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Optimization Related to Some Nonlocal
Problems of Kirchhoff Type

Behrouz Emamizadeh, Amin Farjudian, and Mohsen Zivari-Rezapour

Abstract. In this paper we introduce two rearrangement optimization problems, one being a max-
imization and the other a minimization problem, related to a nonlocal boundary value problem of
Kirchhoò type. Using the theory of rearrangements as developed by G. R. Burton, we are able to
show that both problems are solvable and derive the corresponding optimality conditions. _ese
conditions in turn provide information concerning the locations of the optimal solutions. _e strict
convexity of the energy functional plays a crucial role in both problems. _e popular case in which
the rearrangement class (i.e., the admissible set) is generated by a characteristic function is also con-
sidered. We show that in this case, the maximization problem gives rise to a free boundary problem
of obstacle type, which turns out to be unstable. On the other hand, the minimization problem
leads to another free boundary problem of obstacle type that is stable. Some numerical results are
included to conûrm the theory.

1 Introduction

Consider the following Kirchhoò boundary value problem:

(1.1)
⎧⎪⎪⎨⎪⎪⎩

−M(∥u∥p)∆pu = f (x) in D,
u = 0 on ∂D,

where D is a smooth bounded domain in RN , f ∈ Lq(D) is a non-negative (a.e.)
and non-trivial (i.e., not identically zero) function in D, and M∶ [0,∞) → (0,∞)
is continuous and strictly increasing. Henceforth, p ∈ (1,∞), 1/p + 1/q = 1, and
∥u∥ = (∫D ∣∇u∣p dx)1/p . _e diòerential operator ∆p denotes the classical p-Laplace
operator which is deûned by ∆pu ∶= ∇ ⋅(∣∇u∣p−2∇u). _e problem (1.1) is called non-
local because of the presence ofM(∥u∥p), a quantitywhich is notmeasured pointwise.

_e present paper is concerned with the role of the input function f in (1.1), in
a speciûc way which we elaborate in detail. To emphasize the dependence on f we
denote the unique solution of (1.1) by u f and deûne a quantity—which we will refer
to as energy—associated with (1.1):

Φ( f ) = ∫
D
f u f dx −

1
p
M̂(∥u f ∥p),

where M̂(t) = ∫
t
0 M(s) ds. _e key requirement is for the input function to be se-

lected from the set R( f0) of rearrangements generated by a prescribed function f0.
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We ask whether it is possible to ûnd a member of R( f0) which generates the max-
imum energy. Mathematically speaking, we are investigating the solvability of the
maximization problem

(1.2) sup
f ∈R( f0)

Φ( f );

that is to say, whether or notwe can ûnd f̂ ∈ R( f0) such that Φ( f̂ ) = sup f ∈R( f0)Φ( f ).
As we will see the answer to this question is aõrmative. In addition, we will also show
that if f̂ is a solution of (1.2), then the optimality condition leads to the information
f̂ = ψ̂(u f̂ ), a.e. in D, for some increasing function ψ̂. Incorporating this information
into (1.1), we obtain an even more non-linear diòerential equation:

(1.3)
⎧⎪⎪⎨⎪⎪⎩

−M(∥û∥p)∆pû = ψ̂(û) in D,
û = 0 on ∂D,

where we have used û in place of u f̂ .
We also address the minimization problem

(1.4) inf
f ∈R( f0)

Φ( f ).

Indeed, we prove that (1.4) is also solvable. Moreover, thanks to the strict convexity
of Φ, the minimizer f̌ is unique and satisûes the optimality condition,

(1.5) f̌ = ψ̌(ǔ),

almost everywhere in D, for some decreasing function ψ̌. Here we have used ǔ in
place of u f̌ . Whence we derive

(1.6)
⎧⎪⎪⎨⎪⎪⎩

−M(∥ǔ∥p)∆pǔ = ψ̌(ǔ) in D,
ǔ = 0 on ∂D.

In case the generator f0 is a characteristic function, we will see that the diòerential
equation in (1.3) becomes a one-phase obstacle problem of unstable type whose free
boundary has not been investigated before except for p = 2. On the other hand, the
diòerential equation in (1.6) becomes a one-phase obstacle problem of stable type.
For this type of free boundary problem there is an abundance of references in the
literature. In the present paperwewill notmake any eòorts in this direction. However,
we have included some numerical examples to support the theory.

Let us present a physical motivation for studying the optimization problems (1.2)
and (1.4) when p = 2, in which case (1.1) would be the steady state equation corre-
sponding to the well-known Kirchhoò equation:

(1.7) ut t −M(∫
D
∣∇u∣2 dx)∆u = f (t, x),

which was ûrst introduced by Kirchhoò [20] as a generalization of the classical wave
equation by adding the nonlinearity M(∫D ∣∇u∣2 dx) in front of the diòusion term.
_e function f (t, x) in (1.7) stands for the external force. Usually, M∶R → R is an

https://doi.org/10.4153/CJM-2015-040-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-040-9


Optimization Related to Some Nonlocal Problems of Kirchhoò Type 523

aõne function M(s) = As+B in which both A and B are positive constants. _e func-
tion u stands for the displacement of the elastic membrane that occupies the region
D in R2.

Multiplying the diòerential equation in (1.1) by u and integrating the result over D,
bearing in mind that u vanishes on the boundary (and p is assumed to be 2), leads to

(1.8) (A∥u∥2 + B)∥u∥2 = ∫
D
f u dx =∶ γ.

From (1.8), one gets

(1.9) ∥u∥2 =
−B +

√
B2 + 4γA
2A

.

From (1.9), we obtain the following formulation for the energy functional:

Φ( f ) = ξ(∫
D
f u f dx) ,

for an appropriate function ξ∶R+ → R. Whence the energy Φ( f ) turns out to be
a quantity that depends on the total displacement of the membrane, relative to the
measure f dx.

