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Abstract. In this note, we show that if we write �en!� = s(n)u(n)2, where s(n) is
square-free then

S(N) =
∏
n≤N

s(n)

has at least C log log N distinct prime factors for some absolute constant C > 0 and
sufficiently large N. A similar result is obtained for the total number of distinct primes
dividing the mth power-free part of s(n) as n ranges from 1 to N, where m ≥ 3 is a
positive integer. As an application of such results, we give an upper bound on the
number of n ≤ N such that �en!� is a square.

2000 Mathematics Subject Classification. 11B83, 11D41, 11N36.

1. Introduction. Write A0 = 1 and An = �en!� for n ≥ 1. Since

e =
∞∑

k=0

1
k!

,

it follows easily that

An =
n∑

k=0

n!
k!

for all n ≥ 0. (1)

Using (1), one deduces easily the recurrence An = nAn−1 + 1 for all n ≥ 1.
For a positive integer m we put ω(m) for the number of distinct prime factors of

m. In [1], it has been shown that if we put

Q(N) =
∏
n≤N

An,

then the inequality

ω(Q(N)) ≥ (1/2 + o(1))
N

log N
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holds as N → ∞. In this paper, we fix m ≥ 2 and write An = sm(n)um(n)m for some
integer sm(n) and um(n) where sm(n) is free of m powers (that is, pm does not divide sm(n)
for any prime number p). Then we study the number of distinct prime factors of

Sm(N) =
∏
n≤N

sm(n).

It has been shown in [1, Theorem 5] that ω(S2(N)) tends to infinity with N but the
argument used there is ineffective. While we certainly believe that ω(Sm(N)) � N holds
as N → ∞, we can only prove much weaker results. In fact, we derive out estimates on
ω(Sm(N)) from lower bounds on the cardinality of the set

Sm(N) = {sm(n) : n ≤ N}
and the trivial inequality

#Sm(N) ≤ mω(Sm(N)). (2)

Note that #Sm(N) is exactly the number of distinct fields �(A1/m
n ), n ≤ N.

THEOREM 1. (i) The inequality

#S2(N) ≥ (log N)1/3+o(1)

holds as N → ∞.
(ii) The inequality

#Sm(N) ≥ N1/(2m)+o(1)

holds uniformly for 3 ≤ m ≤ log N/ log log N as N → ∞.

Using (2), we deduce:

COROLLARY 1. (i) The inequality

ω(S2(N)) ≥
(

1
3 log 2

+ o(1)
)

log log N

holds as N → ∞.
(ii) The inequality

ω(Sm(N)) ≥
(

1
2m log m

+ o(1)
)

log N

holds uniformly for 3 ≤ m ≤ log N/ log log N as N → ∞.

As an application, we estimate the number of n ≤ N such that �en!� = m2 for some
positive integer m. We put

T (N) = {n ≤ N : �en!� = m2 for some positive integer m}.
THEOREM 2. The estimate

#T (N) ≤ N exp (−(1/6 log 2 + o(1)) log log N log log log log N)

holds as N → ∞.
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We conjecture that T is finite but have no idea how to prove such a fact.
Throughout the paper, the implied constants in the symbols ‘O’, ‘	’ and ‘�’

are absolute. We recall that the notations U = O(V ), U 	 V , and V � U are all
equivalent to the assertion that the inequality |U| ≤ cV holds for some constant c > 0.

2. Preliminary results. We need the following congruences involving (An)n≥0.

LEMMA 1. If n ≥ k ≥ 0 are integers then

An ≡ Ak (mod n − k).

Proof. Applying the definition it is immediate that

An =
n∑

j=0

n!
j!

=
n−k−1∑

j=0

n!
j!

+
n∑

j=n−k

n!
j!

= n(n − 1) · · · (n − k)An−k−1 +
k∑

i=0

n!
(n − i)!

. (3)

Reducing the relation (3) modulo n − k and using the fact that n!/(n − i)! ≡ k!/(k − i)!
(mod n − k) for all i = 1, . . . , k, we get that

An ≡
k∑

i=0

k!
(k − i)!

