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Abstract

Objective: The transient receptor potential cation channel, subfamily V (vanilloid), member 1
(TRPV1) mediates pain perception to thermal and chemical stimuli in peripheral neurons. The
cannabinoid receptor type 1 (CB1), on the other hand, promotes analgesia in both the periphery
and the brain. TRPV1 and CB1 have also been implicated in learned fear, which involves the
association of a previously neutral stimulus with an aversive event. In this review, we elaborate
on the interplay between CB1 receptors and TRPV1 channels in learned fear processing.
Methods: We conducted a PubMed search for a narrative review on endocannabinoid and
endovanilloid mechanisms on fear conditioning. Results: TRPV1 and CB1 receptors are
activated by a common endogenous agonist, arachidonoyl ethanolamide (anandamide),
Moreover, they are expressed in common neuroanatomical structures and recruit converging
cellular pathways, acting in concert to modulate fear learning. However, evidence suggests that
TRPV1 exerts a facilitatory role, whereas CB1 restrains fear responses. Conclusion: TRPV1 and
CB1 seem to mediate protective and aversive roles of anandamide, respectively. However, more
research is needed to achieve a better understanding of how these receptors interact tomodulate
fear learning.

Summations

• The tripartite system, anandamide, TRPV1, and CB1, may be an important player in
regulating fear responses.

• Anandamide either facilitates or restrains fear, by acting upon TRPV1 or CB1,
respectively.

• The intensity of aversive stimulus and doses of cannabinoids or vanilloids ligands
are major determinants in detecting anti-aversive effects.

Considerations

• This is a narrative review of the interactions among anandamide, TRPV1, and CB1 in
themodulation of fear learning.We carefully selected studies contributing to the field.

• We recognize that some relevant work might not have been cited in this review.
• Here we suggest potential mechanisms and pathways involved in the regulation of
fear by anandamide, TRPV1 and CB1.

Introduction

Fear can be defined as a coordinated reaction, involving autonomic, behavioural and cognitive
changes in response to innate or learned threatening stimuli (Fanselow and Pennington, 2018).
Fear learning enables an individual to assignmotivational content to cues previously paired with
threatening stimuli, allowing the prediction of danger and the elaboration of an adaptive
response (Krause &Domjan, 2017). Thus, conditioned fear is crucial for survival and well-being
(Krause & Domjan, 2017). However, beyond certain limits, a mechanism sustaining health may
become maladaptive and predispose to psychiatric disorders (Milton, 2019). Indeed, alterations
in conditioned fear processing have been related to anxiety, depression and post-traumatic stress
disorders (Foa et al., 1989; Luyten et al., 2011; Conoscenti and Fanselow, 2019; Bienvenu
et al., 2021).

In experimental animals, learned fear can be studied using protocols in which a neutral
stimulus, such as a context or an auditory cue, is paired with an aversive one (unconditioned,
such as a footshock). Thereafter, the formerly neutral stimulus, when subsequently presented,
functions as a conditioned stimulus and triggers a conditioned response. Contextual fear
conditioning involves the use of a contextual element as a neutral stimulus, while cue fear
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conditioning often relies on auditore stimuli (a tone). The sound
can terminate simultaneously or be delayed in relation to the
duration of the aversive stimuli. Alternatively, the aversive stimuli
can be delivered after a certain time, characterising the trace-
auditory fear conditioning. One advantage of fear conditioning
models is the possibility of dissecting the mechanisms underlying
specific learning phases. The whole learning and memory process
can comprise the following phases: The acquisition phase, when the
two stimuli are presented simultaneously (e.g. shock þ context,
shock þ tone) and the processing and initial encoding of memory
takes place. This is immediately followed bymemory consolidation,
a series of complex molecular processes crucial for the duration of
the memory (Asok et al., 2019; de Oliveira and Do-Monte, 2021).
Synaptic consolidation implies the stabilisation of thememory trace
(Asok et al., 2019; de Oliveira and Do-Monte, 2021), which is
encoded by an assembly of neurones called engram (Josselyn et al.,
2015). Later, when the animals are re-exposed to the previously
neutral stimulus, they will display the conditioned response, for
which the underlying phenomenon is called memory retrieval,
which involves the activation of the engram encoding the memory
previously acquired (Josselyn et al., 2015; Josselyn and Tonegawa,
2020). Likewise, the exposition to the conditioned stimulus can
trigger different processes, depending on the duration of this
exposition, among other factors (Auber et al., 2013). Long or
repeated expositions to the neutral stimuli can induce extinction, in
which a newmemory trace is formed, decreasing the intensity of the
conditioned response. After extinguished, conditioned responses
can be restored, by reinstatement, renewal or spontaneous recovery
(Asok et al., 2019; de Oliveira and Do-Monte, 2021).