Now let us consider the special case when f0 is a characteristic function, whereby
all members of the rearrangement class R( f0) would also be characteristic functions
supported on sets having the samemeasure as that of the support of f0. In this case, the
energy functional Φ( f ) for f ∈ R( f0) is simply a quantity that depends on the total
displacement of the membrane only inside the region which is subject to the uniform
external force f (x) = 1, i.e., Φ(E) = ξ(∫E uE dx) , where we have used Φ(E) and uE
in place of Φ(χE) and uχE , respectively. In this setting, the maximization problem
(1.2) amounts to that of a search for an optimal region Ê inside D such that Φ(Ê) is
largest in comparison with all other competing regions E satisfying ∣ E ∣ = ∣ Ê ∣. _e
minimization problem (1.4) is interpreted similarly.
Boundary value problems of Kirchhoò type have been investigated by many au-

thors. _e ones who inspired our research are [1, 8, 10] and the references therein.
_at said, we would like to stress that the aim of this article is to introduce a new type
of rearrangement optimization problem that can be thoroughly analyzed using the
well-developed theory of rearrangements by G. R. Burton [5,6]. _e reader may refer
to [9, 12–16, 22] which discuss other types of rearrangement optimization problems.

2 Preliminaries

In this section we collect the tools that we need to prove our claims. Let us start with
the following.

Deûnition 2.1 We say u ∈W 1,p
0 (D) is a solution of (1.1) provided that

(2.1) M(∥u∥p)∫
D
∣∇u∣p−2∇u ⋅ ∇v dx = ∫

D
f v dx , ∀v ∈W 1,p

0 (D).

_e next result is a basic one.

https://doi.org/10.4153/CJM-2015-040-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-040-9


524 B. Emamizadeh, A. Farjudian, and M. Zivari-Rezapour

Lemma 2.2 Problem (1.1) has a unique solution u f which is the unique maximizer
of the functional

γ f (u) ∶= ∫
D
f u dx − 1

p
M̂(∥u∥p), (∀u ∈W 1,p

0 (D))

in which M̂(t) = ∫
t
0 M(s) ds. Moreover, the following holds:

(2.2) u f = t
1
p
w f

∥w f ∥
,

where w f ∈W 1,p
0 (D) is the solution of

(2.3)
⎧⎪⎪⎨⎪⎪⎩

−∆pw = f (x), in D,
w = 0 on ∂D,

and t uniquely solves

(2.4) t
1
q M(t) = ∥w f ∥

p
q .

Remark 2.3 Note that in equation (2.2) as f is assumed to be non-trivial, we have
w f ≠ 0.

Remark 2.4 For equation (2.4) to be solvable in tweneed the range of t1/qM(t) (for
t ≥ 0) to cover all of [0,∞). But this follows fromour assumptions regarding the func-
tion M, i.e., M being positive, continuous and strictly increasing for t ≥ 0. In partic-
ular, ∀t > 0 ∶ M(t) > M(0) > 0, which combined with the fact that limt→∞ t1/q = ∞,
would imply that limt→∞ t1/qM(t) = ∞. Hence,

{t1/qM(t) ∣ t ≥ 0} = [0,∞).

Uniqueness of the solution follows from the fact that t1/qM(t) is strictly increasing.

Proof We set K = −γ f . Let us note that K ∈ C1(X ,R), where X = W 1,p
0 (D). Next,

we show that K is coercive. For ∥u∥ > 1, we have

K(u) ≥ 1
p ∫

∥u∥p

1
M(s) ds − ∫

D
f u dx ≥ 1

p
M(1)(∥u∥p − 1) − C∥ f ∥q∥u∥,

where we have used the monotonicity ofM in conjunction with the Hölder and Poin-
caré inequalities. _us, K(u) → ∞ as ∥u∥ → ∞, hence K is coercive. Finally, as
M(t) is strictly increasing, M̂ is strictly convex, implying that K is also strictly con-
vex. So we can apply the direct method of calculus of variations to conclude that the
minimization: infu∈X K(u) has a unique solution u f . Whence,

K′(u f )(v) = M(∥u f ∥p)∫
D
∣∇u f ∣p−2∇u f ⋅ ∇v dx − ∫

D
f v dx = 0, ∀v ∈ X .

_us, u f is a solution of (1.1). Conversely, any solution of (1.1) is a minimizer ofK(u)
relative to u ∈ X.

Note that since t1/qM(t) is continuous, strictly increasing and its range is [0,∞),
the solution to (2.4) is unique. Veriûcation of (2.2) is elementary.
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Let us ûx a non-negative and non-trivial function f0 ∈ Lq(D) which is bounded
on D. _e rearrangement set generated by f0 is deûned as follows:

(2.5) R( f0) ∶= { f ∈ Lq(D) ∣ ∀α ≥ 0 ∶ λ f (α) = λ f0(α)},
where λ f (α) = ∣ {x ∈ D ∣ f (x) ≥ α} ∣, known as the distribution function of f . Hence-
forth, ∣E∣ denotes the N-dimensional Lebesgue measure of E ⊂ RN . _e tools that we
need from rearrangement theory are stated in the next lemma; for the proof the reader
is referred to [5, 6].

Lemma 2.5 Consider a non-negative f0 ∈ Lq(D) and let R ≡ R( f0) be its generated
rearrangement set as deûned in (2.5).
(i) R ⊆ Lq(D) and ∀ f ∈ R ∶ ∥ f ∥q = ∥ f0∥q .
(ii) _e weak closure of R in Lq(D), denoted R, is weakly compact and convex.
(iii) For every g ∈ Lp(D) the linear functional L( f ) = ∫D f g dx has a maximizer f̂

relative to f ∈ R.
(iv) If f̂ is the unique maximizer of the linear functional L deûned in (iii) relative to

R, then it is also the unique maximizer of L relative to R. Moreover, f̂ = ψ̂(g),
almost everywhere in D, for some increasing function ψ̂.

_ederivation of the optimality condition (1.5) crucially depends on the next result
whose proof can be extracted from either of [5] or [6]:

Lemma 2.6 Let f0 and R be as in Lemma 2.5. Suppose g ∈ Lp(D) and its graph has
no signiûcant �at zones, i.e., the sets {g = c} have zero measure for every c ∈ R. _en
there exists a decreasing function ψ̌ such that ψ̌(g) ∈ R and f̌ = ψ̌(g) is the unique
minimizer of the linear functional L( f ) = ∫D f g dx relative to f ∈ R.

Let us set K(t) = t1/qM(t). Note that K is continuous and strictly increasing on
[0,∞), and (by Remark 2.4) its range covers [0,∞). Whence, the function ξ(t) =
1
t (K

−1(tp/q)) 1/p
is well deûned on (0,∞). _us, from (2.2) and (2.4), we obtain

(2.6) u f = t1/p
w f

∥w f ∥
= ξ(∥w f ∥)w f ,

From (2.6) and [27], one gets u f ∈ C1,α(D) ∩ C1(D) ∩ W2,1
loc (D). Moreover, as a

consequence of Harnack’s inequality u f is strictly positive in D.

