
JFP 26, e22, 53 pages, 2016. c© Cambridge University Press 2016. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/

by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the

original work is properly cited.

doi:10.1017/S0956796816000253

1

Reasoning about multi-stage programs�

JUN INOUE

National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan

(e-mails: jun.inoue@aist.go.jp)

WALID TAHA

Halmstad University, Halmstad, Halland, Sweden

(e-mails: walid.taha@hh.se)

Abstract

We settle three basic questions that naturally arise when verifying code generators written

in multi-stage functional programming languages. First, does adding staging to a language

compromise any equalities that hold in the base language? Unfortunately it does, and more

care is needed to reason about terms with free variables. Second, staging annotations, as

the name “annotations” suggests, are often thought to be orthogonal to the behavior of a

program, but when is this formally guaranteed to be true? We give termination conditions

that characterize when this guarantee holds. Finally, do multi-stage languages satisfy useful,

standard extensional properties, for example, that functions agreeing on all arguments are

equivalent? We provide a sound and complete notion of applicative bisimulation, which

establishes such properties or, in principle, any valid program equivalence. These results yield

important insights into staging and allow us to prove the correctness of quite complicated

multi-stage programs.

1 Introduction

Multi-stage programming (MSP) allows programmers to write generic code without

sacrificing performance. Programmers can write code generators that are themselves

generic but generate specialized, efficient code (Brady & Hammond, 2006; Cohen

et al., 2006; Herrmann & Langhammer, 2006; Carette et al., 2009; Carette &

Kiselyov, 2011). However, few formal studies have considered verifying generators

written with MSP, and MSP research has predominantly focused on applications

that confirm performance benefits and on type systems (Taha & Nielsen, 2003; Kim

et al., 2006; Yuse & Igarashi, 2006; Tsukada & Igarashi, 2010; Westbrook et al.,

2010; Kameyama et al., 2011).

This gap in the literature is a significant shortcoming, as ensuring the correctness

of code generators can be challenging. Fixing errors in the generator often entails

� This work was supported by NSF CCF 0747431 award entitled “Multi-stage programming for object-
oriented languages”, NSF CSR/EHS 0720857 award entitled “Building physically safe embedded
systems”, NSF CPS 1136099 award entitled “A CPS Approach to Robot Design”, and Halmstad
University.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

2 J. Inoue and W. Taha

figuring out which pieces of code came from where in the generator and why.

This task can be time-consuming even with tool support, because programmers

must understand the unfamiliar body of code produced by the generator. This

problem is exacerbated when the generated code is heavily optimized and can

change drastically as the generator changes, or if many variants of the code must

be generated. Programmers would be better served by being able to minimize

inspection of the generated code, for then they would only have to deal with

familiar code. Moreover, a generator may produce problematic code only for

certain inputs while working fine on other inputs. Verifying the generator, as

opposed to individual generated instances, allows us to verify the entire family of

programs that the generator can produce, giving greater payoff for the verification

effort.

To address this shortcoming, we advocate in this paper an approach to verifying

code generators that minimizes the need to contemplate the generated code. The

idea is to find conditions under which the constructs related to code generation are

semantics-preserving and can be safely ignored. The power function gives a good,

concise example for demonstrating this approach, presented here in MetaOCaml

syntax.1

let rec power n x =

if n = 1 then x

else x * power (n-1) x

let rec genpow n x =

if n = 1 then x

else <~x * ~(genpow (n-1) x)>

let stpow n = ! <fun z -> ~(genpow n <z>)>

This code defines a function named power which maps x and n to xn. The power

function subsumes all functions of the form fun x -> x*x*...*x, but every time

it is called, it wastes time on recursive calls and conditional branches. Staging

annotations in genpow eliminate this overhead by resolving the branches and

unrolling the recursion. Brackets <e> delay an expression e. An escape ~e must

occur within brackets and causes e to be evaluated without delay, locally undoing

the effect of surrounding brackets. The e should return a value of the form <e′>,

and e′ replaces ~e. Run ! e compiles and runs the code generated by e. These

annotations in MetaOCaml are hygienic, i.e., preserve static scoping (Dybvig, 1992),

but are otherwise like LISP’s quasiquote, unquote, and eval (Muller, 1992). The

genpow function uses these constructs to generate, for any concrete n, a compiled

function that performs only multiplication.

1 We have taken the liberty to omit the periods that MetaOCaml demands around staging constructs.
Otherwise, code listings faithfully render the syntax accepted by MetaOCaml.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 3

For example, the evaluation of stpow 2 proceeds as follows:

stpow 2

�+ (1)

! <fun z -> ~(genpow 2 <z>)>

�+ (2)

! <fun z -> ~(<z * z>)>

�+ (3)

! <fun z -> z * z>

�+ (4)

fun z -> z * z

where�+ stands for one or more steps of evaluation (formally defined in Section 2).

Step (1) is just unfolding the definition of stpow. Step (2) evaluates the escaped

part (genpow 2 <z>) of the code being generated. Note that this step evaluates an

open term; escape is forcing evaluation to occur under the binder fun z, which

is a distinguishing feature of MSP. Step (3) splices the generated code into the

surrounding context to create a bigger code value. Finally, at step (4), ! compiles

and executes the generated code, yielding a closure. This closure, when called,

performs nothing but multiplication.

This example is typical of MSP usage, where a staged program stpow is meant

as a drop-in replacement for the unstaged program power. Given stpow, we can

reconstruct the unstaged program power by erasing staging annotations—we say that

power is the erasure of stpow. In light of the similarity of these programs, if we are to

verify stpow, we naturally expect stpow ≈ power to hold for some suitable program

equivalence (≈) and hope to get away with proving that power satisfies whatever

specifications it has, in lieu of stpow. Then, power can be analyzed straightforwardly

by conventional reasoning techniques designed for single-stage programs. But three

key concerns must be addressed before we can apply this strategy with confidence:

Conservativity. Do all reasoning principles valid in a single-stage language carry over

to its multi-stage extension?

Conditions for Sound Erasure. In the power example, staging seems to preserve

semantics, but clearly this is not always the case: If Ω is non-terminating, then

<Ω> �≈ Ω for any sensible (≈). When do we know that erasing annotations preserves

semantics?

Extensional Reasoning. How, in general, do we prove equivalences of the form e ≈ t?

It is known that hygienic, purely functional MSP satisfies intensional equalities

like β (Taha, 1999), but those equalities are too weak to prove such properties as

extensionality (i.e., functions agreeing on all inputs are equivalent). Extensional facts

are indispensable for reasoning about functions, like stpow and power.

This paper settles these questions for the untyped, purely functional case with

hygiene. We work without types to avoid committing to the particulars of any

specific type system, since there are multiple useful type systems for MSP (Taha

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

4 J. Inoue and W. Taha

& Nielsen, 2003; Tsukada & Igarashi, 2010; Westbrook et al., 2010; Kameyama

et al., 2015). It also ensures that our results apply to dynamically typed languages

(Dybvig, 1992), where hygienic code generation is just as useful as in statically typed

languages.

Hygiene, or the absence of inadvertent variable capture that it ensures, is a widely

accepted safety feature that ensures many of the nice theoretical properties of MSP,

which helps to reason about programs, and which we exploit in this study. This is an

important point of difference from Choi et al. (2011). They also advocate another

approach that eliminates code generation but in a semantics that has variable

capture and delegates capture avoidance to an explicit “gensym” construct. Their

approach has different trade-offs working in different settings, so our development

and theirs fill complementary roles.

We believe imperative hygienic MSP is not yet ready for an investigation like this.

Types are essential for having a sane operational semantics without scope extrusion

(Kameyama et al., 2011), but there is no decisive solution to this problem, and the

jury is still out on many of the trade-offs. The foundations for imperative hygienic

MSP have not matured to the level of the functional theory that we build upon

here.

Tagless final encodings (Carette et al., 2009), and the lightweight modular staging

framework (Rompf & Odersky, 2012) inspired by that technique, give a different

approach to metaprogramming than MetaOCaml-style MSP. They offer data types

that not only represent code, like bracketed expressions do in MetaOCaml, but can

also be interpreted by any semantics of the user’s choosing. The semantics may

evaluate the code, print the code, or perform a post-generation-pass optimization

and emit some intermediate representation. These frameworks are not limited to

staging (separating a program into multiple execution phases, or stages) but rather

support general-purpose metaprogramming (writing programs that manipulate other

programs in arbitrary ways). Reasoning in those frameworks depends on the

semantics given to the object code, so it is beyond the scope of this paper. However,

our approach may still be relevant when the machinery is used specifically for

staging.

1.1 Contributions

We extend previous work on the call-by-name (CBN) multi-stage λ calculus, λU

(Taha, 1999), to cover call-by-value (CBV) as well (Section 2). In this calculus, we

show the following results.

Unsoundness of Reasoning Under Substitutions. Unfortunately, the answer to the

conservativity question is “no”. Because λU can express open-term manipulation

(see genpow above), equivalences proved under closing substitutions are not always

valid without substitution, for such a proof implicitly assumes that only closed

terms are manipulated at runtime. We illustrate how this pathology occurs using

the surprising fact (λ .0) x �≈ 0, and explain what can be done about it (Section 3).

The rest of the paper will show that λU nonetheless conserves a wealth of useful

reasoning principles. Many familiar proof rules and techniques carry over from the

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 5

plain λ calculus so that a lot can be achieved, despite the fact that we can no longer

focus our attention exclusively to closed instances of terms.

Conditions for Sound Erasure. We show that reductions of a staged term are

simulated by equational rewrites of the term’s erasure. This gives simple termination

conditions that guarantee erasure to be semantics-preserving (Section 4). Considering

CBV in isolation turns out to be unsatisfactory, and borrowing CBN facts is

essential in establishing the termination conditions for CBV. Intuitively, this happens

because annotations change the evaluation strategy, and the CBN equational theory

subsumes reductions in all other strategies whereas the CBV theory does not.

Soundness of Extensional Properties. We give a sound and complete notion of

applicative bisimulation (Abramsky, 1990; Gordon, 1999) for λU . Bisimulation gives

a general extensional proof principle that, in particular, proves extensionality of λ

abstractions. It also justifies reasoning under substitutions in some cases, limiting

the impact of the non-conservativity result (Section 5).

To demonstrate the wide applicability of our methods, we present substantial case

studies proving the correctness of non-trivial generators (Section 6). In Section 6.1, we

verify the LCS algorithm, which is staged into a sophisticated code generator that

couples let-insertion with continuation-passing style and monadic memoization

using the techniques of Swadi et al. (2006). These techniques make an exact

description of the generated code hard to pin down, but our result on erasure makes

such details irrelevant. We also verify a generator for fold (Section 6.2), which

demonstrates that higher order generators are also amenable to our verification

methodology.

Throughout the paper, we emphasize the general insights about MSP that can be

gleaned from our results. In particular, we find that CBN is better behaved than

CBV, as metaprogrammers who have experience with MSP in both settings may

have already come to realize. The shortcomings of CBV stem largely from premature

evaluation of subexpressions that may diverge, and a large part of our effort consists

in building tools to reason in the face of that obstacle. Though we do stress the

applicability to verification, we strive to establish a deep, general understanding

of staging, and let the tools for verification fall out as natural byproducts. We

demonstrate those tools along the way, using the power function as a running

example.

This paper is a summary and an extension of the first author’s doctoral thesis

(Inoue, 2012), which was previously published at a conference (Inoue & Taha, 2012).

This paper incorporates materials from the thesis that were relegated to a technical

report in the conference version due to space limitations, as well as some new

results:

• A detailed discussion of why certain generalizations to the equational theory

are unsound (Section 2.3). Together with the issue of reasoning under substi-

tutions (Section 3), this discussion gives a thorough understanding of where

the boundary lies between equalities that hold in a multi-stage language and

those that don’t.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

6 J. Inoue and W. Taha

Fig. 1. Syntax of λU , parameterized in a set of constants Const.

• A significantly improved, nuanced definition of careful equalities (Section 4.5),

used for proofs in CBV. In the conference paper, this technique was not

developed enough to be a serious contender to the normalization technique

presented in Section 4.3, but we have succeeded in reformulating it to have a

clear advantage in analyzing higher order generators. This material is new.

• Proofs of soundness and completeness of applicative bisimulation

(Appendix A.2).

• The verification example of a higher order generator (Section 6.2). This material

is new.

This paper supersedes the conference version. It gives more proof details and

explanations than the conference version, but at a level that keeps the flow and

should be easy to follow. The thesis writes out all proofs in meticulous detail in an

appendix, so readers interested in working out, checking, or mechanizing the proofs

may find the thesis to be a valuable complement. Reading the thesis is not necessary

to understand this paper, however.

2 The λU calculus: Syntax, semantics, and equational theory

This section introduces λU , a simple but expressive calculus that models all possible

uses of brackets, escape, and run in MetaOCaml’s purely functional core, sans types.

The syntax and operational semantics of λU for both CBN and CBV are minor

extensions of previous work (Taha, 1999) to allow arbitrary constants. The CBN

equational theory is more or less as in Taha (1999), but the CBV equational theory

is new.

Notation. A set S may be marked as CBV (Sv) or CBN (Sn) if its definition varies

by evaluation strategy. The subscript is dropped in assertions and definitions if they

apply to both evaluation strategies or if clear from context. Syntactic equality (α

equivalence) is written (≡). The set of free variables in e is written FV(e).

2.1 Syntax and operational semantics

Figure 1 shows the syntax of λU . The set of terms is that of the plain λ calculus

extended with constants and the three staging primitives brackets, escape, and run. A

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 7

context C is an incomplete term containing exactly one hole • in place of a subterm.

The result of plugging, or replacing, the hole by e is written C[e], where binders in

the context C capture free variables in e. The exact level of a term is its nesting

depth of escapes, where a pair of brackets cancels one level of escape, provided the

brackets enclose the escape (and not the other way around). A program is a closed

term with exact level 0.

Levels are used to encode the following rules for nesting brackets and escapes:

(a) a term is delayed iff more brackets surround it than do escapes, and (b) in a

program every escape must occur in a delayed region. For example, in the following

terms, e1 and e2 are delayed while e3, e4, and e5 are not. The term containing e6 is

not a valid program (though it can be a subterm of a valid program), and it makes

no sense to ask whether e6 should be delayed.

〈e1〉 〈〈˜e2〉〉 〈˜e3〉 〈〈˜˜e4〉〉 〈˜〈˜e5〉〉 〈˜˜e6〉

A term like ˜˜e6 is not self-contained in the sense that it cannot appear just anywhere

in a program, but must appear inside at least two pairs of brackets. Otherwise, the

inner ˜ would fall within a non-delayed part of the program term and have no delay

to cancel. A term’s exact level is the minimum number of brackets it must appear

within in a valid program.

We say that a context C is a program context for e iff C[e] is a program. Because

lv e � lv t implies that any program context for t is a program context for e as well,

upper bounds for a term’s level are usually more useful than the exact level. Thus,

we often say “e has level �” or “e is a level-� term”, written e ∈ E�, to mean lv e � �.

We say “e has exact level �”, explicitly using the keyword “exact”, when we mean

lv e = �.

A level-0 value (i.e., a value in a non-delayed region) is a constant, an abstraction,

or a code with no undelayed region. A level-0 value of the form 〈e0〉 is called a

code value. At level � > 0 (i.e., inside � pairs of brackets), a value is any lower level

term, or in other words, a term that will have no undelayed region when plugged

into a context that supplies � pairs of brackets. Staging annotations use the same

nesting rules as LISP’s quasiquote and unquote (Dybvig, 1992), but we stress that

they preserve scoping: e.g., 〈λx.˜(λx.〈x〉)〉 ≡ 〈λx.˜(λy.〈y〉)〉 �≡ 〈λy.˜(λx.〈y〉)〉.
Definition 1 (Erasure). Define erasure ‖e‖ by the following equations:

‖x‖ def≡ x ‖c‖ def≡ c

‖e1 e2‖ def≡ ‖e1‖ ‖e2‖
‖λx.e‖ def≡ λx.‖e‖
‖〈e〉‖ def≡ ‖e‖

‖˜e‖ def≡ ‖e‖
‖! e‖ def≡ ‖e‖

We say that a term e is unstaged iff e ≡ ‖e‖, and staged otherwise. For example,

the power function given in the introduction is unstaged, as it is the erasure of

genpow, which is equal to the erasure of stpow modulo η reduction.

The small-step operational semantics is given in Figure 2, where square brackets

denote guards on grammatical production rules; e.g.,

ECtx�,m
n ::= •[m = �] | . . .

means • ∈ ECtx�,m
n if m = �. In this semantics, a small-step judgment e �

�
t is

marked with a level �, which intuitively denotes the number of brackets this step is

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

8 J. Inoue and W. Taha

Fig. 2. Operational semantics of λU , parameterized in an interpretation (partial) map

δ : Const× Const ⇀ {v ∈ V 0 : v ≡ ‖v‖ ∧ FV(v) = �}.

happening in. A term takes a small-step at level � iff it decomposes as E�,m[r], where

E�,m is an �, m-evaluation context and r is a level-m redex. If the redex r contracts

to s, then E�,m[r] �
�
E�,m[s]. The SS-Ctx rule explicitly requires s ∈ Em, but this is

a purely informative constraint that is always met when the other constraints are

satisfied. In general, e�
�
t implies � = lv e � lv t (whose proof we omit).

Redex contractions are: β reduction at level 0, δ reduction at level 0, run-bracket

elimination (SS-R) at level 0, and escape-bracket elimination at level 1 (SS-E). All

rules are common to both evaluation strategies, except that CBN’s β rule is SS-

β whereas CBV’s is SS-βv. The δ reductions are given by a partial map δ from

pairs of constants to be closed, unstaged level-0 values, which is undefined for

ill-formed pairs like (not, 5). We assume constant applications do not return staged

terms.

An �, m-evaluation context E�,m yields a level-� term when plugged with a level-m

term. The hole of an evaluation context points to the location of the unique redex

that must be contracted next. At level > 0, both evaluation strategies simply walk

over the syntax tree of the term to look for escapes, including ones that occur inside

the arguments of applications. At level 0, the definition is mostly standard. CBV

evaluation contexts can place the hole inside the argument of a level-0 application,

whereas CBN evaluation contexts can do so only if the operator is a constant. This

difference accounts for the fact that CBV application is always strict at level 0,

while CBN application is lazy if the operator is a λ but strict if the operator is a

constant.

