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Moduli spaces of orthogonal and symplectic bundles

over an algebraic curve

Olivier Serman

Abstract

We prove that, given a smooth projective curve C of genus g � 2, the forgetful morphism
MOr −→ MGLr (respectively MSp2r

−→ MGL2r ) from the moduli space of orthogonal
(respectively symplectic) bundles to the moduli space of all vector bundles over C is
an embedding. Our proof relies on an explicit description of a set of generators for the
polynomial invariants on the representation space of a quiver under the action of a product
of classical groups.

Introduction

Let C be a smooth, irreducible, projective algebraic curve of genus g � 2 over an algebraically
closed field k of characteristic 0. If G is a reductive group over k, we denote by MG the moduli
space of semi-stable principal G-bundles on C.

We focus here on the case G = SOr, which amounts to considering the moduli space of semi-
stable orthogonal bundles of rank r with an orientation. It is a normal projective variety, composed of
two connected components distinguished by the second Stiefel–Whitney class. This space is related
to the moduli space MSLr of vector bundles of rank r and trivial determinant on C through the
forgetful morphism MSOr −→ MSLr which sends any SOr-bundle to its underlying vector bundle.
It is natural to ask whether this map is a closed embedding. In fact, when r is even, it even fails to
be injective, and it is therefore more convenient to ask the same question about MOr −→ MGLr .

In the same way we consider the forgetful morphism MSp2r
−→ MSL2r defined on the moduli

space of symplectic bundles of rank 2r on C.
Our main theorem may be stated as follows.

Theorem (Main theorem).
(i) The forgetful morphism MOr −→ MGLr is an embedding.

(ii) When r is odd, MSOr −→ MSLr is again an embedding; while, when r is even, it is a
2-sheeted cover onto its image.

(iii) The forgetful morphism MSp2r
−→ MSL2r is also an embedding.

We give the full proof for the orthogonal case, and sketch the obvious modifications required by
the symplectic one.

We consider in the first section the injectivity of MSOr −→ MSLr : this comes down to an
easy comparison of the equivalence relations between SOr-bundles and vector bundles which define
the closed points of the corresponding moduli spaces. We then check that the tangent maps of
MOr −→ MGLr are injective. This differential point of view is much more involved: it relies on
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Luna’s étale slice theorem, which naturally leads to the consideration of representations of quivers.
To carry our discussion to its end we need an auxiliary result relative to the invariant theory of these
representations for the action of a product of classical groups: this is the aim of the second section
(note that a characteristic-free proof of this result can be found in [Lop06]). In the third
section we show first how this computation results in our main theorem. We then give a few com-
plements about the local structure of the moduli space MOr , in the same way as Laszlo did with
MGLr (see [Las96]).

1. On the injectivity of MSOr −→ MSLr

In this section we study the injectivity of the forgetful map MSOr −→ MSLr , which is already
known to be finite (e.g. by [BS02, Theorem 8.5]).

1.1 The closed points of MG are in a one-to-one correspondence with the set of equivalence classes
of semi-stable G-bundles (cf. [Ram96]). When G = SLr, one easily recovers from this notion
Seshadri’s definition of S-equivalence for vector bundles. In the orthogonal case we just need
to recall the following two facts (see [Ram96, Corollary 3.15.1]): any closed point corresponds
to a unitary SOr-bundle P , well defined up to isomorphism; and the underlying vector bundle
P (SLr) = P ×SOr SLr is a unitary vector bundle, i.e. a polystable vector bundle.

1.2 Two unitary SOr-bundles P and P ′ are sent to the same point of MSLr if and only if they
are both obtained from reduction of structure group to SOr of the same polystable vector bundle
E. Such a reduction amounts to a section of E/SOr → C, and two of them give isomorphic SOr-
bundles if and only if they are conjugated by the action of AutSLr(E) on Γ(C,E/SOr). Elements of
Γ(C,E/SOr) correspond to isomorphisms ι : E

∼−→ E∗ such that ι∗ = ι and det ι is the square of the
trivialization of det E inherited from the SLr-torsor structure. The action of AutSLr(E) is simply

(f, ι) ∈ AutSLr(E) × Γ(C,E/SOr) �→ f∗ιf.

Since E is polystable, AutGLr(E) acts transitively on the set Γ(C,E/Or) of all symmetric
isomorphisms from E onto E∗: indeed, the Jordan–Hölder filtration allows us to split E as

E =
n1⊕
i=1

(F (1)
i ⊗ V

(1)
i ) ⊕

n2⊕
j=1

(F (2)
j ⊗ V

(2)
j ) ⊕

n3⊕
k=1

((F (3)
k ⊕ F

(3)
k

∗) ⊗ V
(3)
k ), (1.2.1)

for some finite-dimensional vector spaces V
(l)
i and some mutually non-isomorphic orthogonal

(respectively symplectic, respectively non-isomorphic to their dual) stable vector bundles, F
(1)
i

(respectively F
(2)
j , respectively F

(3)
k ) on C. A symmetric isomorphism E → E∗ is thus equivalent to

the data of some orthogonal (respectively symplectic, respectively non-degenerate) forms on each
V

(1)
i (respectively V

(2)
j , respectively V

(3)
k ). The action of

AutGLr(E) =
n1∏
i=1

GL(V (1)
i ) ×

n2∏
j=1

GL(V (2)
j ) ×

n3∏
k=1

(GL(V (3)
k ) × GL(V (3)

k ))

on the set of these collections is obviously transitive.