In terms of neural circuitry, fear learning requires an extensive
network of central structures involved in cognition, emotion, and
their corresponding autonomic and behavioural responses. The
hippocampus (HPC) is responsible for encoding the contextual
information associated with an aversive stimuli (Hennings et al.,
2022; Marks et al., 2022; Lee and Kaang, 2023). Bidirectional
projections between the HPC and the amygdala (AMG) are
involved in sustaining the emotional valence of the conditioned
response (Marks et al., 2022). The various AMG nuclei process
information related to conditioned cues (Li et al., 2023) through
neuronal connections with other structures, such as the peri-
aqueductal grey (PAG) and the parabrachial nucleus and the
thalamus (Marks et al., 2022). In addition, cortical structures,
especially the prefrontal cortex (PFC), receive substantial
connections from subcortical brain regions such as the AMG
and the HPC, integrating the fear-learning circuit (Thomas et al.,
2002; Alexandra Kredlow et al., 2022). Other structures outside the
classic circuit have also been investigated in the last years for their
contribution to fear conditioning. For instance, the nucleus
accumbens (NAC) core is involved in the evaluation of threat
degree (Ray et al., 2020). However, its role in fear associated with
discrete cues remains uncertain (Thomas et al., 2002).

Thus, different structures and pathways work in concert along
the complex process of fear learning, in order to keep the balance
between allostasis and allostatic overload (Milton, 2019). Various
neurochemical mechanisms have been implicated in this process,
including the endocannabinoid system (ECS) (Lutz et al., 2015),
which is briefly described in the following section.

The endocannabinoid system

The ECS comprises several molecular components, including the
cannabinoid type-1 (CB1) (Matsuda et al., 1990) and type-2 (CB2)

(Munro et al., 1993) receptors; the endocannabinoids (eCB), N-
arachidonoylethanolamide (anandamide) (Devane et al., 1992)
and 2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995); the
enzymes responsible for their synthesis, N-acyl phosphatidyletha-
nolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase
(DAGL), respectively; and those responsible for their hydrolysis,
fatty acid amide hydrolase (FAAH) (Deutsch & Chin, 1993) and
monoacylglycerol lipase (Dinh et al., 2002), respectively. One
particularity of this system is that the eCBs are produced and
released on demand; anandamide can be released by either the pre-
or the postsynaptic neurones, while 2-AG seems to be released
mostly from the postsynaptic neurones (Howlett et al., 2002;
Piomelli and Mabou Tagne, 2022). Once released, eCBs can act as
retrograde messengers or as autocrine modulators (Uchigashima
et al., 2007; Busquets-Garcia et al., 2018). CB1 seems to be
expressed mostly in presynaptic terminals, although their
postsynaptic presence has also been suggested and described as
regulating neuronal self-inhibition (Bacci et al., 2004). Its functions
seem to be related to the regulation of dendritic excitability
mediating long-term potentiation (LTP), which is necessary for
cognition and spatial memory (Maroso et al., 2016; Busquets-
Garcia et al., 2018). In addition to these classic members, a more
comprehensive description of the ECS may include other targets
under the umbrella term of the expanded ECS (Cristino et al.,
2020). The list includes enzymes and receptors modulated directly
by phytocannabinoids, eCB or other products of their biosynthetic
pathways, such as the transient receptor potential cation channel
subfamily V (vanilloid), member 1 (TRPV1) (Cristino et al., 2020).