Remark 2.7 In general for the boundary value problem
⎧⎪⎪⎨⎪⎪⎩

−∆pQ = h(x), in D,
Q = 0 on ∂D,

in which h is bounded, we have Q ∈ W2,1
loc (D). To be more precise, if p ≥ 2, then

Q ∈W2,2
loc (D), whereas for p ∈ (1, 2) one gets Q ∈W2,p

loc (D).

We are heading towards tackling the maximization problem (1.2). First we ensure
that the functional Φ is bounded above onR. In fact Φ is bounded above on the larger
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set R. To see this, it suõces to observe that Q( f ) = ∫D f u f dx is bounded above on
R. For a ûxed f ∈ R equation (2.1) implies

(2.7) M(∥u f ∥p)∥u f ∥p = ∫
D
f u f dx ≤ ∥ f ∥q∥u f ∥p ≤ C∥ f ∥q∥u f ∥,

where we have used the Hölder inequality in conjunction with the Poincaré inequal-
ity.1 We know that there exists a sequence { fn} in R such that fn ⇀ f . So by the
weak lower semi-continuity of the Lq-norm, we obtain ∥ f ∥q ≤ lim inf n→∞ ∥ fn∥q =
∥ f0∥q . _erefore, from (2.7) we get M(∥u f ∥p)∥u f ∥p−1 ≤ C. Setting t = ∥u f ∥p , yields
M(t)t1/q ≤ C. Since limt→∞ M(t)t1/q → ∞, we infer ∥u f ∥ ≤ C. Whence we obtain
Q( f ) ≤ C∥ f0∥q , which is the desired result.

_e boundedness of Φ from above implies that the maximization problem (1.2) is
meaningful. We now start to show that the problem is in fact solvable.

Lemma 2.8 _e functional Φ∶ (R, σ(Lq , Lp)) → R is sequentially continuous. Here
σ(Lq , Lp) denotes the weak topology on Lq(D).

Proof Let us consider fn ⇀ f in Lq(D), i.e., the sequence { fn} converges weakly
in Lq(D) to f . We want to show that Φ( fn) → Φ( f ) as n → ∞. To this end, ûrst
notice that from the weak convergence of { fn}, we can infer that { fn} is bounded
in Lq(D), i.e., ∥ fn∥q ≤ C. For simplicity, let us denote w fn as wn . Multiplying the
diòerential equation in (2.3) by wn , and integrating the result over D would yield
∥wn∥p = ∫D fnwn dx ≤ C∥wn∥ where we have applied the combination of the Hölder
inequality and the Poincaré inequality. _is implies that ∥wn∥ ≤ C, hence {wn} is
bounded in X ∶= W 1,p

0 (D). As a consequence, {wn} contains a subsequence, still
denoted {wn}, such that for some w ∈ X

⎧⎪⎪⎨⎪⎪⎩

wn ⇀ w in X ,
wn → w in Lp(D.

_erefore,

∫
D
f w f dx =

1
p − 1 ∫D(p f w f − ∣∇w f ∣p) dx

≥ 1
p − 1 ∫D(p f w − ∣∇w∣p) dx

≥ 1
p − 1

lim sup
n→∞

∫
D
(p fnwn − ∣∇wn ∣p) dx

≥ 1
p − 1

lim sup
n→∞

∫
D
(p fnw f − ∣∇w f ∣p) dx

= 1
p − 1 ∫D(p f w f − ∣∇w f ∣p) dx

= ∫
D
f w f dx ,

(2.8)

1We denote our constants by the symbol C, even though their values may vary from one place to
another.
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where the ûrst inequality in (2.8) follows from the variational formulation of w f , and
in the second onewe have used theweak lower semicontinuity of the X-norm. Clearly,
these inequalities must all be equalities and as a result w = w f .

Next we use the following equation:

(2.9) ∀v ∈ X ∶ ∫
D
∣∇wn ∣p−2∇wn ⋅ ∇v dx = ∫

D
fnv dx .

By setting v = wn in (2.9), we obtain ∫D fnwn dx = ∫D ∣∇wn ∣pdx = ∥wn∥p . But
∫D fnwn dx → ∫D f w f dx, since fn ⇀ f in Lq(D) and wn → w f in Lp(D). Whence,
∥wn∥p → ∫D f w f dx = ∥w f ∥p . _us, we obtain ∥wn∥ → ∥w f ∥ as n →∞.

Setting un ∶= u fn , and recalling (2.6), we ûnd un = ξ(∥wn∥)wn . _is in turn im-
plies that ∥un∥ = ξ(∥wn∥)∥wn∥ → ξ(∥w f ∥)∥w f ∥ = ∥u f ∥ as n → ∞. So, we obtain
M̂(∥un∥p) → M̂(∥u f ∥p) as n →∞. On the other hand,

Q( fn) = ∫
D
fnun dx = ξ(∥wn∥)∫

D
fnwn → ξ(∥w f ∥)∫

D
f w f dx = Q( f )

as n → ∞. _us, Φ( fn) → Φ( f ) as n → ∞. So Φ is weakly continuous in Lq(D).
_is completes the proof of the lemma.

Remark 2.9 In the proof of Lemma 2.8, we have used the continuity of ξ at ∥w f ∥
whose validity relies on establishing that w f ≠ 0. In fact, as f ∈ R, we have

∣ {x ∈ D ∶ f (x) > 0} ∣ ≥ ∣ {x ∈ D ∶ f0(x) > 0} ∣
a proof of which can be found in [5]. Hence, f is non-negative and non-trivial which
guarantees w f ≠ 0.

Lemma 2.10 _e functional Φ∶ Lq(D) → R is strictly convex.

Proof Consider u ∈ X ≡W 1,p
0 (D) and set

γ f (u) = ∫
D
f u dx − 1

p
M̂(∥u∥p) (∀ f ∈ Lq(D)).