We use the metavariables a, b ∈ Arg, ranging over the set of substitutable

arguments (i.e., e0 for CBN and v0 for CBV), to treat both strategies uniformly.

For example, the rules SS-β and SS-βv can be unified as

(λx.e0) a�
0

[a/x]e0
.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 9

This semantics is deterministic, and for any �, level-� values cannot take a small-step

at level �.

Notation. We write λUn � e�
�
t for a CBN small-step judgment and λUv � e�

�
t for

CBV. We use similar notation for (⇓), (⇑), and (≈) defined below. We may omit the

λUn � or λUv � if the evaluation strategy either does not matter or is clear from context.

For any relation R, let R+ be its transitive closure and R∗ its reflexive–transitive

closure.

Definition 2 (Termination and divergence). An e ∈ E� terminates to v ∈ V� at level

� iff e�
�

∗ v, written e ⇓� v. We write e ⇓� to mean ∃v. e ⇓� v. If no such v exists, then

e diverges (e ⇑�). Note that divergence includes stuckness.

Example 3. p ≡ (λy.〈40 + y〉) (1 + 1) is a program. Its value is determined by (�
0

),

which works much like in the plain λ calculus. In CBN, λUn � p �
0
〈40 + (1 + 1)〉.

The redex (1 + 1) is not selected for contraction because (λy.〈40 + y〉) • �∈ ECtx0,0
n .

By contrast, in CBV, we have (λy.〈40 + y〉) • ∈ ECtx0,0
v , so (1 + 1) is selected for

contraction: λUv � p�
0

(λy.〈40+y〉) 2�
0
〈40+2〉. Both 〈40+(1+1)〉 and 〈40+2〉 are

level-0 values, and no further small-steps are possible in either evaluation strategy.

Thus, λUn � p ⇓0 〈40 + (1 + 1)〉 and λUv � p ⇓0 〈40 + 2〉.
Example 4. Let p ≡ 〈λz.z (˜[(λx.x) 〈z〉])〉, where we used square brackets [] in lieu of

parentheses to improve readability. Let e be the subterm inside the square brackets.

In both CBN and CBV, p decomposes as E[e], where E ≡ 〈λz.z (˜•)〉 ∈ ECtx0,0, and

e is a level-0 redex. Note the hole of E is under a binder and the redex e is open,

though p is closed. The hole is also in argument position in the application z (˜•)
even for CBN. This application is delayed by brackets, so the CBN/CBV distinction

is irrelevant in the code generation phase, i.e., until the delay is canceled by !. Hence,

p�
0
〈λz.z (˜〈z〉)〉�

0
〈λz.z z〉.

Example 5. As an example of evaluation with nested staging constructs, consider

〈〈! ˜˜e〉〉, where e is some level-0 term that satisfies e �
0
〈〈x〉〉. Evaluation strategy

does not make a difference in this example. We have ˜˜e �
2

˜˜〈〈x〉〉 because

˜˜• ∈ ECtx2,0. Moreover, ˜〈〈x〉〉 �
1
〈x〉, so ˜˜〈〈x〉〉 �

2
˜〈x〉. However, ˜〈x〉 is not

a level-2 redex (although it is a level-1 E-redex). The program context 〈〈! •〉〉 is a

0, 2-evaluation context and not a 0, 1-evaluation context, so this ˜〈x〉 is not reduced.

Thus, 〈〈! ˜˜e〉〉 �
0

+ 〈〈! ˜〈x〉〉〉 ∈ V 0, noting that the contents of the outermost 〈•〉,
namely 〈! ˜〈x〉〉, is a level-0 term. Intuitively, the remaining ˜ (as well as !) is delayed

by the outermost brackets in 〈〈! ˜〈x〉〉〉.
As usual, this “untyped” formalism can be seen as dynamically typed. In this

view, ˜ and ! take code-type arguments, where code is a distinct type from functions

and base types. Thus, 〈λx.x〉 1, 〈˜0〉, and ! 5 are all stuck. Stuckness on variables

like x 5 does not arise in programs for conventional languages because programs

are closed, but in λU , evaluation contexts can pick redexes under binders, so this

type of stuckness does become a concern. We will revisit this issue in Section 3. The

contraction of open-term level-0 redexes is central to the expressive power of λU . It

is with this feature that we can evaluate terms like genpow 3 <x>, optimizing away

the body of the power function.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

10 J. Inoue and W. Taha

Remark 1. Binary operations on constants are modeled by including their partially

applied variants. To model, say, addition, we take Const ⊇ � ∪ {+} ∪ {+k : k ∈ �}
and set

δ(+, k) = +k

δ(+k, k
′) = (the sum of k and k′).

For example, using prefix notation, (+ 3 5)�
0

(+3 5)�
0

8. Conditionals are modeled

by taking Const ⊇ {(), true, false, if} and setting

δ(if, true) = λa.λb.a ()

δ(if, false) = λa.λb.b ().

Then, e.g., if true (λ .1) (λ .0) �
0

(λa.λb.a ()) (λ .1) (λ .0) �
0
∗ 1. Pattern-matches

on first-order data constructors like lists of integers can be modeled in a similar

manner. In the rest of the paper, we will use infix notation and write conditionals

as if e1, then e2 else e3 rather than if e1 (λ .e2) (λ .e3).

The operational semantics induces the usual notion of observational equivalence,

which relates terms that are interchangeable under all program contexts. In other

words, two expressions are observationally equivalent iff we can silently replace one

by the other in any given program without affecting its input/output behavior. This

is the sense in which we would like to prove that a staged program like stpow is

equivalent to its erasure power.

Definition 6 (Observational equivalence). Define e ≈ t iff for every C such that

C[e], C[t] ∈ Prog we have C[e] ⇓0⇐⇒ C[t] ⇓0 and, whenever one of them terminates

to a constant, the other also terminates to the same constant.

Remark. This definition of observational equivalence differs from that of the original

formulation by Taha (1999) in two respects:

• Taha’s definition was stratified, with (≈�) ⊆ E� × E� defined for each level �.

• Taha’s definition allowed open-term observation, i.e., each (≈�) was defined

just like in Definition 6 but used C[e], C[t] ∈ E0 in place of C[e], C[t] ∈ Prog.

Because E� ⊆ Em whenever � � m, the (≈�) at higher levels subsume those at lower

levels. The stratification is therefore not terribly useful, and we have dropped it to

simplify the notation. Open-term observation is dropped because implementations

like MetaOCaml typically reject source files with unbound variables, and closed-term

observation more accurately models that design. These changes do not constitute a

shift in semantics, however. The old and new definitions give the same equivalence,

in the sense that (≈) =
⋃

�(≈�). See Appendix A.1 for a proof.

2.2 Equational theory

The equational theory of λU is a proof system that, as we will soon show, derives

a subset of (≈). It has four inference rules: compatible extension (e = t =⇒
C[e] = C[t]), reflexivity, symmetry, and transitivity. The CBN axioms are λUn

def=

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 11

{β, EU, RU, δ}, while CBV axioms are λUv
def= {βv, EU, RU, δ}. These axioms are defined

below. If e = t can be proved from a set of axioms Φ, then we write Φ � e = t,

though we often omit the Φ � in definitions and assertions that apply uniformly

to both CBV and CBN, or if Φ is clear from context. Reduction is a term rewrite

induced by the axioms: Φ � e −→ t iff e = t is derivable from the axioms by

compatible extension alone.

Name Axiom Side Condition

β (λx.e0) t0 = [t0/x]e0

βv (λx.e0) v0 = [v0/x]e0

EU ˜〈e〉 = e

RU ! 〈e0〉 = e0

δ c d = δ(c, d) (c, d) ∈ dom δ

Note that (−→) is a superset of
⋃

�(��), as the axioms subsume SS-β, SS-βv, SS-E,

SS-R, and SS-δ, while the inference rule of compatible extension subsumes SS-Ctx.

The following example illustrates the difference between reduction and small-steps.

Example 7. Axiom βv gives λUv � (λ .0) 1 = 0. By compatible extension under 〈•〉,
we have 〈(λ .0) 1〉 = 〈0〉, in fact 〈(λ .0) 1〉 −→ 〈0〉. Note 〈(λ .0) 1〉 ��

0
〈0〉 because

brackets delay the application; however, reduction allows all left-to-right rewrites

by the axioms, so 〈(λ .0) 1〉 −→ 〈0〉 nonetheless. Intuitively, 〈(λ .0) 1〉 ��
0
〈0〉 because

an evaluator never performs this rewrite, but 〈(λ .0) 1〉 −→ 〈0〉 because this rewrite

is semantics-preserving and a static analyzer or optimizer is allowed to perform it.

Just like the plain λ calculus, λU satisfies the Church–Rosser property, so every

term has at most one normal form (irreducible reduct). Hence, terms are not

provably equal when they have distinct normal forms. Church–Rosser also ensures

that reduction and provable equality are more or less interchangeable, and when we

investigate the properties of provable equality, we usually do not lose generality by

restricting our attention to the simpler notion of reduction.

Theorem 8 (Church–Rosser property). e = e′ ⇐⇒ ∃t. e −→∗ t←−∗ e′.

Next, we establish that provable equality implies observational equivalence.

Theorem 9 (Soundness). (=) ⊂ (≈).

The containment (=) ⊂ (≈) is proper because (≈) is not computationally

enumerable (since λU is Turing-complete) whereas (=) clearly is. There are several

useful equivalences in (≈) \ (=), which we will prove by applicative bisimulation.

Provable equality is nonetheless strong enough to discover the value of any term

that has one, so the assertion “e terminates (at level �)” is interchangeable with “e

reduces to a (level-�) value”, which in turn is equivalent to “e is provably equal to a

(level-�) value”.

Theorem 10. If e ∈ E�, v ∈ V�, then e ⇓� v =⇒ (e −→∗ v ∧ e = v) and e = v =⇒
(∃u ∈ V�.u = v ∧ e −→∗ u ∧ e ⇓� u).

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

12 J. Inoue and W. Taha

Theorem 10 is equivalent to the property known as “Plotkin-style correspondence”

in the literature, which was shown for the plain λ calculus by Plotkin (1975).

It can also be considered a form of the “standardization lemma”, although that

term usually refers to an equivalence between unrestricted reductions and leftmost,

outermost reductions rather than between reductions and evaluations. The proofs

of Theorems 8 to 10 can be done with standard, off-the-shelf proof techniques and

are therefore omitted. The thesis (Inoue, 2012) contains a proof using Takahashi’s

technique (1995), which is basically the well-known Tait–Martin-Löf confluence

proof using parallel reduction, but extended to also cover standardization.

2.3 Generalized axioms are unsound

This paper’s equational theory is not identical to that of Taha (1999), but generalizes

rule EU from ˜〈e0〉 = e0 to ˜〈e〉 = e. In this subsection, we discuss the utility of

this generalization and explain why other axioms cannot be generalized in the same

manner.

The main use of the new, generalized EU is to show that substitution preserves

(≈). Thus, an equivalence proved on open terms holds for any closed instance. This

fact plays an important role in the completeness proof of applicative bisimulation

(see Appendix A.2). It is also somewhat surprising, considering that the converse

fails in CBV (see Section 3).

Proposition 11. If e ≈ t, then [a/x]e ≈ [a/x]t.

Proof. Take � = max(lv e, lv t). Then, from e ≈ t, we get

(λx.〈〈. . . 〈e〉 . . .〉〉) a ≈ (λx.〈〈. . . 〈t〉 . . .〉〉) a

where e and t are each enclosed in � pairs of brackets. Both sides are level 0, so we

can apply the β or βv rule, depending on the evaluation strategy, and

〈〈. . . 〈[a/x]e〉 . . .〉〉 ≈ 〈〈. . . 〈[a/x]t〉 . . .〉〉.

Escaping both sides � times gives

˜˜· · · ˜〈〈. . . 〈[a/x]e〉 . . .〉〉 ≈ ˜˜· · · ˜〈〈. . . 〈[a/x]t〉 . . .〉〉.

Then, applying the EU rule � times gives [a/x]e ≈ [a/x]t. The old EU rule ˜〈e0〉 = e0

would apply only once here because the level of the 〈〈. . . 〈[a/x]e〉 . . .〉〉 part increases,

so the generalization is strictly necessary.

At this point, it is natural to wonder why the other rules, β/βv and RU are

not generalized to arbitrary levels, and why EU is special. The reason is that

generalizations of β/βv and RU involve demotion—moving a term from one level to

another. MSP type system researchers have long observed that unrestricted demotion

is a type-unsafe operation (Taha & Nielsen, 2003; Westbrook et al., 2010). We show

here that it is also unsound as an equational rule.

Table 1 shows generalized rules along with counterexamples that show their

unsoundness. The left column names the rule that was generalized, the middle

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 13

Table 1. Generalized equational axioms are unsound. Ω is some divergent level-0 term

Rule name Generalization Counterexample

RU ! 〈e〉 = e 〈! 〈˜Ω〉〉 �≈ 〈˜Ω〉 (5)

β (λx.e0) t = [t/x]e0 〈(λx.〈x〉) (λy.˜Ω)〉 �≈ 〈〈λy.˜Ω〉〉 (6)

βv (λx.e0) v� = [v�/x]e0 same as Equation (6) (7)

βv (λx.e0) (λy.t) = [(λy.t)/x]e0 same as Equation (6) (8)

βv (λx.e0) 〈t〉 = [〈t〉/x]e0 〈(λx.〈〈x〉〉) 〈˜˜Ω〉〉 �≈ 〈〈〈˜˜Ω〉〉〉 (9)

β (λx.e) t0 = [t0/x]e 〈(λx.˜x) 〈e0〉〉 �≈ 〈˜〈e0〉〉 (10)

βv (λx.e) v0 = [v0/x]e same as Equation (10) (11)

column shows the generalization, and the right column refutes it. Dropping level

constraints from RU gives Equation (5). In CBN β, relaxing the argument’s level gives

Equation (6). In CBV βv, simply removing the argument’s level constraint produces

(λx.e0) v� = [v�/x]e0, which is absurd—it subsumes CBN reduction, as V 1 = E0.

More sensible attempts are Equations (8) and (9), which keep the constraints on

head term constructors. Generalizing the function in β and βv gives Equations (10)

and (11), respectively.

Equations (5)–(9) fail because they involve demotion, which moves a term from

one level to another. For example, the generalized Equation (5) puts e inside more

brackets on the left-hand side than on the right-hand side. The counterexample

exploits this mismatch by choosing an e that contains a divergent term enclosed

in just enough escapes so that the divergence is forced on one side but not the

other. More concretely, on the left-hand side ! 〈˜Ω〉 ∈ E0 so 〈! 〈˜Ω〉〉 ∈ V 0. However,

on the right-hand side, the Ω is enclosed in fewer brackets and 〈˜Ω〉 �∈ V 0; in

fact 〈˜•〉 ∈ ECtx0,0 so assuming Ω �
0

Ω1 �0 Ω2 �0 · · · ad infinitum, we have

〈˜Ω〉�
0
〈˜Ω1〉�0 〈˜Ω2〉�0 · · · as well. We can formalize this insight as follows.

Definition 12 (Level function). Define Δ : Ctx→ � as follows:

Δ • def= 0

Δ (λx.C) def= ΔC

Δ (C e) def= ΔC

Δ (e C) def= ΔC

Δ 〈C〉 def= ΔC − 1

Δ (˜C) def= ΔC + 1

Δ (!C) def= ΔC

Proposition 13. There exists a function L : Ctx→ � such that ∀e, C. lv e � L(C) =⇒
lvC[e] = lv e + ΔC .

Proof. Induction on C .

Intuitively, ΔC is the limiting value of lvC[e] − lv e as lv e → ∞. This difference

converges to a constant independent of e because when e is sufficiently high-level, the

deepest nesting of escapes in C[e] occurs within e. Then, lvC[e]− lv e depends only

on the number of brackets and escapes surrounding the hole of C . The function L

in Proposition 13 gives a lower bound on lv e needed to reach this limiting behavior.

Theorem 14. If ΔC �= ΔC ′, then ∃e. C[e] �≈ C ′[e]. That is, a rewrite rule from which

we can derive ∀e. C[e] −→ C ′[e] for such C and C ′ is always unsound.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

14 J. Inoue and W. Taha

The proof of this theorem relies on the fact that if e has enough escapes, the

escapes dominate all the staging annotations in C and the term they enclose is

given top priority during program execution. In more technical terms, lvC[e] grows

unboundedly with lv e because of Proposition 13, and beyond a certain threshold,

C ∈ ECtx�+ΔC,�. Hence if, say, ΔC > ΔC ′, then e is evaluated first under C ′ but

not under C . Notice that this proof fails, as expected, if the e in C[e] −→ C ′[e] is

restricted to e0.

Lemma 15 (Context domination). size(C) < � =⇒ ∃m. C ∈ ECtx�,m.

Proof. Induction on C .

Lemma 16. ΔE�,m = �− m.

Proof. Induction on E�,m.

Lemma 17. If tm ⇑m, then E�,m[tm] ⇑�.

Proof. Easily seen from the fact that E�,m[tm] takes a small step iff tm does.

Proof of Theorem 14. Take �
def= max(L(C), L(C ′), size(C) + 1, size(C ′) + 1), where L

is a function that witnesses Proposition 13, and let e ≡ ˜˜ · · · ˜︸ ︷︷ ︸
� times

Ω, where Ω ∈ E0 and

Ω ⇑0. Then, lv e = �, e ⇑�, lvC[e] = �+ ΔC , and lvC ′[e] = �+ ΔC ′. Without loss of

generality, ΔC > ΔC ′. By Lemma 15, C ∈ ECtx�+ΔC,�, where the second superscript

is known by Lemma 16. Then, taking C〈···〉
def≡ 〈〈· · · 〈•〉 · · ·〉〉 with � + ΔC pairs of

brackets, C〈···〉[C] ∈ ECtx0,�, so we get C〈···〉[C[e]] ⇑0 by Lemma 17. By contrast,

lvC ′[e] < � + ΔC , so C〈···〉[C
′[e]] is of the form 〈t0〉, hence C〈···〉[C

′[e]] ⇓0.

Theorem 14 provides a quick sanity check for all equational rewrites, which we

may call the level function test: A rewrite rule must always rewrite between C and C ′

with ΔC = ΔC ′. In particular, Equations (5) through (9) above fail this test—they

rewrite between contexts with different Δ values. Note that a sound rule can rewrite

between contexts C and C ′ such that lvC[e] − lv e and lvC ′[e] − lv e disagree for

some e, as long as those e are all low level. For example, EU states ˜〈e〉 = e, but

if e ∈ E0, then lv ˜〈e〉 − lv e = 1 �= lv e − lv e. However, the differences of exact

levels agree whenever lv e � 1, which is why Theorem 14 does not apply to EU .