≡ Ak (mod n − k),

which completes the proof of this lemma. �

We also need the following multiplicative independence property of non-torsion
units of mutually distinct quadratic fields.

LEMMA 2. Let k ≥ 1 be a positive integer and d1, . . . , dk be square-free positive
integers such that for each i = 1, . . . , k, there exists a prime number pi|di such that pi �dj

for any j < i. Assume further that αi is a unit in the quadratic field �[
√

di] with αi > 1
for i = 1, . . . , k. If ai, i = 1, . . . , k, are integers such that

k∏
i=1

αai
i = 1, (4)

then ai = 0 for all i = 1, . . . , k.

Proof. By replacing simultaneously the α1, . . . , αk by their squares, we may assume
that each αi is a unit of norm 1 in the corresponding quadratic field �[

√
di] for all

i = 1, . . . , k.
We now proceed by induction on k, the case k = 1 being obvious. Since

pk |dk but pk �di for any i < k, it follows easily that the fields � = �[
√

dk] and
� = �[

√
d1, . . . ,

√
dk−1] have � ∩ � = �. It now follows that there exists a Galois

automorphism of � = �[
√

d1, . . . ,
√

dk], let us call it σ , such that σ (
√

dk) = −√
dk and

σ (
√

di) = √
di for all i = 1, . . . , k − 1. Conjugating the relation (4) by σ and using the
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fact that σ (αk) = α−1
k and σ (αi) = αi for i = 1, . . . , k − 1, we get that

α
a1
1 . . . α

ak−1

k−1 α
−ak
k = 1,

which together with the equation (4) leads to α
2ak
k = 1, therefore ak = 0 since αk > 1.

Hence, in the relation (4), we may assume that αk is not present. Now we may apply
the induction hypothesis. �

We also need the following results from Diophantine equations. The first one is
due to Bennett [2].

LEMMA 3. Let a, b and m be fixed positive integers with m ≥ 3. Then the Diophantine
equation

axm − bym = 1

has at most one solution in positive integers x and y.

The second one is a result from the theory of S-unit equations. Let � be any
algebraic number field of degree d. For π1, . . . , πs ∈ � we let

S = {πα1
1 . . . παs

s : α1, . . . , αs ∈ �}.
The algebraic numbers in S are usually called S-units. Let k ≥ 2 be fixed. Consider the
equation

k∑
i=1

xi = 0, (5)

where xi ∈ S for all i = 1, . . . , k. Such an equation is usually referred to as an S-unit
equation. A solution x = (x1, . . . , xk) is called non-degenerate if

∑
i∈I xi �= 0 for all

proper non-empty subsets I of {1, . . . , k}. The following result is Theorem 1.1 in [4].

LEMMA 4. There exists a computable constant C(k, s), depending only on k and s
and a set of non-degenerate solutions T = {x1, . . . , xt} ⊆ �t of the S-unit equation (5)
with t ≤ C(k, s), such that if x is any non-degenerate solution of the S-unit equation (5),
then there exists j ≤ t and ρ ∈ S such that x = ρxj .

In [4], it is shown that one can take

C(k, s) = exp
(
6(k + 1)3(k+1)(s + 1)

)
,

but we shall not need this.

3. Proof of Theorem 1.

3.1. Part (i). For simplicity, we write s(n), u(n) and S(N) instead of s2(n), u2(n)
and S2(N), respectively. We start by noting that A8 = 109601 = 127 · 863 and A9 =
986410 = 2 · 5 · 98641 are both square-free. For a positive integer t let (Xt, Yt)t≥1 be
the t-th solution of the Pell equation

X2 − 2Y 2 = 1,
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where we order them, as usually, in increasing order according to the size of X . Note
that (X1, Y1) = (3, 2). We now let A be the set of odd positive integers t such that
Xt ≡ 3 (mod (A8A9)2). Note that A is infinite because the sequence (Xt)t≥1 is periodic
modulo m for every fixed positive integer m and X1 = 3. Thus, if L denotes the period
of the sequence (Xt)t≥1 modulo (A8A9)2, then A contains all positive integers t ≡ 1
(mod 2L). We now consider the set

N = {
n = X2

t ≤ N : n > log log N and t ∈ A
}
.

