣∣∣≤ ‖f ‖�∞(X) sup
x,y∈X

|μ̂x,y(t)|.

Therefore, ‖Pn
t 1‖�∞(X) ≤ [

supx,y∈X |μ̂x,y(t)|]n. �

https://doi.org/10.1017/jpr.2022.73 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.73


574 B. DE LOYNES

In the literature, a stronger condition than the spectral condition of Definition 2.2 is usually
assumed. It involves the spectral radius of each Pt acting on some Banach subspace of �∞(X).
Such assumptions imply the spectral condition of Definition 2.2, as shown in Proposition 2.3.

Proposition 2.3. Let (B, ‖ · ‖B) be a Banach subspace of �∞(X) such that

(i) 1 ∈B, and the canonical injection B ↪→ �∞(X) is continuous;

(ii) for each t ∈Td, the operator Pt acts continuously on B;

(iii) the map Td 
 t → Pt ∈L(B) is continuous for the subordinated operator norm induced
by ‖ · ‖B.

Suppose that the spectral radius of Pt, defined, for all t ∈Td, by

rB(t) = inf
{
‖Pn

t ‖1/n
B , n ≥ 1

}
,

satisfies rB(t) < 1 as soon as t ∈Td \ {0}. Then, the resulting MAP satisfies the spectral
condition of Definition 2.2.

Proof. Since Td 
 t → Pt ∈L(B) is continuous, the spectral radius t → rB(t) is upper semi-
continuous as the infimum of continuous functions. Consequently, if K ⊂Td with 0 /∈ K then
there exists tK ∈ K such that 1 > rB(tK) = supt∈K rB(t).

Choose γ ∈ (rB(tK), 1) and denote by � ⊂C the circle of the complex plane centered at 0
of radius γ . As a matter of fact, for any (λ, t) ∈ � × K, the operator λ − Pt is invertible. By
[25, Theorem 10, p. 560], it follows that

‖Pn
t ‖B = γ n

2π

∮
�

‖(λ − Pt)
−1‖B dλ.

Now, the map � × K 
 (λ, t) → λ − Pt ∈L(B) is continuous. Also, by [25, Lemma 1,
p. 584], the map A → A−1 is a homeomorphism of the open subset of invertible opera-
tors in L(B). Consequently, the map � ×K 
 (λ, t) → (λ − Pt)−1 ∈L(B) is continuous on
the compact � × K, and hence sup(λ,t)∈�×K ‖(λ − Pt)−1‖B < ∞. The spectral condition of
Definition 2.2 follows immediately from the continuity of the canonical injection of B in
�∞(X). �

The uniform aperiodicity condition introduced in Proposition 2.2 is far from being nec-
essary. We now introduce the usual notion of an aperiodic MAP (we refer to [62], for
instance).

Definition 2.3 (Aperiodic Markov additive process). A MAP is said to be aperiodic if there
exists no proper subgroup H of the additive group Zd such that, for every positive integer n
and every x, y ∈X with m(x)Pn(x, y) > 0, there exists a = an(x, y) ∈Zd satisfying P[Zn − Z0 ∈
a + H | X0 = x, Xn = y] = 1.

Proposition 2.4. Let (X, Z) be an aperiodic MAP for which the internal Markov chain X
is irreducible and recurrent. Let (B, ‖ · ‖B) be a Banach subspace of �∞(X) satisfying the
assumptions in Proposition 2.3(i), (ii), and (iii). Then, for any t ∈Td \ {0}, the operator
Pt ∈L(B) has no eigenvalues of modulus one.

https://doi.org/10.1017/jpr.2022.73 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.73


Local limit theorem for Markov additive processes 575

Proof. Suppose, on the contrary, that there exist t0 ∈Td \ {0}, f ∈B \ {0}, and θ ∈R such
that

Pt0 f (x) =
∑
y∈X

P(x, y)μ̂x,y(t0)f (y) = eiθ f (x), x ∈X. (2.1)

By Jensen’s inequality and the fact that |μ̂x,y(t0)| ≤ 1, it follows that |f | ≤ P|f |. Consequently,
‖f ‖�∞(X) − |f | is a non-negative superharmonic function. Since P is irreducible and recurrent,
the function |f | is constant (see [65, Theorem 1.16, p. 5], for instance). Hence, for all x ∈X

such that m(x) > 0,

1 =
∣∣∣∣∣∑

y∈X
P(x, y)μ̂x,y(t0)

∣∣∣∣∣≤∑
y∈X

P(x, y)|μ̂x,y(t0)| ≤ 1, x ∈X.

This means that, for all x, y ∈X with m(x)P(x, y) > 0, |μ̂x,y(t0)| = 1. Since |f | is constant and
f 
= 0, (2.1) can be rewritten as∑

y∈X
P(x, y)μ̂x,y(t0)

f (y)

f (x)
= eiθ , x ∈X.