Remark 1.3. (i) The preceding discussion gives a precise description of unitary Or-bundles, which
will be used later: these are orthogonal bundles P whose underlying vector bundle E can be decom-
posed as in (1.2.1), (V (1)

i )i being some quadratic spaces, (V (2)
j )j some symplectic spaces, and (V (3)

k )k
some vector spaces carrying a non-degenerate bilinear form (note that the bundles F

(3)
k ⊕F

(3)
k

∗ have
been tacitly endowed with the hyperbolic form).
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Orthogonal and symplectic bundles on curves

The subgroup AutOr(P ) ⊂ AutGLr(E) of all orthogonal isomorphisms of the bundle P is then
easily described: it is isomorphic to

n1∏
i=1

O(V (1)
i ) ×

n2∏
j=1

Sp(V (2)
j ) ×

n3∏
k=1

GL(V (3)
k ),

where GL(V (3)
k ) is identified with its image in GL(V (3)

k )×GL(V (3)
k ) by the morphism g �→ (g, tg−1).

(ii) Coming back to Ramanathan’s algebraic characterization of the representative of the equiv-
alence class of a semi-stable SOr-bundle P (which is obtained from a suitable reduction of the
structure group of P to a parabolic subgroup of SOr, see [Ram96, Proposition 3.12]), we note that
the unitary bundle corresponding to the class of P is defined as the oriented orthogonal graded
object grP associated to any filtration of the underlying vector bundle E = P (SLr),

0 = E0 ⊂ E1 ⊂ · · · ⊂ El ⊂ E⊥
l ⊂ · · · ⊂ E⊥

1 ⊂ E,

where the Ei are isotropic subbundles such that Ei/Ei−1 is a stable vector bundle (of degree 0)
and E⊥

l /El a stable (oriented) orthogonal bundle. By [Ram81, Proposition 4.5] the latter splits
as a direct orthogonal sum of mutually non-isomorphic stable bundles: this exactly means that
(grP )(SLr) is the unique polystable bundle S-equivalent to E, which gives another proof of the fact
that, if P is a unitary SOr-bundle, the vector bundle P (SLr) is polystable.

Note that this description of closed points of MSOr has already been given, for example
in [Bho84].

1.4 We deduce from Paragraph 1.2 that any two elements of Γ(C,E/SOr) must be conjugate under
the action of AutGLr(E), by an automorphism whose determinant equals ±1. When r is odd, −idE is
an Or-isomorphism which exchanges the orientation, and the action of AutSLr(E) on Γ(C,E/SOr)
is still transitive. On the contrary, when r is even, this action fails to remain transitive. For example
let F be a vector bundle of rank r/2, non-isomorphic to its dual, and consider the two orthogonal
bundles F ⊕ F ∗ and F ∗ ⊕ F , equipped with the standard hyperbolic pairing: these bundles cannot
be SOr-isomorphic (in fact, any orthogonal automorphism of F ⊕F ∗ must preserve the orientation).
We have proven so far the following proposition.

Proposition 1.5. When r is odd, the map MSOr(k) −→ MSLr(k) is injective; when r is even,
this is a finite map of degree 2.

Remark 1.6. The distinction between the odd and even cases relies on the fact that the semi-direct
product 1 → SOr → Or → Z/2Z → 0 may be direct or not. Indeed, [Gir71, Proposition III
3.3.3] gives a general way to compute the fibres of the map (of pointed sets) H1

ét(C,SOr) −→
H1

ét(C,Or) (which forgets the orientation). These are exactly the orbits under a natural action of
H0(C, Z/2Z) = Z/2Z on H1

ét(C,SOr), for which stabilizers are easy to describe: the stabilizer of
an SOr-bundle P is the image of the map AutOr(P ) → Z/2Z obtained by twisting the quotient
morphism Or → Z/2Z by P (with respect to the action of SOr by inner automorphisms) and taking
global sections.

When r is odd, the product 1 → SOr → Or → Z/2Z → 0 is direct, and the map H1
ét(C,SOr) −→

H1
ét(C,Or) is automatically injective. But, as soon as r is even, its section is no longer compatible

with the action of SOr by inner automorphisms; we have just chosen a bundle E = F ⊕ F ∗ such
that AutOr(E) = {id}, whence the lack of injectivity.

In view of Remark 1.3 (i) we can give a complete description of MSOr(k) −→ MOr(k): a
unitary orthogonal bundle P with trivial determinant has two antecedents in MSOr if and only
if every orthogonal bundle F

(1)
i appearing in the splitting (1.2.1) of its underlying vector bundle

P (GLr) has even rank.
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2. Invariant theory of representations of quivers

We refer the reader to [LBP90] for the notion of representations of a quiver Q of given dimension
α ∈ N

n. Let Q stand for a quiver consisting of n = n1 + n2 + 2n3 vertices

s1, . . . , sn1, t1, . . . , tn2 , u1, u
∗
1, . . . , un3 , u

∗
n3

,

and α ∈ N
n � N

n1 ×N
n2 × (N×N)n3 be an admissible dimension vector (that is, a vector such that

αtj is even and αuk
= αu∗

k
). We define Γα to be the group

Γα =
n1∏
i=1

Oαsi
×

n2∏
j=1

Spαtj
×

n3∏
k=1

GLαuk
,

which is actually thought of here as a subgroup of GL(α) =
∏n

i=1 GLαi via the inclusions P ∈
GLαuk

�→ (P, tP−1) ∈ GLαuk
×GLαu∗

k
for k = 1, . . . , n3. The natural action of GL(α) on the space

R(Q,α) of all representations of Q of dimension α restricts to an action of Γα on R(Q,α).