Restricting the level of expressions that can plug level-mismatching holes may also

ensure soundness; non-generalized RU does this.

The Equations (10) and (11) in Table 1 happen to pass the level function test.

These rules have in a sense a dual problem: The substitutions in Equations (10)

and (11) inject extra brackets to locations that were previously stuck on a variable,

whereas Theorem 14 injects extra escapes.

3 Closing substitutions compromise validity

While λU is amenable to equational reasoning using β equality, reminiscent of

equational reasoning in the plain λ calculus, there is a striking difference in the way

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 15

free variables behave in the two settings. This difference is more pronounced in the

CBV setting. Traditionally, CBV calculi admit the equational rule

(βx) (λy.e0) x = [x/y]e0

Plotkin’s seminal λV calculus (1975), for example, does so implicitly by taking

variables to be values, defining x ∈ V , where V is the set of values for λV . But βx is

not admissible in λUv . For example, the terms (λ .0) x and 0 may seem interchangeable,

but in λUv they are distinguished by the program context E def≡ 〈λx.˜[(λ .〈1〉) •]〉:

λUv � 〈λx.˜[(λ .〈1〉) ((λ .0) x)]〉 ⇑0 but λUv � 〈λx.˜[(λ .〈1〉) 0]〉 ⇓0 〈λx.1〉 (12)

(We are using [] as parentheses to enhance readability.) The term on the left is

stuck because x �∈ V 0 and x ��
0

. Intuitively, the value of x is demanded before

anything is substituted for it, so an implementation would raise an error saying

“unbound variable: x”. If we apply a substitution σ that replaces x by a value, then

σ((λ .0) x) = σ0, so the standard technique of reasoning under closing substitutions is

unsound. Note the βx redex itself need not contain staging annotations; thus, adding

staging to a language can compromise some existing equivalences, i.e., staging is a

non-conservative language extension.

The problem here is that λUv can evaluate open terms. The reader may recall

that λV reduces open terms just fine while admitting βx, but the crucial difference

is that λU evaluates (small steps) open terms under program contexts whereas λV
never does. Small-steps are the specification for implementations, so if they can

rewrite an open subterm of a program, implementations must be able to perform

that rewrite as well. By contrast, reduction is just a semantics-preserving rewrite, so

implementations may or may not be able to perform it.

Implementations of λUv including MetaOCaml have no runtime values or data

structures representing the variable x—they implement x �∈ V 0. They never perform

(λ .0) x �
0

0, for if they were forced to evaluate (λ .0) x, then they would try to

evaluate the x as required for CBV and throw an exception. Some program contexts

in λU do force the evaluation of open terms, e.g., the E given above. We must then

define a small-step semantics with (λ .0) x ��
0

0, or else we would not model actual

implementations. Moreover, this behavior is conceptually the more natural choice.

Variables are placeholders for as-yet-unavailable values, and it makes no sense for

the placeholder itself to be offered up as the value. If a reified variable is needed,

that is the role of 〈x〉, not x. Therefore, we must reject βx, for it is unsound for

(≈) in a small-step semantics with x ⇑0. In other words, lack of βx is an inevitable

consequence of the way natural, practical implementations behave.

Even in λV , setting x ∈ V is technically a mistake because λV implementations

typically do not have runtime representations for variables either. But in λV , whether

a given evaluator implements x ∈ V or x �∈ V is unobservable. Small steps on a

λV program (which is closed by definition) never contract open redexes because

evaluation contexts cannot contain binders. Submitting programs to an evaluator

will never tell if it implements x ∈ V or x �∈ V . Therefore, in λV , there is never any

harm in pretending x ∈ V . A small-step semantics with x ∈ V gives the same (≈) as

one with x �∈ V , and βx is sound for this (≈).

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

16 J. Inoue and W. Taha

Intuitively, the reason we can pretend x is a value in λV is that by the time

execution reaches a subterm with x free, the x will always have a value. Execution

only deals with closed instances of terms in the program, so reasoning also only

needs to examine closed instances. By contrast, in λUv whether a free variable

will have a value during execution depends on the context. To be interchangeable

under all contexts, terms must behave identically whether all, some, or none of

the free variables have values. Thus, a priori, comparing terms in λU should require

comparing under all substitutions, including partial ones. But comparing terms under

all substitutions involves comparing under the empty substitution. If we understand

“comparing under substitutions” as establishing (≈) under substitutions, then to

show e ≈ t we would have to show �e ≈ �t, a catch-22.

In an effort to avoid this circularity, one could consider comparing terms by

a more lax criterion under the empty substitution than under other substitutions.

For example, one might test (≈) under closing substitutions but equi-termination

under the empty substitution. That is, to establish e ≈ t, we check e ⇓�⇐⇒ t ⇓� and

∀closing σ. σe ≈ σt. However, these comparisons fail to distinguish between x and

y. Free variables are unlike values because they can be divergent, but they are also

unlike closed, divergent terms because they are distinguishable, and any attempts

to characterize the equivalence between open terms must respect this distinction.

Short of considering all the ways in which free variables can be independently

substituted for, including not being substituted, there seems to be no clean way to

encode this distinction. The applicative bisimulation to be introduced in Section 5

works along this line, considering all substitutions by default, but it allows in some

cases to restrict our attention to those substitutions that substitute away some

variables.

Thus, the issue with βx shown above is just the tip of the iceberg. The general,

more important, challenge in λU is that reasoning under all closing substitutions is

insufficient, i.e., (∀closing σ. σe ≈ σt) =⇒� e ≈ t. We stress that the real challenge

is this more general problem with substitutions, and not the special case of βx,

because unfortunately βx is not only an illustrative example but also a tempting

straw man. Seeing βx alone, one may think that its unsoundness is some idiosyncrasy

that can be fixed by modifying the calculus. For example, type systems can easily

recover βx by banishing all stuck terms including βx redexes. Alternatively, one

could modify the implementation (unnaturally, in our opinion) to treat variables

as values and define x ∈ V 0, thereby subsuming βx in βv . But this little victory

over βx does not matter much, for the general question of when exactly we can

reason under closing substitutions remains. It is unclear if any type systems justify

reasoning under closing substitutions in general, or how we might be able to prove

that.

Surveying which refinements (including, but not limited to the addition of type

systems) for λU let us reason under substitutions, and why, is an important topic

for future study, but it is beyond the scope of this paper. In this paper, we focus

instead on showing that we can achieve a lot without committing to anything more

complicated than λU . In particular, we will show that the lack of βx is not a large

drawback after all, as a refined form of βx can be proved thanks to applicative

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 17

Fig. 3. Visualizations of the Erasure Theorem and the derived correctness lemma. (a) CBN

erasure, (b) CBV erasure.

bisimulation (Section 5). The refined rule is

(Cβx) λx.C[(λy.e0) x] = λx.C[[x/y]e0]

with the side conditions that C[(λy.e0) x], C[[x/y]e0] ∈ E0 and that C does not

shadow the binding of x. Intuitively, given just the term (λy.e0) x, we cannot tell

if x is well-leveled, i.e., bound at a lower level than its use, so that a value is

substituted for x before evaluation can reach it. The Cβx rule remedies this problem

by demanding a well-leveled binder. As a special case, βx is sound for any subterm

in the erasure of a closed term—that is, the erasure of any self-contained generator.

4 The erasure theorem

In this section, we present the Erasure Theorem for λU and derive simple termination

conditions that guarantee e ≈ ‖e‖. The theorem statement differs for CBN and CBV,

and the latter has quite a few details to be discussed. We present the simpler CBN

first.

4.1 CBN version

The intuition behind the theorem is that all that staging annotations do is describe

and enforce an evaluation strategy. They may force CBV, CBN, or some other

strategy that the programmer wants, but CBN reduction can simulate any strategy

because it allows the redex to be chosen from anywhere.2 Thus, erasure commutes

with CBN reductions (Figure 3(a)). The same holds for provable equalities.

Theorem 18 (CBN Erasure). If λUn � e −→∗ t, then λUn � ‖e‖ −→∗ ‖t‖. Consequently,

if λUn � e = t, then λUn � ‖e‖ = ‖t‖.

Proof. The first part is by induction on the derivation of the reduction judgment.

The second part follows immediately.

This theorem gives useful intuitions about what staging annotations can or cannot

do in CBN. For example, staging preserves return values up to erasure if those values

exist:

2 This observation does not imply that staging is useless in CBN. It only means that reductions under
exotic evaluation strategies are semantics-preserving rewrites under CBN semantics. CBN evaluators
may not actually perform such reductions unless forced by staging annotations, which is why staging
is interesting in CBN.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

18 J. Inoue and W. Taha

Corollary 19. If u, v ∈ V 0 and (λUn � e −→∗ u ∧ λUn � ‖e‖ −→∗ v), then v ≡ ‖v‖ and

λUn � ‖u‖ = v.

Additionally, in CBN, erasure cannot make a term less terminating (equivalently,

staging cannot make a term more terminating), unless the annotations affect the

term’s external interface, that is, unless the staged term’s return value carries staging

annotations.

Corollary 20. If λUn � e ⇓� ‖v‖, then λUn � ‖e‖ ⇓� ‖v‖.

How does the Erasure Theorem help prove equivalences of the form e ≈ ‖e‖? The

theorem gives a simulation of reductions from e by reductions from ‖e‖. If e reduces

to an unstaged term ‖t‖, then simulating that reduction from ‖e‖ gets us to ‖‖t‖‖,
which is just ‖t‖; thus, e −→∗ ‖t‖ ←−∗ ‖e‖ and e = ‖e‖. Amazingly, this witness ‖t‖
can be any reduct of e, as long as it is unstaged! In fact, by Church–Rosser, any t

with e = ‖t‖ will do. So staging is correct (i.e., semantics-preserving, or e ≈ ‖e‖) if

we can find this ‖t‖. As we will see shortly, this search boils down to a termination

check on the generator.

Lemma 21 (CBN correctness). (∃t. λUn � e = ‖t‖) =⇒ λUn � e = ‖e‖.

4.2 Example: Erasing CBN staged power

Let us show how the Erasure Theorem applies to stpow. First, some technicalities:

we assume that the Const set of λU is equipped with integers, arithmetic operators,

and booleans, with their usual semantics captured by δ reductions. MetaOCaml’s

constructs are interpreted in λU in the obvious manner, e.g., let x = e in t stands

for (λx.t) e and let rec f x = e stands for let f = Θ(λf.λx.e), where Θ is some

fixed-point combinator. For conciseness, we treat top-level bindings genpow and

stpow like macros, so ‖stpow‖ is the erasure of the recursive function to which

stpow is bound, with genpow inlined, and not the erasure of a variable named

stpow.

As a caveat, we might wish to prove stpow ≈ power, but unfortunately this goal is

unprovable. The whole point of stpow is that it processes the first argument without

waiting for the second, so it may immediately diverge when partially applied to one

argument, whereas power does not diverge until it is fully applied. For example,

stpow 0 ⇑0 but power 0 ⇓0. We sidestep this issue for now by concentrating on

positive arguments, and discuss divergent cases in Section 5.2.

To prove k > 0 =⇒ stpow k = power k for CBN, we only need to check that

the code generator genpow k terminates to some <‖e‖>; then the ! in stpow will

take out the brackets and we have the witness for applying Lemma 21. To say that

something terminates to <‖e‖> roughly means that it is a two-stage program, which

is true for almost all uses of MSP that we are aware of. This use of the Erasure

Theorem is augmented by the observation ‖stpow‖ = power—these functions are

not quite syntactically equal, the former containing an additional η redex.

Lemma 22. λUn � ‖stpow‖ = power

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 19

Proof. Contract the η redex by (CBN) β.

Proposition 23 (Erasing CBN power). ∀k ∈ �+. λUn � stpow k = power k.

Proof. Induction on k gives some e s.t. genpow k <x> = <‖e‖>, so

stpow k = ! <fun x -> ~(genpow k <x>)>

= ! <fun x -> ~<‖e‖>>
= ! <fun x -> ‖e‖>
= fun x -> ‖e‖

hence, stpow k = ‖stpow‖ k = power k by Lemmas 21 and 22.

This proof illustrates our answer to the erasure question in the introduction, for

the CBN case. Erasure is semantics-preserving if the generator terminates to 〈‖e‖〉.
What is particularly pleasing about this proof is that it says so little about what e

looks like, or what e computes. The only information we track about this generated

code is the absence of left-over annotations. Effectively, the concern of reasoning

about the annotations is decoupled from the concern of reasoning about what the

generated code computes. This simplicity is a major advantage for reasoning about

complex generators like LCS (Section 6.1).

4.3 CBV version: Proof by normalization

CBV satisfies a property similar to Theorem 18, but the situation is more subtle.

Staging modifies the evaluation strategy in CBV as well, but not all resulting

strategies can be simulated in the erasure by CBV reductions, for βv reduces only

a subset of β redexes. For example, if Ω ∈ E0 is divergent, then (λ .0) 〈Ω〉 −→ 0

in CBV, but the erasure (λ .0) Ω does not CBV-reduce to 0 since Ω is not a value.

However, it is the case that λUn � (λ .0) Ω −→ 0 in CBN. In general, erasing CBV

reductions gives CBN reductions (Figure 3(b)).

Theorem 24 (CBV Erasure). If λUv � e −→∗ t, then λUn � ‖e‖ −→∗ ‖t‖. Also, if

λUv � e = t, then λUn � ‖e‖ = ‖t‖. Note the premise and conclusion use different

evaluation strategies.

This theorem has similar ramifications to the CBN Erasure Theorem but with the

caveat that they conclude in CBN, despite having premises in CBV. In particular, if

e is CBV-equal to an erased term, then e = ‖e‖ in CBN.

Corollary 25. (∃t. λUv � e = ‖t‖) =⇒ λUn � e = ‖e‖.

While these results nicely illustrate how staging is a change of evaluation strategy,

without further refinement they are not terribly helpful for verification. We still

need a way to prove that the program e is equal to ‖e‖ in CBV. We have two

techniques to offer for this purpose: one is to insist that the witness ‖t‖ terminates

to a CBN-normal form, such as a constant, and the other is to exercise some

caution in applying βv equalities. The former is conceptually simpler, but the latter

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

20 J. Inoue and W. Taha

is sometimes more helpful for verifying higher order functions. We discuss proof by

normalization in this section, and leave the other idea for Section 4.5.

The idea of proof by normalization is, given e, to show that e and ‖e‖ CBV-reduce

to constants. Then, by chasing the diagram below, we can show e = ‖e‖ in CBV. Let’s

say we found some c, d that satisfy the two horizontal CBV equalities. Then, from

the top equality, Corollary 25 gives the left vertical one in CBN. As CBN equality

subsumes CBV equality, tracing the diagram counterclockwise from the top-right

corner gives λUn � c = d in CBN. Then, the right vertical equality c ≡ d follows by

the Church–Rosser property in CBN. Finally, tracing the diagram clockwise from

the top-left corner gives λUv � e = ‖e‖.

λUv �

λUn
�
e c∥∥∥

λUv � ‖e‖ d

Lemma 26 (CBV correctness). If λUv � e = c and λUv � ‖e‖ = d, then λUv � e = ‖e‖.

Thus, we can prove e = ‖e‖ in CBV by showing that each side terminates to

some constant, in CBV. Though we borrowed CBN facts to derive this lemma, the

lemma itself leaves no trace of CBN reasoning. Note that we can straightforwardly

generalize the lemma by requiring CBV-termination to CBN-normal forms instead

of constants, but the generalized statement mixes CBN and CBV reasoning. Because

many functions in practice return ground terms when fully applied, we believe the

special case above strikes a good balance between generality and simplicity.

4.4 Example: Erasing CBV staged power by normalization

Let us show how the CBV Erasure Theorem applies to stpow. The proof is similar

to the CBN case, but we need to fully apply both stpow and its erasure to confirm

that they both reach some constant. The beauty of Lemma 26 is that we do not

have to know what those constants are. Just as in CBN, the erasure ‖stpow‖ is

equivalent to power, but note this part of the proof uses Cβx.

Lemma 27. λUv � ‖stpow‖ ≈ power

Proof. Contract the η expansion by Cβx.

Proposition 28 (Erasing CBV power). Suppose k ∈ �+ and m ∈ �. Then, we have

λUv � stpow k m ≈ power k m.

Proof. We stress that this proof works entirely with CBV equalities; we have

no need to deal with CBN once Lemma 26 is established. Induction on k gives

∃e. genpow k <x> = <‖e‖> and [m/x]‖e‖ ⇓0 m′ for some m′ ∈ �. We can do so

without explicitly figuring out what ‖e‖ looks like. The case k = 1 is easy; for

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 21

k > 1, the returned code is <x * ‖e′‖>, where [m/x]‖e′‖ terminates to an integer by

inductive hypothesis, hence so does <x * ‖e′‖>. Then,

stpow k m = ! <fun x -> ~(genpow k <x>)> m

= ! <fun x -> ‖e‖> m

= [m/x]‖e‖ = m′ ∈ Const

Clearly, power k m terminates to a constant. By Lemma 27, ‖stpow‖ k m also yields

a constant, so by Lemma 26, stpow k m = ‖stpow‖ k m ≈ power k m.

This proof illustrates one possible answer to the erasure question in the in-

troduction for CBV: Erasure is semantics-preserving if the staged and unstaged

terms terminate to constants in CBV. Showing the latter requires propagating type

information and a termination assertion for the generated code. Type information

would come for free in a typed system, but it can be easily emulated in an untyped

setting. Hence, we see that correctness of staging generally reduces to termination

not just in CBN but also in CBV—in fact, the correctness proof is only a slight

modification of the termination proof.

4.5 CBV version: Careful erasure

In the last two sections, we have let erasure map CBV equalities to the superset of

CBN equalities and performed extra work to show that the particular CBN equalities

we derived hold in CBV as well. An alternative approach is to find a subset of CBV

equalities that erase to CBV equalities, which is roughly how Yang (2000) handled

CBV erasure. This subsection develops this technique in λU . The equalities turn out

to be more convenient when presented as pairs of equalities than as restrictions of

CBV equalities. The result is a trickier, though more versatile, proof method than

proof by normalization.