This convex combination is again extremal so that, for all x, y ∈X,

μ̂x,y(t0)
f (y)

f (x)
= eiθ .

More generally, for all n ≥ 1 and for all (x0, . . . , xn),

n−1∏
k=0

μ̂xk,xk+1 (t0) = einθ f (x0)

f (xn)
. (2.2)

Now, fix n ≥ 1 and x, y ∈X, and choose, once for all, an(x, y) ∈Rd such that einθ f (x)/f (y) =
ei〈t0,an(x,y)〉. In fact, an(x, y) ∈Zd since the left-hand side of (2.2) is nothing but the Fourier
transform of a measure supported by Zd. We denote by Sn(x, y) the support of the distribution
of Zn − Z0 − an(x, y) conditionally on the event {X0 = x} ∩ {Xn = y}, and set H as the group
generated by the family of sets Sn(x, y), n ≥ 1 and x, y ∈X. By the construction of H, we
have that, for all n ≥ 1 and for all x, y ∈X, there exists an(x, y) ∈Zd such that P[Zn − Z0 ∈
an(x, y) + H | X0 = x, Xn = y] = 1. By aperiodicity, H =Zd.

Finally, take the expectation on both sides of (2.2), so that

ei〈t0,an(x,y)〉 =E
[
ei〈t0,Zn−Z0〉 | X0 = x, Xn = y

]
.

Then, the extremality in the convex combination yields that, for all w ∈ Sn(x, y), 〈t0, w〉 = 0
modulo 2π . By linearity, this identity extends to the whole group H =Zd. Taking w = ei,
i = 1, . . . , d, the vectors of the standard basis of Zd, it follows that t0 = 0, leading to a
contradiction. �

Let us point out that an arithmetic condition such as the aperiodicity fails to give information
on spectral values that are not eigenvalues. Nonetheless, if, in addition, it is known that the
peripheral spectrum consists of eigenvalues then the spectral condition of Definition 2.2 is
clearly fulfilled. Such an assumption on the peripheral spectrum, which is rather technical, can
be difficult to verify in practice. That is why it can be often preferable to check directly the
spectral condition of Definition 2.2.
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3. Main results

Let us first summarize the assumptions involved in the statement of the local limit theorem
and the sufficiency criterion for transience.

Assumption 3.1. The internal Markov chain P is irreducible and recurrent.

Assumption 3.2. The family of probability measures (μx,y)x,y∈X admits a uniform third-order
moment: supx,y∈X

∑
z∈Zd ‖z‖3μx,y(z) < ∞.

Assumption 3.3. The quenched dispersion is uniformly elliptic: there exists a (deterministic)
constant α > 0 such that, for all t ∈Rd and all n ≥ 1, 〈t, Vnt〉 ≥ α‖t‖2 almost surely.

Assumption 3.4. The MAP satisfies the spectral condition.

3.1. A local limit theorem

Theorem 3.1 (Local limit theorem). Under Assumptions 3.1–3.4, for all x ∈X, for all
ε ∈ (0, 1

2

)
,

sup
z∈Zd

∣∣∣∣(2πn)d/2P(Zn − Z0 = z | X0 = x)

−E

[
1√

det(Vn)
exp

{
− 1

2n

〈
Un − z, V−1

n (Un − z)
〉} | X0 = x

]∣∣∣∣= O
(

n−( 1
2 −ε)

)
.

3.2. A sufficient criterion for transience: Some potential theory

This section is devoted to a sufficiency criterion for the transience of the additive part of
Markov additive processes. The recurrence or transience in this context is defined in [19] as
follows.

Definition 3.1 (Recurrence versus transience). A MAP ((Xn, Zn)n≥0 is said to be recurrent if,
for any (x, z) ∈X×Zd, there exists r > 0 such that

P

[
lim inf
n→∞ ‖Zn‖ < r | X0 = x, Z0 = z

]
= 1.

It is said to be transient if, for any (x, z) ∈X×Zd,

P

[
lim

n→∞ ‖Zn‖ = ∞ | X0 = x, Z0 = z
]
= 1.

In [19], it is proved that a MAP is either recurrent or transient under Assumption 3.1. In
particular, the recurrence or transience of such a MAP does not depend on the initial state
(x, z) ∈X×Zd.

For any positive function f on X×Zd, recall that the potential of the charge f is given
by Gf (x, z) := E

[∑
n≥0 f (Xn, Zn) | X0 = x, Z0 = z

]
. By analogy with the classical context of

random walks, it is natural to look for a criterion for the recurrence or transience of a MAP
that involves the mean sojourn time of the set X× {z}:

G1X×{z}(x, z) =E

[∑
n≥0

1X×{z}(Xn, Zn) | X0 = x, Z0 = z

]
. (3.1)
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Naturally, if the quantity in (3.1) is finite, the additive component of the MAP hits z ∈Zd

only finitely many times almost surely by applying the Markov inequality.