TRPV1 and CB1 share some important features. Both were
originally discovered as targets for phytochemicals. In the case of
CB1, its prototypical agonist is delta-9-tetrahydrocannabinol, the
main psychoactive compound of Cannabis sativa (Devane et al.,
1988); as for TRPV1, its main agonist is capsaicin, a substance
present in certain species of chilli peppers and responsible for the
burning pain associated with their intake (Caterina et al., 1997).
After their discoveries as orphan receptors, both CB1 and TRPV1
were found to share anandamide as a common endogenous agonist
(Devane et al., 1992; Zygmunt et al., 1999). TRPV1 is preferentially
activated at high temperatures (>42’C) (Caterina et al., 1997),
whereas anandamide binds to this channel with low affinity, as
compared to CB1 (Devane et al., 1992; Ross, 2003). These
particularities, however, do not refute the possibility that
anandamide acts as an endogenous TRPV1 agonist. Indeed,
TRPV1 activity is controlled by various other mechanisms in
addition to temperature, including calmodulin (Numazaki et al.,
2003), ATP (Lishko et al., 2007), calcineurin (Docherty et al., 1996)
and several kinases, such as PKA or PKC (Premkumar and Ahern,
2000; De Petrocellis et al., 2001; Numazaki et al., 2003). The action
of these enzymes on TRPV1 may modify its response to its ligands
(e.g. anandamide) and enable its activation at physiologic
temperatures (Premkumar and Ahern, 2000; De Petrocellis
et al., 2001; Numazaki et al., 2003). Therefore, it is not surprising
that anandamide was initially described as a full or partial agonist
(Zygmunt et al., 1999; Ross, 2003) depending on the conditions
determining TRPV1 conformation.

Notwithstanding these similarities, CB1 and TRPV1 differ in
several aspects. Firstly, although both CB1 and TRPV1 are
expressed in brain structures related to emotion and cognition, CB1
is usually expressed in presynaptic neurones (Katona et al., 1999),
whereas TRPV1 is thought to predominate in postsynaptic
neurones (Tóth et al., 2005; Zhao and Tsang, 2017).
Remarkably, despite different cellular locations, TRPV1 and CB1

256 Briânis et al.

https://doi.org/10.1017/neu.2023.54 Published online by Cambridge University Press

https://doi.org/10.1017/neu.2023.54


are often co-expressed in the same synapsis. Regarding the
mechanisms, CB1 is one of the most highly expressed G-protein-
coupled receptors in the brain (Tsou et al., 1998; Busquets-Garcia,
et al., 2018), usually coupled to a Gαi/o protein (Busquets-Garcia
et al., 2018). Thus, when activated, CB1 inhibits adenylate cyclase,
activates inwardly rectifying Kþ channels and decreases neuro-
transmitters release (Howlett et al., 2002), regulating depolarisa-
tion-induced suppression of both inhibition and excitation (Ohno-
Shosaku et al., 2001; Wilson and Nicoll, 2001; Uchigashima et al.,
2007). Conversely, TRPV1 is a non-selective cation channel, highly
permeable to Ca2þ (Caterina et al., 1997). Once activated, it
promotes an increase in intracellular Naþ and Ca2þ, with
subsequent increase in neuronal activity (Marinelli et al., 2005;
Starowicz et al., 2007). In addition, since eCB synthesis and release
can be triggered by Ca2þ (Alger, 2002), TRPV1 activation may in
turn increase eCB tonus (Maccarrone et al., 2008). Finally,
although both CB1 and TRPV1 are activated by anandamide, this
compound has at least twenty times more affinity for the former
(Ross, 2003; van der Stelt et al., 2005).

This body of evidence endorses the hypothesis that ananda-
mide, CB1 and TRPV1 configure a tripartite system regulating
neuronal activity in the brain (Fig. 1). In synapsis expressing both
receptors, low levels of anandamide activate presynaptic CB1
receptors, decreasing neurotransmitter release, whereas higher
levels of anandamidemay also recruit TRPV1 receptors, increasing
neuronal activity and counterbalancing CB1-mediated effects.
Here, we make the case for the possibility that the dual action of
anandamide upon CB1 and TRPV1 may also participate in the
modulation of learned fear. Our hypothesis will be built upon
pharmacological and genetic studies to investigate the role of each
receptor in fear-conditioned paradigms, considering the various
phases of fear-learning processing.

Role of CB1 in fear conditioning

Studies using either genetic or pharmacological approaches
support the involvement of CB1 in the regulation of fear
conditioning. Indeed, initial studies by Marsicano and colleagues
revealed that CB1-deficient mice presented impaired fear extinc-
tion when subjected to a tone previously paired with footshock
(Marsicano et al., 2002). Regarding the effects of pharmacological
interventions, the modulation of fear by drugs targeting CB1 and
other molecular components of the ECS may differ depending on
the specificity of the compound, dosage and intensity of
conditioning. As elaborated below, it also varies according to the
memory phase in which the intervention occurred (acquisition,
consolidation, expression and extinction).