As discussed in Section 4.3, the problem with erasing CBV reductions is that the

argument in a βv redex might no longer terminate when erased. To eliminate this

case, we might restrict βv to a “careful” variant with a side condition, like

(βv⇓) (λx.e0) v0 = [v0/x]e0 provided λUv � ‖v0‖ ⇓0

If we define a new set of axioms λUv⇓
def= {βv⇓, EU, RU, δ}, then reductions (hence

equalities) under this axiom set erase to CBV reductions. However, βv⇓ is much too

restrictive. It prohibits contracting redexes of the form (λy.e0) 〈x〉 (note x ⇑0), which

are ubiquitous—a function as simple as stpow already contains one.

Going back to a concrete example is instructive here. As it turned out, βv-reducing

genpow n <x> appearing in stpow was safe (as evidenced by Proposition 28), despite

the <x> which has a divergent erasure. Intuitively, the reason is that stpow is

expected to be used like stpow k m, which expands to

! <fun x -> ~(genpow k <x>)> m (13)

The m is waiting to be substituted for x, and indeed it would be substituted right

away if it weren’t for the staging annotations. Therefore, it is reasonable to exploit

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

22 J. Inoue and W. Taha

this substitution in checking the side condition for βv⇓, because that condition is a

check on the behavior of the erasure. Thus, genpow k <x> should be reduced not by

βv⇓ but by the refined rule

(βv⇓/σ) (λx.e0) v0 = [v0/x]e0 provided λUv � σ‖v0‖ ⇓0

with σ = [m/x]. This refinement lets us reduce redexes with open-term arguments

as long as the σ covers the relevant variables.

An axiom set with βv⇓/σ in place of βv can be formulated so that equalities

erase as

λUv⇓/σ � e = t =⇒ λUv � σ‖e‖ = σ‖t‖ (14)

The resulting system is strong enough to equate genpow k <x> to an erased term,

using σ = [m/x], but it still falls short of equating stpow k to an erased term. The

βv⇓/σ rule requires the reduction of the staged term to be performed in lockstep with

the reduction of the erasure; however, the reduction of expression (13) substitutes m

for x at the end whereas the reduction of the erasure (fun x -> ‖genpow‖ k x) m

substitutes first. In general, the whole point of staging is to reorder the reductions,

so we must allow escaping the lockstep at a few strategic places in order to align

the rest of the reductions of the staged term and the erasure. To this end, we define

careful equalities by formula (14) and take βv⇓/σ to be a theorem, instead of the

other way around.

Definition 29. For any σ : Var ⇀
fin

V 0, an expression e reduces carefully modulo σ to

t, written λUv⇓/σ � e −→ t, iff λUv � e −→ t and λUv � σ‖e‖ = σ‖t‖. The σ is called the

speculative substitution accompanying the careful reduction. Careful equalities are

defined analogously, using (=) in place of (−→).

The rules EU , RU , and βv⇓/σ are admissible in this system. Compatible extension

(e = t =⇒ C[e] = C[t]) is not always admissible, for the context C can capture

variables in the speculative substitution. This rule must be constrained to avoid

variable capture, as shown in CR-Compat below.

Notation. Let BV(C) stand for the set of variables that C captures, or binds. Given

a substitution σ : Var ⇀
fin

E, let FV(σ) def= dom σ ∪
(⋃

x∈domσ FV(σx)
)
.

Remark. FV(σ) is just the “support” of σ in the terminology of nominal logic

(Gabbay & Pitts, 2001). Intuitively, it is the set of variables whose names are

significant, i.e., renaming them alters the substitution.

Proposition 30. For any σ : Var ⇀
fin

V 0, the following rules are admissible. The same

holds if we replace all occurrences of (−→) by (=) and add reflexivity, symmetry,

and transitivity.

βv⇓/σ

λUv � σ‖v0‖ ⇓0

λUv⇓/σ � (λx.e0) v0 −→ [v0/e0]

EU

λUv⇓/σ � ˜〈e〉 −→ e

RU

λUv⇓/σ � ! 〈e0〉 −→ e0

δ

(c, d) ∈ dom δ

λUv⇓/σ � c d −→ δ(c, d)

CR-Compat

λUv⇓/σ � e −→ t

λUv⇓/σ � C[e] −→ C[t]
[BV(C) ∩ FV(σ) = �]

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 23

Proof. Reflexivity, symmetry, transitivity, EU , and RU are obviously admissible, so we

will focus on the other rules. They are special cases of rules for deriving non-careful

CBV reductions, so only the σ‖e‖ = σ‖t‖ part needs to be shown.

 [βv⇓/σ] Because the rule’s premise gives λUv � σ‖v0‖ = u0 for some u0, we have

λUv � σ((λx.‖e0‖) ‖v0‖) = (λx.σ‖e0‖) u0

= [u0/x](σ‖e0‖)
= [σ‖v0‖/x](σ‖e0‖)
≡ σ‖[v0/x]e0‖,

noting that x �∈ FV(σ) by Barendregt’s variable convention (Barendregt, 1984),

so σ commutes with the binder λx.

 [CR-Compat] By the side condition, all variables bound in C are fresh for

σ, so

σ(‖C[e]‖) ≡ σ(‖C‖[‖e‖]) ≡ (σ‖C‖)[σ‖e‖]
and likewise for C[t]. The premise gives λUv � σ‖e‖ = σ‖t‖, so it follows by

compatible extension that λUv � (σ‖C‖)[σ‖e‖] = (σ‖C‖)[σ‖t‖].

With these rules, careful reductions can be performed almost like ordinary CBV

reductions. The correctness lemma that applies to the result is pleasantly similar to

the one for CBN (cf. Lemma 21), with essentially the same proof.

Lemma 31 (Careful CBV correctness). (∃t. λUv⇓/σ � e = ‖t‖) =⇒ λUv � σe = σ‖e‖.

4.6 Example: Erasing CBV staged power by careful erasure

We now demonstrate the correctness of erasing stpow in CBV using Lemma 31.

The key issue in such proofs is how to introduce the speculative substitution, which

is usually where we need to temporarily escape the lockstep of the reductions of

the staged term and the erasure. In the case of ! <fun x -> ~(genpow k <x>)> m,

the speculative substitution is [m/x], speculating the βv-substitution of m into the

fun x.

Alternative Proof of Proposition 28. Let us recall the proposition’s statement:

∀k ∈ �+. ∀m ∈ �. λUv � stpow k m ≈ power k m

We have ‖stpow‖ ≈ power (Lemma 27), so it suffices to show ∀k ∈ �+. ∀m ∈
�. λUv � stpow k m ≈ ‖stpow‖ k m. By induction on k, we can show the existence of

an e such that

λUv⇓/[m/x] � genpow k<x> = <‖e‖> (15)

This equality can be proved entirely with the deduction rules in Proposition 30.

The required reductions are: δ reductions to simplify if-then-else and integer

arithmetic, β reductions to simplify the fixed-point operator and pass around the

counter k, and β substitutions of <x> into the body of genpow. Only the last of

these needs the speculative substitution.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

24 J. Inoue and W. Taha

Now, we need to justify the speculative substitution. Directly applying Lemma 31

to Equation (15) would give an erased equality under the substitution [m/x], but

we want an equality without substitutions. To solve this problem, we will extend

Equation (15) to

λUv⇓/� � !<fun x -> ~(genpow k <x>)> m = (fun x -> ‖e‖) m (16)

where � is the empty substitution. Then, applying Lemma 31 will leave the desired

equality with only the empty substitution (or equivalently no substitutions) attached.

To establish Equation (16), we will make a hop outside of the lockstep reduction

rules of Proposition 30. That is, we will reason explicitly in λUv , with substitutions

applied to terms instead of being kept under λUv⇓/. On the one hand,

λUv � !<fun x -> ~(genpow k <x>)> m
(15)
= !<fun x -> ‖e‖> m

= (fun x -> ‖e‖) m

On the other hand,

λUv � (fun x -> (‖genpow‖ k x)) m

= [m/x](‖genpow‖ k x)
(15)
= [m/x]‖e‖
= (fun x -> ‖e‖) m

Therefore, Equation (16) holds by the definition of careful equalities, whence we

immediately get

λUv⇓/� � stpow k m = (fun x -> ‖e‖) m

The right-hand side is unstaged, so by Lemma 31,

λUv � stpow k m = ‖stpow‖ k m

Overall, the analyses involved in proof by normalization and proof by careful

equalities are quite similar. In both approaches, we track the reduction of the

generated code while reducing the generator, which requires tracking the substitution

that will be applied when the generated code runs. The normalization approach

exploits the substitutions when analyzing the termination of code returned by the

generator, whereas careful equalities exploits them when analyzing the termination

of code that is passed into the generator.

Both approaches have advantages and disadvantages. The normalization approach

can be done entirely in the well-behaved reduction system of λUv , and it does not

require us to explicitly relate the staged term’s execution with that of the erasure

at all. These properties make the approach easier to use, but in exchange, we must

supply enough context to force the return value to be a constant. The careful

reduction approach does not offer a crisp deductive system but provides only a set

of admissible rules reminiscent of λUv ’s reduction system (Proposition 30). Those

rules suffice for a large part of the reasoning, but some details must be filled in

by devising ad-hoc arguments for justifying the speculative substitution. In return,

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 25

careful equalities do not require getting down to ground values, which as we shall

see in Section 6.2 is a notable advantage for verifying higher order generators.

5 Extensional reasoning by applicative bisimulation

This section presents applicative bisimulation, a well-established tool for analyzing

higher order functional programs (Abramsky, 1990; Gordon, 1999). Bisimulation is

sound and complete for (≈), in particular justifying Cβx (Section 3) and extension-

ality, allowing us to handle the divergence issues we glossed over in Section 4.2.

5.1 Proof by bisimulation

Here, we present the definition and usage of applicative bisimulation in λU and

leave the proofs of soundness and completeness to Appendix A.2. Due to tech-

nical complications, the indexed applicative bisimilarity defined in that appendix,

which coincides with observational equivalence, is notationally dense and unwieldy.

Therefore, in this section, we work with a reasoning principle packaged up more

conveniently, which hides the indexing. The packaged principle is also enhanced

(Pous & Sangiorgi, 2011) up to observational equivalence, i.e., bisimulations can

contain pairs of terms that transition to terms that are in the bisimulation only

modulo observational equivalence. We say “applicative bisimulation” to denote this

unindexed, enhanced relation.

For a pair of terms to be applicatively bisimilar, they must both terminate or both

diverge. If they terminate, their values must be bisimilar again under experiments

that examine their behavior. In an experiment, functions are called, code values

are run, and constants are left untouched. Effectively, this is a bisimulation under

the labeled transition system consisting of evaluation (⇓) and experiments. If e R t

implies either that e ≈ t or that e and t are bisimilar, then R ⊆ (≈).

Definition 32 (Relation under experiment). Given a relation R ⊆ E × E, let R̃
def=

R ∪ (≈). Define R�
†⊆ V� × V� by

c R0
† c

∀a. ([a/x]e0) R̃ ([a/x]t0)

(λx.e0) R0
† (λx.t0)

e0 R̃ t0

〈e0〉 R0
† 〈t0〉

u�+1 R̃ v�+1

u�+1 R�+1
† v�+1

Definition 33. The substitution closure of a binary relation R ⊆ E × E, written

R•, is defined as R• def= {(σe, σt) : e R t ∧ (σ : Var ⇀
fin

Arg)}. A binary relation is

substitution-closed iff it equals its own substitution closure.

Definition 34 (Applicative bisimulation). A substitution-closed binary relation R ⊆
E×E is an applicative bisimulation iff every (e, t) ∈ R satisfies the following: Letting

� = max(lv e, lv t), we have e ⇓�⇐⇒ t ⇓�, and if e ⇓� u ∧ t ⇓� v, then u R�
† v.

Theorem 35. For a substitution-closed binary relation R ⊆ E ×E, we have R ⊆ (≈)

iff R is contained in an applicative bisimulation.

In particular, (≈) is an applicative bisimulation—the largest one under set

inclusion, called applicative bisimilarity. Thus, the observably equivalent pairs of

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

26 J. Inoue and W. Taha

terms are precisely the pairs that are applicatively bisimilar. This is our answer to

the extensional reasoning question in the introduction: Bisimulation can in principle

derive all valid equivalences, including all extensional facts. Unlike in single-stage

languages (Abramsky, 1990; Howe, 1996; Gordon, 1999), σ ranges over non-closing

substitutions, which may not substitute for all variables or may substitute open

terms. Closing substitutions are unsafe because λU has open-term evaluation. But

for CBV, bisimulation gives a condition under which substitution is safe, i.e., when

the binder is at level 0 (in the definition of (λx.e) R0
† (λx.t)). In CBN, this is not an

advantage as ∀a.[a/x]e R̃ [a/x]t entails [x/x]e R̃ [x/x]t, but bisimulation still gives

a more approachable alternative to (≈).

The importance of the substitution in the definition of (λx.e) R0
† (λx.t) for CBV is

best illustrated by the proof of extensionality, from which we get Cβx introduced in

Section 3.

Proposition 36. If e, t ∈ E0 and ∀a. (λx.e) a ≈ (λx.t) a, then λx.e ≈ λx.t.

Proof. Take R
def= {(λx.e, λx.t)}•. To see that R is a bisimulation, fix σ, and note

that σλx.e, σλx.t terminate to themselves at level 0. By the variable convention

(Barendregt, 1984), x is fresh for σ, so σλx.e ≡ λx.σe and σλx.t ≡ λx.σt. We

must check [a/x]σe R̃ [a/x]σt. By assumption and by Proposition 11, we get

σ[a/x]e ≈ σ[a/x]t, and one can show that σ and [a/x] commute modulo (≈).

Hence, by Theorem 35, λx.e ≈ λx.t.

Corollary 37 (Soundness of Cβx). If C[(λy.e0) x], C[[x/y]e0] ∈ E0 and C does not

bind x, then λx.C[(λy.e0) x] ≈ λx.C[[x/y]e0].

Proof. Apply both sides to an arbitrary a and use Proposition 36 with β/βv.

Our proof of Proposition 36 would have failed in CBV if we had defined (λx.e) R0
†

(λx.t) ⇐⇒ e R̃ t, without the substitution. For when e ≡ (λ .0) x and t ≡ 0, the

premise ∀a.[a/x]e ≈ [a/x]t is satisfied but e �≈ t, so λx.e and λx.t are not bisimilar

with this weaker definition. The binding in λx.e ∈ E0 is guaranteed to be well-leveled,

and exploiting it by inserting [a/x] in the comparison is strictly necessary to get a

complete (as in “sound and complete”) notion of bisimulation.

Function extensionality is a common addition to the equational theory of the

plain λ calculus, usually called the ω rule (Plotkin, 1974; Intrigila & Statman,

2009). But unlike ω in the plain λ calculus, λU functions must agree on open-

term arguments and not just on closed-term arguments. This is no surprise given

λU functions do receive open arguments during program execution; however, we

know of no specific functions that fail to be equivalent because of open arguments.

Whether extensionality can be strengthened to require equivalence only under closed

arguments is an interesting open question.

Another important fact which can be proved with applicative bisimulation is

that two divergent terms are equivalent. An exception has to be made for the case

where one term gets stuck on a free variable while the other diverges for a different

reason, but a difference of this kind can be detected by comparing the terms under

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 27

substitutions. This result will let us show that stpow is interchangeable with its

erasure not just in terminating cases but also in non-terminating cases.

Notation. Let e ≈⇑ t mean e ≈ t ∨ (e⇑� ∧ t⇑�), where � = max(lv e, lv t).

Lemma 38. For a fixed e, t, if for every σ : Var ⇀
fin

Arg we have σe ≈⇑ σt, then e ≈ t.

Proof. Notice that {(e, t)}• is an applicative bisimulation.

Remark. The only difference between Definition 34 and applicative bisimulation

in the plain λ calculus is that Definition 34 avoids applying closing substitutions.

Given that completeness can be proved for this bisimulation, it seems plausible

that the problem with reasoning under substitutions is the only thing that makes

conservativity fail. Hence, it seems that, for closed unstaged terms, λU ’s (≈) could

actually coincide with that of the plain λ calculus. Such a result would make a

perfect complement to the Erasure Theorem, for it lets us completely forget about

staging when reasoning about erased programs.

We do not have a proof of this conjecture, however. Conservativity results for

observational equivalences are often proved by semantic arguments that exploit

denotational models (Mitchell, 1993; Riecke & Subrahmanyam, 1994; McCusker,

2003), but giving such a model for hygienic MSP is notoriously difficult (Benaissa

et al., 1999). Although Riecke & Subrahmanyam (1994) do also discuss a more syn-

tactic approach, that proof also occasionally uses semantic arguments. Investigating

whether such techniques can be made to work for λU deserves consideration in a

separate paper.

5.2 Example: Tying loose ends on staged power

In Section 4.2, we sidestepped issues arising from the fact that stpow 0 ⇑0 whereas

power 0 ⇓0. If we are allowed to modify the code, this problem is usually easy to

avoid, for example, by making power and genpow return dummy return values for

non-positive arguments. If not, we can still persevere by finessing the statement of

correctness. The problem is partial application, so we can force stpow to be fully

applied before it executes by stating power ≈ λn.λx.stpow n x.

Proposition 39 (CBN stpow is Correct). λUn � power ≈ λn.λx.stpow n x.

Proof. We just need to show ∀e, t ∈ E0. power e t ≈⇑ stpow e t, because then ∀e, t ∈
E0. ∀σ : Var ⇀

fin
Arg. σ(power e t) ≈⇑ σ(stpow e t), whence power ≈ λn.λx.stpow n x

by Lemma 38 and extensionality. So fix arbitrary, potentially open, e, t ∈ E0, and

split cases on the behavior of e. As evident from the following argument, the

possibility that e, t contain free variables is not a problem here.

 [If e ⇑0 or e ⇓0 u �∈ �+] Both power e t and stpow e t diverge.

 [If e ⇓0 m ∈ �+] Using Proposition 23, power e = power m ≈ stpow m =

stpow e, so power e t ≈ stpow e t.

Proposition 40 (CBV stpow is correct). λUv � power ≈ λn.λx.stpow n x.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

28 J. Inoue and W. Taha

Proof. By the same argument as in CBN, we just need to show power u v ≈⇑
stpow u v for arbitrary u, v ∈ V 0.

 [If u �∈ �+] Both power u v and stpow u v get stuck at if n = 0.

