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RADIOCARBON CALIBRATION BY THE DATE DISTRIBUTION METHOD 

Paul Muzikar 
Department of Physics, Purdue University, West Lafayette IN 47907, USA 

ABSTRACT. A method is presented for calibrating radiocarbon ages based on statistical analysis of a large number of ran- 
domly distributed dates. One interesting feature of this method is that it is internal; that is, it allows one to extend a known cal- 
ibration curve further back in time by using only 14C dates, with no reference to any other dating technique. A serious 
difficulty in implementing this method lies in assembling a sample of dates with the correct statistical properties. 

INTRODUCTION 

Great success has been achieved over the past few decades in calibrating the radiocarbon time scale. 
Tree rings have provided a very accurate calibration going back about 12,000 yr, while the U-Th dat- 
ing of corals has been used to extend the calibration back to around 30,000 yr. For an up-to-date dis- 
cussion of this progress, the reader is referred to Stuiver et al. (1998), along with accompanying arti- 
cles in the same issue of Radiocarbon. The calibration effort has an important influence on many 
fields of research; thus, it is fitting to bring to bear on this effort as many independent lines of 
thought as possible. 

My purpose in this paper is to discuss a somewhat speculative method for calibrating the 14C time 
scale, referred to here as the Date Distribution (DD) Method. This method, as the discussion will 
make clear, offers only a limited resolution in time. However, it has the interesting feature of being 
an internal calibration method. That is, once a calibration curve is established, the DD method can 
extend it back in time by using only 14C dates, with no necessity of using another dating method. 

The word "speculative" was used in the preceding paragraph for a particular reason. A serious diffi- 
culty would have to be overcome in applying the DD method. As explained in the next section, a set 
of 14C dates satisfying certain criteria must be assembled in order for the DD method to work. At 
present, it is not clear exactly how this should be done, although it is by no means demonstrably 
impossible. To some extent, then, this paper constitutes a "thought experiment". 

In the next section I explain the DD Method, and try to highlight the various difficulties that could 
arise in implementing it. In the following section I present a numerical experiment illustrating how 
the method works. This experiment also allows us to discuss the level of precision that could be 
expected in any real effort to implement the method. 

METHOD 

To examine the DD method in some detail, we must first establish our notation. We will plot dates 
in the X-Y plane, with x denoting the true date (in cal BP) and y denoting the conventional 14C age 
(in BP). A calibration curve relates these two dates, and is given by 

y = q(x) (1) 

The goal of calibration research is to determine the function fi(x). 

Now, imagine that on a certain interval a S x < b, we have M dates distributed randomly on the X- 
axis; that is, each date is equally likely to have any value between a and b. Thus, the probability den- 
sity for a given true date is given by: 

215 

https://doi.org/10.1017/S003382220001955X Published online by Cambridge University Press

https://doi.org/10.1017/S003382220001955X


216 P Muzikar 

Pi (x) 
1 (2) 

b-a 

for x between a and b, and is zero otherwise. For each of these dates, we actually measure y, the con- 

ventional age. The values of y will lie between ya = q(a) and yb = q(b). We thus investigate the prob- 

ability density for y, which we will call p2(y). Since for any corresponding intervals dx and dy we 

must have 

pi (x)dx = P2 (Y)dY (3) 

t th h a en say we can t 

p 
dx p2 

Or, with our particular form for pl(x), 

'(x) = b-a ( )p2(Y) 

The idea of the DD method is based on Equation (5). Here is how it would work. From the distribu- 

tion of the actual, measured uncalibrated dates lying between ya and yb, one would construct an 

approximation to the function p2(Y). However, now comes a key point. To use Equation (5) to deter- 

mine the slope of the calibration curve, we need to know the value of (b-a); from the data we only 

know ya and yb. To overcome this problem, we let the recent portion of our measured conventional 

ages overlap with a known calibration curve. Thus, we determine (b-a) by fitting Equation (5) to a 

known portion of the calibration curve. 

Note that Equation (5) only gives us the slope of the calibration curve. So, to use it to extend the cal- 

ibration back in time, we need at least one point from an already existing calibration curve. Thus, in 

applying the DD method, we need to work from an already existing calibration curve for 2 reasons: 

because the value of (b-a) is not generated by the data 

because the method only gives us the first derivative of the calibration curve. 

To summarize, here are the basic steps involved in implementing the DD method: 

1. Collect a large number of 14C ages y on an interval ya to yb. These events should have a flat prob- 

ability distribution for their true ages. 

2. Use this data to construct an approximation to the distribution p2(y). 

3. Fit Equation (5) to a known portion of the calibration curve to determine the value of (b-a). 

4. Use Equation (5) to find the slope of the calibration curve, and to extend the curve back into an 

unknown region of time. 

Up to this point in this section we have glossed over the key difficulty (and perhaps the most inter- 

esting philosophical question) concerning the DD method. For the method to work, we must use a 

large sample of events whose true dates are distributed with even probability over some particular 

time interval. Clearly, much archaeological or geological insight is required in assembling such a 

sample. For example, if a sample had many dates clustered around a particular value, simply because 

that value was a heavily dated, interesting archaeological episode, it would be an unsuitable sample. 
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Perhaps an appropriate group of dates would be a set of 14C dates for various geological phenomena 
from all over the world. In any event, the compilation of such a sample is a question worthy of com- 
ment from knowledgeable researchers. 

One other small point can be made. We have presented our discussion assuming that the function 
fi(x) has a positive slope for all values of x. This is not necessarily true for realistic calibration 
curves. The DD method, however, will construct a quite coarse-grained version of the function, 
where many short-lived features are washed out. This coarse-grained function is much less likely to 
have a negative slope at any points. 