Acquisition of fear memory

Several studies, using pharmacological approaches, have impli-
cated CB1 in the acquisition of fear memory. The administration of
CB1 antagonists and inverse agonists, such as AM4113 (6mg/kg)
and AM251 (4 and 8 mg/kg), respectively, impaired fear
acquisition in an auditory fear conditioning task (Sink et al.,
2010). However, in another study, AM251 (5mg/kg) was found to
enhance the subsequent fear responses in both trace (HPC-
dependent) and delayed (amygdala-dependent) fear conditioning;
these effects were further increased when the drugs were
administered before both conditioning and expression (Reich
et al., 2008). Similarly, Sink and colleagues observed that AM251
enhanced the acquisition of fear conditioned to a context, while no

effect was noticed after AM4113 treatment (Sink et al., 2010).
Regarding cannabinoid agonists, the non-selective CB1, agonist
WIN55,212-2 (2.5 and 5mg/kg), impaired contextual but not
auditory fear conditioning (Pamplona and Takahashi, 2006).
These effects were prevented by pre-treatment with selective CB1
antagonists, such as SR141716A or SR147778 (Pamplona and
Takahashi, 2006).

Consolidation

Studies focusing on the role of the ECS on fear memory
consolidation observed that anandamide release restrained this
process, an effect prevented by a subeffective concentration of
AM251 (Scienza-Martin et al., 2022). Also, the CB1 agonists,
HU-210 (Maćkowiak et al., 2009) and ACPA (Nasehi et al., 2016),
impaired fear consolidation in both contextual and auditory fear
conditioning. As expected, HU-210 effect was blocked when
co-administered with AM251 (Maćkowiak et al., 2009). Similarly,
the phytocannabinoid cannabidiol impaired memory consolida-
tion via CB1, since its effect was prevented by AM251, although
also by the CB2 antagonist, AM630 (Stern et al., 2017). This effect
was observed either with systemic or local (dorsal HPC)
administration (Stern et al., 2017).

Retrieval

In studies investigating the role of CB1 in fear memory retrieval, the
CB1 antagonist, SR141716 (1, 5 mg/kg), was ineffective (Mizuno
et al., 2022). However, the non-selective agonist WIN55,212-2
(0.25 mg/kg) decreased contextual fear responses when animals
were subjected to a more intense, but shorter protocol (1 × of
1.5mA) (Pamplona et al., 2008). When the intensity of the aversive
stimulus was lower, but its duration was longer (3 × of 0.75 mA),
WIN55,212-2 enhanced fear memory retrieval at both doses tested
(0.075mg/kg and 0.75 mg/kg) in males, but just at the highest one
in females (Mizuno et al., 2022).

Regarding compounds that indirectly facilitated the ECS,
JZL184, an inhibitor of 2-AG hydrolysis, increased freezing in
females (8 mg/kg), but not in male mice, an effect mediated by
CB1, but not CB2 receptors. The FAAH inhibitor URB597 (0.3, 1,
3 mg/kg) was ineffective (Mizuno et al., 2022).

Concerning the brain regions involved, no effect was verified by
administering AM251 into the ventromedial PFC (Lisboa et al.,
2010; Simone et al., 2015), although this CB1 antagonist did
increase freezing in animals exposed to a less aversive conditioning
protocol (Lisboa et al., 2010). Local injection of anandamide
(5 pmol/200 nl) or the anandamide transport inhibitor, AM404
(50 pmol/200 nl), into this region, attenuated the fear-conditioned
responses, a result prevented by local pre-treatment with AM251
(100 pmol/200 nl). No effect was also reported in auditory fear
conditioning after ACEA, another CB1 agonist (Simone et al.,
2015). Finally, when administered locally into the PAG, 2-AG
decreased freezing response, an effect prevented by AM251
(Brianis et al., 2022).

Extinction

The importance of CB1 in the extinction of aversive memories was
observed through several strategies. For instance, CB1-deficient
mice showed impaired short- and long-term extinction, and this
was mimicked by the administration of the CB1 antagonist,
SR141716A, to wild-type animals (Marsicano et al., 2002). The
extinction of the auditory fear conditioning was impaired by the
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administration of another CB1 antagonist/inverse agonist, AM251
(3 mg/kg), and facilitated by the selective agonist, ACEA (0,1 and
0,5 mg/kg) (Simone et al., 2015).

