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Abstract

We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based
on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula
generalises Menon’s identity.
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1. Introduction
Menon'’s identity [9] is one of the most interesting arithmetical identities.

MENON’s IDENTITY. For every positive integer n,

> ged(a - 1,n) = gyr(n),

ac’,
where Z, is the group of units of the ring Z, = Z/nZ, gcd(-, ) is the greatest common
divisor, ¢ is Euler’s totient function and 1(n) is the number of divisors of n.

There are several approaches to Menon’s identity and many generalisations. There
are three main methods used to prove Menon-type identities:

e  group-theoretic methods based on Burnside’s lemma (also called the Cauchy—
Frobenius lemma; see [13]) involving group actions (see [9, 14, 17]);

e clementary number-theoretic methods based on properties of the Dirichlet
convolution and multiplicative functions (see [1, 4, 9, 16]);

e number-theoretic methods based on finite Fourier representations and Cauchy
products of r-even functions (see [2, 3, 8, 12]).

The generalisations involve additive and multiplicative characters (see [7, 22, 23]),
arithmetical functions of several variables (see [20]), actions of subgroups of GL,(Z,)
(see [5, 6, 19]) and residually finite Dedekind domains (see [10, 11]).
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Our group-theoretical approach uses Burnside’s lemma for a new group action: the
natural action of the power automorphism group Pot(G) on G. First of all, we recall
some definitions and results that will be useful to us.

BurNsDE’S LEMMA. Let G be a finite group acting on a finite set X and set
Fix(g)={xeX|gox=x} forgegG.

Then the number of distinct orbits is

1 .
N= ﬁZ|F1x(g)|. (1.1)

geG

In what follows, let G be a finite abelian group of order n and
G=G X - XGy
be the primary decomposition of G, where G; is a p;-group fori = 1,..., k. Then every
G, is of type
Gi=Zon X+ XZ o,
Pi p;
where 1 < a;; <--- < @;,. We will apply Burnside’s lemma to the natural action of the
power automorphism group Pot(G) on G. An automorphism f of G is called a power
automorphism if f(H) = H for all H < G. The set Pot(G) of all power automorphisms
of G is a subgroup of Aut(G). As is well known, every power automorphism of a finite

abelian group is universal, that is, there exists an integer m such that f(x) = mx for all
x € G. From [15, Theorem 1.5.6], Pot(G) has the structure

Pot(G) = Pot(G) X - - - X Pot(Gy) = Aut(Zpan]) XX Aut(ZPwkrk). (1.2)
1 k

Our main result can be stated as follows.

Tueorem 1.1. With the above notation,

k T
[T D0 [[ecdom—1,p") = ¢(exp@GILI(G)I, (1.3)
i=1 lgm;Sp?i'i Jj=1

pifm;

where exp(G) is the exponent of G and |L;(G)| is the number of cyclic subgroups of G.

Clearly, (1.3) gives a new formula to compute the number of cyclic subgroups of
a finite abelian group (for other such formulas, see [18, 21]). We exemplify it in a
particular case.

ExawmpLE 1.2. The finite abelian group

G =7y XLy X Zyp = (Zp X Zo2 X 223) X (Z3 X Z32)
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has exp(G) = 2332 = 72 and so ¢(exp(G)) = ¢(72) = 24. Then (1.3) leads to

3 2
IL1(G) = %( Z 1_[ ged(my — 1,2(1”))( Z 1_[ ged(my — 1, 3‘72./'))

1<m <23 J=1 1<m,<3? j=1
24m, 34my

1
= 5 (e, 2" ged(0,2) ged(0, 2°) + ged(2,21) ged(2, 2%) ged(2, 2%)

+ ged(4,2") ged(4, 2%) ged(4,2%) + ged(6, 21) ged(6, 2%) ged(6,2%))
- (ged(0,3") ged(0, 3%) + ged(1, 31) ged(1,3%) + ged(3, 3') ged(3, 32)
+ ged(4,3") ged(4, 3%) + ged(6, 31) ged(6,3%) + ged(7,31) ged(7, 32))

1
:ﬂ(64+8+32+8)(27+1+9+1+9+1):224.