Since

Xt = 1
2

((3 + 2
√

2)t + (3 − 2
√

2)t) < (3 + 2
√

2)t,

it follows that all t ≤ log(
√

N)/ log(3 + 2
√

2) in the arithmetical progression t ≡ 1
(mod 2L) lead to n = X2

t ∈ N . Hence, #N � log N.
If we put

(s(n), s(n − 1), s(n − 2)) = (d1, d2, d3)

and

(u(n), u(n − 1), u(n − 2)) = (x1, x2, x3),

then relation Ak = kAk−1 + 1 for k = n and n − 1 becomes

d1x2
1 − d2(ux2)2 = 1 (6)

and

d2x2
2 − (2d3)(vx3)2 = 1, (7)

respectively, for certain positive integers u and v with u2 − 2v2 = 1. We now make some
comments about d1, d2 and d3. Since

An = nAn−1 + 1 = n(n − 1)An−2 + n + 1 ≡ n + 1 (mod 2)

and n is odd (because n − 1 = 2v2 is even), we get that An is even and An−1 is odd.
Hence, d2, u and x2 are all odd. Now note that p = 98641 is a prime and that p|A9.

Lemma 1 with k = 9 (note that n > 9 if N is large) gives

An ≡ A9 (mod n − 9),

and since n − 9 = (Xt − 3)(Xt + 3) is a multiple of p2 and p|A9, we get that p‖An

(where as usual, for a prime �, � ‖ a means that � |a and �2 �a). Hence, p |d1. By the
same argument, taking the prime factor q = 127 of A8, we have, since

An−1 ≡ A8 (mod n − 9),

and since n − 9 = (Xt − 3)(Xt + 3) is also a multiple of A2
8, that q2 | (n − 9). Since A8

is square-free, we get that q ‖ An−1, therefore q | d2. Note that q � An because from
An = nAn−1 + 1 we read that An and An−1 are coprime. We also note that p does not
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divide An−2 because from the relation An = n(n − 1)An−2 + n + 1 we deduce that if
p | An−2, then p | (n + 1), which is false because p | (n − 9) and p > 10. Thus, we have

p | d1, p � d2d3, q | d2, q � d1d3. (8)

Now let (U1, V1) and (W1, Z1) be smallest positive integer solution of the equations

d1U2 − d2V2 = 1, (9)

and

d2W 2 − 2d3Z2 = 1, (10)

respectively.
We put

α = √
d1U + √

d2V and β = √
d2W +

√
2d3Z.

It is well-known by the theory of Pell equations (see, for example, Nagell’s paper [7]),
that all the positive integer solutions (U�, V�) of the equation (9) arise from

√
d1U� + √

d2V� = α� for some odd �,

and all the positive integer solutions (Wr, Zr) of the equation (10) arise from

√
d2Wr +

√
2d3Zr = βr for some odd r,

respectively. Hence, comparing the above relations with (6) and (7) respectively, we get
that

ux2 = α� − α−�

2
√

d2
, (11)

and

x2 = βr + β−r

2
√

d2
. (12)

Note also that since u = Xt, we get that

u = γ t + γ −t

2
, (13)

where γ = 3 + 2
√

2. Identifying x2 from (11) and (12) and using also the relation (13),
we get

(γ t + γ −t)(βr + β−r) = 2(α� − α−�). (14)

Since #N � log N but

#{(d1, d2, d3) : n ∈ N } ≤ (#S(N))3
,

we get that there exists one triple (d1, d2, d3) such that (14) has at least

M ≥ (#S(N))−3 #N � (#S(N))−3 log N (15)
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solutions (t, r, l), where α, β and γ are of course uniquely determined in terms of
(d1, d2, d3).