 [If u ∈ �+] If u ≡ 1, then power 1 v = v = stpow 1 v. If u > 1, we show that

the generated code is strict in a subexpression that requires v ∈ �. Observe

that genpow u <x> ⇓0 <e>, where e has the form <x * t>. For [v/x]e ⇓0, it is

necessary that v ∈ �. It is clear that power u v ⇓0 requires v ∈ �. So either

v �∈ � and power u v ⇑0 and stpow u v ⇑0, in which case we are done, or v ∈ �
in which case Proposition 28 applies.

Remark. Real code should not use λn.λx.stpow n x, as it regenerates and recompiles

code upon every invocation. Application programs should always use stpow, and

one must check (outside of the scope of verifying the function itself) that stpow is

always eventually fully applied so that the η expansion is benign.

6 Case studies

In this section, we verify two concrete generators that are more illustrative of the

techniques used in realistic applications than power to demonstrate that this article’s

approach can cover more complex generators. Each example illustrates specific

complicating factors that can arise in practical generators:

• The LCS (Section 6.1) couples monadic memoization with continuation-

passing style and let-insertion (Swadi et al., 2006). This technique is essential

for generating code of acceptable quality, but it complicates the generated

code. Nonetheless, the proof strategy remains roughly the same.

• The staged fold function (Section 6.2) is an example of a higher order

generator—one that takes another generator as input. Despite the fact that the

normalization approach (Lemma 26) demands ground terms, we demonstrate

that it can also handle higher order code. We also show that, in this context,

careful equalities can give a more natural characterization of correctness than

the normalization approach.

These examples illustrate that our techniques apply to a wide range of generators,

and that we need not hold back on sophisticated programming techniques in order

to make the program amenable to analysis.

6.1 Longest common subsequence

In this section, we work out the correctness proof of LCS. Although this example

is not practically useful but rather chosen for ease of explanation, much like power,

its structure is representative of programs exploiting the monadic memoization

technique useful for staging a wide range of memoized functions (Swadi et al., 2006).

The technique has an effect similar to performing common subexpression elimination

on the generated code, although it differs in that the common subexpressions

are detected and shared as generation progresses. Compilers, by contrast, usually

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 29

perform this optimization in a post-generation pass that inspects the syntactic

structure of generated code. This difference notwithstanding, the technique has

proved indispensable for compiler-like applications of MSP, such as domain-specific

language implementation (Brady & Hammond, 2006; Taha, 2008) and circuit

generation (Kiselyov & Taha, 2005).

6.1.1 The code

The code for LCS is displayed in Figure 4. We have several versions of the same

function, which maps integers i, j, and 0-based arrays P ,Q to the length of the LCS

of P and Q. For simplicity, we compute the length of LCS instead of the actual

sequence, but modifying it to return the sequence is straightforward. The function

naive lcs is a näıve exponential-time implementation serving as the specification,

while lcs is the textbook polynomial-time version with memoization. The function

stlcs is the staged version of lcs that we wish to verify, which specializes lcs to

the lengths i and j of the input sequences. All recursive calls in lcs and stlcs go

through memoizing combinators mem and memgen, respectively.

Memo tables are represented by functions mapping a key k and functions f, g

to f v if a value v is associated with k, or to g () if k is not in the table. The

value empty is the empty table, ext extends a table with a given key-value pair, and

lookup looks up the table. This interface is chosen to make the correspondence with

λU clear. In MetaOCaml, lookup can return an option type, but since we left out

higher order constructors from λU we Church-encoded the option type here. Const

covers first-order types like int option, but not higher order types like (int ->

int) option or (int code) option.

We use a state-continuation monad to hide memo-table passing and to put the

code into CPS. Computation in this monad takes a state (the memo table) and a

continuation, and calls the continuation with an updated state and return value.

All of the effectful computation happens inside the memoization combinators: Both

mem and memgen look up the memo table, call the memoized function if no suitable

value is cached, and update the memo table.

6.1.2 Purpose of CPS

The purpose of continuation-passing style translation in LCS is to implement the

binding-time improvements first discovered by Bondorf (1992). This section briefly

reviews the significance of this improvement. See Swadi et al. (2006) for a more

thorough treatment.

The crux of the monadic memoization technique is the following part of memgen:

<let z = ~r in

~(k (ext tab (i,j) <z>)

<z>)>

(17)

This is executed precisely when the key (i,j) is not in the table tab. The variable r

holds a new code value returned from genlcs to be associated with the key (i,j),

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

30 J. Inoue and W. Taha

Fig. 4. Staged and unstaged code for longest common subsequence.

and the k is the continuation to the call to memgen genlcs, which generates further

code using the code associated with (i,j).

Instead of directly registering r with tab as the value corresponding to (i,j), the

code above binds r to a new level-1 variable z, then registers <z> instead. Without

this trick, the code inserted into the memo table snowballs exponentially. Suppose

we modified memgen so that the code in listing (17) is replaced by

k (ext tab (i,j) r) r

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 31

Let <eij> be the code generated for a given i, j pair by genlcs using this modified

memgen. Then, eij would be as follows, containing e(i−1)(j−1), e(i−1)j , and ei(j−1) as

subterms:

if p.(i) = q.(j)

then e(i−1)(j−1)+ 1

else max e(i−1)j + ei(j−1)

(18)

But e(i−1)(j−1) in turn contains e(i−2)(j−2), e(i−2)(j−1), and e(i−1)(j−2), and likewise for

e(i−1)j and ei(j−1). The code size is hence exponential in i and j.

Code (17) solves this problem by generating a binding let zij = eij for each i, j,

passing on <zij> to be used in place of <eij>. Overall, the generated code looks like:

. . .

let z(i−1)(j−1) = if . . . then z(i−2)(j−2)+ 1 else max z(i−2)(j−1) z(i−1)(j−2) in

let z(i−1)j = if . . . then z(i−2)(j−1)+ 1 else max z(i−2)j z(i−1)(j−1) in

let zi(j−1) = if . . . then z(i−1)(j−2)+ 1 else max z(i−1)(j−1) zi(j−2) in

let zij = if . . . then z(i−1)(j−1)+ 1 else max z(i−1)j zi(j−1) in

zij

For each i, j pair, the variable zij is bound to Equation (18), but with subterms eij
replaced by variable references. Thus, the right-hand side of the let has the same

size regardless of i, j. Because a let is generated only when memo-table lookup fails,

the eij is bound at most once for every i, j pair, ensuring the code size is polynomial.

Thus, monadic memoization is essential for generating code of acceptable quality.

But the generated code takes much more work to describe formally, as one

must predict and spell out the order of let bindings appearing in the generated

code. Fortunately, like with the power example, erasure makes such details largely

irrelevant, for it lets us get away with rather coarse characterizations of the generated

code.

6.1.3 Correctness proof

We now sketch the main parts of the correctness proof for LCS. We focus on the

harder CBV case and leave CBN as an exercise. We adopt the proof-by-normalization

approach, although careful reductions could also work. Let us assume Const has

unit, booleans, integers, tuples of integers, and arrays thereof with 0-based indices.

The symbol A stands for the set of all arrays (a subset of Const), σ ranges over

substitutions Var ⇀
fin

V 0, and e ⇓0 � means ∃n ∈ �. e ⇓0 n.
Despite all the complications introduced by monadic memoization, our strategy

remains the same as for power: check termination and apply the Erasure Theorem.

Just like with power, to show the termination of stlcs we track the invariant that

the generated code terminates under suitable substitutions. The difference is that

the set of variables that the “suitable substitution” has to cover grows as more let

bindings are generated.

The invariant is captured in two parts, one for the memo table and one for the

continuation. For the memo table, every key should be mapped to some <z>, where

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

32 J. Inoue and W. Taha

z should have an integer value under the substitution that will be in effect when the

generated code is run.

Definition 41. A good memo table is a T ∈ E0 such that for every i, j ∈ � and

every f, g ∈ V 0, either λUv � lookup T (i, j) f g = f <z> for some z or λUv �
lookup T (i, j) f g = g (). The set of all good memo tables is written G. A good

memo table T is covered by σ iff σ is a substitution such that for all of the z’s

we have z ∈ dom σ and σz ∈ �. The set of all good memo tables covered by σ is

written Gσ .

The continuation should then preserve termination under substitution, i.e., it

should map terminating code <‖e‖> to terminating code <‖t‖>. As a caveat, the

continuation will be invoked under lets, like the call to k in code listing (17), so the

termination of ‖e‖ must be assessed under substitutions that cover more variables

than were visible when the continuation was created. In the following definition,

σ′ ⊇ σ means σ′ is an extension of σ (i.e., dom σ′ ⊇ dom σ and σ′|dom σ = σ).

Definition 42. Let the set Kσ of all good continuations under σ consist of all k ∈ V 0

s.t. for any e, σ′ ⊇ σ, and T ∈ Gσ′ with σ′‖e‖ ⇓0 �, we have ∃t. k T <‖e‖> = <‖t‖>
and σ′‖t‖ ⇓0 �.

With these invariants, the following lemma can be proved: Given a memo table

and a continuation that respect these invariants, genlcs returns terminating code.

Lemma 43. Fix σ and T ∈ Gσ and i, j ∈ � and p, q ∈ Var, such that σp, σq ∈ A and

i < length(σp) ∧ j < length(σq). Then, ∀k ∈ Kσ. ∃e. σ‖e‖ ⇓0 � and

λUv � genlcs i j <p> <q> T k = <‖e‖>

Proof. Lexicographic induction on (i, j).

Now, we can prove the main theorem, the correctness of LCS.

Theorem 44. λUv � naive lcs ≈ λx.λy.λp.λq.stlcs x y p q

Proof. By extensionality and Lemma 38, it suffices to prove

naive lcs i j P Q ≈⇑ stlcs i j P Q

for every i, j, P , Q ∈ V 0. Here, we focus on the case where both sides converge,

that is,

i, j ∈ � and P ,Q ∈ A and i < length(P) ∧ j < length(Q)

leaving the less interesting cases to the thesis (Inoue, 2012). Under these assumptions,

stlcs i j P Q reduces to

! <fun p q -> (genlcs i j <p> <q> empty (fun s r -> r))> P Q (19)

Let σ = [P ,Q/p, q]. Then, it is easily seen that empty ∈ Gσ and (fun s r -> r) ∈
Kσ , so by Lemma 43, there exists a term ‖e‖ with σ ⇓0 � such that

(19) = ! <fun p q -> ~(<‖e‖>)> P Q

= σ‖e‖ ⇓0 �

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 33

We omit the proof that ‖stlcs i j P Q‖ ⇓0 �, since it involves no staging. Therefore,

by the Erasure Theorem (specifically Lemma 26),

stlcs i j P Q = ‖stlcs i j P Q‖ ≡ lcs i j P Q

One can show that lcs i j P Q = naive lcs i j P Q, so it follows that

naive lcs i j P Q = stlcs i j P Q

It’s worth noting how the argument let us ignore many details about the generated

code. We did track termination and type information, but we never specified what

the generated code looks like or what values it should compute. In fact, we were

blissfully ignorant of the fact that stlcs computes (the length of) the LCS. Erasure

thus decouples the reasoning about staging from the reasoning about return values,

just as we saw earlier in the power example.

In the thesis (Inoue, 2012), it is shown that the proof of naive lcs ≈ lcs is also

quite routine. The lack of surprise in this part of the proof is itself somewhat

noteworthy, because it demonstrates that despite the challenges of open-term

evaluation (Sections 3 and 5), the impact on correctness proofs is very limited,

especially when reasoning about closed, unstaged terms.

6.2 Higher order generators

In this section, we verify a higher order generator—one that takes another code

generator as a parameter. The key issue in this scenario is how to specify the

behavior of the generators that are passed in as parameters. To this end, we find

that proof by careful equalities (Section 4.5) has concrete advantages over proof by

normalization.

This section’s material is not covered in the thesis (Inoue, 2012). Proof details for

this section are given in Appendix A.3.

6.2.1 The code

The code we will analyze is the inlining fold function, which captures a very

common pattern in which guaranteed inlining can make a significant difference:

let rec fold f y xs = match xs with

| [] -> y

| x::xs -> fold f (f y x) xs

let stfold f =

! <let rec loop y xs = match xs with

| [] -> y

| x::xs -> loop ~(f <y> <x>) xs

in loop>

In this listing, fold is the usual left-fold function that reduces a list by a binary

operator f, in a left-associative manner with seed value y. The stfold function is a

staged variant that inlines the binary operator, assuming it is given as a generator

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

34 J. Inoue and W. Taha

that maps two code values to code. The unstaged and staged functions can be

invoked like:

fold (+) 0 [1;2;3] (* returns 6 *);;

stfold (fun x y -> <~x + ~y>) 0 [1;2;3] (* returns 6 *);;

which both sum together the given list. However, fold repeatedly invokes the binary

operator for every element whereas stfold generates a new loop that inlines the

operator, thereby avoiding repeated function calls. In the rest of this section, the

symbol f is reserved for the staged binary operator passed in as the first argument

to stfold.

6.2.2 Correctness proof for CBN

As always, the proof is simpler in CBN than in CBV, so we will present CBN first.

We assume Const contains integers and lists thereof. Pattern-matches on lists are

modeled similarly to if-then-else: we include a constant match, with the reduction

rules:

δ(match, []) = λg h.g []

δ(match, c::d) = λg h.h c d.

Then, the expression match xs with [] -> e1 | x::xs -> e2 is modeled by the

λU term match xs (λ . e1) (λx xs.e2). Ill-formed combinations like δ(match,1) are

undefined.

We need to be careful about what exactly correctness means for higher order

generators like stfold. It is not the case that ∀f, a, l ∈ Arg. stfold f a l ≈ fold f a l,

because stfold expects f to be a generator whereas fold expects f to be an

unstaged function. Intuitively, f is a part of the code that stfold generates, so

it must be erased together with stfold. The correct statement to aim for is thus

∀f, a, l ∈ Arg. stfold f a l ≈ fold ‖f‖ a l, where f must be a function mapping

two code values to a code value.

Proposition 45 (CBN correctness of stfold). In CBN, for any f ∈ E0 such that

∀x, y �∈ FV(f). ∃e. λUn � f 〈y〉 〈x〉 = 〈‖e‖〉, we have λUn � stfold f = fold ‖f‖.

Proof. Using the assumption f 〈y〉 〈x〉 = 〈‖e‖〉, we see directly that stfold f reduces

to an unstaged form, so the Erasure Theorem, specifically Lemma 21, applies. See

Appendix A.3.1 for details.

Example 46. Let f def≡ λx y.〈˜x+ ˜y〉. Then, f 〈y〉 〈x〉 = 〈y + x〉 which is of the form

〈‖e‖〉, so stfold f = fold ‖f‖, hence λUn � stfold f 0 = fold ‖f‖ 0 = sum, where

sum is a function that sums up all elements of a list.

6.2.3 Correctness proof for CBV using normalization

For CBV, the generated code must additionally terminate to constants under relevant

substitutions. In a proof by normalization, this additional condition can be ensured

by requiring f 〈y〉 〈x〉 to produce code that terminates to a constant, as long as

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 35

the y and x are substituted by constants drawn from the right domain. For a set

S ⊆ V 0, let e ⇓0 S mean ∃v ∈ S. e ⇓0 v.
Proposition 47 (CBV correctness of stfold by normalization). In CBV, let f ∈ V 0

and D ⊆ Const, and let D∗ def= {[c1,c2,...,cn] | c1, . . . , cn ∈ D, n ∈ �}. Assume that

∀x, y �∈ FV(f). ∃e. λUv � f 〈y〉 〈x〉 = 〈‖e‖〉 and, for the same e,

∀c, d ∈ D. λUv � ‖f‖ c d ⇓0 D ∧ [c, d/y, x]‖e‖ ⇓0 D (20)

Then, for any d ∈ D and l ∈ D∗, we have λUv � stfold f d l = fold ‖f‖ d l.

Proof. By the Erasure Theorem (specifically, Lemma 26) and some easy arguments,

the proof reduces to showing stfold f d l ⇓0 Const and ‖stfold f‖ d l ⇓0 Const.

Let l ≡ [c1,...,cn]. By induction on the length of l, the ‖f‖ c d ⇓0 D part of

assumption (20) gives a sequence of constants d1, . . . , dn ∈ D with

‖f‖ d c1 ⇓0 d1 ‖f‖ d1 c2 ⇓0 d2 ‖f‖ d2 c3 ⇓0 d3 . . . ‖f‖ dn−1 cn ⇓0 dn
and ‖stfold f‖ d l ⇓0 dn. Similarly, the [c, d/y, x]‖e‖ ⇓0 D part of assumption (20)

gives another sequence of constants (which need not be proved equal to the di’s),

such that stfold f d l terminates to the last of them. See Appendix A.3.2 for

details.

Example 48. Let f def≡ λx y.〈˜x+˜y〉. Then, λUv � f 〈y〉 〈x〉 = 〈y+ x〉, which is of the

form 〈‖e‖〉. Taking D
def= �, for every n, m ∈ �, we have ‖f‖ n m = n + m ⇓0 � and

[n, m/y, x]‖y + x‖ ≡ n+m ⇓0 �, so by Proposition 47, stfold f = fold ‖f‖. Hence,

stfold f 0 l = fold ‖f‖ 0 l = sum l in CBV, where l is a list of integers and sum is

a function that sums up all elements of a list.

Assumption (20) is essentially a type constraint saying that the binary operator f

is a first-order function mapping constants to constants. This constraint implicitly

gives a set of contexts that force return values to be of ground type (i.e., constants),

which is needed to invoke Lemma 26.

6.2.4 Correctness proof for CBV using careful equalities

Assumption (20) in Proposition 47 can be somewhat limiting. For example, it does

not cover the case where the binary operator f is itself higher order; for example, f

might be (a staged version of) function composition.

We can avoid this kind of restriction by specifying the behavior of f by careful

equalities instead. Careful equalities do not dictate the shape of return values, so

the statement of correctness becomes cleaner and more general. However, the proof

system of Proposition 30 falls short here, because f is invoked only once with a

fixed set of arguments whereas the code it produces is invoked multiple times—their

reductions simply do not align with each other. The proof must therefore consider

the staged and unstaged counterparts separately. Proposition 30 can be used instead

for checking the properties of f.

