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ASYMPTOTIC SHAPE OF FINITE PACKINGS

KAROLY BOROCZKY, JR., AND UWE SCHNELL

ABSTRACT. LetK beaconvex body in E9 and denote by C,, the set of centroids of n
non-overlapping translates of K. For ¢ > 0, assume that the parallel body conv Cy, +gK
of conv C,, hasminimal volume. The notion of parametric density (see[21]) provides a
bridge between finite and infinite packings (see[4] or [14]). It isknown that there exists
amaximal gs(K) > 1/(32d2) such that conv Cy, is a segment for o < o5 (see [5]). We
prove the existence of aminimal o¢(K) < d+ 1 such that if ¢ > oc and nislarge then
the shape of conv C;, can not be too far from the shape of K. For d = 2, we verify that
0s = oc- For d > 3, we present the first example of a convex body with known o and
oc; namely, we have g5 = o = 1 for the parallelotope.

1. Introduction. Finite packings of circles have been investigated already at the
beginning of the century (see [18]). The attention turned towards packingsin euclidean
d-space EY, d > 3, after the Sausage Conjecture of L&szlo Fejes Toth in 1975 (see [12]).
The conjecture states that for d > 5, the volume of the convex hull of n non-overlapping
ballsin EY is minimal when the centers are aligned (and the convex hull of the ballsisa
“sausage”).

In this paper, we consider packings of copies of a convex body K by translates of K,
and we assume it without mentioning. The symbol C,, always denotes a set of centroids
of n non-overlapping translates of K. If dim(conv Cy) = 1 the arrangement C,, is called
a sausage. The sausage with minimal V(conv C, +9K) is denoted by S,. An extremely
fruitful notion concerning finite packingsis the notion of parametric density (see [21]);
namely, the maximum of nV(K) /V(conv C, +¢K) for given n and ¢ > 0. Note that the
casep = listheclassical problem. The solution of the Sausage Conjecture by U. Betke,
M. Henk and J. M. Wills (see [4] and [14]) is based on this notion. In addition, now we
have atool to connect the specific properties of finite and infinite packings:

There exists amaximal p5(K) > 1/(32d?) such that conv C, is a segment for o < os
(see[5]). On the other hand, for o > d + 1, the optimal density isthe same astheinfinite
packing density (see[4] or [14]). This paper concentrates on the shape of the optimal
packing for large o.

Denote by A(K) the average part of the space taken up by a copy of K in the densest
infinite translative packing of K, and so V(K)/A(K) is the packing density 6(K) of K.
Assume that V(conv C,, +9K) is minimal, and hence the parametric density is maximal.
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Cluster like packings show that asymptotically V(conv C, +9K) isaways at most nA(K),
and the critical radius g is defined as the infimum of p such that V(conv C, +9oK) ~
nA(K) for largen. Itsatisfies% < oc < d+1(andeveng. < 2if Kiscentrally symmetric)
(see Section 3).

Theorem A below gives a more exact formulation what the shape of the optimal
arrangement is for large o (see Propositions 3.1, 3.2 and 3.3 for proofs and more precise
statements).

For a convex body C, set rq(C) = max{\ | Ix, x+ AK C C} (the inradius) and
Rc(C) = min{\ | Ix, C C x+ MK} (the circumradius with respect to K). Note that
maximizing the parametric density is equivalent with minimizing V(conv C, +oK).

THEOREM A. Letd > 2 and g > pc(K) for some convex body K.
() rk(conv Cy) tendsto infinity asn — oo;
(ii) if o > d+ 1 thenthereexistsw(p) with lim,—, w(p) = 1 suchthat if V(conv C, +oK)
isminimal then Rg(conv Cy) /rk(conv Cp) < w(p) for largen.

RemMARK. If K is centrally symmetric then w(p) can be defined even for o > 2.

Let o > 0. Then for large n, in the arrangement minimizing the surface-area of
conv C,, +9K (or any mean-projection of conv C,, +oK), the shape of conv C,, is asymp-
totically aball (see[6] or [22] if o = 1, but the same proof worksin fact for all positive
0). Here we can consider for o > pc(K) and the optimal C,, the normalized shape
Knp = n-1/ dconan,Q. By Theorem A and a Blaschke argument it follows that there are
convergent subsequences of Ky ,. In general the shape of the limit body as well as its
uniqueness remains unknown. It can not be expected that for general convex body K the
asymptotical shape of the optimal packing is homothetic to K. It definitely does not hold
when p = 1andK isacircle in the plane (see [19]). Here we can give the limit of all this
limit bodiesfor o — oco. Theorem A together with V(conv C, +9oK) ~ nA(K) states that

n.lgigloo Kn“) = (5(K))_1/d K.