Definition 3.2 (Irreducibility). A MAP is said to be irreducible if, for any x ∈X and any
z, z′ ∈Zd, there exists n ≥ 0 such that P[Zn = z′ | X0 = x, Z0 = z] > 0.

Therefore, if a MAP is irreducible and if the quantity in (3.1) is finite for all x ∈X

and for some (equivalently any) z ∈Zd, then the MAP is transient by the Markov property.
Consequently, we obtain the following criterion as a corollary of Theorem 3.1.

Corollary 3.1 (Sufficient criterion for transience). Let d ≥ 2. Suppose that the MAP is
irreducible. Then, under Assumptions 3.1–3.4, if, for any x ∈X,

∑
n≥1

1

nd/2
E

[
1√

det(Vn)
exp

{
− 1

2n
〈Un, V−1

n Un〉
}

| X0 = x

]
< ∞, (3.2)

then the MAP is transient.

Remark 3.1. Under the assumptions of Corollary 3.1, the quantities in (3.1) and (3.2) are
simultaneously finite or infinite. When the internal Markov chain is positive recurrent, the
MAP is recurrent as soon as the quantity in (3.1) is infinite, as shown in [19, Proposition 2.2],
giving rise to a complete characterization of the transient or recurrent type. Such a character-
ization remains an open question in the case of a null recurrent internal Markov chain since
the possibility of a transient MAP for which the quantity in (3.1) remains infinite cannot be
ruled out.

Remark 3.2. Intuitively, Assumption 3.3 means that the MAP remains genuinely
d-dimensional and is not attracted by a sub-manifold. In addition, it is worth noting that, under
Assumption 3.3, det(Vn) ≥ αd for all n ≥ 1 and, under Assumption 3.2, supn≥1 ‖Vn‖2 < ∞, so
that the factor det(Vn) does not play any role in the nature of the series (3.2).

4. Proofs

Proposition 4.1. Under Assumption 3.2, for any sufficiently small δ ∈ (0, 1) and any t ∈ δTd,
where δTd is the magnification of the hypercube Td by δ, there exist a (deterministic) constant
K and �n(t) with |�n(t)| ≤ nK‖t‖3∞ such that

�n(t) = exp
{
i〈t, Un〉 − 1

2 〈t, nVnt〉 + �n(t)
}
.

Proof. Fix � ≥ 0. Under Assumption 3.2, there exists a (deterministic) constant κ > 0 such
that ∣∣E[ei〈t,Z�+1−Z�〉 | X�, X�+1

]− 1
∣∣≤ κ‖t‖∞. (4.1)

Then, for all δ ∈ (0, 1/2κ) ∩ (0, 1) and all t ∈ δTd, the C-valued function π� : t →
log E

[
ei〈t,Z�+1−Z�〉∣∣X�, X�+1

]
is three times continuously differentiable. Observe that π�(0) = 0.

Also, the partial derivative with respect to the pth coordinate, p ∈ {1, . . . , d}, is given by

∂pπ�(t) = i
E
[
ei〈t,Z�+1−Z�〉(Z(p)

�+1 − Z(p)
�

) | X�, X�+1
]

E
[
ei〈t,Z�+1−Z�〉 | X�, X�+1

] .
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Finally, the partial derivative with respect to the pth and qth coordinates, p, q ∈ {1, . . . , d}, is
written as

∂2
p,qπ�(t) =E

[
ei〈t,Z�+1−Z�〉 | X�, X�+1

]−2{
−E

[
ei〈t,Z�+1−Z�〉(Z(p)

�+1 − Z(p)
�

)(
Z(q)

�+1 − Z(q)
�

) | X�, X�+1
]
E
[
ei〈t,Z�+1−Z�〉 | X�, X�+1

]
+E

[
ei〈t,Z�+1−Z�〉(Z(p)

�+1 − Z(p)
�

) | X�, X�+1
]
E
[
ei〈t,Z�+1−Z�〉(Z(q)

�+1 − Z(q)
�

) | X�, X�+1
]}

.

Hence, the Taylor expansion at t = 0 yields, for all t ∈ δTd,

π�(t) = i〈t,E[Z�+1 − Z� | X�, X�+1]〉 − 1
2 〈t, Cov(Z�+1 − Z� | X�, X�+1)t〉 + R�(t),

where R� stands for the Lagrange’s remainder in the Taylor expansion. Then, for any t ∈ δTd,
almost surely,

|R�(t)| ≤ ‖t‖3∞ sup
t∈δTd

sup
{∣∣∂3

p,q,rπ�(t)
∣∣, p, q, r ∈ {1, . . . , d}

}
.