Le Bruyn and Procesi have shown in [LBP90] that the algebra k[R(Q,α)]GL(α) of polynomial
invariants is generated by traces along oriented cycles in the quiver Q. Following their proof, we
produce here a set of generators for the algebra of invariants under the action of Γα. The local study
of the map MOr −→ MGLr made later rests heavily on this description.

2.1 First fundamental theorem for ON × SpN ′

In this section, we first adapt the argument of [ABP73, Appendix 1] to prove the first fundamental
theorem of invariant theory for the group ON × SpN ′ , and then show, after [Pro76], how to infer
from it a set of generators for the algebra of ON × SpN ′-invariants of m matrices.

2.1.1 We will denote by Mn the space of n × n matrices. Let M be the matrix

M =
(

IN 0
0 JN ′

)
,

with

J =
(

0 −I
I 0

)
;

it represents a bilinear pairing, given as the standard orthogonal sum of a quadratic form of rank
N and a symplectic form of rank N ′. The key lemma of [ABP73] becomes (note that MN ×MN ′ is
identified with its image in MN+N ′) the following.

Lemma 2.1.2. Any polynomial function f : (MN × MN ′)(k) → k such that f(BA) = f(A) for all
B ∈ ON × SpN ′ may be written f : A �→ F (tAMA), with F a polynomial map on (MN × MN ′)(k).

In other words, f factors through the application

π : A ∈ (MN × MN ′)(k) �→ tAMA ∈ (MN × MN ′)(k).

Let ΨN,N ′ be its image, which is nothing other than the product of the space of symmetric N × N
matrices and the space of antisymmetric N ′ × N ′ matrices. The restriction of π to GLN × GLN ′

identifies the open subset Ψ◦
N,N ′ consisting of non-degenerate forms with the geometric quotient

(GLN × GLN ′)//(ON × SpN ′) (say by [MFK94, Proposition 0.2]). The lemma then follows from
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the commutative diagram below.

(MN × MN ′)//(ON × SpN ′) π
�� ΨN,N ′

(GLN × GLN ′)//(ON × SpN ′)

⋃

∼
π

�� Ψ◦
N,N ′

⋃

The restriction to (GLN × GLN ′)//(ON × SpN ′) of a map f defined on the good quotient (MN ×
MN ′)//(ON × SpN ′) must indeed be induced by a function of the form A ∈ GLN × GLN ′ �→
F (tAMA)/H(tAMA) with F and H two coprime polynomials (defined on ΨN,N ′). The equality
F (tAMA) = f(A)H(tAMA) finally ensures that H is invertible.

2.1.3 We are now in a position to establish, again after [ABP73], the first main theorem of
invariant theory for ON × SpN ′ . Let V be a vector space of dimension N + N ′ endowed with the
non-degenerate bilinear form 〈· , ·〉 given by the matrix M . So

V = V1

⊥⊕V2,

V1 being a quadratic space of dimension N and V2 a symplectic space of dimension N ′.

Theorem 2.1.4. Any linear ON × SpN ′-invariant morphism V ⊗2i → k is a linear combination of
products of elementary contractions v1 ⊗ · · · ⊗ v2i �−→ 〈vl, vl′〉.

Let ϕ : V ⊗2i → k be any linear ON × SpN ′-invariant map, and consider the following polynomial
function:

f : (A,ω) ∈ (EndV1 ⊕ EndV2) × V ⊗2i �−→ ϕ(Aω) ∈ k.

By Lemma 2.1.2, there exists a polynomial F on (S2V ∗
1 ⊕ Λ2V ∗

2 ) × V ⊗2i, linear in the second
variable, such that f(A,ω) = F (tAMA, ω). This polynomial certainly is invariant for the natural
action of GL(V1) × GL(V2) on (S2V ∗

1 ⊕ Λ2V ∗
2 ) × V ⊗2i: for any Γ ∈ GL(V1) × GL(V2), we have

F (tΓ−1 tAMAΓ−1,Γω) = F (tAMA, ω).
The assertion results, by polarization, from the description of linear forms on V ∗

1
⊗a1 ⊗ V ⊗b1

1 ⊗
V ∗

2
⊗a2 ⊗V ⊗b2

2 which are invariant for the action of GL(V1) × GL(V2): F is a homogeneous function
of degree i in its first variable, which arises from complete contractions on (S2V ∗

1 )⊗k ⊗ V ⊗2k
1 ⊗

(Λ2V ∗
2 )⊗i−k ⊗ V ⊗2i−2k

2 (via the projections (S2V ∗
1 ⊕ Λ2V ∗

2 )⊗i × V ⊗2i → (S2V ∗
1 )⊗k ⊗ V ⊗2k

1 ⊗
(Λ2V ∗

2 )⊗i−k ⊗ V ⊗2i−2k
2 ). Since ϕ(ω) = F (M,ω), we just have to evaluate F on M to conclude.

2.1.5 One easily deduces from the foregoing a family of generators for the algebra of polyno-
mial invariants under the diagonal action (by conjugation) of ON × SpN ′ on MN+N ′(k)m: accord-
ing to [Pro76, § 7], it is enough to work out the behaviour of the composition, the trace and the
adjunction (denoted by A �→ A∗ = M−1 tAM) via the identification EndV � V ⊗V induced by the
bilinear pairing. If v = v1 + v2 ∈ V = V1 ⊕V2 (cf. Paragraph 2.1.3), we have the following identities:

(i) (v ⊗ w) ◦ (u ⊗ t) = 〈v, t〉u ⊗ w;
(ii) tr(v ⊗ w) = 〈v,w〉;
(iii) ((v1 + v2) ⊗ w)∗ = w ⊗ (v1 − v2).