Accordingly, a selective CB1 antagonist disrupted extinction,
while administration of WIN55,212–2 resulted in the opposite
effect (Pamplona et al., 2006). The facilitation of fear extinction
was also observed in the extinction of remote memories, an effect
prevented by a CB1 antagonist (Pamplona et al., 2006). In another
study, however, the administration of WIN55,212-2 (0.075,
0.75 mg/kg) inhibited fear extinction in both sexes (Mizuno
et al., 2022). Regarding the direct modulation of endocannabinoid
hydrolysis, extinction impairments were reported in animals
treated with a DAGL inhibitor as well as in animals lacking DAGL
(DAGLα−/− mice) (Cavener et al., 2018). In addition, 2-AG or
anandamide facilitation, with JZL184 (4 or 8 mg/kg) and URB597
(0.3, 1, 3 mg/kg), respectively, inhibited fear extinction on day 5;
however, such differences disappeared on the last day of extinction
(day 28) for both sexes (Mizuno et al., 2022).

Therefore, the predominant effect of facilitating endocannabi-
noid signalling is the inhibition of fear responses, whereas its
blockade tends to induce the opposite response. These effects tend
to occur particularly in protocols in which the animals are exposed
to aversive stimuli of moderate intensity.

Role of TRPV1 in fear conditioning

The literature on TRPV1 and fear is scant, in comparison to the
more robust evidence discussed for CB1. One of the earliest studies
implicating TRPV1 in fear memory reported phenotypic

differences between TRPV1 KO and wild-type animals in the
auditory fear conditioning (Marsch et al., 2007); knock out animals
displayed lower levels of freezing when evaluated shortly or
remotely after conditioning, while unconditioned fear responses
and pain threshold remained unchanged as compared to controls
(Marsch et al., 2007). The responses seemed to be dependent on the
intensity of the conditioning (Marsch et al., 2007). This early study
suggested that TRPV1 may be involved in fear memory, but
whether its role was relevant for acquisition, consolidation or
retrieval was still unknown.

Acquisition

Pharmacological studies revealed no effect after the administration
of a TRPV1 blocker, capsazepine, before conditioning, although
administration of capsaicin, a TRPV1 agonist, had biphasic effects –
low doses enhanced acquisition and high doses impaired it (Almeida
et al., 2019). A potential explanation for this biphasic profile is the
fast desensitisation of TRPV1 induced by even single doses of
capsaicin (Szallasi and Di Marzo, 2000; Almeida et al., 2019).

Consolidation

In agreement with the results obtained from experiments in
knockout mice, intra-hippocampal administration of capsazepine
impairedmemory consolidation when the animals were exposed to
high intensities of the aversive stimulus, although no effect was
observed after capsaicin administration (Genro et al., 2012).
Interestingly, this effect was replicated in a more recent study
(Scienza-Martin et al., 2022).

Figure 1. a) CB1 and TRPV1 receptors are co-localized in brain regions that modulate fear responses, such as the prefrontal cortex (PFC), hippocampus (HPC), amygdala (AMG)
and periaqueductal grey (PAG). b) Molecular pathways involved in fearmemorymodulated by CB1. receptors and TRPV1 channels in response to low or high aversive stimuli. Under
low-intensitiy, aversive stimuli (left panel) CB1 activation by anandamide inhibits adenylate cyclase. (AC), reduces glutamate (GLU) release and activates rectifying potassium (Kþ)
channels. However, as the intensity of the aversive stimulus increases (right panel), anandamide binds to TRPV1 receptors and causes calcium (Caþ2) influx. This leads to
calmodulin (CaM) activation and neuronal nitric oxide synthase (nNOS) activity, resulting in nitric oxide (NO) production and its retrograde activity, increasing GLU release (2-AG,
2-arachidonoylglicerol; AC, adenylate cyclase; anandamide, N-arachidonoylehtanolamide or anandamide; Akt, protein kinase B; AMPA, α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid channel; BDNF, brain-derived neurotrophic factor; Caþ2, calcium; CaM, calmodulin; CamKII, calcium–calmodulin (CaM)-dependent protein kinase II; CB1,
cannabinoid type 1 receptor; ERK, extracellular signal-regulated kinase; GLU, glutamate; Kþ, potassium; mTOR, mammalian target of rapamycin; NMDA, N-mehtyl-d- aspartate
channel; nNOS, neuronal nitric oxide synthase; NO, nitric oxide; TrkB, receptor tyrosine kinase B; TRPV1, transient receptor vanilloid type-1 channel).