In fact, (4.1) implies that, for all δ ∈ (0, 1/2k) ∩ (0, 1) and all t ∈ δTd,
∣∣E[ei〈t,Z�+1−Z�〉 |

X�, X�+1
]∣∣≥ 1

2 . Thus, computing explicitly the third-order derivatives of π�, it follows that,
for any p, q, r ∈ {1, . . . , d} and any t ∈ δTd,∣∣∂3

p,q,rπ�(t)
∣∣≤ 24

{
E
[‖Z�+1 − Z�‖3

1 | X�, X�+1
]+ 2E

[‖Z�+1 − Z�‖1 | X�, X�+1
]3

+ 5E
[‖Z�+1 − Z�‖2

1 | X�, X�+1
]
E
[‖Z�+1 − Z�‖1 | X�, X�+1

]}
≤ 27E

[‖Z�+1 − Z�‖3
1 | X�, X�+1

]
.

The existence of the deterministic constant K follows immediately from Assumption 3.2. Now,

�n(t) =
n−1∏
�=0

π�(t) = exp
{
i〈t, Un〉 − 1

2 〈t, nVnt〉 + �n(t)
}
,

where �n(t) =∑n−1
�=0 R�(t) and |�n(t)| ≤ nK‖t‖3∞. �

Proof of Theorem 3.1. Let δ ∈ (0, 1) be such that Proposition 4.1 holds. Then, by
Proposition 2.1,

(2π )dP(Zn − Z0 = z | X0 = x)

=
∫
Td

Pn
t 1(x)e−i〈t,z〉 dt =

∫
Td\δTd

Pn
t 1(x)e−i〈t,z〉 dt +

∫
δTd

Pn
t 1(x)e−i〈t,z〉 dt. (4.2)

The change of variables u = t/
√

n in the second term yields∫
δTd

Pn
t 1(x)e−i〈t,z〉 dt =E

[ ∫
δTd

e−i〈t,z〉�n(t) dt | X0 = x

]
= n−d/2E

[ ∫
δ
√

nTd
e
− i√

n
〈t,z〉

�n(t/
√

n) dt | X0 = x

]
. (4.3)
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Let a ∈ (0, δ
√

n). The quantity in 4.3 can be decomposed as follows:

n−d/2

{
E

[ ∫
Rd

exp

{
i

1√
n

〈t, Un − z〉 − 1

2
〈t, Vnt〉

}
dt | X0 = x

]
+E

[ ∫
δ
√

nTd\aTd
e
− i√

n
〈t,z〉

�n(t/
√

n) dt | X0 = x

]
+E

[ ∫
aTd

e
−i 1√

n
〈t,z〉

(
�n(t/

√
n) − exp

{
i

1√
n

〈t, Un − z〉 − 1

2
〈t, Vnt〉

})
dt | X0 = x

]
−E

[ ∫
Rd\aTd

exp

{
i

1√
n

〈t, Un − z〉 − 1

2
〈t, Vnt〉

}
dt | X0 = x

]}
.

Finally, noting that ‖t/
√

n‖∞ ≤ δ as soon as t ∈ aTd, so that Proposition 4.1 holds, (4.2) and
(4.3) imply

(2π
√

n)dP(Zn − Z0 = z | X0 = x) −E

[ ∫
Rd

exp

{
i√
n

〈t, Un − z〉 − 1

2
〈t, Vnt〉

}
dt | X0 = x

]
= A1(z, n, a) + A2(z, n, a) + A3(z, n, a, δ) + A4(z, n, δ),

where

A1(z, n, a) := E

[ ∫
aTd

exp

{
i

1√
n

〈t, Un − z〉 − 1

2
〈t, Vnt〉

}(
e�n(t/

√
n) − 1

)
dt | X0 = x

]
,

A2(z, n, a) := −E

[ ∫
Rd\aTd

exp

{
i

1√
n

〈t, Un − z〉 − 1

2
〈t, Vnt〉

}
dt | X0 = x

]
,

A3(z, n, a, δ) := E

[ ∫
δ
√

nTd\aTd
e
− i√

n
〈t,z〉

�n(t/
√

n) dt | X0 = x

]
,

A4(z, n, δ) := nd/2
∫
Td\δTd

Pn
t 1(x)e−i〈t,z〉 dt. �

Lemma 4.1. Under Assumptions 3.2 and 3.3, for all n ≥ 1 and a ∈ (0, δ
√

n),

sup
z∈Zd

|A1(z, n, a)| = O

(
a3K√

n
exp

(
a3K√

n

))
,

where K is defined in Proposition 4.1.