_en we have ∀ f ∈ Lq(D) ∶ Φ( f ) = supu∈X γ f (u), i.e., the supremum of a family of
aõne functions. Hence it is convex. Next, we show that Φ is in fact strictly convex.
To this end, consider f , g ∈ Lq(D), f ≠ g, and suppose that for some t ∈ (0, 1):
(2.10) Φ(t f + (1 − t)g) = tΦ( f ) + (1 − t)Φ(g).
For simplicity, we set ut = ut f+(1−t)g . Using (2.10), with some straightforward calcu-
lations incorporating the fact that u f and ug are the maximizers of γ f and γg , respec-
tively, we obtain

∫
D
f ut dx −

1
p
M̂(∥ut∥p) = ∫

D
f u f dx −

1
p
M̂(∥u f ∥p),(2.11)

∫
D
gut dx −

1
p
M̂(∥ut∥p) = ∫

D
gug dx −

1
p
M̂(∥ug∥p).(2.12)

Once again by the maximality of u f and ug , from (2.11) and (2.12) we deduce that
ut = u f = ug . On the other hand, we have

−M(∥u f ∥p)∆pu f = f (x) in D, −M(∥ug∥p)∆pug = g(x) in D.
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_is implies f = g, which is a contradiction.

Our next aim is to prove that Φ is Gâteaux diòerentiable. First we need a generic
estimate. So consider f , g ∈ Lq(D). _en

Φ( f ) + ∫
D
(g − f )u f dx = ∫

D
gu f dx −

1
p
M̂(∥u f ∥p)

≤ Φ(g)

= ∫
D
f ug dx −

1
p
M̂(∥ug∥p) + ∫

D
(g − f )ug dx

≤ Φ( f ) + ∫
D
(g − f )ug dx .

which implies

(2.13) ∫
D
(g − f )u f dx ≤ Φ(g) −Φ( f ) ≤ ∫

D
(g − f )ug dx .

Lemma 2.11 _e functional Φ∶ Lq(D) → R is Gâteaux diòerentiable. Moreover, the
Gâteaux derivative Φ′( f ) of Φ at any f ∈ Lq(D) can be identiûed with u f ∈ Lp(D).

Proof Consider f , h ∈ Lq(D) and t ∈ (0, 1). Set gt ∶= f + t(h − f ) and apply (2.13)
to derive

(2.14) ∫
D
(h − f )u f dx ≤

Φ(gt) −Φ( f )
t

≤ ∫
D
(h − f )ug t dx .

By passing to the limit t → 0+ in (2.14) and keeping in mind that ug t → u f in Lp(D)
(this is a standard result, see for example [11, Lemma 4.2]), we obtain Φ′( f )(h− f ) =
∫D(h − f )u f dx . _is shows that Φ is diòerentiable at f and its derivative can be
identiûed with u f .

3 Main Results

_e main results regarding the maximization problem (1.2) and the minimization
problem (1.4) are presented in this section.

3.1 Maximization Problem

We begin with the following.

_eorem 3.1 _e maximization problem (1.2) is solvable. Moreover, if f̂ ∈ R is a
solution, then

(3.1) f̂ = ψ̂(u f̂ ),

almost everywhere in D, for some a priori unknown increasing function ψ̂.
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Proof We ûrst relax the maximization problem (1.2) by extending the admissible set
R to R and consider

(3.2) sup
f ∈R

Φ( f ).

From Lemmas 2.5 and 2.8 we infer that (3.2) is solvable. Let us suppose f ∈ R is a
solution of (3.2). Set g = Φ′( f ), i.e., u f as in Lemma 2.11, and consider the linear

functional L( f ) = ∫D f g dx. From Lemma 2.5 (iii) we infer the existence of f̂ ∈ R

that maximizes L( f ) relative to f ∈ R. Since L is weakly continuous, we then deduce
L( f ) ≤ L( f̂ ). Next, by convexity of Φ we get

(3.3) Φ( f̂ ) ≥ Φ( f ) + L( f̂ − f ) ≥ Φ( f ) ≥ Φ( f̂ ),
where the second inequality in (3.3) is a consequence of L( f ) ≤ L( f̂ ), already ob-
served above. Hence, all inequalities in (3.3) are in fact equalities and we obtain
Φ( f̂ ) = Φ( f ). _is, in turn, implies that f̂ solves (1.2) as desired.

Now we proceed to derive (3.1). To this end, we assume f̂ is any solution of (1.2).
By Lemma 2.10, Φ is strictly convex. Hence, for any f ∈ R ∖ { f̂ }

(3.4) Φ( f ) > Φ( f̂ ) + ∫
D
( f − f̂ )û dx ,

where û = u f̂ = Φ′( f̂ ). Since Φ( f̂ ) ≥ Φ( f ) for every f ∈ R, we ûnd from (3.4) that

∫D f û dx < ∫D f̂ û dx, for all f ∈ R ∖ { f̂ }. So we can apply item (iv) of Lemma 2.5
which guarantees the existence of an increasing function ψ̂ for which (3.1) holds. _is
completes the proof of the theorem.

In the introduction we referred to the optimality condition as “information”. Our
next result partly explains the choice of this terminology. Henceforth, by the support
S( f ) of a non-negative function f we mean the set of points where f is positive,2 i.e.,
S( f ) ∶= {x ∈ D ∶ f (x) > 0}.

Corollary 3.2 In addition to the hypotheses of _eorem 3.1, assume that the support
of f0 is an essentially proper subset of D, i.e., ∣ S( f0) ∣ < ∣D ∣. Also, suppose that f̂ is a
solution of the maximization problem (1.2), and û = u f̂ . _en û attains its largest values
on the support of f̂ , in the following sense:

(3.5) α ≡ ess inf
S( f̂ )

û ≥ ess sup
D∖S( f̂ )

û ≡ β.

Proof In order to derive a contradiction, let us assume that the assertion (3.5) is false.
So we can ûnd constants α1 and β1 such that α < α1 < β1 < β. From the deûnitions of
α and β we infer existence of two measurable sets A ⊆ S( f̂ ) and B ⊆ D ∖ S( f̂ ) such
that ∣A∣ ∣B∣ > 0 and

⎧⎪⎪⎨⎪⎪⎩

û ≤ α1 on A,
û ≥ β1 on B.

2Note that this is diòerent from the usual topological deûnition of the support of a function where
the closure of this set is taken.
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Without loss of generality we may assume ∣A∣ = ∣B∣; otherwise we consider subsets of
them. From classical measure theory (e.g., [25]) we know that there exists a measure
preserving bijection η∶A→ B. Using η, we deûne a new element of R as follows:

f̃ (x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f̂ (η(x)) x ∈ A (note that here f̂ (η(x)) = 0),
f̂ (η−1(x)) x ∈ B,
f̂ (x) x ∉ A∪ B.