These relations allow us to translate the functions occuring in Theorem 2.1.4 in a way leading
to the following statement.

Theorem 2.1.6. Any ON × SpN ′-invariant function defined on MN+N ′(k)m is a polynomial in the

(A1, . . . , Am) �→ tr(Uj1M
2δ1Uj2M

2δ2 · · ·Ujl
M2δl),

with l ∈ N
∗, Ujl′ ∈ {Ajl′

, A∗
jl′
} and δl′ ∈ {0, 1}.
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The ring of ON × SpN ′-equivariant morphisms from MN+N ′(k)m to MN+N ′(k) is generated, as
an algebra over k[MN+N ′(k)m]ON×SpN′ , by the constant function M2 and the elements (A1, . . . , Am)
�→ Aj and (A1, . . . , Am) �→ A∗

j .

(The second assertion is implied by the first exactly as in [Pro76].)

2.2 Adaptation of the main result of [Pro87]
The main result of [Pro87] asserts that, if R is a k-algebra with trace satisfying the nth Cayley–
Hamilton identities, then there exists a natural map R → Mn(A) which induces an isomorphism
R → Mn(A)GLn . In this section we state a similar result dealing with algebras with a trace and
an antimorphism of order dividing 4 (from now on, we will write ‘of order 4’ instead of ‘of order
dividing 4’).

2.2.1 Recall from [Pro87] that a k-algebra with trace is an algebra R with a linear map tr : R →
R satisfying the identities tr(a)b = btr(a), tr(ab) = tr(ba) and tr(tr(a)b) = tr(a)tr(b) for all a, b ∈ R.
A k-algebra with trace and antimorphism of order 4 is an algebra with trace endowed with an
antimorphism τ : R → R of order 4. The algebra MN+N ′(B) of all matrices with coefficients in a
commutative ring B will be equipped with its natural trace together with the adjunction map (for
the considered bilinear form) ι : A ∈ MN+N ′(k) �→ M−1 tAM . As soon as N or N ′ is zero, ι is in
fact of order 2, and we could thus restrict ourselves to algebras with anti-involution.

If R is such an algebra, there exists a universal morphism j : R → MN+N ′(A) corresponding to
the functor of trace preserving representations of R,

XR,N+N ′ : B �−→ {f ∈ Homk(R,MN+N ′(B)) | f ◦ tr = tr ◦ f}
(cf. [DCPRR05, § 2.2]). The existence of this morphism easily leads to the representability of the
functor X̃R,N+N ′ which associates to any commutative algebra B the set of all trace preserving
morphisms of k-algebras from R to MN+N ′(B) commuting with the antimorphisms. This functor is
actually represented by a closed subscheme of XR,N+N ′ = Spec(A), still called X̃R,N+N ′ : the map
r ∈ R �→ ιjτ3(r) ∈ MN+N ′(A) comes from a morphism t : A → A of order 4, and the induced
map ̃ : R → MN+N ′(Ã) (where Ã is the quotient of A by the action of t) is universal among the
(trace preserving) morphisms R → MN+N ′(B) commuting with τ and ι.

The group ON × SpN ′ acts by conjugation on MN+N ′(B), inducing a right action on Ã, hence an
action of ON × SpN ′ on MN+N ′(Ã). The universal map j̃ maps R to the algebra MN+N ′(Ã)ON×SpN′

of ON × SpN ′-equivariant morphisms from X̃R,N+N ′ to MN+N ′(k) (cf. [Pro87, § 1.2]).

2.2.2 Our purpose is to adapt the main theorem of [Pro87] to this situation. To do this, we
have to introduce the free product with trace R

tr∗ 〈y〉 obtained from R by adding a variable y. The
next result follows from Theorem 2.1.6 as an immediate adaptation of (the first part of) Procesi’s
proof.

Proposition 2.2.3. If R is a k-algebra with trace and antimorphism of order 4, then the morphism

R
tr∗ 〈y〉 → MN+N ′(Ã)ON×SpN′ defined by the universal map j̃ and y �→ M2 is onto.

Remark 2.2.4. Procesi’s result actually gives an elegant condition on R for the universal map R →
Mn(A)GLn to be an isomorphism. In our situation, it seems difficult to find such a nice statement.
However, we can formulate the corresponding assertion as follows: the universal morphism j̃ : R →
MN+N ′(Ã)ON×SpN′ is an isomorphism as soon as R is a quotient of T I

N,N ′ , where T I
N,N ′ is the algebra

of ON × SpN ′-equivariant morphisms MN+N ′(k)I → MN+N ′(k) (which is therefore the maximal
quotient of the free algebra (on I ∪ {y}) with trace and antimorphism of order 4 satisfying the
considered property).
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2.3 Generators for k[R(Q,α)]Γα

2.3.1 Let us go back to the quiver Q and the action of Γα on its representation space R(Q,α).
Consider the quiver Q̃ obtained from Q by adding one new arrow a∗ : σ(v′) → σ(v) for any arrow
a : v → v′, where we called σ the involution of the set of vertices fixing the si and tj, and permuting
uk and u∗

k. Let R (respectively R̃) be the algebra obtained from the path algebra of the opposite
quiver Qop (respectively Q̃op) by adding traces. There is quite a natural way to endow R̃ with an
antimorphism τ of order 4 whose action on the idempotents (which are associated to the constant
paths) comes from the one of σ: τ fixes the esi and etj , permutes euk

and eu∗
k
, while it sends an

arrow a to εa∗, where ε equals −1 if a starts from si, uk or u∗
k and ends at tj, and 1 otherwise.