Proof. Let t ∈ aTd. By Proposition 4.1, under Assumptions 3.2 and 3.3,∣∣∣ei 1√
n

〈t,Un−z〉− 1
2 〈t,Vnt〉(

e�n(t/
√

n) − 1
)∣∣∣≤ e− 1

2 〈t,Vnt〉|�n(t/
√

n)| exp|�n(t/
√

n)|

≤ e− 1
2 〈t,Vnt〉 a3nK

n3/2
exp

(
a3nK

n3/2

)
≤ e− α

2 ‖t‖2
2

a3K√
n

exp

(
a3K√

n

)
a.s.

The result follows by integrating with respect to t ∈ aTd. �

https://doi.org/10.1017/jpr.2022.73 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.73


580 B. DE LOYNES

Lemma 4.2. Under Assumption 3.3, for all n ≥ 1 and a > 0,

sup
z∈Zd

|A2(z, n, a)| ≤ 2de−αda2

(αda)d
.

Proof. Assumption 3.3 implies

sup
z∈Zd

|A2(z, n, a)| ≤
∫
Rd\aTd

exp

(
−1

2
α‖t‖2

2

)
dt

≤
∫

‖t‖2≥a
exp

(
−1

2
α‖t‖2

2

)
dt ≤ 2de−αda2

(αa)d
.

�

Lemma 4.3. Under Assumptions 3.2 and 3.3, for any δ > 0 sufficiently small and any a ∈
(0, δ

√
n),

sup
z∈Zd

|A3(z, n, a, δ)| ≤ K3 exp
{− K4a2}.

Proof. As a matter of fact,∣∣∣∣E[ ∫
δ
√

nTd\aTd
e
− i√

n
〈t,z〉

�n(t/
√

n) dt | X0 = x

]∣∣∣∣
≤E

[ ∫
δ
√

nTd\aTd
|�n(t/

√
n)| dt | X0 = x

]
. (4.4)

Under Assumptions 3.2 and 3.3, by Proposition 4.1 the integrand in (4.4) satisfies
|�n(t/

√
n)| ≤ exp

{− 1
2 〈t, Vnt〉 + |�n(t/

√
n)|}. Moreover, since t ∈ δ

√
nTd \ aTd,

|�n(t/
√

n)| ≤ nK‖t/
√

n‖2∞‖t/
√

n‖∞ = K‖t‖2∞‖t/
√

n‖∞ ≤ Kδπ‖t‖2∞ ≤ Kδπd‖t‖2
2,

and − 1
2 〈t, Vnt〉 ≤ − 1

2α‖t‖2
2. Thus, choosing any δ > 0 small enough that Kδπd ≤ α/4 (and

that Proposition 4.1 holds), the integrand in (4.4) is bounded above by exp
(−β‖t‖2

2

)
for some

β > 0. Consequently, there exist K3, K4 > 0 such that |A3(z, n, a, δ)| ≤ K3e−K4a2
. �

Lemma 4.4. Under Assumption 3.4, for any δ ∈ (0, 1) there exist γ ∈ (0, 1) and a constant
C > 0 such that supz∈Zd |A4(z, n, δ)| ≤ (2π )dCγ n.

Proof. Fix δ ∈ (0, 1). Then, under Assumption 3.4, there exist γ ∈ (0, 1) and a constant
C > 0 such that, for all t ∈Td \ δTd, ‖Pn

t 1‖∞ ≤ Cγ n. The result follows immediately. �

Lemmas 4.1–4.4 imply that

sup
z∈Zd

∣∣∣∣nd/2(2π )dP(Zn − Z0 = z | X0 = x) −E

[ ∫
Rd

e
i 1√

n
〈t,Un−z〉− 1

2 〈t,Vnt〉
dt | X0 = x

]∣∣∣∣
= O

(
a3K√

n
e

a3K√
n + 2d

(αa)d
e−αda2/2 + K3e−K4a2 + Cγ n

)
= O

(
n−( 1

2 −ε)
)

by setting a = δnε/3 for any ε ∈ (0, 1
2

)
.
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Finally, noting that Vn is invertible by Assumption 3.3, the proof of Theorem 3.1 ends with
the help of the Fourier transform

∫
Rd

exp

{
i

1√
n

〈t, Un − z〉 − 1

2
〈t, Vnt〉

}
dt = (2π )d/2

√
det(Vn)

exp

{
− 1

2n
〈Un − z, V−1

n (Un − z)〉
}

.

�

5. Application: Random walks with local drift

This section is dedicated to the illustration of Theorem 3.1 and Corollary 3.1. The examples
presented below are largely inspired by those studied in [12], which in turn were previously
introduced in [49]. The discrete-time processes considered in [12] are basically simple random
walks on directed graphs built upon Z2. More precisely, whereas the random walker can move
freely toward North or South at each step, he can only move toward East or West depending on
a prescribed environment. As shown in [12], different environments lead to different behaviors
for the simple random walk, explaining why a significant part of the literature considers these
models (see, for instance, [8, 9, 10, 13, 14, 24, 33, 41, 54] or, even more recently, [7]).

