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Abstract

We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based
on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula
generalises Menon’s identity.
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1. Introduction

Menon’s identity [9] is one of the most interesting arithmetical identities.

Menon’s identity. For every positive integer n,∑
a∈Z∗n

gcd(a − 1, n) = ϕ(n)τ(n),

where Z∗n is the group of units of the ring Zn = Z/nZ, gcd(·, ·) is the greatest common
divisor, ϕ is Euler’s totient function and τ(n) is the number of divisors of n.

There are several approaches to Menon’s identity and many generalisations. There
are three main methods used to prove Menon-type identities:

• group-theoretic methods based on Burnside’s lemma (also called the Cauchy–
Frobenius lemma; see [13]) involving group actions (see [9, 14, 17]);

• elementary number-theoretic methods based on properties of the Dirichlet
convolution and multiplicative functions (see [1, 4, 9, 16]);

• number-theoretic methods based on finite Fourier representations and Cauchy
products of r-even functions (see [2, 3, 8, 12]).

The generalisations involve additive and multiplicative characters (see [7, 22, 23]),
arithmetical functions of several variables (see [20]), actions of subgroups of GLr(Zn)
(see [5, 6, 19]) and residually finite Dedekind domains (see [10, 11]).
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Our group-theoretical approach uses Burnside’s lemma for a new group action: the
natural action of the power automorphism group Pot(G) on G. First of all, we recall
some definitions and results that will be useful to us.

Burnside’s lemma. Let G be a finite group acting on a finite set X and set

Fix(g) = {x ∈ X | g ◦ x = x} for g ∈ G.

Then the number of distinct orbits is

N =
1
|G|

∑
g∈G

|Fix(g)|. (1.1)

In what follows, let G be a finite abelian group of order n and

G = G1 × · · · ×Gk

be the primary decomposition of G, where Gi is a pi-group for i = 1, . . . , k. Then every
Gi is of type

Gi = Zpαi1
i
× · · · × Z

p
αiri
i
,

where 1 ≤ αi1 ≤ · · · ≤ αiri . We will apply Burnside’s lemma to the natural action of the
power automorphism group Pot(G) on G. An automorphism f of G is called a power
automorphism if f (H) = H for all H ≤ G. The set Pot(G) of all power automorphisms
of G is a subgroup of Aut(G). As is well known, every power automorphism of a finite
abelian group is universal, that is, there exists an integer m such that f (x) = mx for all
x ∈ G. From [15, Theorem 1.5.6], Pot(G) has the structure

Pot(G) � Pot(G1) × · · · × Pot(Gk) � Aut(Z
p
α1r1
1

) × · · · × Aut(Z
p
αkrk
k

). (1.2)

Our main result can be stated as follows.

Theorem 1.1. With the above notation,

k∏
i=1

∑
1≤mi≤p

αiri
i

pi-mi

ri∏
j=1

gcd(mi − 1, pαi j

i ) = ϕ(exp(G))|L1(G)|, (1.3)

where exp(G) is the exponent of G and |L1(G)| is the number of cyclic subgroups of G.

Clearly, (1.3) gives a new formula to compute the number of cyclic subgroups of
a finite abelian group (for other such formulas, see [18, 21]). We exemplify it in a
particular case.

Example 1.2. The finite abelian group

G = Z2 × Z12 × Z72 � (Z2 × Z22 × Z23 ) × (Z3 × Z32 )
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has exp(G) = 2332 = 72 and so ϕ(exp(G)) = ϕ(72) = 24. Then (1.3) leads to

|L1(G)| =
1
24

( ∑
1≤m1≤23

2-m1

3∏
j=1

gcd(m1 − 1, 2α1 j )
)( ∑

1≤m2≤32

3-m2

2∏
j=1

gcd(m2 − 1, 3α2 j )
)

=
1
24

(gcd(0, 21) gcd(0, 22) gcd(0, 23) + gcd(2, 21) gcd(2, 22) gcd(2, 23)

+ gcd(4, 21) gcd(4, 22) gcd(4, 23) + gcd(6, 21) gcd(6, 22) gcd(6, 23))

· (gcd(0, 31) gcd(0, 32) + gcd(1, 31) gcd(1, 32) + gcd(3, 31) gcd(3, 32)

+ gcd(4, 31) gcd(4, 32) + gcd(6, 31) gcd(6, 32) + gcd(7, 31) gcd(7, 32))

=
1
24

(64 + 8 + 32 + 8)(27 + 1 + 9 + 1 + 9 + 1) = 224.

We remark that if the group G is cyclic of order n, then ri = 1 for i = 1, . . . , k,
exp(G) = pα11

1 · · · p
αk1
k = n and |L1(G)| = τ(n). Thus equality (1.3) becomes

k∏
i=1

∑
1≤mi≤pαi1

i
pi-mi

gcd(mi − 1, pαi1
i ) = ϕ(n)τ(n). (1.4)

Since
Z∗

pα11
1
× · · · × Z∗

pαk1
k
� Z∗n,

(1.4) can be rewritten as ∑
1≤m≤n

gcd(m,n)=1

gcd(m − 1, n) = ϕ(n)τ(n),

that is, we have recovered Menon’s identity.
Two immediate consequences of Theorem 1.1 are the following.