We need here to adapt the map ι defined in Paragraph 2.2.1: ι still associates to a map its
adjoint, but the bilinear pairing has to be replaced by the one represented by the matrix

Φ =




IN1 0 0
0 JN2 0

0 0
0 IN3

IN3 0


 ,

with N1 =
∑n1

i=1 αsi , N2 =
∑n2

j=1 αtj and N3 =
∑n3

k=1 αuk
. Put N = N1 +N2 +N3, and consider the

decomposition of kN into pairwise orthogonal subspaces kN1 ⊕ kN2 ⊕ k2N3 given by Φ. Note that
representations of R̃ of dimension α commuting with τ and ι adapted to the previous decomposition
correspond bijectively to representations of R of the same dimension adapted to this decomposition.
This allows us to identify R(Q,α) with the subspace of R(Q̃, α) consisting of all representations
which preserve the preceding antimorphisms, that is to a subspace of X̃R̃,N (k), where X̃·,N is the
functor introduced in Paragraph 2.2.1 (once the bilinear form has been replaced by Φ).

2.3.2 Consider now the algebra S̃n defined as the quotient of k[esi , etj , euk
, eu∗

k
] by the ideal

generated by the relations e2
v = ev, evev′ = 0 (for v 
= v′), and

∑
v ev = 1. This algebra is contained

in R̃. The restriction of τ to this algebra is exactly the anti-involution described in Paragraph 2.3.1,
and we have a fairly nice description of X̃

S̃n,N
:

X̃
S̃n,N

=
⋃
σ,ω

X̃σ,ω.

Here σ and ω range over pairs of admissible vectors in N
n such that

∑
σj = N1+2N3 and

∑
ωj = N2,

the component X̃σ,ω being isomorphic to

(ON1+2N3 × SpN2
)
/(∏

(Oσsi
× Spωsi

) ×
∏

(Oσtj
× Spωtj

) ×
∏

(GLσuk
× GLωuk

)
)

.

It induces a decomposition of X̃
R̃,N

as the union
⋃

σ,ω �−1X̃σ,ω, where we have called � : X̃
R̃,N

→
X̃

S̃n,N
the map induced by the inclusion S̃n ⊂ R̃. By applying the argument of [LBP90, § 3] to the

component corresponding to the dimension vectors σ and ω whose coordinates are σsi = αsi , σtj = 0,
σuk

= αuk
, ωtj = αtj and ωsi = ωuk

= 0, we get the following expected assertion.

Theorem 2.3.3. The algebra of polynomials on R(Q,α) invariant under the action of
∏

Oαsi
×∏

Spαtj
× ∏

GLαuk
is generated by the functions

(fa)a �−→ tr(fãp · · · fã1),

where ãi is an arrow in the associated quiver Q̃ equal to either ai or a∗i in such a way that (ã1, . . . , ãp)
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forms an oriented path in that quiver, and fãi means fai or its adjoint according to whether ãi is
ai or a∗i .

Remark 2.3.4. It is now easy to deal with the case where we let the whole linear group act (by
conjugation) above some of the unpaired vertices: let us call r1, . . . , rn4 these vertices, Q′ the quiver
obtained by adding n4 new vertices r∗l and α′ ∈ N

n1+n2+2(n3+n4) the admissible vector naturally
deduced from any given admissible dimension vector α ∈ N

n1+n2+2n3+n4. The group

Γα =
∏

Oαsi
×

∏
Spαtj

×
∏

GLαuk
×

∏
GLαrl

acts on R(Q,α) and R(Q′, α′) (the action of g ∈ GLαrl
on r∗l being f �→ tg−1f tg), and the Γα-

equivariant projection k[R(Q′, α′)] → k[R(Q,α)] allows us to compute the ring of Γα-invariants of
k[R(Q,α)].

3. Local study of the forgetful map

In order to simplify the local study of MSOr −→ MSLr it is convenient to investigate separately the
injective morphism MOr −→ MGLr and the natural map from MSOr to the irreducible component
MO

Or
of MOr consisting of all orthogonal bundles with trivial determinant. This distinction seems

to be quite valuable since the direct differential study of MSOr would involve invariant theory for
special orthogonal groups, which is far more difficult to deal with (see § 3.2). We show here that the
former is an embedding, while the latter is an isomorphism (respectively a 2-sheeted cover) when r
is odd (respectively even).

3.1 Differential behaviour of MOr −→ MGLr

3.1.1 Let us now briefly point out the classical way to analyse the local behaviour of MOr −→
MGLr . Recall first that this application arises as a quotient (by a general linear group Γ = GLM )
of an equivariant map between two well-known parameter schemes ROr −→ RGLr (cf. [BLS98,
Lemma 7.3]). Luna’s étale slice theorem and deformation theory then allow us to grasp the local
structure of these good quotients (cf. [KLS06, § 2.5]): at any polystable vector bundle E, MGLr is
étale locally isomorphic to an étale neighbourhood of the origin in the good quotient

Ext1(E,E)//AutGLr(E),

while MOr is, at any unitary orthogonal bundle P , étale locally isomorphic to an étale neighbour-
hood of the origin in

H1(C,Ad(P ))//AutOr(P ),

where Ad(P ) stands for the vector bundle P ×Or sor associated to the adjoint representation of
Or, which is nothing other than the vector bundle of germs of endomorphisms f of E such that
σf + f∗σ = 0, where σ : E → E∗ is the symmetric isomorphism given by the quadratic structure
on E; in other words, the adjoint vector bundle Ad(P ) is canonically isomorphic to Λ2E∗.