We now note that the equation (14) can be rewritten as

X1 + X2 + X3 + X4 + X5 + X6 = 0,

with

X1 = γ tβr, X2 = γ tβ−r, X3 = γ −tβr,

X4 = γ −tβ−r, X5 = −2α�, X6 = 2α−�,

which is an S-unit equation for which

S = {−1, 2, α, β, γ }
has s = 5 and k = 6.

We note that α2 ∈ �(
√

d1d2), β2 ∈ �(
√

d2d3) and γ 2 ∈ �(
√

2) are multiplicatively
independent by Lemma 2 and our choice of primes p and q, see (8). Therefore α, β and
γ are also multiplicatively independent.

Here, � = �[α, β, γ ] has degree d = 8. Further, note that t > 0 for large N because
u = n1/2 � (log log N)1/2. We now show that the above equation has only at most O(1)
solutions. Indeed, let J ⊆ {1, . . . , 6} be a subset of minimal cardinality J = #J such
that ∑

j∈J
Xj = 0

and this sub-equation is non-degenerate. Clearly, J > 1. If J = 2, then

� either ±2αa = βbγ c, where a ∈ {±l}, b ∈ {±r}, c ∈ {±t}, which is impossible
because α, β, γ are units but 2 is not;

� or α� = α−�, which is impossible because � > 0 and α > 1;
� or βb1γ c1 = βb2γ c2 , where b1, b2 ∈ {±r}, c1, c2 ∈ {±t}, which is impossible because

it leads to a non-trivial multiplicative relation on β2 and γ 2 which, as we have
mentioned, cannot exist by Lemma 2 and (8).

Thus, either J = 3, or J = 6. If J = 3, then, replacing J with its complement we
see that we can assume that either 5 or 6 belongs to J . Further, since J ≥ 3, there
exists j ≤ 4 in J . From now on, we assume that J contains at least one element among
the first four and at least one other among the last two. Lemma 4 now shows that
there exist at most MJ ≤ C(J, 5) solutions Xi = (Xj,i)j∈J , i = 1, . . . , MJ , such that if
X = (Xj)j∈J is any other solution, we then have that Xj = ρXj,i for all j ∈ J , some
ρ ∈ S and i ∈ {1, . . . , MJ }, which we write as

Xj,i

Xj
= ρ, j ∈ J .

Let j1 < j2 be the smallest and largest elements in J , respectively. We saw that j1 ≤ 4.
Then the above relation shows that

Xj1,i

Xj1
= Xj2,i

Xj2
.
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If we write Xj1,i = βbiγ ci , Xj1 = βbγ c, Xj2,i = 2εαai , Xj2 = 2εαa, where ε ∈ {±1}, we get
that

βbi−bγ ci−c = αai−a.

Since, as we have mentioned, α, β and γ are multiplicatively independent (by Lemma 2
and (8)), we get that ai = a, bi = b and ci = c, implying that ρ = 1. Thus, the
equation (14) has at most

M ≤
∑

J⊆{1,... ,6}
#J=3, 6

C(#J , 5) = O(1) (16)

solutions. Comparing (15) and (16), we obtain the bound of Part (i) of Theorem 1.

3.2. Part (ii). Part (ii) is much easier. For this, we take A to be the set of all
n = um ≤ N with some integer u.

The number of such n is

#A ≥ ⌊
N1/m⌋ ≥ 0.5N1/m,

uniformly in the given range for m when N is large.
Let now s = ω(Sm(N)). For each n ∈ A, we write (sm(n), sm(n − 1)) = (d1, d2).

Clearly, the pair (d1, d2) can take at most (#Sm(N))2 values. For each such fixed pair,
the equation An − nAn−1 = 1 (with n = um ∈ A) leads to the positive integer solution
(X, Y ) = (u(n), u(n − 1)) of the Diophantine equation d1Xm − d2Y m = 1. By Lemma 3,
this solution is unique. Hence,

(#Sm(N))2 ≥ #A,

which completes the proof of Part (ii) of Theorem 1.