A close inspection of the proof of_eorem 3.1 conûrms that f̂ maximizes the linear
functional L( f ) = ∫D f û dx, relative to f ∈ R. Since f̃ ∈ R, we have L( f̃ ) ≤ L( f̂ ). On
the other hand,

∫
D
f̃ û dx − ∫

D
f̂ û dx = ∫

A
f̃ û dx + ∫

B
f̃ û dx − ∫

A
f̂ û dx − ∫

B
f̂ û dx

= ∫
B
f̃ û dx − ∫

A
f̂ û dx

= ∫
B
f̂ (η−1(x))û dx − ∫

A
f̂ û dx

= ∫
A
f̂ (û(η(x)) − û(x)) dx

≥ (β1 − α1)∫
A
f̂ dx

> 0.

_us, L( f̂ ) < L( f̃ ), which is a contradiction.

From_eorem3.1we see that if f̂ is a solution of (1.2), then û = u f̂ satisûes (1.3). Let
us brie�y look into (1.3) for the case when the rearrangement classR is generated by a
characteristic function f0 = χE0 . Here E0 is ameasurable subset ofD. If ∣E0∣ = β < ∣D∣,
then it is easy to see thatR = {χE ∣ E ⊆ D is measurable and ∣E∣ = β}. It is well known
that R = { f ∶ 0 ≤ f ≤ 1, ∫D f dx = β}. Let us use the notation ϕ(E) = Φ(χE).
Identifying χE with E, the maximization problem in this new setting becomes

(3.6) sup
∣E∣=β

ϕ(E).

_e maximization problem (3.6) can be thought of as a shape optimization problem,
where each E indicates a shape.
As a consequence of _eorem 3.1, we know that there exists Ê ⊆ D which solves

the maximization problem (3.6). Moreover, from (3.1), since ψ̂ is increasing, we infer
the existence of a constant δ (which is necessarily positive) such that Ê = {û ≥ δ}
or Ê = {û > δ}, modulo a set of measure zero. Note that as û ∈ W2,1

loc (D), the set
{û = δ} ∩ Ê has measure zero. _us, from (1.1) we obtain

(3.7)
⎧⎪⎪⎨⎪⎪⎩

−M(∥û∥p)∆pû = χ{û>δ} in D,
û = 0 on ∂D.

By setting v = δ − û, the diòerential equation in (3.7) becomes

(3.8) ∆pv =
1

M(∥v∥p) χ{v<0} , in D.
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_e diòerential equation (3.8) is an example of a one-phase obstacle problem of un-
stable type. _e boundary of the set {v < 0} is known as the free boundary since it is
not known a priori.
As far as we know, however, for the p-Laplace operator the free boundary of the

unstable obstacle problem has not been investigated when p ≠ 2. _erefore, we have
decided to include some numerical experiments in Section 4 to provide some ground
for futurework on this subject, both for us and the interested reader. For the case p = 2
and N = 2 the reader may refer to [26] where the singularities of the free boundary
are discussed, whilst for the higher dimensions one may refer to [2–4].

3.2 Minimization Problem

_emain result regarding the minimization problem (1.4) is stated below. In order to
avoid obscuring the main ideas with technicalities, we assume that the generator f0 is
positive throughout the domain D. However, we stress that the result of the following
theorem stands even if f0 is non-negative, but the proof would require more technical
steps.

_eorem 3.3 _e minimization problem (1.4) has a unique solution f̌ . Moreover,
setting ǔ = u f̌ , we will have

(3.9) f̌ = ψ̌(ǔ)

almost everywhere in D for some decreasing function ψ̌, unknown a priori.

Proof Let us ûrst address the uniqueness. Suppose f1 and f2 solve the minimization
problem (1.4). Since Φ is weakly continuous, it follows that f1 and f2 also solve the
problem inf f ∈R Φ( f ) ≡ m. As R is convex, we get ( f1 + f2)/2 ∈ R. _us, the strict
convexity of Φ implies

Φ( f1 + f2
2

) < 1
2
Φ( f1) +

1
2
Φ( f2) = m,

which is a contradiction.
Let us now address the existence. Again, we start by relaxing the problem

(3.10) inf
f ∈R

Φ( f ).

Since Φ is weakly continuous and R is weakly compact in Lq(D), problem (3.10) is
solvable. Let us denote the solution by f̌ ∈ R. _en f̌ satisiûes

(3.11) 0 ∈ Φ′( f̌ ) + ∂ξ
R
( f̌ ),

in which ξ
R
denotes the indicator function supported on R,

ξ
R
( f ) =

⎧⎪⎪⎨⎪⎪⎩

0 f ∈ R,
∞ f ∉ R,
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and ∂ξ
R
( f̌ ) denotes the subdiòerential of ξ

R
at f̌ . Relation (3.11) is called the opti-

mality condition.

(3.12) ∂ξ
R
( f̌ ) ∶= { g ∈ Lp(D) ∣ ∀ f ∈ Lq(D) ∶ ξ

R
( f ) ≥ ξ

R
( f̌ ) + ∫

D
( f − f̌ )g dx}

SinceΦ′( f̌ ) = ǔ = u f̌ , (3.11) implies the existence of g ∈ ∂ξ
R
( f̌ ) such that ǔ+g = 0.

Whence, we obtain

(3.13) ∀ f ∈ R ∶ ∫
D
(ǔ + g)( f − f̌ ) dx = 0.

On the other hand, from (3.12) we infer ∀ f ∈ R ∶ ∫D g( f − f̌ ) dx ≤ 0, which together
with (3.13) yields

∀ f ∈ R ∶ ∫
D
ǔ( f − f̌ ) dx ≥ 0

_us, f̌ minimizes the linear functional L( f ) = ∫D f ǔ dx over R.
Note that ǔ ∈W2,1

loc (D). So the diòerential equation

(3.14) −M(∥ǔ∥p)∆pǔ = f̌ in D,

holds almost everywhere in D. On the other hand, recalling the assumption that f0
is positive, we infer that f̌ is also positive (see [6, Lemma 2.14]). _erefore, (3.14) in
conjunction with [18, Lemma 7.7] implies that the graph of ǔ has no signiûcant �at
zones in D. _is makes it possible to apply Lemma 2.6 to deduce that there exists
a decreasing function ψ̌ such that ψ̌(ǔ) ∈ R is the unique minimizer of the linear
functional L( f ) relative to f ∈ R. Recalling that f̌ is a minimizer of the same linear
functional, we obtain f̌ = ψ̌(ǔ) almost everywhere in D. So the proof of the theorem
is complete.