Then, if P ∈ MOr is a unitary orthogonal bundle with associated vector bundle E ∈ MGLr ,
the application MOr −→ MGLr coincides at P , through the preceding local isomorphisms, with
the natural map

H1(C,Ad(P ))//AutOr(P ) −→ Ext1(E,E)//AutGLr(E)

at the origin. In particular, the corresponding tangent maps are identified.

3.1.2 A more explicit description of the vector spaces H1(C,Ad(P )) and Ext1(E,E) is then
strongly needed in order to understand their quotients; this will allow us to show that the quotient
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H1(C,Ad(P ))//AutOr(P ) is in fact a closed subscheme of Ext1(E,E)//AutGLr(E), which implies
our main theorem.

According to Remark 1.3 (i), the orthogonal structure on the polystable vector bundle E asso-
ciated to any closed point P ∈ MOr gives rise to a splitting of E as a direct orthogonal sum of the
form

E =
n1⊕
i=1

E
(1)
i ⊕

n2⊕
j=1

E
(2)
j ⊕

n3⊕
k=1

E
(3)
k , (3.1.2.1)

where each direct summand E
(a)
l (respectively isomorphic to F

(1)
i ⊗ V

(1)
i , F

(2)
j ⊗ V

(2)
j or (F (3)

k ⊕
F

(3)
k

∗)⊗V
(3)
k ; see Equation (1.2.1)) is an orthogonal bundle via an induced symmetric isomorphism

denoted by σ
(a)
l : E

(a)
l → E

(a)
l

∗. The two isotropy groups AutGLr(E) and AutOr(P ) have been
identified in § 1.

The space Ext1(E,E) splits into a direct sum of the spaces Ext1(E(k)
i , E

(l)
j ), and each of these

summands is isomorphic to Ext1(F (k)
i , F

(l)
j ) ⊗ Hom(V (k)

i , V
(l)
j ) when neither k nor l equals 3, or to

a sum of summands of this form otherwise. The isotropy groups act on each of those spaces via the
natural actions of GL(V ) × GL(V ′) on Hom(V, V ′).

An element

ω =
∑

ω
(k,l)
i,j ∈ Ext1(E,E) �

⊕
Ext1(E(k)

i , E
(l)
j )

belongs to the space H1(C,Ad(P )) if and only if ω
(k,k)
i,i ∈ H1(C,Λ2E

(k)
i

∗) ⊂ Ext1(E(k)
i , E

(k)
i ) and,

for (i, k) 
= (j, l), σ
(l)
j ω

(k,l)
i,j + ω

(l,k)
j,i

∗σ(k)
i = 0. So, identifying Ext1(E(k)

i , E
(l)
j ) with its image in

Ext1(E(k)
i , E

(l)
j ) ⊕ Ext1(E(l)

j , E
(k)
i ) by the application ω

(k,l)
i,j �→ ω

(k.l)
i,j − σ

(k)
i

−1ω
(k,l)
i,j

∗σ(l)
j , it appears

that H1(C,Ad(P )) is the subspace of Ext1(E,E) isomorphic to the direct sum⊕
k

(⊕
i

H1(C,Λ2E
(k)
i

∗) ⊕
⊕
i<j

Ext1(E(k)
i , E

(k)
j )

)
⊕

⊕
k<l

⊕
i,j

Ext1(E(k)
i , E

(l)
j ). (3.1.2.2)

Each one of the diagonal summands is more precisely expressed as

H1(C,Λ2E
(1)
i

∗) = (H1(C,S2F
(1)
i

∗) ⊗ so(V (1)
i )) ⊕ (H1(C,Λ2F

(1)
i

∗) ⊗ S2V
(1)
i

∗), (3.1.2.3)

H1(C,Λ2E
(2)
j

∗) = (H1(C,Λ2F
(2)
j

∗) ⊗ sp(V (2)
j )) ⊕ (H1(C,S2F

(2)
j

∗) ⊗ Λ2V
(2)
j

∗), (3.1.2.4)

H1(C,Λ2E
(3)
k

∗) = (Ext1(F (3)
k , F

(3)
k ) ⊗ gl(V (3)

k )) ⊕ (H1(C,S2F
(3)
k

∗) ⊗ Λ2V
(3)
k

∗)

⊕ (H1(C,Λ2F
(3)
k

∗) ⊗ S2V
(3)
k

∗) ⊕ (H1(C,S2F
(3)
k ) ⊗ Λ2V

(3)
k

∗)

⊕ (H1(C,Λ2F
(3)
k ) ⊗ S2V

(3)
k

∗). (3.1.2.5)

Here we have identified the space Ext1(F (3)
k , F

(3)
k ) ⊗ gl(V (3)

k ) with its image in (Ext1(F (3)
k , F

(3)
k ) ⊕

Ext1(F (3)
k

∗, F (3)
k

∗)) ⊗ gl(V (3)
k ) by the map ω ⊗ ϕ �→ ω ⊗ ϕ − ω∗ ⊗ tϕ. Note that the dimensions of

all the extension spaces under consideration are trivially available.