In the model considered below, the random walker can move simultaneously vertically and
horizontally in one of the North West, North East, South East, or South West quarter-planes.
While the choice between North or South remains unrestricted, the choice between East and
West is dictated by a prescribed environment. Thus, the case of a periodic environment consid-
ered in Section 5.2 has to be compared to the model L of [12]. The two-directed half-planes
of Section 5.3 is analogous to the model H of [12]. Finally, the randomly directed case of
Section 5.4 is reminiscent of the model O.

5.1. The model of random walks with local drift

In this section the internal Markov chain X of the MAP (X, Z) will be the simple random
walk on X=Z. More precisely, let (ξk)k≥1 be a sequence of i.i.d. random variables, where
ξ1 is uniformly distributed on {−1, 1}. Let X0 be a Z-valued random variable and, for n ≥ 1,
Xn := X0 + ξ1 + · · · + ξn.

Now, let us define the additive part Z of the MAP (X, Z). To this end, introduce a sequence
((Th,k, Tv,k))k≥0 of independent copies of some N2-valued random vector (Th, Tv), and a
sequence ε = (εx)x∈Z of Z-valued random variables. Then, the additive part Z taking values
in Z2 is defined, for all n ≥ 0, as

Zn − Z0 :=
(

n−1∑
k=0

εXk Th,k,

n−1∑
k=0

ξk+1Tv,k

)
. (5.1)

Assumption 5.1.

(i) The internal Markov chain X, and the sequences ((Th,k, Tv,k))k≥0 and ε are independent.

(ii) E[Th] = mh ∈ (0, ∞) and E[Tv] = mv ∈ (0, ∞).

(iii) V[Th] = σ 2
v > 0 and V[Tv] = σ 2

h > 0.

(iv) Th and Tv are independent.
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Proposition 5.1. Under Assumptions 5.1, conditionally on the environment ε, the quenched
drift and quenched dispersion are respectively given by

Un(ε) =
(

mh
∑n−1

k=0 εXk

mv(Xn − X0)

)
, Vn(ε) = 1

n

(
σ 2

h

∑n−1
k=0 ε2

Xk
0

0 nσ 2
v

)
.

Proof. Conditionally on the environment ε, the quenched drift and quenched dispersion are
respectively given by

Un(ε) =
n−1∑
�=0

E[Z�+1 − Z� | X�, X�+1, ε], Vn(ε) = 1

n

n−1∑
�=0

Cov(Z�+1 − Z� | X�, X�+1, ε).

By independence, for all � ≥ 0,

E[Z�+1 − Z� | X�, X�+1, ε] =
(

εX�
E[Th]

ξ�+1E[Tv]

)
,

Cov(Z�+1 − Z� | X�, X�+1, ε) = 1

n

(
V(Th)ε2

X�
0

0 V(Tv)ξ2
�+1

)
.

The result follows immediately. �

Proposition 5.2. Under Assumptions 5.1, conditionally on the environment ε, the Fourier
transform operator is given, for all x ∈Z and t ∈T2, by

Ptf (x) =
∑
y∈Z

P(x, y)μ̂x,y
ε (t)f (y),

where P is the Markov operator associated with the simple random walk X, and μ̂
x,y
ε (t) =

ϕTh (εxt1)ϕTv ((y − x)t2), with x, y ∈Z such that P(x, y) > 0, and t = (t1, t2) ∈T2, where ϕTh and
ϕTv are the characteristic functions of Th and Tv respectively.

Proof. Let t = (t1, t2) ∈T2. Then

Ptf (x) =E
[
eit1εX0 Th,0eit2(X1−X0)Tv,0 f (X1) | X0 = x, ε

]
=
∑
y∈Z

P(x, y)E
[
eit1εX0 Th,0eit2(X1−X0)Tv,0 | X0 = x, X1 = y, ε

]
f (y)

=
∑
y∈Z

P(x, y)ϕTh (εxt1)ϕTh ((y − x)t2)f (y). �

In order to apply Theorem 3.1 and Corollary 3.1, it is necessary to make further assump-
tions.

Assumption 5.2.

(i) There exists B > 0 such that P
[

supx∈Z |εx |≥ B
]= 0.

(ii) For all x ∈Z, P[εx = 0] = 0.

(iii) E
[
T3

h

]
,E
[
T3

v

]
are finite.

(iv) The distributions of Th and Tv are aperiodic.
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Proposition 5.3. Under Assumptions 5.1 and 5.2, conditionally on the environment ε,
Assumptions 3.1, 3.2, 3.3, and 3.4 are fulfilled.

Proof. It is well known that the simple random walk X is irreducible recurrent
(Assumption 3.1).

The uniform moment condition involved in Assumption 3.2 is equivalent to

sup
x∈Z

(
|εx|E

[
T3

h

]+E
[
T3

v

])
< ∞.