We remark that if the group G is cyclic of order n, then r; =1 fori=1,...,k,

exp(G) = p{"' --- p;*' = nand |L1(G)| = 7(n). Thus equality (1.3) becomes

k
D eedim; = 1, pi) = pnyr(n). (14)
=1

ISm,Sp?”
pitm;

1

Since
Loy X+ XLy =7,
pllll ]7]:“ no

(1.4) can be rewritten as

> gedom - 1,n) = p(m)t(n),
1<m<n
ged(m,n)=1
that is, we have recovered Menon’s identity.
Two immediate consequences of Theorem 1.1 are the following.

CoroLLARY 1.3. Let m and n be two positive integers, | = lcm(m, n) and p;, ..., pi be
the primes dividing l. Write m = p{' --- p* and n = p[f‘ pﬁ" where a; and B; may

be zero. Then

k
1 . ,
Li@nxZol= o [ |2, eedomi— 1 pfygedom = L. (19)
i=1 max{a;.B;}

1<m;<p
pitm;

CoroLLARY 1.4. Let n be a positive integer and n = p{' - - - pZ" be the decomposition of
n as a product of prime factors. Then, for every r € N,

k
1 .
IL@pl=—[] D ecdom—1,py. (1.6)
@(n) 2| L
pitm;
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Note that (1.4) can be obtained from (1.5) or (1.6) by taking m=1 or r =1,
respectively. Thus, these equalities can be also seen as generalisations of Menon’s
identity.

2. Proof of Theorem 1.1
The natural action of Pot(G) on G is
foa= f(a) for(f, a)ePot(G)XG.
By using the direct decompositions of Pot(G) and G in Section 1, it can be written as

(fl’ e 7fk) o (ala e »ak) = (fl(al)a e 7.ﬁ€(ak))’ (ﬁ’ai) € POt(Gl) X Gia i= 1» v »k‘

First of all, we will prove that two elements a, b € G are contained in the same orbit
if and only if they generate the same cyclic subgroup of G. Indeed, if a and b belong
to the same orbit, then there exists f € Pot(G) such that b = f(a). Since f is universal,
it follows that b = ma for some integer m. Then b € (a), and so (b) C (a). On the
other hand, since a group automorphism preserves the element orders, o(a) = o(b).
Therefore (a) = (b). Conversely, assume that (a) = (b), where a = (ay,...,a;) and
b= (b1,...,by). Then {(a;) = (b;), for i =1,...,k. This implies that for every i there
is an integer m; such that b; = m;a; and gcd(m;, o(a;)) = 1. Remark that if @; = 1 then
we must have m; = 1, while if a; # 1 then ged(m;, p;) = 1. Consequently, in both cases
pi ¥ m;. This shows that the map

fi:Gi— Gy, fi(x) =mx; for x; € G,

is a power automorphism of G;. Then f = (fy,..., fi) € Pot(G) and f(a) = b, that is, a
and b are contained in the same orbit. Thus, the number of distinct orbits is

N =|Li(G)l.

Next we will focus on the right-hand side of (1.1). Note that the group isomorphism
(1.2) leads to
k k k
Qjr; Qjy:
PouG)l = | [1au@ ol = [ T = [ ] 7] = etexn@n.
i=1 ' i=1 i=1
Also, for every f = (f1,..., fr) € Pot(G) and every a = (ay, ..., ax) € G,
a € Fix(f) & a; e Fix(f;) foreachi=1,...,k,

implying that

[Fix(H)l = | [ IFix(fl.

k
i

1

On the other hand, since Pot(G;) = Aut(Zpﬁrf,~,»), every f; is of type

fi(x) = mix;  with p; ¥ m;.
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Then for x; = (x;1, ..., xir,) € Gy,
x; € Fix(f})) & (m; — 1)x;; = 0in Zp_mj forj=1,...,r
<:>p?” | (m; — l)xij fOI'jZ 1...,r
Qjj
p;

———|x;; forj=1,...,r
gcd(ml_l,p?’u) J J i

@ij
= X = Cpl—(l, withc=0,..., gcd(m; — l,p?'j) -1
ged(m; — 1, p;")

forj=1,...,r
Consequently,
IFix(f)l = | | gedomi =1, p{").
j=1

Thus, the right-hand side of (1.1) becomes

> IFix(f)l = Do D (I IFix(f)

(eXP(G)) fePot(G) (exp(G)) fi€Pot(Gy) Ji€Pot(Gy)
k
1 ( i
1 Fix(£))
@(exp(G)) 1:1[ f-e;t(a)
d(m; - 1,

(exP(G)) l—[ Zarr ﬂgc ot
Smi— !
Pt*ml

as desired.
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