3.1.3 This rather intricate situation suitably expresses itself in terms of representations of quiv-
ers. Indeed, let us consider the quiver Q whose set of vertices is

Q0 = {s(1)
1 , . . . , s(1)

n1
, s

(2)
1 , . . . , s(2)

n2
, s

(3)
1 , s

(3∗)
1 , . . . , s(3)

n3
, s(3∗)

n3
},

these vertices being connected by dim Ext1(F (k)
i , F

(l)
j ) arrows from s

(k)
i to s

(l)
j (where we have

set F
(3∗)
i = F

(3)
i

∗). Next define α ∈ N
n1+n2+2n3 according to the dimensions of the corresponding

vector spaces V
(a)
l . The AutGLr(E)-module Ext1(E,E) is then exactly the GL(α)-module R(Q, α)
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composed of all the representations of Q of dimension α, and the result of [LBP90] recalled earlier
provides us with a description of the algebra k[Ext1(E,E)]AutGLr (E).

Since the inclusion H1(C,Ad(P )) ↪→ Ext1(E,E) is an AutOr(P )-equivariant application, we
have an exact sequence

k[Ext1(E,E)]AutOr (P ) → k[H1(C,Ad(P ))]AutOr (P ) → 0.

This sequence and Theorem 2.3.3 immediately result in a set of generators for the invariant algebra
k[H1(C,Ad(P ))]AutOr (P ), namely the (fa)a �→ tr(fãp · · · fã1), where fãi stands for either fai or
its adjoint map. Now, according to the direct sum in (3.1.2.2), H1(C,Ad(P )) is a subspace of
R(Q, α) made up of representations having the following property. If fa : Vv → Vv′ denotes the map
associated to an arrow a : v → v′, then its adjoint map f∗

a : V ∗
v′ → V ∗

v is, up to the sign, the
map associated to one of the arrows going from v′ to v. So the algebra k[H1(C,Ad(P ))]AutOr (P ) is
generated by traces along oriented cycles in the quiver Q. This exactly means that the application
k[Ext1(E,E)]AutGLr (E) → k[H1(C,Ad(P ))]AutOr (P ) is onto.

In view of what has been discussed in Paragraph 3.1.1, this proves the injectivity of the tangent
map of MOr −→ MGLr at any P . Since, as we have already seen in Paragraph 1.2, the map
MOr(k) → MGLr(k) is also injective, this finishes the proof of the first part of our main theorem.

Remark 3.1.4. Part (iii) of the main theorem is proved in the very same way: the point is that any
closed point P of MSp2r

corresponds to a symplectic bundle of the form

E =
⊕

i

(F (1)
i ⊗ V

(1)
i ) ⊕

⊕
j

(F (2)
j ⊗ V

(2)
j ) ⊕

⊕
k

((F (3)
k ⊕ F

(3)∗
k ) ⊗ V

(3)
k ),

where (F (1)
i )i (respectively (F (2)

j )j, respectively (F (3)
k )k) is a family of mutually non-isomorphic

symplectic (respectively orthogonal, respectively not self-dual) bundles (which are stable as vector
bundles), and (V (1)

i )i (respectively (V (2)
j )j , respectively (V (3)

k )k) a family of quadratic (respectively
symplectic, respectively endowed with a non-degenerate bilinear pairing) vector spaces (F (3)

k ⊕ F
(3)∗
k

now being equipped with the standard symplectic form). Let us denote by σ : E → E∗ the resulting
symplectic form on E. The bundle Ad(P ) is now isomorphic to the bundle of germs of symmet-
ric endomorphisms of E (that is, endomorphisms verifying σf + f∗σ = 0), and both the space
H1(C,Ad(P )) and the isotropy group AutSp2r

(P ) can be described in a manner analogous to that
of Paragraph 3.1.2 (one only has to switch the factors Λ2F

(a)
l

∗ and S2F
(a)
l

∗, and of course to redefine
in the obvious way every map of the form Ext1(F,F ′) → Ext1(F,F ′)⊕Ext1(F ′∗, F ∗)). Theorem 2.3.3
then allows us to conclude again.

3.2 About MSOr −→ MOr

3.2.1 We have already recalled in Remark 1.6 how to compute the fibres of the finite morphism
from MSOr onto MO

Or
= det−1(OC). Luna’s theorem reduces once again the differential study of

this application to an invariant computation: the tangent map of MSOr −→ MOr at P ∈ MSOr

is indeed identified with that of H1(C,Ad(P ))//AutSOr(P ) → H1(C,Ad(P ))//AutOr(P ) (at the
origin).

This easily implies that, when r is odd, the map MSOr −→ MO
Or

is an isomorphism.

3.2.2 Let us consider now the even case. The morphism MSOr −→ MOr is then a 2-sheeted
cover, which is étale above the locus of points having two antecedents. A branched point corresponds
to an orthogonal polystable bundle E containing at least one subbundle isomorphic to F

(1)
i ⊗ V

(1)
i
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where F
(1)
i is an orthogonal bundle of odd rank: we then have to understand the inclusion

k[H1(C,Ad(P ))]AutOr (P ) ↪→ k[H1(C,Ad(P ))]AutSOr (P ).