4. Proof of Theorem 2. We follow the method of proof of Theorem 5 in [1],
except that instead of the Brun sieve we use the large sieve. We also use Theorem 1 in a
substantial way. We also continue to use s(n), u(n) and S(N) instead of s2(n), u2(n) and
S2(N), respectively.

Let us fix an arbitrary ε > 0 and put

M =
⌊

log log N
log log log N log log log log N

⌋
and K =

⌊
1 − ε

3 log 2
log log M

⌋
.

Thus,

2K ≤ #S(M)

provided that N is large enough.
Let P(M) be the set of all prime divisors of S(M) = s(1) · · · s(M). Each

factorization

s =
∏

p∈P(M)

pαp,s , s ∈ S(M),
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defines a distinct binary vectors (αp,s)p∈P(M). We now choose the sequence of integers
1 = i1 < · · · < iK inductively as follows.

� We put i1 = 1.
� Assume that i1 < · · · < ik are chosen and k < K . We define ik+1 as the smallest

integer for which s(ik+1) ∈ S(M) and such that the vector (αp,s(ik+1))p∈P(M) does
not belong to the linear space over the finite field �2 of two elements generated
by the vectors

(αp,s(i1))p∈P(M), . . . , (αp,s(ik))p∈P(M).

Clearly this is possible as long as 2k < 2K ≤ #S(M).

Note that the product

D =
K∏

j=1

s(ij)

satisfies the inequality

D ≤ AK
M ≤ ((M + 1)!)K = exp ((1/3 + o(1))M log M log log M) ≤ log N, (17)

provided that N is large enough.
For an integer a and an odd positive integer m we use (a | m) to denote the Jacobi

symbol of a with respect to m.
Let n ∈ T (N), and let j ∈ {1, . . . , K}. Then, by Lemma 1, we have

An ≡ Aij ≡ s(ij)u(ij)2 (mod n − ij),

and so we conclude that every prime factor p > log N > AM of n − ij must have the
property that (s(ij) | p) = 1. For each j = 1, . . . , K , we write

Rj = {p > log N : (s(bij ) | p) = −1},

and so we conclude that n − ij is free of primes p ∈ Rj. Thus,

T (N) ⊆
M⋂

j=1

{n ≤ N : n − ij is free of primes p ∈ Rj}. (18)

To estimate the cardinality of the set appearing in the right-hand side above, we use the
large sieve. Recall that the arithmetic form of the large sieve inequality (see, for example,
[8, Section I.4.5, Corollary 6.1]), states that for any finite sequence of complex numbers
{bn : X < n ≤ X + Y}, the bound

∣∣∣∣∣
∑

X<n≤X+Y

bn

∣∣∣∣∣
2

≤ Y − 1 + Q2

L

∑
X<n≤X+Y

|bn|2 (19)
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holds, where

Q ≥ 1, L =
∑
k≤Q

|µ(k)|
∏
p | k

w(p)
p − w(p)

,

µ(k) is the Möbius function and, for every prime p,

w(p) = #{h : 0 ≤ h < p, n ≡ h(mod p) =⇒ bn = 0}.

We put Q = N1/2, and define

bn =
{

1 if n − ij is free of primes p ∈ Rj for j = 1, . . . , K,

0 otherwise.

We also put w(p) = 0 for p ≤ log N and

w(p) = #{j ∈ {1, . . . , K} : (s(ij) | p) = −1},

for p > log N.
Note that if p > log N > M, then i1 < · · · < iK ≤ M are all distinct residues

modulo p. Then taking X = Q and Y = Q2 − Q in (19) and using (18), we see that

#T (N) ≤ Q +
∑

Q<n≤Q2

bn ≤ Q + (Q2 − Q) − 1 + Q2

L

	 Q + Q2

L
= N

L
+ N1/2.

(20)

It remains to find a lower bound for L. We put X = N1/(log log N)2
and note that

L = L1 + L2 − L3,

where

L1 =
∏
p≤X

(
1 + w(p)

p − w(p)

)
,

L2 =
∑

k≤N1/2

P(k)>X

|µ(k)|
∏
p | k

w(p)
p − w(p)

,

L3 =
∑

k>N1/2

P(k)≤X

|µ(k)|
∏
p | k

w(p)
p − w(p)

.