In the paper [4], the authors state the so-called Strong Sausage Conjecture; namely,
if Kisaball and p < o then the sausage minimizes V(conv C,, +¢K). If d > 3 then one
can not expect a similar statement even for general centrally symmetric convex bodies
(see[1]).

At the end of Section 3, we consider the example of aparallelotope P. Until now, this
isthe only known example of aconvex body in EY, d > 3, satisfying the Strong Sausage
Conjecture for general packings. In this case, os(P) = oc(P) = 1, and if o > 1 then
the optimal shape is asymptotically homothetic to P. Note that for d > 3 and o > o,
to determine even the asymptotic behavior of the optimal packing of a convex body K
different from the parallelotope seemsto be out of reach at the moment.

Weverify the Strong Sausage Conjecturefor aplanar convex domainK (see Sections4
and 5). Denote by A(K) the area of K and by P(K) the area of the smallest parallelogram
containing K which satisfy A(K) < A(K) < P(K).
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THEOREM B. Assumethat A(conv C,, +9K) is minimal for o > 0.

(i) convC, isasegmentif either p < 3/70r o < AK)/P(K) and nislarge.

(ii) if o > A(K)/P(K) then Rg(convCp)/rk(convC,) < w(p) for large n where
w(p) =1+550/ /0 for o > 3.

REMARK. For centrally symmetric domains the sausage is always optimal if o <
A(K)/P(K) (see[4]). Thecaseof thecircleisimplicitly contained already inthe paper [ 18]
of Thue.

Note that 3/4 < A(K)/P(K) < 1. For non-centrally symmetric convex bodies, the
situation can be actually more complicated than for the symmetric ones. Assume that K
isatriangle, and hence A(K) /P(K) = 3/4. Thenfor n=3and p > 1/2, the sausageis
not optimal.

If the n trandlates of K are chosen from some lattice packing of K then we also call
thefinite packing of K aslattice packing. The results above equally apply to finitelattice
packings. It is especially transparent in the planar case when the densest infinite lattice
packingisalsothe densest translative packing (see[11]). In Theorem A, the only changes
needed are that the lower bound for g is 1.5(d + 1) (and 3 if K is centrally symmetric).
The manuscript [1] considers asymptotic shapes of lattice packingsin E3 and moreover
the asymptotic shapefor lattice packings, o > o, isdescribed explicitely in[3] and [20].
Theresult is the Wulff-shape in crystallography.

2. Somebasicinequalities. We provevariousformulaeinvolving rk(C) and R (C).
Theseinequalities will be used in the subsequent sections. The following statement is a
version of Steinhagen’stheorem for general convex bodies:

LEMMA 2.1. Any convex body C is contained in a strip bounded by two parallel
hyper planeswhich support a copy of drk (C)K.

REMARK. Theconstant d is attained when K isasimplex and C = —K.

PrROOF. We prove the statement by induction on d, where the case d = 1 readily
holds. We may assume that r(C) = 1 and K C C. For some 1 < m < d, there exist
Xos - - . » Xm € bdK M bdC such that the relative interior of the convex hull of the common
outer normal vectors at Xo, . . . , Xy contains the origin. Define L as the linear m-space
spanned by the m+ 1 normal vectors, denote by Cy the projection of the region enclosed
by the supporting hyperplanesonto L and by Kq the projection of conv{xo, . . ., Xm} onto
L.

If m < d then applying the induction hypothesisto the m-simplices Cp and Ko yields
the lemma.

So assume that m = d and F; is the facet of Co containingx;, j =0, ..., d. Denote by
H; the hyperplane through the centroids of the facets Fy of Cp different from F;, and let
HJ-+ (H;") be the halfspace containing (not containing) Fj. Since ﬂjd:O int Hj+ is contained
in int Co, we may assume that a vertex of Kg liesin Hy . Now the statement follows as
the distance of Fo from the opposite vertex of Cy isd times the distance of Hyg and Fo. m
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A similar argument yields that
D R «(C) < dR«(C).

with equality if and only if K and C are homothetic simplices.