Proposition 49 (CBV correctness of stfold by careful equalities). Let f ∈ V 0 and

D ⊆ V 0, and assume that ∀x, y �∈ FV(f). ∃e. ∀u, v ∈ V 0. λUv⇓/[v, u/y, x] � f 〈y〉 〈x〉 =

〈‖e‖〉. Then, λUv � stfold f = fold ‖f‖.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

36 J. Inoue and W. Taha

Proof. By some arguments using extensionality (Proposition 36) and equivalence

of divergent terms (Lemma 38), it suffices to show ∀v0, l ∈ V 0. stfold f v0 l ≈⇑
‖stfold f‖ v0 l. For simplicity, assume l

def≡ [u1, . . . , un] and let us focus on the case

‖stfold f‖ v0 l ⇓0. By induction on the length of the input list l, we get a sequence

v1, . . . , vn ∈ V 0 such that

‖f‖ v0 u1 = v1 ‖f‖ v1 u2 = v2 ‖f‖ v2 u3 = v3 . . . ‖f‖ vn−1 un = vn

and ‖stfold f‖ v0 l = vn. Starting with vn and performing right-to-left rewrites using

the above equations, one can show that vn = stfold f v0 l. See Appendix A.3.3 for

details.

Example 50. A function that composes a list of functions can be written as

fold (◦) (λz.z), where (◦) def≡ λg h z.g(h z) is the composition operator. We’d

like to replace fold (◦) by stfold f, where f
def≡ λg h.〈λz.˜g (˜h z)〉, so as to inline

the composition operator. It is easy to see that λUv⇓/[v, u/y, x] � f 〈y〉 〈x〉 = 〈y (x z)〉
which is of the form 〈‖e‖〉, so by Proposition 49 we have stfold f (λz.z) =

fold f (λz.z).

Remark. Technically, this example applies only when composing lists of built-

in functions that can be modeled as constants, such as unary - or the partial

applications of + and * because lists are modeled as constants. (See Remark 1 about

how partially applied operators are viewed as constants.) This restriction can be

lifted either by Church-encoding lists or by adding constructors to λU , perhaps in

the style of Arbiser et al. (2006) if the addition of types is undesirable.

6.2.5 Comparison of proofs in CBV

As we have just seen, careful equalities can be better suited for higher order

generators than proof by normalization because the former gives a more natural

vocabulary for specifying the behavior of the generator coming in as input (f in

the case of stfold). Then, should we abandon proof by normalization and always

work with careful equalities? Not necessarily, as one can check in Appendices A.3.2

and A.3.3, once the restriction to first-order is in place, the details of the proof

can be much simpler in the normalization approach. Only when the restriction to

first-order is unacceptable do we need careful equalities.

Note that this limitation to first-order is not as grave as it may seem. If f can

be given a fixed type, the returned code can be applied to more arguments to force

ground-type return values. In Example 50, if the input list is known to contain only

functions of type int -> int, a correctness proof by normalization simply needs to

prove stfold f m l k = fold (◦) m l k, with an extra argument k ∈ �, so that the

return type is int. Moreover, higher orderness is itself an abstraction that ought to

be eliminated with staging, so practical generators tend to produce first-order code.

As a case in point, the code generation in Example 50 is barely beneficial in practice,

since performance gains from inlining (◦) are dwarfed by the costs of repeatedly

allocating the results of the inlined (◦).
An important class of generators that genuinely require higher order correctness

statements is staged interpreters for higher order languages (Brady & Hammond,

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 37

2006; Taha, 2008; Carette et al., 2009). When a programming language interpreter is

written in MetaOCaml and staged, the result is a translator—i.e., a compiler—from

the object language to OCaml. If the object language has higher order features, the

generated code may have to be higher order as well (though that can limit the gains

from staging). Hence, it is desirable to have an alternative correctness proof that

allows the generated code to be higher order. In the absence of such a functional

requirement, proof by normalization can be a sensible choice.

7 Related works

Taha (1999) first discovered λU , which showed that functional hygienic MSP admits

intensional equalities like β, even under brackets. The key was to drop intentional

analysis, or pattern-matching on the syntactic structure of code values. By contrast,

earlier systems that allowed intentional analysis were forced to have trivial equational

theories (Muller, 1992). However, Taha showed the mere existence of the theory and

did not explore how to use it for verification or investigate extensional equivalences.

Moreover, though Taha laid down the operational semantics of both CBV and CBN,

he gave an equational theory for only CBN and left the trickier CBV unaddressed.

Yang (2000) pioneered the use of an “annotation erasure theorem”, which stated

e ⇓0 〈‖t‖〉 =⇒ ‖t‖ ≈ ‖e‖. But there was a catch: The conclusion ‖t‖ ≈ ‖e‖ was

asserted in the unstaged base language, instead of the staged language. Translated to

our setting, the conclusion of the theorem was λ � ‖t‖ ≈ ‖e‖ and not λU � ‖t‖ ≈ ‖e‖.
In practical terms, this meant that the context of deployment of the staged code could

contain no further staging. Code generation must be done offline, and application

programs using the generated ‖t‖ must be written in a single-stage language, or

else no guarantee was made. This interferes with combining analyses of multiple

generators and precludes dynamic code generation by run (!). Yang also worked

with operational semantics and did not explore in depth how equational reasoning

interacts with erasure.

This paper can be seen as a confluence of these two lines of research: we complete

λU by giving a CBV theory with a comprehensive study of its peculiarities, and

adapt erasure to produce an equality in the staged language λU .

Berger & Tratt (2015) devised a Hoare-style program logic for the typed language

Mini-ML�e . They develop a promising foundation and prove strong properties about

it, such as relative completeness, but concrete verification tasks they consider concern

relatively simple programs. Mini-ML�e also prohibits manipulating open terms, so

it does not capture the difficulty of reasoning about free variables, which is one

of the main challenges we face up to. Insights gained from λU should help extend

such logics to more expressive languages, and our proof techniques will be a good

toolbox to lay on top of them.

An interesting line of work that mitigates the expressivity problems in Mini-ML�e
yet successfully avoids issues with open terms is contextual modal type theory

(Nanevski et al., 2008). Its application to MSP offers a staging construct which,

through typing, restricts code values to closed terms of a form that roughly translates

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

38 J. Inoue and W. Taha

to

λx1. . . . λxn. 〈[˜x1, . . . , ˜xn/x1, . . . , xn]e
0〉

in λU notation. That is, code values must be closed, and any references to level-

1 (or higher) free variables must be expressed via reference to escaped level-0

variables. The resulting closure is applied to terms like 〈x〉, replacing the escaped

level-0 variables by level-1 variables. (Strictly speaking, both the abstraction and the

application to 〈x〉 use custom constructs, so the open term 〈x〉 is never explicitly

constructed as a first-class value.) We expect the Erasure Theorem to still apply

to this setting and be augmented with cleaner characterizations of observational

equivalence than those developed in this paper.

For MSP with variable capture, Choi et al. (2011) proposed an alternative

approach with different trade-offs than ours. They provide an “unstaging” translation

of staging annotations into environment-passing code. Their translation is semantics-

preserving with no proof obligations but leaves an unstaged program that is

complicated by environment-passing, whereas our erasure approach leaves a simpler

unstaged program at the expense of additional proof obligations. Their approach

also has the advantage that the target language of the translation has no staging,

so reasoning principles need not be ported to that setting—provided that, like with

Yang’s results, the context of deployment contains no further staging. It will be

interesting to see how these approaches compare in practice or if they can be

usefully combined, but, for the moment, they seem to fill different niches.

There is a wealth of publications on representing free variables and binding

structures, often with the goal of supporting syntactic transformations and/or

mechanized reasoning (Gabbay & Pitts, 2001; Aydemir et al., 2008; Licata et al.,

2008; Pouillard & Pottier, 2010). The nominal (Gabbay & Pitts, 2001) and definitional

variation (Licata et al., 2008) approaches in particular provide deep insights into

the mathematical properties of binding and scope. While the present paper gives

only an operational intuition as to the cause of pathologies relating to open-term

manipulation (see Section 3), these more developed theories of binding may be able

to provide more formal, mathematical explanations.

Applicative bisimulation has been studied extensively as a characterization of

observational equivalence in the plain λ calculus and its variants (Abramsky,

1990; Howe, 1996; Gordon, 1999), which made it a natural starting point in our

investigation. However, more advanced flavors of bisimulation exist, offering greater

flexibility and lighter proof obligations. Small bisimulations (Koutavas & Wand,

2006) and environmental bisimulations (Sangiorgi et al., 2011) do not directly relate

terms but more abstract states that can track contextual information, allowing

the handling of effects. It will be interesting to see how they can be adapted to the

multi-stage setting. Up-to techniques are often indispensable in simplifying the proof

obligations for establishing bisimilarity between concrete terms (Pous & Sangiorgi,

2011). Our Definition 32 builds in reasoning up-to observational equivalence, which

can be seen as a reformulation of bisimulation-up-to-bisimilarity (Milner, 1989) with

the understanding that bisimilarity coincides with observational equivalence. This

enhancement simplified the proof of extensionality (Proposition 36).

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 39

There are also other characterizations of observational equivalence. The CIU

Theorem (Mason & Talcott, 1991) states that terms are observationally equivalent

iff all of their closed instances equiterminate under arbitrary evaluation contexts.

The Context Lemma (Milner, 1977; Jim & Meyer, 1996) states, in a typed setting,

that closed terms of some type τ are equivalent exactly when they cannot be

distinguished by the elimination forms for the type τ. Both approaches reduce the

set of contexts that must be considered and are arguably simpler than bisimulation.

As a result, Mason and Talcott observe that the proofs tend to be simpler (Mason

& Talcott, 1991). We have not investigated how these techniques can be adapted

to λU .

8 Conclusion and future work

We have addressed three basic concerns for verifying staged programs. First, we

showed that staging is a non-conservative extension because reasoning under

substitutions is unsound in a multi-stage language, even if we are dealing with

unstaged terms. Despite this drawback, untyped functional MSP has a rich set of

useful properties. Second, we proved that simple termination conditions guarantee

that erasure preserves semantics, which reduces the problem of proving the irrel-

evance of annotations on a program’s semantics to the better studied problem of

proving termination. Finally, we showed a sound and complete notion of applicative

bisimulation in this setting, which allows us to reason under substitution in some

cases. In particular, the shocking lack of βx in λUv is of limited practical relevance as

we have Cβx instead, which covers βx completely when we are dealing with closed,

erased terms.

These results yield important insights into the semantics of hygienic MSP. The

Erasure Theorem gives intuitions on what staging annotations can or cannot do, with

which we may educate the novice multi-stage programmer. Applicative bisimulation

adapts in a natural manner and the familiar notion of function extensionality

carries over. The key difference from single-stage languages is the behavior of free

variables, which greatly affect the formulation of bisimulation. However, the notion

of bisimulation that we formulated in light of this difference is sound and complete,

suggesting that free variables’ behavior is the only essential difference between λU

and λ. This broad set of insights has brought us to a level where the correctness

proof of a sophisticated generator like LCS is easily within reach, as are similar

proofs for higher order generators.

This work may be extended in several interesting directions. We have specifically

identified some open questions about λU: Which type systems, if any, allow reasoning

under substitutions? Is λU conservative over the plain λ calculus for closed terms?

Can the extensionality principle be strengthened to require equivalence for only

closed-term arguments? What is a sensible notion of partial erasure, and is it useful

for stating and proving correctness of higher order generators? Answering these

questions will strengthen our understanding of staging even further.

In this paper, we pointed out that λU is not conservative in the sense that

not all observationally equivalent terms in the standard CBN and CBV λ calculi

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

40 J. Inoue and W. Taha

(Plotkin, 1975) remain equivalent in λU . However, a major theme in this paper is

that λU nonetheless conserves useful reasoning principles. The β/βv equality with

confluence, βx, extensionality, and sound and complete applicative bisimulation all

carry over, albeit with some changes, from the standard λ calculi. For β/βv, we have

also established that the changes—namely, level restrictions—cannot be reduced any

further. For applicative bisimulation, its completeness suggests that the modifications

from the plain λ calculus are minimal. It will be very interesting to explore if other

reasoning principles, like recursion induction (McCarthy, 1963), carry over, and how

much modification is strictly necessary.

It will also be interesting to investigate which of the more advanced alternatives to

applicative bisimulation (Milner, 1977; Mason & Talcott, 1991; Koutavas & Wand,

2006; Sangiorgi et al., 2011) can be adapted to the multi-stage setting. Many of

them have had success in handling effects, so they may make imperative hygienic

MSP languages (Westbrook et al., 2010; Kameyama et al., 2011; Rompf & Odersky,

2012) susceptible to analysis. However, like with applicative bisimulation, it seems

common practice in these techniques to assume that only closed instances of terms

matter. Koutavas and Wand, for instance, start by ruling out open terms in the

states being compared. Thus, these techniques will probably need similar treatment

to applicative bisimulation in order to track substitutions. Perhaps, environmental

bisimulation can capture them with little modification, using its existing machinery

for tracking contextual information.

As a caveat, the Erasure Theorem does not apply as-is to imperative lan-

guages, since modifying evaluation strategies can commute the order of effects.

Two mechanisms will be key in studying erasure for imperative languages—one for

tracking which effects are commuted with which, and another for tracking mutual

(in)dependence of effects, perhaps separation logic (Reynolds, 2002) for the latter.

In any case, investigation of imperative hygienic MSP may have to wait until

the foundation matures, as noted in the introduction. Adapting erasure and other

techniques to lightweight modular staging (Rompf & Odersky, 2012), like we noted

in the introduction, will need further development. The additional challenge there is

to cope with the flexibility in the semantics that can be attached to the object code.

It may require the host language semantics to be able to mix different semantics, so

that the erasure makes sense.

Devising a mechanized program logic would also be an excellent goal. Berger and

Tratt’s program logic (2015) may be a good starting point, although whether to go

with Hoare logic or to recast it in equational style is an interesting design question. A

mechanized program logic may let us automate the particularly MSP-specific proof

step of showing that erasure preserves semantics. The Erasure Theorem reduces this

problem to essentially termination checks, and we can probably capitalize on recent

advances in automated termination analysis, for example, those of Heizmann et al.

(2010).

Finally, this work focused on functional (input–output) correctness of staged

code, but quantifying performance benefits is also an important concern for a

staged program. It will be interesting to see how we can quantify the performance

of a staged program through formalisms like improvement theory (Sands, 1998).

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 41

Acknowledgments

We would like to thank Gregory Malecha, Edwin Westbrook, and Mathias Ricken for

their input on the technical content of this paper. The higher order generator example

was motivated by discussions with Yasuhiko Minamide and Yukiyoshi Kameyama.

We are grateful to Veronica Gaspez, Bertil Svensson, and the anonymous reviewers

for their feedback. The first author has received significant guidance and supervision

from Robert Cartwright, Vivek Sarkar, and Marcia O’Malley, who, together with

the second author, constituted the first author’s doctoral thesis committee. We thank

Carol Sonenklar, Ray Hardesty, and Mark Stephens for their input on the writing.

References

Abramsky, S. (1990) The lazy lambda calculus. In Research Topics in Functional Programming,

Turner, D. A. (ed). Addison-Wesley, pp. 65–116.

Arbiser, A., Miquel, A. & Rı́os, A. (2006) A lambda-calculus with constructors. In Proceedings

of Term Rewriting and Applications, 17th International Conference. LNCS, vol. 4098.

Springer Berlin Heidelberg, pp. 181–196.

Aydemir, B., Charguéraud, A., Pierce, B. C., Pollack, R. & Weirich, S. (2008) Engineering

formal metatheory. SIGPLAN Not. 43(1), 3–15.

Barendregt, H. P. (1984) The Lambda Calculus: Its Syntax and Semantics. Studies in Logic

and The Foundations of Mathematics. Amsterdam, New York, Oxford: North-Holland

Publishing Company.

Benaissa, Z. El-abidine, Moggi, E., Taha, W. & Sheard, T. (1999) Logical modalities and

multi-stage programming. In Federated Logic Conference (FLoC) Satellite Workshop on

Intuitionistic Modal Logics and Applications (IMLA).

Berger, M. & Tratt, L. (2015) Program logics for homogeneous generative run-time meta-

programming. Log. Meth. Comput. Sci. 11(1), 1–50.

Bondorf, A. (1992) Improving binding times without explicit CPS-conversion. In Proceedings

of the 1992 ACM Conference on LISP and Functional Programming. New York, NY,

USA: ACM, pp. 1–10.

Brady, E. & Hammond, K. (2006) A verified staged interpreter is a verified compiler. In

Proceedings of Generative Programming and Component Engineering, 5th International

Conference (GPCE). New York, NY, USA: ACM, pp. 111–120.

Carette, J. & Kiselyov, O. (2011) Multi-stage programming with functors and monads:

Eliminating abstraction overhead from generic code. Sci. Comput. Program. 76(5), 349–375.

Carette, J., Kiselyov, O. & Shan, C.-C. (2009) Finally tagless, partially evaluated: Tagless

staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–543.

Choi, W., Aktemur, B., Yi, K. & Tatsuta, M. (2011) Static analysis of multi-staged programs

via unstaging translation. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL). New York, NY, USA: ACM, pp. 81–92.

Cohen, A., Donadio, S., Garzaran, M.-J., Herrmann, C., Kiselyov, O. & Padua, D. (2006) In

search of a program generator to implement generic transformations for high-performance

computing. Sci. Comput. Program. 62(1), 25–46.

Dybvig, R. K. (1992) Writing Hygienic Macros in Scheme with Syntax-Case. Technical Reports

TR356. Indiana University Computer Science Department.

Gabbay, J. M. & Pitts, M. A. (2001) A new approach to abstract syntax with variable binding.

Formal Asp. Comput. 13(3), 341–363.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

42 J. Inoue and W. Taha

Gordon, A. D. (1999) Bisimilarity as a theory of functional programming. Theor. Comput.

Sci. 228(1–2), 5–47.

Heizmann, M., Jones, N. D. & Podelski, A. (2010) Size-change termination and transition

invariants. In Proceedings of Static Analysis - 17th International Symposium (SAS). LNCS,

vol. 6337. Springer Berlin Heidelberg, pp. 22–50.

Herrmann, C. A., & Langhammer, T. (2006) Combining partial evaluation and staged

interpretation in the implementation of domain-specific languages. Sci. Comput. Program.

62(1), 47–65.

Howe, D. J. (1996) Proving congruence of bisimulation in functional programming languages.

Inf. Comput. 124(2), 103–112.

Inoue, J. (2012) Reasoning about Multi-Stage Programs. Ph.D. thesis, Rice University.

Inoue, J. & Taha, W. (2012) Reasoning about multi-stage programs. In Proceedings of the

21st European Symposium on Programming (ESOP). LNCS, vol. 7211. Springer Berlin

Heidelberg, pp. 357–376.