Corollary 1.3. Let m and n be two positive integers, l = lcm(m, n) and p1, . . . , pk be
the primes dividing l. Write m = pα1

1 · · · p
αk
k and n = pβ1

1 · · · p
βk
k , where αi and βi may

be zero. Then

|L1(Zm × Zn)| =
1
ϕ(l)

k∏
i=1

∑
1≤mi≤pmax{αi ,βi}

i
pi-mi

gcd(mi − 1, pαi
i ) gcd(mi − 1, pβi

i ). (1.5)

Corollary 1.4. Let n be a positive integer and n = pα1
1 · · · p

αk
k be the decomposition of

n as a product of prime factors. Then, for every r ∈ N∗,

|L1(Zr
n)| =

1
ϕ(n)

k∏
i=1

∑
1≤mi≤pαi

i
pi-mi

gcd(mi − 1, pαi
i )r. (1.6)
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204 M. Tărnăuceanu [4]

Note that (1.4) can be obtained from (1.5) or (1.6) by taking m = 1 or r = 1,
respectively. Thus, these equalities can be also seen as generalisations of Menon’s
identity.

2. Proof of Theorem 1.1

The natural action of Pot(G) on G is

f ◦ a = f (a) for ( f , a) ∈ Pot(G) ×G.

By using the direct decompositions of Pot(G) and G in Section 1, it can be written as

( f1, . . . , fk) ◦ (a1, . . . , ak) = ( f1(a1), . . . , fk(ak)), ( fi, ai) ∈ Pot(Gi) ×Gi, i = 1, . . . , k.

First of all, we will prove that two elements a, b ∈ G are contained in the same orbit
if and only if they generate the same cyclic subgroup of G. Indeed, if a and b belong
to the same orbit, then there exists f ∈ Pot(G) such that b = f (a). Since f is universal,
it follows that b = ma for some integer m. Then b ∈ 〈a〉, and so 〈b〉 ⊆ 〈a〉. On the
other hand, since a group automorphism preserves the element orders, o(a) = o(b).
Therefore 〈a〉 = 〈b〉. Conversely, assume that 〈a〉 = 〈b〉, where a = (a1, . . . , ak) and
b = (b1, . . . , bk). Then 〈ai〉 = 〈bi〉, for i = 1, . . . , k. This implies that for every i there
is an integer mi such that bi = miai and gcd(mi, o(ai)) = 1. Remark that if ai = 1 then
we must have mi = 1, while if ai , 1 then gcd(mi, pi) = 1. Consequently, in both cases
pi - mi. This shows that the map

fi : Gi −→ Gi, fi(xi) = mixi for xi ∈ Gi,

is a power automorphism of Gi. Then f = ( f1, . . . , fk) ∈ Pot(G) and f (a) = b, that is, a
and b are contained in the same orbit. Thus, the number of distinct orbits is

N = |L1(G)|.

Next we will focus on the right-hand side of (1.1). Note that the group isomorphism
(1.2) leads to

|Pot(G)| =
k∏

i=1

|Aut(Z
p
αiri
i

)| =
k∏

i=1

ϕ(p
αiri
i ) = ϕ

( k∏
i=1

p
αiri
i

)
= ϕ(exp(G)).

Also, for every f = ( f1, . . . , fk) ∈ Pot(G) and every a = (a1, . . . , ak) ∈ G,

a ∈ Fix( f )⇐⇒ ai ∈ Fix( fi) for each i = 1, . . . , k,

implying that

|Fix( f )| =
k∏

i=1

|Fix( fi)|.

On the other hand, since Pot(Gi) � Aut(Z
p
αiri
i

), every fi is of type

fi(xi) = mixi with pi - mi.
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Then for xi = (xi1, . . . , xiri ) ∈ Gi,

xi ∈ Fix( fi)⇐⇒ (mi − 1)xi j = 0 in Zp
αi j
i

for j = 1, . . . , ri

⇐⇒ pαi j

i | (mi − 1)xi j for j = 1, . . . , ri

⇐⇒
pαi j

i

gcd(mi − 1, pαi j

i )

∣∣∣∣∣ xi j for j = 1, . . . , ri

⇐⇒ xi j = c
pαi j

i

gcd(mi − 1, pαi j

i )
with c = 0, . . . , gcd(mi − 1, pαi j

i ) − 1

for j = 1, . . . , ri.

Consequently,

|Fix( fi)| =
ri∏

j=1

gcd(mi − 1, pαi j

i ).

Thus, the right-hand side of (1.1) becomes

1
ϕ(exp(G))

∑
f∈Pot(G)

|Fix( f )| =
1

ϕ(exp(G))

∑
f1∈Pot(G1)

. . .
∑

fk∈Pot(Gk)

|Fix( f1)| · · · |Fix( fk)|

=
1

ϕ(exp(G))

k∏
i=1

( ∑
fi∈Pot(Gi)

|Fix( fi)|
)

=
1

ϕ(exp(G))

k∏
i=1

∑
1≤mi≤p

αiri
i

pi-mi

ri∏
j=1

gcd(mi − 1, pαi j

i ),

as desired.
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