For any vector u # 0, denote by ||u||k twice the ratio of the length of u and the length
of the longest segment in K parallel to u, and set Dk (C) to be the maximum of ||x — y||x
for x,y € C. If K isthe unit ball then Dk (C) is the diameter of C. A simple application
of Helly’s theorem (reducing to the case when C is a simplex) and similar arguments as
for Lemma 2.1 yield that

2 R«(C) < g Dk (C).

Here one has again equality when K isasimplex and C = —K.
The mixed volume V;(C,K),i=0,..., d of H. Minkowski is defined by the formula

V(aC + 6K) = zdg <‘Ij> Vi(C. K)o '

for a, 8 > 0 (see eg. [7] or [17]). Here Vi(C.K) = V4_i(K, C) and Vo(C,K) = V(C).
The mixed volumes are continous, linear and monotonic in both variables, and they are
invariant under simultaneous volume preserving affine transformations of C and K.

Assumethat C is a d-polytope and U denotes the set of outer unit normal vectorsto
thefacetsof C. If |F,| isthe (d — 1)-area of the facet of C with normal vector u and hk (u)
is the value of the support function of K then

1
© Va(C.K) = 5 3 he(W)|F.
ueU
In addition, the mixed volumes satisfy the celebrated Alexandrov-Fenchel inequality.
Thecaseweneedisthat for 1 <i <j <d,
Vi(C.K)! > Vj(C. K)'V(C)' .

In some particular cases, a so the stability of the Alexandrov-Fenchel inequality isknown.
Assumethat V(C) = V(K) = 1 and the centroids C and K coincide. If the diameter of C
and K are at most D then their Hausdorff distance $(C, K) satisfies (see[13])

@ 5(C. K) < 12dD(Vy 1(C, K) — 1) .

In the planar case, Bonnesen'sinequality is more convenient for our purposes. Setting
A(C, K) = V1(C, K), we have (see [13])

©) A(C.K)? > A(Q)A(K) + 3AK)?(Rc(C) — rK(C))Z-

For u € S™1, denote by 7k (u) the (d — 1)-area of the orthogonal projection of K
onto the hyperplane normal to u. If C is a segment with length |C| parallel to u then
Vg-1(C. K) = X|Clmk (u). We deduce that

(6) Dk (C) < 2dVy-1(C. K) /V(K).
whichin turn yields by (2) that
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LEMMA 2.2. For any convex body C,
V(K)R«(C) < d*Vy_1(C.K).

REMARK. If K istheunit ball BY then the optimal constant is known; namely, instead
of d2, 2kg4_1/(drq) where kg = V(BY).
Using R« (C)rc(K) = 1 and interchanging the role of K and C, we also deduce

COROLLARY 2.3. For any convex body C,
d?V4(C. K)rg(C) > V(C).
We also need an estimate for V(C) in terms of both of the in- and circumradius.

LEMMA 2.4. For any convex body C,
1
ZVRTOR(O) < V(©) < dV(K)k(ORTHO).

PROOF. Let u € S*1. Asour problem is affine invariant, we may assume that the
width wk (u) of K parallel to uis equal the length of the longest segment contained in K
parallel to u, and hence

1
(7 V(K) > aWK(U)7T K (U).
This estimate yields the upper bound for V(C) by Lemma 2.1. We deduce the lower
bound by the relation R« (C)rc(K) = 1 and interchanging the role of K and C. ]

By John's theorem (see [15]), any convex body K contains a unique ellipsiod E of
maximum volume (the so-called Lowner ellipsoid), and assuming that the origin is the
center of E, we have K C dE. If K is centrally symmetric then even K C +/dE, and
the extremal bodies are the simplex and the parallelotope, respectively. K. Ball proved
(see [2]) that these bodies also minimize the ratio V(E)/V(K) among convex bodies
or centrally symmetric convex bodies, respectively. These properties of the Lowner
ellipsoid yield by Stirling’s formula

LEMMA 2.5. Assumethat V(K) = 1 and the Lowner ellipsoid of K is a ball centered
at the origin. Then
% BY ¢ K c dv/dBe.
Theleft hand sideis asymptotically tight but probably d+/d can be replaced by O(d).
More precisely,

CONJECTURE 2.6. Assumethat V(K) = 1 and the Lowner ellipsoid of K isa ball. Then
the diameter of K ismaximal if K isthe regular simplex.