Since w(p) ≤ K 	 log log log log N we conclude that p − w(p) ≥ p/2 for all
p > log N whenever N is large, and, since also ω(k) > (log log N)2/2 whenever k > N1/2
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is square-free and P(k) ≤ X , we get that

L3 ≤
∑

P(k)≤X
ω(k)≥(log log N)2/2

µ(k)2 (2K)ω(k)

k

≤
∑

ω≥(log log N)2/2

∑
P(k)≤X
ω(k)=ω

µ(k)2 (2K)ω

k

≤
∑

ω≥(log log N)2/2

(2K)ω

ω!

⎛
⎝∑

p≤X

1
p

⎞
⎠

ω

≤
∑

ω≥(log log N)2/2

(2K)ω

ω!
(log log X + O(1))ω

≤
∑

ω≥(log log N)2/2

(
2eK(log log N + O(1))

ω

)ω

	
∑

ω≥(log log N)2/2

(
4eK(log log N + O(1))

(log log N)2

)ω

	 exp
(−(1/2 + o(1))(log log N)2 log log log N

)
.

In the above estimates, we used the known inequality ω! ≥ (ω/e)ω, as well as the fact
that the estimate ∑

p≤y

1
p

= log log y + O(1)

holds as y → ∞. Hence, L3 = o(1), L2 ≥ 0 and L1 ≥ 1, therefore

L ≥ (1 + o(1))L1 (21)

as N → ∞. Clearly,

L1 = exp

⎛
⎝∑

p≤X

log
(

1 + ω(p)
p − ω(p)

)⎞
⎠

= exp

⎛
⎝∑

p≤X

w(p)
p − w(p)

+ O

⎛
⎝∑

p≥X

(
w(p)

p − w(p)

)2
⎞
⎠

⎞
⎠

= exp

⎛
⎝∑

p≤X

w(p)
p

+ O

⎛
⎝ ∑

p≥log N

K2

p2

⎞
⎠

⎞
⎠

= exp

⎛
⎝∑

p≤X

w(p)
p

+ O
(

K2

log N

)⎞
⎠

= (1 + o(1)) exp

⎛
⎝∑

p≤X

w(p)
p

⎞
⎠ .
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Thus, recalling the estimates (20) and (21), we get

#T (N) ≤ (1 + o(1))N exp

⎛
⎝−

∑
p≤X

w(p)
p

⎞
⎠ + O

(
N1/2). (22)

We now remark that it has been shown in the proof of Theorem 5 in [1], that

∑
p<X

w(p)
p

= (1/2 + o(1))K log log N. (23)

More precisely, in [1] K has been fixed but it is trivial to check that the result holds
under the condition (17) which is implied by the above choice of K and M.

Now the bound (23), together with the estimate (22) and the fact that ε is arbitrarily
small, implies the conclusion of Theorem 2.

5. Comments and remarks. With minor modifications, the results obtained in
this paper apply to other sequences of positive integers satisfying similar recurrences,
like sequences (Un)n≥1 satisfying a recurrence of the shape Un = f (n)Un−1 + Bn, where
f (n) is a nonconstant polynomial with integer coefficients and Bn is a bounded periodic
sequence of integers. In particular, they apply to the sequence of general term An =
�n!/e�. Furthermore, all our arguments can be made completely explicit, but this is
beyond the purpose of the present paper. We remark that arithmetical properties of
sequences of integers satisfying linear recurrence relations with constant coefficients
have been the subject of extensive investigation (see [3] for the state of the art in this
subject). In particular, there are several known facts about prime divisors of members
of such sequences, or whether such sequences contain infinitely many perfect squares.
Much less is known about arithmetical properties of sequences of positive integers
satisfying linear recurrences with polynomial coefficients, like the one treated in this
paper, although some general results may be found in the recent papers [5] and [6].
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