NUMERICAL EXPERIMENT 

To show how the DD method would be used in practice, let us now work through a numerical exper- 
iment. For the sake of illustration, we use a hypothetical calibration curve, a polynomial generated 
to have many of the features of the actual calibration curve presented by Stuiver et al. (1998). We 
consider the time interval, in real years, of 10,000-18,000 cal BP. For our hypothetical calibration 
curve, this corresponds to an interval in uncalibrated years of 9000-15,000 BP. The functional form 
of our curve is given by the following polynomial: 

fi(x) _ .1312307 x 10-6 x7 - .3256363 x 10-5x6 - .0001273x5 +.00581797x4 - .0773117x3 

+.303132x2 +1.92271x-6.7332 . 

(6) 

Here, x and y are measured in units of ka. Figure 1 shows the calibration curve, while Figure 2 shows 
a plot of its first derivative. We have selected a function that has reasonable deviations from linearity, 
in that its slope varies from its average value by about 20%. Larger deviations from linearity would 
be easier to see with our statistical method, while smaller deviations would be more difficult to see. 

We conduct our experiment in several steps. We first use a random number generator to produce 
2400 dates randomly distributed between 10,000 cal BP and 18,000 cal BP. We then use our hypo- 
thetical calibration curve to turn these into 2400 uncalibrated dates lying between 9000 BP and 
15,000 BP. Because the calibration curve is not linear, these uncalibrated dates are not evenly dis- 
tributed between the two limits. They will tend to be bunched into regions where the calibration 
curve has a lower slope. This, of course, is the basis of the DD method. 

The idea of the experiment is to take those 2400 uncalibrated dates as our data, and then try to recon- 
struct the calibration curve from them. There are many particular ways to use Equation (5) to do this 
reconstruction. Here, we will use a simple, straightforward method. We divide up the uncalibrated 
period into 6 equal, 1000-yr intervals and then we count how many of the events are in each interval; 
Table 1 shows these numbers. From these numbers we obtain our experimental determination of pi, 
the probability of an event being in 1 of the 6 intervals. For each of the 6 intervals, we estimate the 
average slope si for that interval as 

(7) 

where A is a constant. We thus are approximating the calibration curve as a series of line segments 
with slopes si. The constant A is determined by matching the average slope in the first interval 
(9000-10,000 BP) to the known value from the calibration curve. This determination of the value of 
A is equivalent to the determination of the value of (b-a), a procedure discussed in the previous sec- 
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Figure 1 
14C calibration curve given by Equa- 

tion (6). The X-axis is the true, calibrated date, 

while the Y-axis is the uncalibrated 14C date. 

Both dates are measured in ka. 

Figure 2 The first derivative, or slope, of the cal- 

ibration curve given by Equation (6), plotted as a 

function of the true age in ka. Note that the slope 

is dimensionless. 

tion. In Table 1 we also give the expected value of the average slope for each interval; this expected 

value is computed, using the calibration curve, from the oy and the Ox of each interval by the simple 

relation 

S.. oy (8) 
A 

https://doi.org/10.1017/S003382220001955X Published online by Cambridge University Press

https://doi.org/10.1017/S003382220001955X


Calibration by the Date Distribution Method 219 

Table 1 Results of the numerical experiment with 2400 events. The number of events in each 
time interval is given; this number is divided by 2400 to give pi. The experimentally deter- 
mined average slope for each interval is then given by si, whereas the expected average slope 
(computed from the calibration curve) is given in the last column. No value for si is predicted 
in the first time interval, since the constant A was determined by using the pi for this interval. 
The accuracy of the method can be judged by comparing the numbers in the last 2 columns. 

Interval 
Number of 

events. si 
9-10 ka 430 .179 

10-11 ka 432 .180 
11-12 ka 412 .172 
12-13 ka 376 .157 
13-14 ka 370 .154 
14-15 ka 380 .158 

Table 2 Results of the numerical experiment with 4800 events. Notation is the same as in 
Table 1, except that p; is computed by dividing the number of events by 4800. 

Interval 
Number of 

events s; 

9-10 ka 901 .188 
10-11 ka 860 .179 
11-12 ka 788 .164 
12-13 ka 765 .159 
13-14 ka 782 .163 
14-15 ka 704 .147 

Table 2 shows results for a larger sample of 4800 randomly generated events. The crucial check on 
the method is a comparison of the last 2 columns in the tables, which contain the experimentally 
estimated average slope and the actual average slope. We can see that in Table 1 the trend of an 
increasing slope is roughly captured by the data. The results in Table 2 are noticeably better. 

We can now discuss random fluctuations, and how they affect the accuracy of this method. If M is 
total number of points (in our case 2400 or 4800) and Ni is the average number of points expected in 
a given interval (in our case 1 of our 6 intervals), then it is easy to show that 

(9) M 

Here ANi is the variance in N. Thus, to a good approximation we can say that 

Thus, we can say that 

4Ni 

d 

2 

p1 (11) 

and 

pi - i 

(Ni) 2 
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(2)2 si As ~ _ . 

(N)2 
(12) 

The i2 factor in the last equation appears when we take into account, in an approximate manner, the 

additional variance due to the uncertainty in the value of the experimentally determined A. So, for 

the 2400-event sample, we estimate that the uncertainty in slope determination is roughly As, 

0.049, while for the 4800-event sample we estimate As, 0.035. So, for a given number of events in 

our sample, a certain resolution in slope determination is expected. 

CONCLUSION 

We have discussed the general principles behind the Date Distribution method for calibrating the 14C 

time scale, and worked through a numerical experiment to show how it could work in practice. It is 

clear that a crucial difficulty in applying the method lies in assembling a sample set of 14C dates with 

the correct statistical properties. If the method seems promising enough for further effort, we hope 

archaeological and geological insight can be brought to bear in assembling such a sample. 
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