Finally, we show that given the area of the Lowner ellips, the triangle and the square
have some extremal properties also with respect to packings.

PROPOSITION 2.7. Given the area of the Lowner ellips of K, the domain maximizing
A(K) and P(K) is the triangle, and among centrally symmetric domains that is the
parallelogram.
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REMARK. Assume that K is centrally symmetric. Then some lattice packing of K
is densest among any packings of K (allowing rotation), and hence the parallelogram
maximizes A(K) even in the case of general packings.

PROOF. Assume that B? is the Lowner €llips of K. Then A(K) is maximal if K is
the regular triangle by the result of K. Ball above. Now Fary’s theorem (see [9]) states
that A(K)/A(K) < 3/2 with equality if and only if K is a triangle. On the other hand,
P(K)/A(K) < 2 (see[7]), with equality if and only if K isatriangle.

Assume that K is centrally symmetric. There exist some Xy, X2, X3 such that +x; €
bdK NbdB?, j = 1. 2, 3, and any two consecutive of the six points has acute or right angle
(alowing x; = x2). Denote by H the hexagon (possibly square) whose sides are tangent
to B? in +x. We conclude that A(K) < A(H) as H tiles the plane, and A(H) is readily
maximal when H is the square. The statement for P(K) can be similarly proved. ]

3. Packingswith g > gc. Observethat the body P, = (nA(K)/ V(K))l/ K contains
the centroids of n non-overlapping translates of K (see[6]) and for o > 0,

® P00 = na) 3 () (0) ¥ v

i=
Let convC, minimize V(convC,+9K). We deduce by (8) that asymptotically
V(conv C, +gK) is at most nA(K).

Denote by Z(K) the minimal volume of acylinder containing K. It iswell known that
V(K) > éZ(K) (see [7]). Then the sausage arrangement corresponding to Z(K) shows
that V(conv C, +9K) < np®Z(K), which in turn yields that o > (1/d)¥@9. On the
other hand, we have (see [4])

9) V(conv C, +9K) > nA(K) forp >d+ 1,

and even for p > 2 if K is centrally symmetric. These estimates yield that oo < d+1
(and o < 2if Ciscentrally symmetric). For d = 2, we determine the exact value of o
in the next section.

Assumethat ¢ > ¢, and set go = %(g +0c) and Q, = conv C,, +9oK. Then there exists
some positive function ¢(n) with limy_.., ¢(n) = 0 and V(Qn) > (1 — ¢(n))nA(K). It
follows by Minkowski's formulathat for e = o — pq,

V(conv Cy +0K) = V(Qq +K) > (1 — ¢(n))nAKK) + d V1(Qn. K)e.

Comparing this to (8) yields the existence of some constantsc; and ¢, independent of n
satisfying
V1(Qn. K) < can' + cop(n)n.

Since for large n, V(Qp) > %A(K) n, Corollary 2.3 yields

ProPOSITION 3.1. If o > ¢ then rk(conv C,) tends to infinity.
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Now we give more precise information about the shape of convC,, if p > d+1andn
islarge. Let 0 < e < p —d — 1. Minkowski’'s formula, (9) and the Alexandrov-Fenchel
inequality yield that

V(conv G +(d + DK + £K) > nA(K) + dAK) T V(K)Y4n'T e
Therefore Q,, = convC, +(d + 1 + ¢)K satisfiesthat if

L o& then V(Q) = na(K) + ofV(K).

_d
a1

In particular, we deduce by (8) and V(Qn + (¢ — d — 1 — £)K) < V(Py + ¢K) that

(10 n>

d-1 /d ; d-1 /d d—i i
(11) 2 \i>Vi(Qne K)e—d—1-¢) < ; \-)V(Qn)TV(K)aQI-

i=1 i
The Alexandrov-Fenchel inequality yields that if

d-1

d-1
Vo a(QnK) 2 (g2 V@™

thenforanyi <d— 2,

(@K = (o5t ) V)T V(o:

holds. It follows by (11) that
0 d-1 1 d-1
(12 Vaa(@nK) < (gt V@IV
o—d—1—¢
PrROPOSITION 3.2. Let p > d+ 1andn belarge. If V(conv C, +¢K) isminimal then

R(COVCr) _ ouis ( 20 )dz
rk(conv Cp) o—d—1) °

REMARK. Closer look at the proof showsthat n > ¢%(do /(e —d — 1))d3 issufficient.
If K iscentrally symmetric then d + 1 can be replaced with 2.