258 Briânis et al.

https://doi.org/10.1017/neu.2023.54 Published online by Cambridge University Press

https://doi.org/10.1017/neu.2023.54


Retrieval

Local administration of TRPV1 blockers (capsazepine or 6-
iodonordihydrocapsaicin) into the ventromedial PFC decreased
behavioural and autonomic responses to contextual fear learning
(Terzian et al., 2014). However, the effect of 6-iodonordihydro-
capsaicin was not observed when the animals were exposed to
aversive stimuli of low intensity (Terzian et al., 2014). In spite of
this, at this intensity, this compound was able to prevent the
enhancement of conditioned responses induced by central
administration of capsaicin (Terzian et al., 2014). The augmenta-
tion of behavioural and autonomic responses induced by capsaicin
administration into the ventromedial PFC was replicated in
another study (Uliana et al., 2020). Finally, TRPV1 blockers
directly administered into the dorsal HPC impaired memory
retrieval when the mice were exposed to footshocks of moderate-
to-high, but not low, intensities (Iglesias et al., 2023).

Extinction

ThepotentTRPV1 inhibitor iodoresiniferatoxinadministeredbefore
conditioning, retrieval and extinction enhanced fear extinction
without affecting other phases (Laricchiuta et al., 2013). However, in
the auditory fear conditioning, an acute administration of SB366791
had no effect (Llorente-Berzal et al., 2015).

In summary, the scarce literature suggests that activation of
TRPV1 channels exacerbates fear memory with a biphasic profile,
possibly associated with fast desensitisation of TRPV1 channels at
certain doses of agonists (Szallasi andDiMarzo, 2000; Almeida et al.,
2019). On the contrary, genetic deletion as well as pharmacological
blockade of TRPV1 promotes anti-aversive responses. This effect
depends on the intensity of the aversive experience, probably due to
the tonus of the ECS, as will be discussed below.

TRPV1 and (endo)-cannabinoid interactions

Although the aforementioned studies focused on CB1 and TRPV1
separately, we argue that these receptors function in concert to
mediate opposite functions of anandamide. In this section, we built
on the hypothesis that anandamide, CB1 and TRPV1 form a
tripartite system modulating fear memory based on three sets of
evidence: First, CB1 and TRPV1 are co-localized in fear-related
brain regions; second, they interfere with common downstream
pathways involved in fear memory. Finally, they depend on each
other to mediate the effects of selective pharmacological
interventions.

CB1 and TRPV1 are co-localized in fear-related structures

The presence of CB1 in brain circuits modulating fear learning is
supported by an enormous and consistent body of evidence (Tsou
et al., 1998; Wilson-Poe et al., 2012; Lazenka et al., 2013; Gomes-
de-Souza et al., 2021). Moreover, histological studies with specific
antibodies found CB1 to be co-expressed with TRPV1 in several
synapses of fear-related regions (Cristino et al., 2006). Additional
studies in specific brain regions observed TRPV1 and CB1
colocalization in the PFC (Fogaça et al., 2012; Diniz et al.,
2019), the PAG (Casarotto et al., 2012) and the dorsomedial
hypothalamus (Dos Anjos-Garcia & Coimbra, 2019). In the dorsal
HPC, the use of high-resolution confocal microscopy and z-stack
three-dimensional analysis also revealed co-expression of CB1 and
TRPV1 (Iglesias et al., 2023). Therefore, studies applying
histological immuno-histochemical techniques, along with

microscopy analysis, support the possibility that CB1 and
TRPV1 can be simultaneously activated by anandamide in fear-
related brain regions, provided the local synaptic concentration of
these endocannabinoids reaches levels high enough to bind both
receptors.

CB1 and TRPV1 functions modulate common fear
memory-related pathways

Neurotrophic signalling exerts several functions in the brain,
including modulation of fear memory (Notaras & van den Buuse,
2020). Activation of tyrosine receptor kinase B (TrkB) by brain-
derived neurotrophic factor (BDNF) leads to the regulation of
several downstream pathways involved in plasticity, such mTOR,
Akt, CamKII or ERK, all of them crucial for the consolidation of
fear memory (Minichiello, 2009). The link between neurotrophic
and anandamide-CB1 signalling has been extensively explored in
recent years. On the one hand, BDNF and TrkB activation
enhances endocannabinoids release (Yeh et al., 2017; Wu et al.,
2020); on the other hand, certain effects derived from CB1
activation are mediated by BDNF (Blázquez et al., 2015;
Navabpour et al., 2021). As for TRPV1, its relation with BDNF
remains unknown. However, one study showed that TRPV1-
mediated synaptogenesis in the HPC seems to require BDNF
(Hurtado-Zavala et al., 2017). Despite the scarcity of data, one
could hypothesise that, if neurotrophic signalling increases
endocannabinoid tonus, this may facilitate the recruitment of
TRPV1 and its involvement in some of the BDNF-related effects.
Indeed, an in vitro study showed that anandamide enhances TrkB
phosphorylation (Diniz et al., 2019). Interestingly, the mechanism
underlying this effect is dose-dependent, with low doses of
anandamide acting through CB1, whereas at higher doses,
anandamide action occurs through TRPV1 activation (Diniz
et al., 2019).