As mentioned earlier, the assertion of _eorem 3.3, in particular, the optimality
condition (3.9), still holds even when the generator f0 is merely non-negative. As a
result, in case f0 = χE0 the Kirchhoò boundary value problem (1.1) in conjunction
with _eorem 3.3 would give rise to the following.

⎧⎪⎪⎨⎪⎪⎩

−M(∥ǔ∥p)∆pǔ = χ
{ǔ<δ̌} in D,

ǔ = 0 on ∂D.

Introducing v̌ = δ̌ − ǔ, this diòerential equation becomes

∆pv̌ =
1

M(∥v̌∥p) χ{v̌>0} .

_is equation is a one-phase obstacle problem of stable type. _ere is a vast literature
addressing qualitative properties of the free boundary ∂{v̌ > 0}, but we speciûcally
mention the book [24].

https://doi.org/10.4153/CJM-2015-040-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-040-9


Optimization Related to Some Nonlocal Problems of Kirchhoò Type 533

4 Numerical Experiments

Wehave developed a numerical algorithm to get a better view of the qualitative nature
of the solutions to some of the free boundary problems mentioned so far. As these
experiments are primarily meant to provide us with further insight into the problems
at hand, the minute details of the implementation will not be presented here. Rather,
an overview of the main ingredients of the experiments will be provided so that the
interested reader can replicate the results and experiment with other sample problems
of their own choice.

4.1 Setting the Parameters

First of all, we only consider problems over two-dimensional domains, and focus on
the casewhere the rearrangement classR( f0) is generated by a characteristic function,
i.e., ∃E0 ⊆ D ∶ f0 = χE0 . It should be clear that every function f ∈ R( f0) is also the
characteristic function of some E f ⊆ D with the same Lebesgue measure as E0, i.e.,
∣ E f ∣ = ∣ E0 ∣. By considering the rearrangement class of a characteristic function,
we are able to restrict our search to subsets of the domain D with a given Lebesgue
measure, rather than a function space.
Each of our optimization problems is speciûed by a few parameters.

(i) For the function M we consider M(t) = 1 +
√

t.
(ii) We set the p-Laplace parameter to 3, i.e., p = 3.
(iii) _e Lebesgue measure of E0 is determined by its ratio ρ ∈ (0, 1) to the area of

the reference domain D. We consider a few diòerent values. Speciûcally, we are
interested in cases where ρ is relatively small (for maximization) or relatively
large (for minimization).

(iv) Regarding the domain D, we will consider a few diòerent cases, including non-
convex domains.

In each experiment, we are essentially interested in the location of the set E f whose
characteristic function f is the optimizer of the problem. _is way we can provide
evidence of radial symmetry in case the domain D is a disc, and symmetry breaking
for a couple of non-convex domains.

4.2 Parametrization of the Domain E f

_edomain E f is the support of a characteristic function andmay be parametrized in
various ways. One option—sometimes referred to as the Lagrangian approach—is to
consider a parametrization of the boundary ΓE f via (say) some γ∶Sn−1 → ΓE f in which
Sn−1 is the n-dimensional unit sphere (see e.g., [17]). _is would provide smoother
looking ûgures, but unfortunately, it does not suit our approach.

_e main challenge we face is when the optimal domain is neither connected, nor
symmetric. _us, to make our algorithm work for diòerent domain shapes, we work
directly on the mesh grids that we make over the domain D. _is is sometimes re-
ferred to as the Eulerian approach. In our algorithm we triangulate the domain, but
the arguments could work just as well for any other type of mesh grid.
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4.3 Computational Complexity and Heuristics

Suppose that we have a mesh D = {D i ∣ 1 ≤ i ≤ P} (for some P ∈ N) over the domain
D ⊆ R2 such that D = ⋃D. In this discretization, let DE = {D i j ∣ 1 ≤ i j ≤ P} be
the best outer approximation of the set E ⊆ D, i.e., DE is a subgrid of D with the
smallest area for which E ⊆ ⋃DE . We deûne #E as the number of indices k such that
Dk ∈ DE . Assuming that the subregions D i (1 ≤ i ≤ P) have roughly the same area,
then #E ≈ ρP. In other words, the ratio of #E to the total number of subregions P in
the grid is close to the ratio ρ of the area of E to that of D, and the ûner the mesh, the
closer these values will be.

In these types of problems, one usually needs to reûne the mesh by bisecting along
all dimensions to obtain one more digit of accuracy. In other words, for a given pa-
rameter n ∈ N, one needs a mesh of size P ≈ Ω(2n) to provide a satisfactory result
to within n digits of accuracy. Remember that the search space S is essentially the set
of subsets of D of a given (ûxed) Lebesgue measure, which in the discretized version
would have the cardinality

(4.1) ∣S ∣ ≈ ( P
#E0

).

One can obtain an estimate of the growth of this value with respect to n using
Stirling’s approximation of the factorial function [23]:

(4.2) ∀k ∈ N ∶
√

2π kk+ 1
2 e−k ≤ k! ≤ e kk+ 1

2 e−k .

Assuming that #E0 ≈ ρP, we can use inequalities (4.2) and formula (4.1) together with
some routine calculations to obtain√

2π
e2

√
ρ(1 − ρ)

ζP
√

P
≤ ∣S ∣ ≤ e

2π
√

ρ(1 − ρ)
ζP
√

P

in which
ζ ∶= 1

ρ ρ ×
1

(1 − ρ)(1−ρ) .

Note that as ρ ∈ (0, 1) we have 1 < ζ ≤ 2.
_us, for a constant C1 which depends only on ρ, one gets

C1
ζP
√

P
≤ ∣S ∣,

which together with the fact that P ≈ Ω(2n) implies that for some constant C which
depends on ρ and the domain D, and for some ζ > 1 (also depending on ρ):

C
ζ2n

2 n
2
≤ ∣S ∣.

_is is an instance of an intractable computational problem which should not be
attacked by unguided search. Hence, we devise a numerical method which employs
a combination of tools and methods, as follows.