PROOF. We may assume V(Qn) < 2nA(K) by (8). Set e = min{3(¢ —d — 1),1}, and
hence Lemma 2.2 and (12) yield that

20 )d_l (ZA(K))l/d al/d

Re@) < (=) (T

Since by Lemma 2.4, we have
1 20\ AR\ g
W@ >z (=a=1)  (veg) ™

the inequality Rk(conv Cp)/rk (conv C,) < 2Rk(Qn)/rk(Qn) yieldsthe proposition. =
Finally we show that if o islarge then the asymptotic shape of the optimal conv C,, as
n tendsto infinity is close to being homothetic to K.
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PROPOSITION 3.3. Let p > d”@ and n > . If V(conv C, +oK) is minimal then

Rk (conv Cy,) . 100d35
rk(conv Cy) ot/ @)

PrROOF. As the problem is affine invariant, we may assume that V(K) = 1 and the
Lowner ellipsoid of K isaball centered at the origin. In addition, set e = 1 and let Q, be
the body homothetic to Q, with V(Q,) = 1 and sharing acommon centroid with K. With
these normalizations, we deduce by (12) that

5 d-1
(13) Vos@k) < (=55 -

which in turn yields by Lemma 2.5 and (6) that

D@ < (2 ).

Substituting these estimatesinto (4) shows that

_ _ 1/(d+1)
5(Qn.K)<12d7/2(L)d 1/(L)d 1_1 / )
o—d—2 \ o—d—2

The desired inequality finally follows as Rc(Qn) < 1+ e8(Qn. K) and rk(Q,) >
1 — eb(Qn, K). .

The proofs were based on the inequality V(conv C, +oK) > nA(K) for p > d+1
(and for o > 2if K is centrally symmetric). Denote by Az(K) the minimal determinant
of a packing lattice of K and assume that C,, is a set of n points of such alattice. Then
V(conv C, +oK) > nAz(K) for o > 1.5(d + 1) and even for o > 3if K is centraly sym-
metric (see[6]), which in turn yields the corresponding statements for lattice packings.
If K isaball then even the condition o > 1/21/2 = 2.2913 is sufficient (see [14]).

ExAMPLE. Let conv C, bethe convex hull of the centers of n non-overlapping trans-
lates of the parallelotope P such that V(conv C,, +9P) is minimal for some p > 0. Then
Theorem 1.1 in [4] and V(conv C, +P) > V(S, + P) show that convC,, = §, if p < 1. If
o > lthen

conv C,

(1 _ O(n—l/(4d2))) PC ~7d

C (1+0(n~Y/@dy) . p,
and actually convC, = (m— 1)P assuming that n = . The proof is based on some
inequalities for mixed volumesinvolving P, like the Alexandrov—Fenchel inequality.

4. Planar packingsfor small p. We prove the statements of Theorem B in several
steps. In this section, K isaconvex domain and ¢ < A(K)/P(K).

The perimeter of a convex polytope Q with respect to the norm || - ||« is denoted
by Uk(Q). If Q = conv{x.y} then Ux(Q) = 2||x — y||k. Set K* = (K — K). Then
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P(K) = P(K*)and || - ||k = || - ||k Since for any discrete set A, A + K is a packing if
and only if A + K* is a packing, we also have A(K) = A(K*). The celebrated inequality
of Oler states (see [16])

A(conv Cp) N Uk (conv Cy)

14 AR 7) +1>n.
For the sausage S, one has
(15) A(convs, + oK) = (n — )P(K)o + A(K)o?.

We deduce by (14) and Minkowski’s formula that A(conv C, +gK) < A(conv$, + oK)
yields the inequality
1 P(K)
(16) 4 - — m A(conv Cp) < P(K)Uk(conv C,) — 8A(conv Cp,, K).
Y
LEMMA 4.1.