Another important player in fear andmemory is the nitric oxide
(NO) pathway (Susswein et al., 2004; Medeiros et al., 2022). In
postsynaptic neurones, calcium influx and calmodulin activation
promote neuronal nitric oxide synthase (nNOS) activity, with the
subsequent retrograde effects of NO and enhancement in
neurotransmitter release (Huang, 1997). Several pieces of evidence
point to the involvement of nNOS/NO in plasticity and specifically
in the modulation of certain fear memory phases (Sadeghi et al.,
2022).More important for the scope of this review, the ECS and the
nitric oxide pathway seem to interact to modulate learned fear. For
instance, the enhancement of the endocannabinoid tonus, by
means of FAAH inhibition, prevented the extinction deficits in
mice with genetic deletion of inducible NOS, iNOS (Lisboa et al.,
2015), suggesting that the ECS may be a downstream effector of
NO or at least able to compensate for some of its effects. Moreover,
facilitation of fear retrieval induced by TRPV1 agonism or CB1
antagonism was prevented by a subeffective dose of a NO
scavenger, NO inhibitors and a soluble guanylate cyclase inhibitor
(Uliana et al., 2016). Similar results were observed in the
ventromedial PFC (Uliana et al., 2020). In addition, NOS
inhibition blocked the LTP induced by a TRPV1 agonist in the
AMG, the same effect being elicited by a CB1 antagonist
(Zschenderlein et al., 2011). These data suggest that TRPV1 and
CB1 act in opposite directions upon the NO pathway, which may
partially explain their contrasting role in modulating fear memory.

Furthermore, CB1 and TRPV1 interact in the modulation of
electrophysiological processes underlying memory and neuronal
plasticity. For instance, in the neocortex and striatum, spike
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time-dependent LTP was blocked by both TRPV1 and CB1
antagonism (Cui et al., 2015, 2018). Similarly, anandamide
induced long-term depression (LTD) through both CB1 and
TRPV1 in the Nac (Grueter et al., 2010). In the dentate gyrus, CB1
and TRPV1 agonists seem to modulate excitatory postsynaptic
field potentials and LTP in opposite directions (Tahmasebi et al.,
2015). However, this intersection between CB1 and TRPV1
remains controversial. For example, anandamide facilitated LTD
through TRPV1 but not CB1 (Yang et al., 2014), while other reports
indicated that anandamide rescued impaired hippocampal LTP
through CB1 activation (Basavarajappa et al., 2014).

Some of these processes may be explained by the capacity of
TRPV1 and CB1 to modulate glutamatergic neurotransmission.
For example, CB1 activation in the hypothalamus decreases
glutamate release, while the opposite goes for TRPV1 (Jamieson
et al., 2022). Similarly, CB1 and TRPV1 presented opposite effects
on NMDA-induced autonomic responses (Lagatta et al., 2018) and
plasticity (Back & Carobrez, 2018). These examples suggest that
TRPV1 and CB1 may act upon common mechanism in the
regulation of fear memory, usually leading to opposite outcomes.

Anandamide, CB1 and TRPV1 interact to modulate fear
responses

Complementing the histological and neurochemical evidence, the
last section will focus on studies using pharmacological inter-
ventions in animals exposed to fear conditioning. Administration
of anandamide itself, compounds that inhibit its hydrolysis (by
inhibiting FAAH blockers, such as URB597) or compounds that
exert dual TRPV1 and FAAH blockade (e.g., AA-5-HT) provide
evidence of opposite functions for CB1 and TRPV1 in mediating
the actions of anandamide in different phases of fear responses.