Gradient: Lemma 2.11 provides a gradient to guide us with generating an opti-
mizing sequence.

Stopping conditions: _ese are provided by the formulae (3.1) and (3.9).
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Escaping local optima and saddle points: Even though the gradient formula
helps us with generating an optimizing sequence, we do not know whether the
algorithm is converging toward the real global optimum or a local non-global
one. It is also possible for the algorithm to follow gradient and converge on
a saddle point. Unfortunately, we have not proven the non-existence of non-
global local optima or saddle points in the problems we have considered so we
have to assume that such points could exist.

Hence, we employ a combination of certain heuristic methods including
simulated annealing [21] and tabu search [19] to tackle the problem. _e al-
gorithm uses Simulated Annealing to escape local optima and saddle points by
adding some elements of randomness to the search, while Tabu Search is used
to increase eõciency by avoiding unnecessary repetition of operations that are
unlikely to improve the result.

4.4 Examples

Our experiments are primarily classiûed according to the shape of the domain D.3

4.4.1 Disc

For a disc shaped domain D of radius R, we get a maximizing domain E which seems
to be a disc of radius r concentric with D where r = R√ρ (Fig. 1).

Figure 1: Disc: maximizing domain E (le�) and the corresponding solution u (right). It seems
that we get radial symmetry in the optimizing domain, which is the brown colored concentric
disc on the le�.

For the minimization problem, the minimizing domain is in fact a strip around
the boundary (Fig. 2).

3All of the ûgures have been produced in MATLAB® .
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Figure 2: Disc: minimizing domain E (brown colored strip along the border on the le�) and
the corresponding solution u (right).

4.4.2 Ellipse

Let us squeeze the circle ”a bit” to obtain an ellipse. Again we see that the maximizing
domain E is located in the middle with a shape that indicates preservation of some
symmetries of the outer domain D (Fig. 3).

Figure 3: Ellipse: maximizing domain E (le�) and the corresponding solution u (right).

4.4.3 Dumbbell

We squeeze the circle even more to get a dumbbell shape. We consider the case in
which D is a dumbbell-shaped domain comprising two large discs connected with a
narrow channel. When the ratio ρ is taken to be relatively small, we can observe the
breaking of symmetry in the maximizing zone (Fig. 4). It is interesting to note that
for the dual problem, i.e., minimization with relatively large ρ, symmetry is preserved
(Fig. 5).
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Figure 4: Dumbbell domain: maximizing domain E (le�) and the corresponding solution u
(right). Notice the breaking of symmetry in the optimizing domain.

Figure 5: Dumbbell domain: minimizing domain E (le�) and the corresponding solution u
(right). Notice that symmetry is preserved in the optimizing domain.

4.4.4 Annulus

Finally, we consider an annulus {(x , y) ∈ R2 ∣ R2 ≤ x2 + y2 ≤ (R + h)2} in which R is
large and h is quite small. For maximization we take the area ratio ρ to be also quite
small. Again we can observe symmetry breaking in Fig. 6.

However, as in the case of the dumbbell shaped domain, for the dual minimization
problem with relatively large ρ, the symmetry is preserved (Fig. 7).

5 Concluding Comments

We end the paper with some comments and questions.
(1) A popular case of study in rearrangement optimization problems is when D is

a disk (ball). In this case one wonders if the optimal solutions are radial or not. In
the context of the present paper, if M is a constant function, then the functional Φ
reduces to

Φ( f ) = ( 1 − 1
p
) ∫

D
f u f dx ,
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Figure 6: Annulus: maximizing domain E (the red colored patches on the le�) and the corre-
sponding solution u (right). Notice the breaking of symmetry in the optimizing domain.

Figure 7: Annulus: minimizing domain E (le�) and the corresponding solutionu (right). Notice
that symmetry is preserved in the optimizing domain.

which is essentially the operator considered in [7] in which the authors prove that f ∗,
the decreasing Schwarz symmetrization of f0, is the unique solution to themaximiza-
tion problem (1.2) and f∗, the increasing Schwarz symmetrization of f0, is the unique
solution to the minimization problem (1.4). It is easy to see that for M(t) of type

M(t) =
⎧⎪⎪⎨⎪⎪⎩

c (0 < t ≤ t1),
m(t) (t1 ≤ t),

and ∥ f0∥q suõciently small, again f ∗ and f∗ will be the unique optimal solutions of
(1.2) and (1.4), respectively.
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(2) It is intriguing to see what happens if we relax the sign restriction on f0 and
allow it to change sign.

(3) Consider the eigenvalue problem

(5.1)
⎧⎪⎪⎨⎪⎪⎩

−M(∥u∥p)∆pu = λw(x)∣u∣p−2u in D,
u = 0 on ∂D,

where w(x) is a non-negative bounded weight function. Let λ1(w) be the principal
eigenvalue of (5.1). It is interesting to investigate the following problems.

sup
w∈R(w0)

λ1(w) and inf
w∈R(w0)

λ1(w),

where R(w0) is the rearrangement class generated by a prescribed weight function
w0.
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tique of the ûrst dra�.

References
[1] C. O. Alves, F. J. S. A. Corrêa, and T. F. Ma, Positive solutions for a quasilinear elliptic equation of

Kirchhoò type. Comput. Math. Appl. 49(2005), no. 1, 85–93.
http://dx.doi.org/10.1016/j.camwa.2005.01.008

[2] J. Andersson, H. Shahgholian, and G. S. Weiss, On the singularities of a free boundary through
Fourier expansion. Invent. Math. 187(2012, NO. 3, 535–587.
http://dx.doi.org/10.1007/s00222-011-0336-5

[3] ,_e singular set of higher dimensional unstable obstacle type problems. Atti Accad. Naz.
Lincei Rend. Lincei Mat. Appl. 24(2013), no. 1, 123–146. http://dx.doi.org/10.4171/RLM/648

[4] J. Andersson and G. S. Weiss, Cross-shaped and degenerate singularities in an unstable elliptic free
boundary problem. J. Diòerential Equations 228(2006), no. 2, 633–640.
http://dx.doi.org/10.1016/j.jde.2005.11.008

[5] G. R. Burton, Rearrangements of functions, maximization of convex functionals, and vortex rings.
Math. Ann. 276(1987), no. 2, 225–253. http://dx.doi.org/10.1007/BF01450739

[6] , Variational problems on classes of rearrangements and multiple conûgurations for
steady vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(1989), no. 4, 295–319.