A(conv Cp) > A(conv C,,, —K) — A(conv C,, K),
with equality if and only if conv C,, isa segment or n = 3 and conv C,, = K.

PROOF. The core of the proof isthe claim that if the vertices of the triangle T induce
apacking of three translates of K then

17 A(T) > A(T. —K) — A(T. K).

First we consider the case that K isatriangle. Let u € E? be with K N (u+K) = 0. We
prove that the convex hull of K and K + u contains a parallelogram P which contains
a trangdlate of K. We can assume that K and K + u have a common point x (a vertex
of K). Let f be the opposite face of x. Then P = f + u yields a parallelogram with the
above properties. Since P is symmetric it also contains a translate of —K and it follows
A(T. —K) < A(T. T +K) = A(T) + A(T. K).

Applying thisto the three face vectors of T we obtain threetrandatesof —K in T +K.
If two of them are not identical then T + K even containsthe sum | + (—K) wherel isa
line segment and it follows A(T, T + K) > A(T.I + (—K)) > A(T. —K). Hence equality
can only occur if these three translates coincide. So each side of —K hasto be a side of
one of the translates of K and thisisonly the caseif K = T.

For general K wedefinex by —K < x+Rr(—K)T, and henceeach side of x+Rp(—K)T
contains a point of —K. Denoting by —H the convex hull of these points, (3) yields that
A(T,—K) = A(T. —H) = A(T, Rr(—K)T) = Rr(=K)A(T). Since the vertices of T yield a
packing for the triangle H it follows A(T, —K) = A(T, —H) < A(T) + A(T,H) < A(T) +
A(T, K). Intheequality casewehaveH = T and from A(T, T+K) = A(T, —K) = A(T, —H)
it followsK =H =T.

Now triangulate conv C,, using only the centroids of the corresponding n translates of
K. Adding up the corresponding inequalities for each triangle in the triangulation yields
the required inequality. Equality can occur only if conv C,, is a segment or each triangle
in the triangulation is congruent to K; namely, if n = 3 and K = conv C,,. ]

PROPOSITION 4.2. If p < 3/7 and A(conv Cp, +9K) isminimal then C,, = S,.
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PrOOF. Assume that A(conv C,, +oK) is minimal. Since by (3) (see also [4]), for any
convex, compact set C the inequality

(18) P(K*)Uk-(C) < 8A(C.K")

holds, we deduce by (16) and some simple considerations that

(} — m) A(conv Cp) < A(conv C,, —K) — A(conv Cy, K).

o AK)

Since P(K) /A(K) < 4/3 (see[4]), ¢ < 3/7 and Lemma 4.1 yield that either conv C,

isasegment or o = 3/7, n = 3 and K = conv C,,. In the later case A(conv C,, +oK) >

A(convs, + oK), which in turn implies the proposition. ]
If Kisatriangle and C3 = K then V(Cs + oK) < V(S + oK) for ¢ > 1/2. It follows

that one can not improve too much on the bound 3/7 of Proposition 4.2. In addition,

the next Proposition showsthat if ¢ < 3/4 and n is large then the sausage arrangement

is optimal. Thus non-symmetric convex bodies may behave more irregularly than the

centrally symmetric ones.

PROPOSITION 4.3. Let o < A(K)/P(K) and n > 2000(A(K) /P(K) — g)’z. With these
conditions, A(conv C,, +9K) isminimal if and only if C, = S,.

PROOF. Since our problem is affine invariant, we may assume that B = B? is the
Lowner ellips of K*. Assume that A(conv C,, +¢K) is minimal. There exist two parallel
supporting lines I; and I, of conv C, with distance at most 3rg(conv Cy) (see [8]), and
let s C conv C, be the a segment whose orthogonal projection to |4 is the same as the
projection of conv C,,. Then conv C,, C s+ 3rg(conv C,)B and

(29) P(K)Uk(s) < 8A(s. K),
whichin turn yields by (16) that

1 PK)
4 (5 _ W) A(conv Cy) < 3P(K)Ux (B)ra(conv Cy).

Here P(K) = P(K*) < 4 by Lemma 2.7 and Uk (B) = Uk-(B) < 2r, and hence

AK)

0 (P

) A(conv Cp,) < 6rrrg(conv Cy).