It is easy to produce a primitive element for the generic extension. First note that the vector space W

obtained as the direct sum of the vector spaces V
(1)
i corresponding to the orthogonal bundles F

(1)
i of

odd rank has even dimension, and has an orthogonal structure inherited from the ones of the spaces
V

(1)
i . The space composed of all the antisymmetric endomorphisms of W may be identified with

a direct summand of H1(C,Ad(P )), and mapping any element ω ∈ H1(C,Ad(P )) to the pfaffian
of the endomorphism of W induced by ω defines a function belonging to k[H1(C,Ad(P ))]AutSOr (P )

which is not AutOr(P )-invariant; this function certainly generates the generic extension.
It is more difficult to give a convenient description of this algebra: in the (simplest) case where P

is isomorphic to O⊗V , with V a quadratic vector space of even dimension r, we have to understand
the action of AutSOr(P ) � SOr on H1(C,Ad(P )) � H1(C,O) ⊗ so(V ). This can be solved again
thanks to Procesi’s trick (cf. Paragraph 2.1.5): the computation has been carried out in [ATZ95],
and provides a set of generators for the k[H1(C,Ad(P ))]AutOr (P )-algebra k[H1(C,Ad(P ))]AutSOr (P )

in terms of polarized pfaffians.
Let us finally mention that in the general case we can easily infer from the main result of [Lop06]

a family of generators for k[H1(C,Ad(P ))]AutSOr (P ), which are also obtained as polarized
pfaffians.

3.3 About the multiplicity at stable points
3.3.1 The discussion in Paragraph 3.1.1 contains in fact a more precise statement, related to

the completed local rings of MOr and MGLr . Indeed, if P defines a point of MOr whose image in
MGLr corresponds to E, we have the following commutative diagram

ÔMGLr , E

�
��

�� ÔMOr , P

�
��

(k[Ext1(E,E)]AutGLr (E))̂ �� (k[H1(C,Ad(P ))]AutOr (P ))̂

where the rings of the second row are the completions of the local rings (of the involved algebras
of invariants) at the origin. This description of the completed local rings of MOr provides us with
additional information about the local structure of MOr , at least at the points where the situation
is not too bad (see [Las96] for the case of MGLr): the more we know about the second main theorem
of invariant theory for the isotropy group of P , the easier our calculations will be.

3.3.2 Let P be an orthogonal bundle whose underlying vector bundle is of the form E = E1⊕E2,
with E1 and E2 two non-isomorphic GL-stable orthogonal bundles. The description of the inclusion
H1(C,Ad(P )) ↪→ Ext1(E,E) given in (3.1.2.2) here reduces to the following.

H1(C,Ad(P )) = H1(C,Λ2E1
∗) ⊕ Ext1(E1, E2) ⊕ H1(C,Λ2E2

∗)
∩ ∩ ∩ ∩

Ext1(E,E) = Ext1(E1, E1) ⊕ Ext1(E1, E2) ⊕ Ext1(E2, E1) ⊕ Ext1(E2, E2)

The isotropy subgroup AutOr(P ), isomorphic to Z/2Z × Z/2Z, acts trivially on H1(C,Λ2Ei
∗),

and by multiplication by ±1 on Ext1(E1, E2) (while (α1, α2) ∈ AutGLr(E) � Gm × Gm acts on
Ext1(Ei, Ej) by αjα

−1
i ).

Let (X(i)
k )k (respectively (Yl)l) be a basis of H1(C,Λ2Ei

∗)∗ (respectively Ext1(E1, E2)∗ ⊂
H1(C,Ad(P ))∗). Then k[H1(C,Ad(P ))]AutOr (P ) is the subring of k[X(i)

k , Yl] generated by the X
(i)
k
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and the products YlYl′ ; if V denotes the affine cone over the Veronese variety P(Ext1(E1, E2)) ⊂
P(S2Ext1(E1, E2)), we get the following isomorphism:

Spec(k[H1(C,Ad(P ))]AutOr (P )) ∼−→ (H1(C,Λ2E1
∗) ⊕ H1(C,Λ2E2

∗)) × V.

Using the identification ÔMOr , P � (k[H1(C,Ad(P ))]AutOr (P ))̂ we have the following result.

Corollary 3.3.3. The tangent space to MOr at a point P given as the direct sum E1 ⊕E2 of two
non-isomorphic stable orthogonal bundles is isomorphic to

H1(C,Λ2E1
∗) ⊕ H1(C,Λ2E2

∗) ⊕ (S2Ext1(E1, E2)),

and the multiplicity of MOr at this point is equal to 2r1r2(g−1)−1, where ri is the rank of Ei.

Remark 3.3.4. (i) The general case of a stable point P ∈ MOr is more difficult: such a bundle
corresponds to a vector bundle which splits as the direct sum of n mutually non-isomorphic GLri-
stable orthogonal bundles. We can use Theorem 2.3.3 to try to get some additional information about
the local structure at P , for instance by computing the multiplicity at this point. One can easily
check that, if n = 3 (respectively 4), this multiplicity is equal to 2

∏
i<j 2rirj(g−1)−1 (respectively

8
∏

i<j 2rirj(g−1)−1).
(ii) It is not hard to deal with the case of an orthogonal bundle of the form F ⊕F ∗ with F 
� F ∗:

we see that MOr is, at such a point, étale locally isomorphic to Ext1(F,F ) ⊕ S, where S is the
affine cone over the Segre variety

P(H1(C,Λ2F ∗)) × P(H1(C,Λ2F )) ⊂ P(H1(C,Λ2F ∗) ⊗ H1(C,Λ2F )).
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