The latter is straightforward by Assumptions 5.2(i) and (iii).
The uniform ellipticity condition of Assumption 3.3 follows immediately from

Assumption 5.2(ii).
Finally, since Th and Tv are aperiodic, for all t ∈ [−π, π ) \ {0}, |ϕTh (t)| < 1, and |ϕTv (t)| < 1.

Consequently, conditionally on the environment ε, the family of probability measure
(μx,y

ε )x,y∈Z is uniformly aperiodic. By Proposition 2.2, Assumption 3.4 follows. �

As a matter of fact, the quantity (1/2n)〈(Un(ε) − z), V−1
n (ε)(Un(ε) − z)〉, n ≥ 1, z =

(z1, z2) ∈Z2, appearing in Theorem 3.1 is given by

1

2n

〈
(Un(ε) − z), V−1

n (ε)(Un(ε) − z)
〉= 1

2

[(
mh
∑n−1

k=0 εXk − z1
)2

σ 2
h

∑n−1
k=0 ε2

Xk

+ (mv(Xn − X0) − z2)2

nσ 2
v

]
.

(5.2)

Also, it is worth noting that, under Assumptions 5.2(i) and (ii), for all n ≥ 1,

det(Vn)

σ 2
h σ 2

v

= 1

n

n−1∑
k=0

ε2
Xk

∈ [1, B2]. (5.3)

Consequently, this factor will be omitted hereafter when applying Corollary 3.1.
The end of this section is devoted to the application of Theorem 3.1 or Corollary 3.1 for

three different environments ε. The first two are deterministic, whereas the last one is random.

5.2. Periodic environment

In this example, the environment ε is supposed periodic. Namely, it is assumed that, for all
x ∈Z, εx = (−1)x.

Proposition 5.4. Let z ∈Z2. Then, under Assumptions 5.1 and 5.2, for all x ∈Z,

P[Zn − Z0 = z | X0 = x] ∼n→∞
1

2πσhσvn

(
1 + m2

v

σ 2
v

)−1/2

.

Proof. First observe that, for all n ≥ 1,

n−1∑
k=0

εXk = (−1)X0
1 − (−1)n

2
, det(Vn) = σ 2

h σ 2
v .
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Then, setting z = (z1, z2),

σhσvE

[
1√

det(Vn)
exp

{
− 1

2n

〈
Un − z, V−1

n (Un − z)
〉} | X0 = x

]
= exp

{
− 1

2σ 2
h n

(
mh(−1)x 1 − (−1)n

2
− z1

)2}
E

[
exp

{
− (mv(Xn − X0) − z2)2

2nσ 2
v

}
| X0 = x

]
.

As a matter of fact, the first exponential factor converges toward 1 as n → ∞.
For the second factor, it suffices to remark that n−1/2

[
mv(Xn − X0) − z2

]
converges in dis-

tribution to a centered standard Gaussian random variable. Since t → e−t2/2σ 2
v is continuous, it

follows that

lim
n→∞ E

[
exp

{
− (mv(Xn − X0) − z2)2

2nσ 2
v

}
| X0 = x

]
=
∫
R

e
− y2

2

[
1+ m2

v
σ2

v

]
dy√
2π

=
(

1 + m2
v

σ 2
v

)−1/2

.

By Theorem 3.1, the result of the proposition follows immediately. �

The estimate of Proposition 5.4 implies that the series in Corollary 3.1 is infinite. However,
since the internal Markov chain is null recurrent, the recurrence of the MAP cannot be deduced
directly. Actually, it turns out that, taking advantage of the periodicity of the environment, the
distribution of the additive component can be described with a simpler internal Markov chain.

Proposition 5.5. Suppose the MAP (X, Z) is irreducible. Then, under Assumptions 5.1 and 5.2,
the MAP Z is recurrent.

Proof. The key idea consists in remarking that M = ((εXn, ξn+1))n≥0 is a Markov chain
taking values in the finite space {−1, 1}2. The transition probabilities are given, for all
x, x′, y, y′ ∈ {−1, 1}, by Q((x, y), (x′, y′)) := Q1(x, x′)Q2(y, y′), with

Q1 :=
(

0 1

1 0

)
, Q2 :=

(
1
2

1
2

1
2

1
2

)
.

Now, let us set, for all n ≥ 1, Z̃n − Z̃0 =
(∑n−1

k=0 M(1)
k Th,k,

∑n−1
k=0 M(2)

k Tv,k

)
, where M(1) and

M(2) are respectively the first and second component of M. From (5.1), the following equality
in distribution holds:

L((Zn − Z0)n≥0 | X0 = x) =L((̃Zn − Z̃0
)

n≥0 | M(1)
0 = εx

)
.