Assume that conv C,, istwo dimensional and let o, C conv C,, be the set of centroids
of the corresponding n translates of K. Since oy, + B is aso a packing, any segment of
length /2 along |, contains the projection of at most 3rg(conv Cy) / v/2+ 1 points of oy,
We deduce that (s/+/2)(3rg(conv Cy)/v/2 + 1) > n, which in turn yields the estimate

2nrg(conv Cy)
3rg(convCp) +v/2'

A(conv Cp) > srg(convCp) >
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Substituting this into (20) resultsin

A(K)
(21) 2 (% — g) n < 6m(3rg(conv Cy) +v/2).
On the other hand, A(conv C,) < nA(K*) (see[6]) and A(K*) /A(K*) > 0.8926 (see[10])
yield that
A(K*)
rg(convCy) < \/érK*(conv Cn) < \/E\J AKC) VN < 1.5/n,
and hence AK) 9
Now we deduce by some elementary calculations that if n > ZOOO(A(K) /P(K) — g)_z
then conv C, must be a segment. ]

5. Planar packingsfor o > p.. The results of this section correspond to the ones
from Section 2. The difference is that having Bonnesen’sand Oler’s inequality at hand
allows much more precise statements.

PrROPOSITION 5.1. Let o > P(K)/A(K) and A(conv C, +¢K) be minimal. Then for
n>10%?%/ (o — P(K)/A(K))Z, we have the estimate

Rk (conv Cy,) - 400p?

re(convC,) — (Q_ %)2'

Proor. It follows by Lemma 2.1 that there exists a segment s C conv C,, such that
conv C, C s+ 4rg(conv C,)K. We deduce by (8) that

A(conv Cp) + 2pA(conv Cp. K) < A(K)N + 20+/A(K)AK) /N
which in turn yields by (14) and (19) that
2 (g - %) A(conv Cp. K) < 2pv/A(K)AK)/n
+A(K)Uk (K)rg (conv Cp) + A(K).

Note that rx(conv Cy) < /A(K)/A(K) y/n as A(conv Cn) < nA(K) (see [6]), Uk(K) =
Uk~ (K*) < 8 (see[11]) and % < A(K)/A(K) < 1 by Féary’s theorem. We deduce for
Qn=convC, +§K after some elementary calculations that

(22) 2 (g — %) A(AQ(T()K) < 20y/n+ 8\l§ﬁ+ 30.

Assumethat the origin isthe centroid of K. Then K* C %K, and hence

%P(K)UK (conv Cp) < 3A(conv Cy, K)
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by (18). We deduce using Oler’s inequality that
(23) AQn) =A (conv Cq +:—; K) > nA(K).

On the other hand,
AQw . NnAK)
4ri(Qn) — 4rk(Qn)

holds by Corollary 2.3, and combining this with (22) yields that

AQn.K) =

MK
PR

(24 (@) > 50

In particular, if n > 10%?/ (o — P(K)/A(K))2 then ri(convCy) > 1rk(Qn). Finally,
Lemma 2.4 yields the proposition as V(conv Cp,) < nA(K). ]

The proof of the next proposition is basically the same as for Proposition 3.3, only
rather applies the stability formula of Bonnesen.

PROPOSITION 5.2. Let p > 3 and A(conv C, +0K) be minimal. Then for n > 250002,

we have the estimate
R« (conv Cy) <1+ @

rk(convC,) — N
PROOF. Set Qq = conv C, +3K. Since A(Qn + (2 — 3)K) < A(Pn + oK) and A(Qn) >
nA(K), we deduce by (8) that
3 9
2@ K) (20— 3] = 20/AIIBERT - Vii+ (30— 3) AK).

Using Bonnesen's inequality (5), and the estimates A(Q,) > nA(K) and % <
A(K)/A(K) < 1, resultsin

1 2 0 2 3?2
— - <|—= — -
1+ 2 (Re(@n) — (@) < (g £ g) (1 5r)
For n > 250002 and o > 3, theright hand side is at most 1 + 5/p. On the other hand,
/N < 96rg(conv Cy) by (24), and hence Rq (Qn) — r (Qn) = Rk(conv Cy,) — rg(conv Cy)
yields the proposition by some simple calculations. ]
Theresults of Sections4 and 5 yield that o = P(K) /A(K) = gs, and

COROLLARY 5.3. The Strong Sausage Conjecture holds for any planar convex do-
main.
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