[7] G. R. Burton and J. B. McLeod,Maximisation and minimisation on classes of rearrangements.
Proc. Roy. Soc. Edinburgh Sect. A 119(1991), no. 3-4, 287–300.
http://dx.doi.org/10.1017/S0308210500014840

[8] M. Chipot, V. Valente, and G. Vergara Caòarelli, Remarks on a nonlocal problem involving the
Dirichlet energy. Rend. Sem. Mat. Univ. Padova 110(2003), 199–220.

[9] C. Cosner, F. Cuccu, and G. Porru, Optimization of the ûrst eigenvalue of equations with indeûnite
weights. Adv. Nonlinear Stud. 13(2013), no. 1, 79–95.

[10] A. T. Cousin, C. L. Frota, N. A. Larkin, and L. A. Medeiros, On the abstract model of the
Kirchhoò-Carrier equation. Commun. Appl. Anal. 1(1997), no. 3,389–404.

[11] F. Cuccu, B. Emamizadeh, and G. Porru, Nonlinear elastic membranes involving the p-Laplacian
operator. J. Diòerential Equations 2006 No. 49, 10pp. (electronic).

[12] F. Cuccu, G. Porru, and S. Sakaguchi, Optimization problems on general classes of rearrangements.
Nonlinear Anal. 74(2011), no. 16, 5554–5565. http://dx.doi.org/10.1016/j.na.2011.05.039

[13] B. Emamizadeh and Y. Liu, Constrained and unconstrained rearrangement minimization problems
related to the p-Laplace operator. Israel J. Math. 206(2015), no. 1, 281–298.
http://dx.doi.org/10.1007/s11856-014-1141-9

[14] B. Emamizadeh and M. Marras, Rearrangement optimization problems with free boundary.
Numer. Funct. Anal. Optim. 35(2014), no. 4, 404–422.
http://dx.doi.org/10.1080/01630563.2014.884587

https://doi.org/10.4153/CJM-2015-040-9 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.camwa.2005.01.008
http://dx.doi.org/10.1007/s00222-011-0336-5
http://dx.doi.org/10.4171/RLM/648
http://dx.doi.org/10.1016/j.jde.2005.11.008
http://dx.doi.org/10.1007/BF01450739
http://dx.doi.org/10.1017/S0308210500014840
http://dx.doi.org/10.1016/j.na.2011.05.039
http://dx.doi.org/10.1007/s11856-014-1141-9
http://dx.doi.org/10.1080/01630563.2014.884587
https://doi.org/10.4153/CJM-2015-040-9


540 B. Emamizadeh, A. Farjudian, and M. Zivari-Rezapour

[15] B. Emamizadeh and M. Zivari-Rezapour, Rearrangements and minimization of the principal
eigenvalue of a nonlinear Steklov problem. Nonlinear Anal. 74(2011), no. 16. 5697–5704.
http://dx.doi.org/10.1016/j.na.2011.05.056

[16] , Optimization of the principal eigenvalue of the pseudo p-Laplacian operator with Robin
boundary conditions. Internat. J. Math. 23(2012), no. 12, 1250127, 17pp.
http://dx.doi.org/10.1142/S0129167X12501273

[17] K. Eppler and H. Harbrecht, Shape optimization for free boundary problems - analysis and
numerics. In: Günter Leugering, Sebastian Engell, Andreas Griewank, Michael Hinze, Rolf
Rannacher, Volker Schulz, Michael Ulbrich, and Stefan Ulbrich, eds. Constrained optimization
and optimal control for partial diòerential equations, volume 160 of Internat. Ser. Numer. Math.
Birkhäser/Springer Basel, 2012, pp. 277–288.

[18] D. Gilbarg and N. S. Trudinger, Elliptic partial diòerential equations of second order.
Springer-Verlag, Berlin, 2001.

[19] F. W. Glover and M. Laguna, Tabu search. In: Handbook of combinatorial optimization, vol. 3,
Kluwer, Boston, 1998, pp. 621–757

[20] G. Kirchhoò,Mechanik. Teubner, Leipzig, 1883.
[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing. Science

220(1983), no. 4598, 671–680. http://dx.doi.org/10.1126/science.220.4598.671
[22] M. Marras, G. Porru, and S. Vernier-Piro, Optimization problems for eigenvalues of p-Laplace

equations. J. Math. Anal. Appl. 398(2013), no. 2, 766–775.
http://dx.doi.org/10.1016/j.jmaa.2012.09.025

[23] R. B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes integrals. In: Encyclopedia of
mathematics and its applications, 85. Cambridge University Press, Cambridge, 2001.

[24] A. Petrosyan, H. Shahgholian, and N. Uraltseva, Regularity of free boundaries in obstacle-type
problems. Graduate Studies in Mathematics, 136. American Mathematical Society, Providence, RI,
2012.

[25] H. L. Royden, Real analysis. 3rd edition. Macmillan, New York, 1988.
[26] H. Shahgholian,_e singular set for the composite membrane problem. Comm. Math. Phys.

271(2007), no. 1, 93–101. http://dx.doi.org/10.1007/s00220-006-0160-8
[27] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Diòerential

Equations 51(1984), no. 1, 126–150. http://dx.doi.org/10.1016/0022-0396(84)90105-0

School of Mathematical Sciences, _e University of Nottingham-Ningbo, 199 Taikang East Road, Ningbo,
315100, China
e-mail: Behrouz.Emamizadeh@nottingham.edu.cn

Center for Research on Embedded Systems, Halmstad University, Sweden
e-mail: amin.farjudian@hh.se

Department of Mathematics, Faculty of Mathematical and Computer Sciences, Shahid Chamran Univer-
sity, Golestan Blvd., Ahvaz, Iran
e-mail: mzivari@scu.ac.ir

https://doi.org/10.4153/CJM-2015-040-9 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.na.2011.05.056
http://dx.doi.org/10.1142/S0129167X12501273
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/j.jmaa.2012.09.025
http://dx.doi.org/10.1007/s00220-006-0160-8
http://dx.doi.org/10.1016/0022-0396(84)90105-0
mailto:Behrouz.Emamizadeh@nottingham.edu.cn
mailto:amin.farjudian@hh.se
mailto:mzivari@scu.ac.ir
https://doi.org/10.4153/CJM-2015-040-9