Intrigila, B. & Statman, R. (2009) The omega rule is Π1
1-complete in the λβ-calculus. Log.

Meth. Comput. Sci. 5(2), 1–21.

Jim, T. & Meyer, A. R. (1996) Full abstraction and the context lemma. SIAM J. Comput.

25(3), 663–696.

Kameyama, Y., Kiselyov, O. & Shan, C.-C. (2011) Shifting the stage - staging with delimited

control. J. Funct. Program. 21(6), 617–662.

Kameyama, Y., Kiselyov, O. & Shan, C.-C. (2015) Combinators for impure yet hygienic code

generation. Sci. Comput. Program. 112(P2), 120–144.

Kim, Ik-S., Yi, K. & Calcagno, C. (2006) A polymorphic modal type system for LISP-like

multi-staged languages. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL). New York, NY, USA: ACM, pp. 257–

268.

Kiselyov, O. & Taha, W. (2005) Relating FFTW and split-radix. In Proceedings of Embedded

Software and Systems, First International Conference (ICESS). LNCS, vol. 3605. Springer

Berlin Heidelberg, pp. 488–493.

Koutavas, V. & Wand, M. (2006) Small bisimulations for reasoning about higher-order

imperative programs. In Proceedings of 2006 ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-Based Program Manipulation. New York, NY, USA: ACM,

pp. 141–152.

Licata, D. R., Zeilberger, N. & Harper, R. (2008) Focusing on binding and computation. In

Proceedings of the 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

LICS ’08. Washington, DC, USA: IEEE Computer Society, pp. 241–252.

Mason, I. & Talcott, C. (1991) Equivalence in functional languages with effects. J. Funct.

Program. 1(7), 287–327.

McCarthy, J. (1963) A basis for a mathematical theory of computation. In Computer

Programming and Formal Systems, Braffort, P. & Hirschberg, D. (eds). North-Holland,

pp. 33–70.

McCusker, G. (2003) On the semantics of the bad-variable constructor in Algol-like languages.

Electron. notes Theor. Comput. Sci. 83, 169–186.

Milner, R. (1977) Fully abstract models of the typed lambda-calculus. Theor. Comput. Sci.

4(1), 1–22.

Milner, R. (1989) Communication and Concurrency. Prentice-Hall.

Mitchell, J. C. (1993) On abstraction and the expressive power of programming languages.

Sci. Comput. Program. 21(2), 141–163.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 43

Muller, R. (1992) M-LISP: A representation-independent dialect of LISP with reduction

semantics. ACM Trans. Program. Lang. Syst. 14(4), 589–616.

Nanevski, A., Pfenning, F. & Pientka, B. (2008) Contextual modal type theory. ACM Trans.

Comput. Logic 9(3), 23:1–23:49.

Plotkin, G. D. (1974) The λ-calculus is ω-incomplete. J. Symb. Logic 39(2), 313–317.

Plotkin, G. D. (1975) Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci. 1(2),

125–159.

Pouillard, N. & Pottier, F. (2010) A fresh look at programming with names and binders.

In Proceedings of the 15th ACM Sigplan International Conference on Functional

Programming. ICFP ’10. New York, NY, USA: ACM, pp. 217–228.

Pous, D. & Sangiorgi, D. (2011) Enhancements of the bisimulation proof method. In Advanced

Topics in Bisimulation and Coinduction, Sangiorgi, D. & Rutten, J. (eds). Cambridge

University Press. Cambridge Books Online, pp. 233–289.

Reynolds, J. C. (2002) Separation logic: A logic for shared mutable data structures.

In Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS).

Washington, DC, USA: IEEE Computer Society, pp. 55–74.

Riecke, J. G. & Subrahmanyam, R. (1994) Extensions to type systems can preserve operational

equivalences. In Proceedings of Theoretical Aspects of Computer Software (TACS). LNCS,

vol. 789. Springer Berlin Heidelberg, pp. 76–95.

Rompf, T. & Odersky, M. (2012) Lightweight modular staging: A pragmatic approach to

runtime code generation and compiled DSLs. Commun. ACM 55(6), 121–130.

Sands, D. (1998) Improvement theory and its applications. In Higher Order Operational

Techniques in Semantics, Gordon, A. D. & Pitts, A. M. (eds). Cambridge University Press,

pp. 275–306.

Sangiorgi, D., Kobayashi, N. & Sumii, E. (2011) Environmental bisimulations for higher-order

languages. ACM Trans. Program. Lang. Syst. 33(1), 5:1–5:69.

Swadi, K., Taha, W., Kiselyov, O. & Pašalić, E. (2006) A monadic approach for avoiding code

duplication when staging memoized functions. In Proceedings of Symposium on Partial

Evaluation and Semantics-based Program Manipulation (PEPM). New York, NY, USA:

ACM, pp. 160–169.

Taha, W. (1999) Multistage Programming: Its Theory and Applications. Ph.D. thesis, Oregon

Graduate Institute.

Taha, W. (2008) A gentle introduction to multi-stage programming, part II. In Proceedings of

Generative and Transformational Techniques in Software Engineering II. LNCS, vol. 5235.

Springer Berlin Heidelberg, pp. 260–290.

Taha, W. & Nielsen, M. F. (2003) Environment classifiers. In Proceedings of the 30th

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). New

York, NY, USA: ACM, pp. 26–37.

Takahashi, M. (1995) Parallel reductions in lambda-calculus. Inf. Comput. 118(1), 120–127.

Tsukada, T. & Igarashi, A. (2010) A logical foundation for environment classifiers. Log. Meth.

Comput. Sci. 6(4), 1–43.

Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T. & Taha, W. (2010) Mint: Java multi-

stage programming using weak separability. In Proceedings of the 31st ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI). New York,

NY, USA: ACM, pp. 400–411.

Yang, Z. (2000) Reasoning About Code-Generation in Two-Level Languages. Technical Report

RS-00-46. BRICS.

Yuse, Y., & Igarashi, A. (2006) A modal type system for multi-level generating extensions

with persistent code. In Proceedings of the 8th ACM SIGPLAN International Conference

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

44 J. Inoue and W. Taha

on Principles and Practice of Declarative Programming (PPDP). New York, NY, USA:

ACM, pp. 201–212.

Appendix A. Proofs

This appendix includes formalizations of claims and proofs of theorems that were

omitted from the main text. The proofs are kept brief, just enough to get the idea

across. For complete details, see the thesis (Inoue, 2012).

A.1 Equivalence of open- and closed-term observations

In this section, we prove that Definition 6 (observational equivalence) is equivalent

to the stratified definition with non-closing contexts used by Taha (1999). We recall

Taha’s definition first. We will ignore constants throughout this section, but adding

them is straightforward.

Definition 51 (Stratified, non-closing observational equivalence). For each �, define

e ≈� t iff e, t ∈ E� and for every C such that C[e], C[t] ∈ E0, we have C[e] ⇓0⇐⇒
C[t] ⇓0.

The idea behind the proof is that observation of open terms can be recast as

observation of closed terms. In CBV, the machinery to do this recasting is λU ’s

ability to force evaluations of open terms within programs (which are closed by

definition). In CBN, the machinery does not rely on staging and requires a lemma

that also holds in the plain λ calculus.

Lemma 52. Let σ, σ′ : Var ⇀
fin
{t ∈ E0 : t ⇑0} be substitutions that substitute only

divergent level-0 terms. Then, σe ⇓�⇐⇒ σ′e ⇓� for any �, e.

Proof. By symmetry, proving σe ⇓�=⇒ σ′e ⇓� will suffice. The proof proceeds by

induction on the number of steps that σe takes to terminate, using a technical lemma

to classify the shape of σe. See the thesis for details.

Remark. Note that it need not be the case that dom σ ⊇ FV(e).

Proposition 53. (≈) =
⋃

�(≈�).

Proof. Suppose (e, t) ∈
⋃

�(≈�). Then, for some �, we have e, t ∈ E� and e ≈� t.

Then, every context C with C[e], C[t] ∈ Prog also satisfies C[e], C[t] ∈ E0, so C[e]

and C[t] equi-terminate. Therefore, e ≈ t, which shows
⋃

�(≈�) ⊆ (≈).

For the converse, suppose e �≈� t. Then, for some C we have C[e], C[t] ∈ E0 but

C[e] and C[t] do not equiterminate. Recalling that we are omitting the treatment of

constants, without loss of generality we have C[e] ⇑0 but C[t] ⇓0. Let λxi denote a

sequence of λ’s that bind all free variables in C[e] and C[t].

In CBV, let e1; e2 denote sequencing, which checks that e1 terminates, discarding

the return value, and then evaluates e2. Sequencing is just syntactic sugar for

(λ .e2) e1 in CBV. Then, the context C ′ def≡ 〈λxi .˜(C; 〈0〉)〉 satisfies C ′[e], C ′[t] ∈ Prog,

yet C ′[e] ⇑0 and C ′[t] ⇓0, so λUv � e �≈ t.

In CBN, let Ω be a closed, divergent level-0 term. Then, C ′ def≡ (λxi .C) Ω is a

program context for e and t, where there are as many copies of Ω as there are

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 45

variables in xi . Now, C[e] ⇑0⇐⇒ C ′[e] ⇑0 and C[t] ⇓0⇐⇒ C ′[t] ⇓0 by Lemma 52

and SS-β, so λUn � e �≈ t.

A.2 Soundness and completeness of applicative bisimulation

This section explains the proof of Theorem 35. We basically just adapt Howe’s

method (1996), but the details are complicated by the inconsistent handling of

substitutions in λU ’s bisimulation. Definition 34 says that terms must be compared

under all substitutions, yet Definition 32, for (λx.e) R0
† (λx.t), says that only the

substitutions that eliminate x should matter. When we try to prove Theorem 35

by coinduction, we find that Definition 32 refers not to the bisimulation whose

definition it is a part of, but to a different bisimulation that holds only under

substitutions that eliminate x, undermining the coinduction. To solve this problem,

we recast bisimulation to a family of relations indexed by a set of variables to be

eliminated, so that the analogue of Definition 32 can refer to a different member of

the family. Theorem 35 is then proved by mutual coinduction.

A.2.1 Overview

We first review Howe’s method for single-stage calculi and motivate the change

that we made in adapting it to λU , focusing on CBV. Howe shows that bisimilarity

(∼), the union of all bisimulations, is a non-trivial congruence, whence (∼) = (≈).

The hardest part is showing that (∼) respects contexts, i.e., e ∼ t =⇒ C[e] ∼ C[t].

For this step, Howe defines an auxiliary relation e ∼̂ t, the precongruence candidate,

which holds iff e can be transformed into t by one bottom-up pass of replacing

successively larger subterms e′ of e by some t′ such that e′ ∼ t′. Formally, this

relation is defined along the following lines:

x ∼ t

x ∼̂ t

c ∼ t

c ∼̂ t

e ∼̂ s λx.s ∼ t

λx.e ∼̂ t

e1 ∼̂ s1 e2 ∼̂ s2 s1 s2 ∼ t

e1 e2 ∼̂ t etc.

where s ranges over E. Clearly, (∼) ⊆ (∼̂) holds and (∼̂) respects contexts. Howe

shows that (∼̂) is also a bisimulation and concludes that (∼̂) = (∼) because (∼)

contains all bisimulations. Therefore, (∼) respects contexts.

If we try to apply this idea to λU directly, we get stuck in the proof that (∼̂) is a

bisimulation. Concretely, we cannot seem to prove

∀e, t ∈ E0. λx.e ∼̂0
† λx.t =⇒ λx.e ∼̂ λx.t (A 1)

Implication (A 1) arises as a subgoal in an inductive proof that e′ ∼̂ t′ and e′ ⇓� u

imply t′ ⇓� v and u ∼̂�
† v, where � = max(lv e, lv t). The induction is on the number

of steps e′ takes to terminate. Recall that we are focusing on CBV and consider the

case

• � = 0,

• e′ ≡ (λy.e1) e2 ∧ t′ ≡ (λy.t1) t2, and

• e2 ⇓0 λx.e ∧ t2 ⇓0 λx.t.

By inductive hypothesis, we get λx.e ∼̂0
† λx.t, the antecedent of implication (A 1).

We would like to show [λx.e/y]e1 ∼̂ [λx.t/y]t1 holds: Because [λx.e/y]e1 terminates

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

46 J. Inoue and W. Taha

in fewer steps than (λy.e1) e2, the inductive hypothesis would immediately show that

[λx.t/y]t1 terminates to a suitable value. However, showing [λx.e/y]e1 ∼̂ [λx.t/y]t1
for general e1 and t1 entails showing λx.e ∼̂ λx.t, leaving us with the goal (A 1).

Unfortunately, trying to prove assertion (A 1) directly seems rather hopeless

because it involves showing a kind of function extensionality result that we want to

show using bisimulation (cf. Proposition 36) and not the other way around. More

specifically, the antecedent of formula (A 1) is equivalent to ∀a. [a/x]e ∼̂ [a/x]t, but

this cannot imply e ∼̂ t if we are to have (∼̂) = (∼) = (≈), since reasoning about

(≈) under substitutions is unsound. Thus, our only chance of proving assertion

(A 1) is to somehow show λx.e ∼̂ λx.t directly on the basis of ∀a. [a/x]e ∼̂ [a/x]t,

which is just function extensionality. Defining R0
† to compare function bodies under

substitutions was a vital provision for specific applications like Proposition 36 and

for making bisimulation complete with respect to (≈) in general; however, in the

soundness proof it comes up as a significant roadblock.

In Howe’s setting, which prohibits open-term evaluation, this problem does not

arise because everything is compared under closing substitutions. He defines e′ ∼̂ t′

on open terms to hold iff σe′ and σt′ satisfy certain conditions for every closing

σ, so the conditional assertion ∀a. [a/x]e ∼̂ [a/x]t that only assures (∼̂) under

[a/x] coincides with e ∼̂ t. In such a setting, defining λx.e ∼̂† λx.t as e ∼̂ t works

fine, making Equation (A 1) trivial, whereas in λU this is unsatisfactory because

(∀a. [a/x]e ≈ [a/x]t) �=⇒ e ≈ t.

To solve this problem, we generalize bisimilarity to a family of relations e ∼X t

indexed by a set of variables X, which hold iff σe ∼ σt under all substitutions

σ : Var ⇀
fin

Arg with dom σ ⊇ X. As explained in Section 5.1, this has the effect

that in CBV we can assume the variables in X to have been substituted with

values, though in CBN it has no effect. Then, relations under experiment are refined,

essentially, to λx.e ∼̂0
† λx.t⇐⇒ e ∼̂{x} t, and λx.e ∼̂X λx.t is refined to

e0 ∼̂X s λx.s ∼X\{x} t

λx.e0 ∼̂X\{x} t

Then, the family (∼̂X) respects contexts with diminishing indices, i.e., e ∼̂X t =⇒
∀C. ∃Y ⊆ X. C[e] ∼̂Y C[t]. In particular, λx.e ∼̂0

† λx.t⇐⇒ e ∼̂{x} t =⇒ λx.e ∼̂� λx.t,

so we have an analogue of assertion (A 1) with indices added. With this modification,

the rest of the proof goes smoothly.

A.2.2 The proof

We now move on to a formal presentation of the proof. The following applies to

both CBV and CBN. To simplify the proof, we will mostly use observational order

rather than observational equivalence.

Definition 54 (Observational order). Define e � t iff for every C such that C[e], C[t] ∈
Prog, C[e] ⇓0=⇒ C[t] ⇓0 holds and whenever C[e] terminates to a constant, then

C[t] terminates to the same constant.

Remark. Note (≈) = (�) ∩ (�).

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 47

Notation. A sequence or family of mathematical objects xi indexed by a set I is

written xi
i∈I . The superscript binds the index variable i. The superscript may be

abbreviated like xi
i or omitted if the intention is clear. Let X,Y range over ℘finVar,

the set of all finite subsets of Var. Let RX denote a family of relations RX indexed

by X ∈ ℘finVar. Union, inclusion, and other operators between families work point-

wise, e.g., RX ⊆ SX denotes ∀X. RX ⊆ SX . Let the signature σ : X|Var ⇀
fin

Arg mean

that σ : Var ⇀
fin

Arg and dom σ ⊇ X, i.e., σ substitutes for at least the variables in X.

For a relation R, let R−1 denote {(e, t) | tRe}.

Definition 55 (Indexed relation under experiment). Given a family of relations RX
X

with RX ⊆ E × E for each X, define {RX }�⊆ V� × V� for each level � by

c {RX }0 c

e0 R{x} t
0

(λx.e0) {RX }0 (λx.t0)

e0 R� t0

〈e0〉 {RX }0 〈t0〉
u�+1 R� v�+1

u�+1 {RX }�+1
v�+1

Definition 56 (Indexed applicative bisimilarity). Given a family of relations RX
X
,

define a family of relations [R]X
X

by

e [R]Xt
def⇐⇒ ∀σ : X|Var ⇀

fin
Arg. let � = max(lv e, lv t) in

(σe ⇓�=⇒ σt ⇓�) ∧ (σe ⇓� u ∧ σt ⇓� v =⇒ u {RX }� v)

(A 2)

Indexed applicative similarity (�X) is the largest family of relations such that (�X) =

[�]X , i.e., it is defined by replacing R by � in Equation (A 2) and reading the result

coinductively. Indexed applicative bisimilarity (∼X) is the largest family of relations

such that (∼X) = [∼]X
X ∩ [(∼)−1]X

−1
X

, i.e., it is defined coinductively by

e ∼X t
def⇐⇒ ∀σ : X|Var ⇀

fin
Arg. let � = max(lv e, lv t) in

(σe ⇓�⇐⇒ σt ⇓�) ∧ (σe ⇓� u ∧ σt ⇓� v =⇒ u {(∼X)}� v)

which is just Equation (A 2) with the first =⇒ replaced by ⇐⇒ and R replaced

by ∼.

The following proposition shows that indexed applicative bisimilarity agrees with

the simpler notion of indexed applicative mutual similarity, which is the symmetric

reduction of (�X). We will use these notions interchangeably.

Proposition 57. If (∼′X) def= (�X) ∩ (X), then (∼X) = (∼′X).

Proof. Follows straightforwardly from the fact that small-step evaluation is deter-

ministic in λU .

As discussed above, the main idea is that indexed applicative bisimilarity should

be a re-definition of observational equivalence. However, indexed applicative bisim-

ilarity coincides not with observational equivalence but an indexed variant thereof.