From this equality in distribution, the MAP (M, Z̃) inherits irreducibility from the MAP (M,
Z). Moreover, applying [19], the MAP (M, Z̃) is recurrent, noting that M is positive recurrent.
Consequently, (X, Z) is recurrent. �

5.3. Two directed half-planes

The reduction made in the proof of Proposition 5.5 is naturally not always possible, as
illustrated by the example in this section. This obstruction was the main motivation for the
extension to the null recurrent case.

The two directed half-planes presented below correspond to the environment ε defined, for
all x ∈Z, by εx = 21Z+ (x) − 1, where Z+ is the set of non-negative integers.
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Proposition 5.6. Assume that the MAP (X, Z) is irreducible. Then, under Assumptions 5.1 and
5.2, (X, Z) is transient.

Proof. By irreducibility, Equation (5.2) with z1 = z2 = 0, and the fact that, for all n ≥ 1,
det(Vn) = σ 2

h σ 2
v , the transience of (X, Z) follows from Corollary 3.1 by proving that the series

∑
n≥1

1

n
E

[
exp

{
− m2

h

2nσ 2
h

(
n−1∑
k=0

εXk

)2}
| X0 = x

]
(5.4)

is finite for all x ∈Z. Thereafter, a simple computation yields, for all n ≥ 1,

n−1∑
k=0

εXk = 2Nn(Z+) − n, Nn(Z+) =
n−1∑
k=0

1Z+ (Xk).

Then, verifying that the function

[0, ∞) 
 t → exp

(
−nm2

h

2σ 2
h

(2t − 1)2

)

is kn-Lipschitz with constant kn = e− 1
8

√
nm2

h/σ
2
h , it follows that

E

[
exp

{
− m2

h

2nσ 2
h

(2Nn(Z+) − n)2

}
| X0 = x

]

≤ kndW (L(Nn(Z+)/n),L(�)) +E

[
exp

{
−n

m2
h

2σ 2
h

(2� − 1)2

}
| X0 = x

]
,

where � is distributed as an arc-sine law supported by [0,1], and dW stands for the
Kantorovich–Rubinstein metric on probability measures (see [63, Chapter 6, p. 94]).

It is shown in [29, Theorem 1.2] that dW (L(Nn(Z+)/n),L(�)) = O(1/n), so that the series
in (5.4) is finite if and only if, applying Fubini’s theorem,

∞ >E

[∑
n≥1

1

n
exp

{
−n

m2
h

2σ 2
h

(2� − 1)2

}]
= −

∫ 1

0
log

[
exp

{
m2

h

2σ 2
h

(2y − 1)2

}
− 1

]
dy

π
√

1 − y2
.

However, the singularity at y = 1 coming from the density function of the arc-sine distribution
is integrable, and so is the singularity at y = 1

2 since y → log y is locally integrable in the
positive neighborhood of 0. �

5.4. Randomly directed random walks

The last family of examples involve a random environment. More precisely, it will be
assumed that ε is a sequence of i.i.d. random variables; the common marginal distribution
is denoted by π .

Proposition 5.7. Additionally to Assumptions 5.1 and 5.2, suppose that ε = (εx)x∈Z is a
sequence of i.i.d. random variables such that E[ε0] = 0. Then, for π⊗Z-almost-every sequence
ε, if the MAP (X, Z) in the environment ε is irreducible, then it is transient.
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Proof. Applying the Markov inequality to the probability measure π⊗Z, it is only necessary
to consider ∑

n≥1

1

n
E

[
exp

{
−m2

h

(∑n−1
k=0 εXk

)2
2σ 2

h

(∑n−1
k=0 ε2

Xk

)} | X0 = x

]
.

Without loss of generality we may suppose that x = 0, since π⊗Z is shift invariant. Noting that
n ≤∑n−1

k=0 ε2
Xk

≤ nB2 by Assumptions 5.2(i) and (ii), for any α ∈ ( 1
2 , 3

4

)
we have

E

[
exp

{
−m2

h

(∑n−1
k=0 εXk

)2
2σ 2

h

(∑n−1
k=0 ε2

Xk

)}]≤ P

[∣∣∣∣∣
n−1∑
k=0

εXk

∣∣∣∣∣≤ nα

]
+ exp

{
e
− m2

h
σ2

h B2 n2α−1
}

.

Now, set Dn = {
x ∈R : n3/4x ∈ [−nα, nα] ∩Z

}
. By [14, Theorem 1], with the very same

function C, the following estimate holds:

P

[∣∣∣∣∣
n−1∑
k=0

εXk

∣∣∣∣∣≤ nα

]
=
∑
x∈Dn

[
C(x)

n3/4
+ o

(
n−3/4)],

where the o
(
n−3/4

)
is uniform in x ∈R. Noting that C is bounded (see, for instance, [14,

Lemma 4]), the probability above behaves like O
(
nα−3/4

)
, which ends the proof of the

proposition. �
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