At each index X, the relation (�X) asserts (�) under substitutions whose domains

contain X. Then, whereas Howe proved (�) ⊆ (�), we prove (�X) ⊆ (�X).

Definition 58 (Indexed observational order and equivalence). Define e ≈X t
def⇐⇒

∀σ : X|Var ⇀
fin

Arg. σe ≈ σt and e �X t
def⇐⇒ ∀σ : X|Var ⇀

fin
Arg. σe � σt.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

48 J. Inoue and W. Taha

Definition 59 (Term constructor). Let τ range over multi-contexts (contexts with

zero or more distinguishable holes) of the forms x, c, (λx.•1), (•1 •2), 〈•1〉, ˜•1, and

! •1. The two holes in •1 •2 can be plugged by different expressions.

Using the notation for sequences and families, we write τei
i∈I with I ∈ {�, {1},

{1, 2}} for a term that is formed by plugging the holes of τ with immediate subterms

ei . For example, if τ ≡ •1 •2, then τei
i∈{1,2} ≡ e1 e2.

To prove (�X) = (�X), we show mutual containment. The harder direction

(�X) ⊆ (�X), i.e., soundness of indexed bisimilarity, derives from the fact that (�X)

is context-respecting, in the following adapted sense.

Definition 60. An indexed family of relations RX respects contexts with diminishing

indices iff we have ∀i. eiRXti =⇒ (τ ei)RY (τ ti), where Y = X \ {x} if τ ei ≡ λx.e0

and Y = X otherwise.

Theorem 61 (Soundness of indexed applicative bisimulation). (�X) ⊆ (�X), therefore

(∼X) ⊆ (≈X).

Proof. We will show below that (�̂X) respects contexts with diminishing indices.

Suppose e �X t. Then, for any σ : X|Var ⇀
fin

and any C such that C[σe], C[σt] ∈ Prog,

we have

σe �� σt by inspection of Definition 56

C[σe] �� C[σt] by context-respecting property

C[σe] ⇓0=⇒ C[σt] ⇓0
and ∀c. C[σe] ⇓0 c =⇒ C[σt] ⇓0 c

}
because (�X) = [�]X

so

σe � σt because C was arbitrary

e �X t because σ was arbitrary

Therefore, (�X) ⊆ (�X) and (∼X) = (X) ∩ (�X) ⊆ (�X) ∩ (�X) = (≈X).

To prove that (�X) respects contexts with diminishing indices, Howe’s precongru-

ence candidate is modified for indexed relations as follows.

Definition 62 (Indexed precongruence candidate). Given a family of relations RX ,

define the indexed precongruence candidate R̂X by the following rules. The base cases

are when τ is of the form x or c.

τ �≡ (λx.•1) ∀i. ei R̂X si τsi RX t

τei R̂X t

e0 R̂X s (λx.s) RX\{x} t

(λx.e0) R̂X\{x} t

Proposition 63, proposition 64 (iv), and Lemma 65 below imply (�̂X) = (�X),

so by proposition 64 (ii), it follows that (�X) respects contexts with diminishing

indices.

Proposition 63. Indexed applicative similarity is a monotonic family of

precongruences:

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 49

i. (�X) is reflexive for every X.

ii. (�X) is transitive for every X.

iii. (�X) is monotonic in X (i.e., X ⊆ Y =⇒ (�X) ⊆ (�Y)).

Proof. The proofs for i. and ii. are adapted from Howe (1996).

i. Define (≡X) to be syntactic equality for every X. Clearly, (≡X) ⊆ [≡X], so

by coinduction (≡X) ⊆ (�X) in the product lattice
∏

X ℘(E × E). Therefore,

∀X. (≡) ⊆ (�X).

ii. Define R ◦S def= {(e, t) : ∃d. eRdSt}. Take any triple e, d, t such that e �X d �X t,

and let σ : X|Var ⇀
fin

A, � be given. Then, σe ⇓� v =⇒ σd ⇓� w =⇒ σt ⇓� u and

v {�X }� w {�X }� u. Then, v {�X ◦ �X }� u, which gives e [�X ◦ �X]t. Then,

by coinduction (�X ◦ �X) ⊆ (�X).

iii. Suppose e �X t and X ⊆ Y . Any σ : Y |Var ⇀
fin

A also satisfies σ : X|Var ⇀
fin

A,

so if σe, σt ∈ E�, then σe ⇓� v =⇒ σt ⇓� u where v {�Z
Z}� u. Thus, e �Y t.

Proposition 64 (Basic properties of indexed precongruence candidate). Let RX be

a family of preorders that is monotone in X, i.e., each RX is a preorder and

X ⊆ Y =⇒ RX ⊆ RY . Then,

i. R̂X is reflexive for every X.

ii. R̂X respects contexts with diminishing indices.

iii. e R̂X s RX t =⇒ e R̂X t at each X.

iv. RX ⊆ R̂X .

Proof.

i. Induction on e shows e R̂X e.

ii. By reflexivity of RX , derivation rules for R̂X subsume this assertion.

iii. Straightforward induction on e using i. and transitivity of RX .

iv. Apply i. to iii.

Lemma 65. e �̂X t =⇒ e [�̂X] t.

Proof. Fix a σ and an �, and assume σe �
�

∗ v where σe takes n small-steps. Then,

we can show σt ⇓� u ∧ v {�̂X }� u by lexicographic induction on (n, e) with case

analysis on the form of e.

This concludes the soundness proof of applicative bisimilarity. To prove com-

pleteness, i.e., (�X) ⊆ (�X), we show (�X) ⊆ [�]X and coinduct. While proving

(�X) ⊆ [�]X , it is necessary to convert (�) to (��). For example, when e �X t,

σe ⇓0 〈e′〉 then we can easily show σt ⇓0 〈t′〉 with e′ � t′, but we cannot immediately

conclude the e′ �� t′ that we need for 〈e′〉 {�X }0 〈t′〉. The argument given in

Proposition 11, which hinges on the new, generalized EU rule, allows us to perform

this conversion from (�) to (��). We restate Proposition 11 here for (�).

Lemma 66. ∀σ : Var ⇀
fin

Arg. e � t =⇒ σe � σt.

Proof. Use the same argument as Proposition 11.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

50 J. Inoue and W. Taha

Lemma 67. For every X, (�) ⊆ (�X). In particular, (�) = (��). Likewise, (≈) ⊆
(≈X) and (≈) = (≈�).

Proof. If e � t, then σe � σt for every σ : X|Var ⇀
fin

Arg by Lemma 66, so

e �X t. Therefore, (�) ⊆ (�X). When X = �, the reverse containment (��) ⊆ (�)

also holds: The (��) relation implies (�) under any substitution, including the

empty substitution. Hence, we have (�) = (��). The statement for (≈) follows

immediately.

Theorem 68 (Completeness of indexed applicative bisimulation). (�X) = (�X) and

(≈X) = (∼X).

Proof. By Theorem 61, only (�X) ⊆ (�X) and (≈X) ⊆ (∼X) need to be proved.

Suppose e �X t and fix a σ : X|Var ⇀
fin

Arg and an �. By definition, σe � σt so

σe ⇓� v =⇒ σt ⇓� u; we will show that if these v, u exist then v {�X }� u.

 [If � > 0] Because v ≈ σe � σt ≈ u, by Lemma 67 it follows that v �� u.

 [If � = 0] Split cases by the form of v.

 [If v ≡ λx.e′] If u were of the form 〈d〉, then the context 〈˜•〉 would

distinguish v and u because 〈˜λx.e′〉 is stuck while 〈˜〈d〉〉 ⇓0 〈d〉. If u were

a constant, then the trivial context • would distinguish u and v. Therefore,

u ≡ λx.t′ for some t′ ∈ E0. For any a ∈ Arg, the relation v � u implies

[a/x]e′ � v a � u a � [a/x]t′ so using Lemma 67, e′ �{x} t
′.

 [If v ≡ 〈e′〉] By the same argument as above, u ≡ 〈t′〉. Then, since e′ ∈ E0,

we have e′ ≈ ! 〈e′〉 � ! 〈t′〉 ≈ t′, so by Lemma 67, e′ �� t′.

 [If v ≡ c] u ≡ c, for otherwise the trivial context • would distinguish u

and v.

It follows that e [�]Xt, so (�X) ⊆ [�]X . By coinduction, (�X) ⊆ (�X). Therefore,

we have (≈X) = (�X) ∩ (�X) = (X) ∩ (�X) = (∼X) for each X.

Finally, from Theorems 61 and 68, we can prove Theorem 35, the soundness and

completeness of non-indexed applicative bisimulations.

Proof of Theorem 35. For the reader’s convenience, let us recall the theorem’s

statement:

For a substitution-closed binary relation R ⊆ E × E, we have

R ⊆ (≈) iff R is contained in an applicative bisimulation.

Let us first prove soundness: If a substitution-closed R is a non-indexed bisimulation,

then R ⊆ (≈). Given a relation R, define an indexed family RX by e RX t
def⇐⇒

∀σ : X|Var ⇀
fin

Arg. (σe) R (σt), and set ∀X. R̃X
def= RX ∪ (≈X). Note R = R�.

Definition 34 states that R is a (non-indexed) applicative bisimulation precisely

when R ⊆ [R̃]� ∩ [R̃
−1

]�
−1

. When this containment holds, we claim that ∀X. R̃X⊆
[R̃]� ∩ [R̃

−1
]�
−1

follows. Suppose e R̃X t for some e, t, X, let � = max(lv e, lv t), and

let ∀σ : X|Var ⇀
fin

Arg be given. Then, we have

∃u. σe ⇓� u⇐⇒ ∃v. σt ⇓� v and if u, v exist then u {R̃X }� v ∧ v {R̃−1

X }
�
u (A 3)

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 51

as follows. First, we have σe R̃� σt from e R̃X t, hence either σeR�σt or σe ≈� σt.

 [If σeR�σt] R� = R ⊆ [R̃]� ∩ [R̃
−1

]�
−1

, so claim (A3) is immediate.

 [If σe ≈� σt] By Theorems 61 and 68 (≈�) = (∼�), so σe ⇓� u iff σt ⇓� v and

u { ∼X }� v. But (∼X) ⊆ R̃X , so claim (A3) follows.

Therefore, it follows that R̃X ⊆ [R̃]� ∩ [R̃
−1

]�
−1

. By coinduction, R̃X ⊆ (∼X) =

(≈X), so in particular R� ⊆ (R̃�) ⊆ (≈�) = (≈) using Lemma 67.

Now, let us prove completeness: If R ⊆ (≈) is substitution-closed, then R is a

non-indexed bisimulation. Let R ⊆ (≈) be given, and define the families RX and R̃X

as above. Then, at each X, we have RX ⊆ (≈X), so R̃X= (≈X) = (∼X). Therefore,

R = R� ⊆ (∼�) ⊆ [R̃]� ∩ [R̃
−1

]�
−1

, which means that R is a bisimulation.

A.3 Proofs for inlining fold

This section gives more details for the correctness proofs in Section 6.2. These proofs

are not found in the thesis (Inoue, 2012), which predates the material presented in

Section 6.2.

A.3.1 Proof of CBN correctness

Proof of Proposition 45. We recall the statement of Proposition 45 here for the

reader’s convenience:

In CBV, let f ∈ V 0 and D ⊆ Const, and let D∗ def= {[d1,d2,...,dn] |
d1, . . . , dn ∈ D, n ∈ �}. Assume that ∀x, y �∈ FV(f). ∃e. λUv �
f 〈y〉 〈x〉 = 〈‖e‖〉 and, for the same e,

∀c, d ∈ D. λUv � ‖f‖ c d ⇓0 D ∧ [c, d/y, x]‖e‖ ⇓0 D. (20)

Then, for any d ∈ D and l ∈ D∗, we have λUv � stfold f d l =

fold ‖f‖ d l.

Starting with stfold f, we can β-reduce the application, reduce away the escape

with EU and the assumption f 〈y〉 〈x〉 = 〈‖e‖〉, and then eliminate the ! by RU ,

which gives

stfold f =
let rec loop y xs = match xs with

| [] -> y

| x::xs -> loop ‖e‖ xs

in loop
whose right-hand side is unstaged, so by the Erasure Theorem, specifically Lemma 21,

it follows that stfold f = ‖stfold f‖. We then claim ‖stfold f‖ ≈ fold ‖f‖,
which requires an explicit proof because these terms are not identical: ‖stfold f‖
passes around two parameters in the loop whereas fold ‖f‖ passes around three.

By Proposition 36 (extensionality), it suffices to prove ∀a, l ∈ E0. ‖stfold f‖ a l =

fold ‖f‖ a l. By induction on the number of steps till termination, one can

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

52 J. Inoue and W. Taha

show that both sides of the equation terminate iff l ⇓0 [c1,c2,...,cn] for some

ci ∈ Const and that in that case both fold ‖f‖ a l and ‖stfold f‖ a l reduce to

‖f‖ (. . . (‖f‖ (‖f‖ a c1) c2) . . .) cn.

A.3.2 Proof of CBV correctness using normalization

Proof of Proposition 47. We recall the statement of Proposition 47 here for the

reader’s convenience:

In CBV, let f ∈ V 0 and D ⊆ Const, and let D∗ def= {[d1,d2,...,dn] |
d1, . . . , dn ∈ D, n ∈ �}. Assume that ∀x, y �∈ FV(f). ∃e. λUv �
f 〈y〉 〈x〉 = 〈‖e‖〉 and, for the same e,

∀c, d ∈ D. λUv � ‖f‖ c d ⇓0 D ∧ [c, d/y, x]‖e‖ ⇓0 D (20)

Then, for any d ∈ D and l ∈ D∗, we have λUv � stfold f d l =

fold ‖f‖ d l.

Just as in the CBN case, we have ‖stfold f‖ ≈ fold ‖f‖, so we only need to show

stfold f d l ≈ ‖stfold f‖ d l. By the Erasure Theorem, specifically Lemma 26, it

suffices to show that both stfold f d l and ‖stfold f‖ d l terminate to constants.

By assumption, l ≡ [c1,c2,...,cn] for some sequence ci ∈ D. Then, by assump-

tion (20), a sequence d0, . . . , dn ∈ D with d0 ≡ d is determined by ∀i. ‖f‖ di−1 ci ⇓0 di.
Inspecting the source code of ‖stfold‖, we see that ‖stfold f‖ d l ⇓0 dn. Likewise,

using assumption (20), we inductively obtain a sequence d′0, d
′
1, . . . , d

′
n with d′0 ≡ d0 ≡ d

such that ∀i. [d′i−1, ci/y, x]‖e‖ ⇓0 d′i. By the same rewrites as in the CBN case, we

have

stfold f =
let rec loop y xs = match xs with

| [] -> []

| x::xs -> loop ‖e‖ xs

in loop

By inspection of the right-hand side, we get stfold f d l ⇓0 d′n. Thus, both

‖stfold f‖ d l and stfold f d l terminate to constants, as desired.

A.3.3 Proof of CBV correctness using careful equalities

Proof of Proposition 49. We recall the statement of Proposition 49 here for the

reader’s convenience.

Let f ∈ V 0 and D ⊆ V 0, and assume that ∀x, y �∈ FV(f). ∃e. ∀u, v ∈
V 0. λUv⇓/[v, u/y, x] � f 〈y〉 〈x〉 = 〈‖e‖〉. Then, λUv � stfold f =

fold ‖f‖.
As before, ‖stfold f‖ ≈ fold ‖f‖, so we need only show stfold f ≈ ‖stfold f‖.
This goal reduces by extensionality (Proposition 36) and equivalence of diver-

gent terms (Lemma 38) to ∀v0, l ∈ V 0. ∀σ : Var ⇀
fin

V 0. σ(stfold f v l) ≈⇑
σ(‖stfold f‖ v l), but because stfold is closed and V 0 is closed under substitutions,

it suffices to show ∀v0, l ∈ V 0. stfold f v l ≈⇑ ‖stfold f‖ v0 l.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

Reasoning about multi-stage programs 53

Recall that ∀u, v. λUv⇓/[v, u/y, x] � f 〈y〉 〈x〉 = 〈‖e‖〉 means

λUv � f 〈y〉 〈x〉 = 〈‖e‖〉 and (A 4)

∀u, v ∈ V 0. λUv � f v u = [v, u/y, x]‖e‖ (A 5)

From Equation (A 4), we get

stfold f = let rec loop y xs = match xs with

| [] -> y

| x::xs -> loop ‖e‖ xs

in loop

(A 6)

If ‖stfold f‖ v0 l ⇑0, then from Equations (A 5) and (A 6) we can show stfold

f v0 l ⇑0 as desired. If not, we have stfold f v0 l ⇓0 and we are left to

show stfold f v0 l ≈ ‖stfold f‖ v0 l. Given stfold f v0 l ⇓0, there exist

u1, . . . , un, v1, . . . , vn ∈ V 0 such that l ≡ [u1,...,un] and ∀i. ‖f‖ vi−1 ui ⇓0 vi, and

‖stfold f‖ v0 l ⇓0 vn. (We urge the reader to keep in mind that the loop function

in Equation (A 6) folds the input list with ‖e‖, whereas the sequence v1, . . . , vn was

obtained by folding with ‖f‖. The whole point of the following discussion is to

equate folding with ‖e‖ and folding with ‖f‖.) Let L be the context that provides

the let rec in (A 6), i.e.,

L
def≡ let rec loop y xs = match xs with

| [] -> y

| x::xs -> loop ‖e‖ xs

in •

which folds with ‖e‖. Then,

λUv � vn = L[loop vn []]

= L[loop (‖f‖ vn−1 un) []] (by the definition of vn)

= L[loop ([vn−1, un/y, x]‖e‖) []] (by (A 5))

= L[loop vn−1 [un]] (by βv and the definition of loop)

= L[loop vn−2 [un−1,un]] (by repeating the same manipulations)

...

= L[loop v0 [u1,. . .,un]]

= stfold f v0 l.

Therefore, λUv � stfold f v0 l = vn = ‖stfold f‖ v0 l.

Remark. This result can be proved more simply by noting that extensionality gives

‖f‖ ≈ λy x.‖e‖ from ∀v, u ∈ V 0. ‖f‖ v u = [v, u/y, x]‖e‖, hence that stfold f can

be rewritten modulo (≈) into ‖stfold f‖. We avoided this approach because it

does not generalize to cases where f has a restricted domain, i.e., we can require

λUv⇓/σ � f 〈y〉 〈x〉 = 〈‖e‖〉 for only a certain set of values.

https://doi.org/10.1017/S0956796816000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000253