Acquisition

The systemic administration of the FAAH inhibitor URB597 had
no effect on the acquisition of fear memory (Laricchiuta et al.,
2013; Balogh et al., 2019). Similarly, local administration of this
drug into the ventral HPC, prelimbic PFC or AMG had no effects
on memory retrieval (Balogh et al., 2019). However, direct
administration of anandamide into the NAC core impaired the
acquisition of contextual, but not auditory, fear (Pedroza-Llinás
et al., 2013). Likewise, after systemic FAAH inhibition by the
compound OL-135, an impairment in the acquisition of the
contextual fear conditioning was observed (Burman et al., 2016),
but no effect was detected in the auditory fear conditioning
(Burman et al., 2016). Contextual and auditory fear conditioning
rely on different brain structures, specifically, the dorsal portion of
the HPC seems involved in contextual but not in auditory fear
conditioning (Phillips and LeDoux, 1992). Even though FAAH is
expressed in the amygdala, which is involved in both tasks (Gulyas
et al., 2004), its inhibition might not be relevant to the acquisition
of the auditory fear conditioning (Burman et al., 2016). Instead, the
disruption observed in the contextual task after increasing
endocannabinoid tonus (Burman et al., 2016) may be related to
the action of this drug in structures such as the dorsal HPC, which
is not involved in auditory fear conditioning. However, this effect
seems to depend on the type of modulation, since the impairment
in fear acquisition was observed with OL-135 (Burman et al.,
2016), but not with URB597 (Laricchiuta et al., 2013; Balogh et al.,
2019). This may be related to differences in the way how these
compounds inhibit FAAH (Naidu et al., 2007) or off target
enzymes (Zhang et al., 2007).

Resembling URB597 effects, the dual FAAH/TRPV1 blocker,
AA-5-HT, had no effect on the acquisition of contextual fear
conditioning (Gobira et al., 2017). However, the non-selective
anandamide reuptake blocker and TRPV1 agonist, AM404,
impaired fear acquisition, an effect dependent on both TRPV1
and CB1, since it was prevented by capsazepine and by rimonabant
(Almeida et al., 2019). Similarly, intra-HPC administration of
AM404 prevented memory acquisition via CB1 activation (Lin
et al., 2011).

The discrepancies between the administration of FAAH dual
blockers and AM404may rely on two different but complementary
hypotheses. First, the levels of anandamide depend on intensity/
aversiveness of the experience (Morena et al., 2014; Iglesias et al.,
2023), thus low intensities may not promote enough release of
anandamide and its hydrolysis inhibition will not reach a
substantial effect. Indeed, Gobira (2017) showed no effects of
AA-5-HT, while Almeida and colleagues (2019) did observe fear
inhibition after AM404 administration. However, the intensity of
the conditioning wasmuch higher in the latter study. Alternatively,
AM404 may act as a partial agonist at TRPV1 (Ross, 2003).

Consolidation

During the consolidation of fear memory, increased levels of eCB
were observed in the basolateral AMG and the HPC, but not in the
PFC (Marsicano et al., 2002; Morena et al., 2014). In the HPC,
anandamide levels seem to depend on intensity of aversive stimuli
(Morena et al., 2014). However, post-training administration of
OL-135 (Burman et al., 2016) or anandamide (intra-NAc)
(Pedroza-Llinás et al., 2013) did not impair contextual or auditory
fear conditioning. On the other hand, similarly to the acquisition,
the administration of AM404, an inhibitor of anandamide
reuptake, disrupted contextual fear consolidation when adminis-
tered into the CA1 area of the dorsal HPC (Scienza-Martin
et al., 2022).

Retrieval

Anandamide levels increase in the basolateral AMG after retrieval
of fear memory (Gaspar et al., 2022). The same was observed in the
HPC, where anandamide levels increase as a function of fear
intensity (Iglesias et al., 2023). Moreover, the direct administration
of anandamide into the medial PFC (Lisboa et al., 2010) or the
PAG (Resstel et al., 2008) reduced freezing. Furthermore,
administration of AM404 systemically (Pamplona et al., 2008),
into the PFC (Lisboa et al., 2010), PAG (Resstel et al., 2008) or into
the HPC (Scienza-Martin et al., 2022), mimicked anandamide
effects. AM404 effects on retrieval were prevented by a CB1
antagonists (Lisboa et al., 2010; Llorente-Berzal et al., 2015) and by
a TRPV1 blocker (Llorente-Berzal et al., 2015). In addition, AA-5-
HT (a dual FAAH/TRPV1 blocker) administered systemically or
into the HPC impaired fear memory retrieval, an effect prevented
by pre-treatment with AM251 (Gobira et al., 2017). Remarkably,
AA-5-HT effects were mimicked by co-administration of
subeffective doses of a FAAH inhibitor with a TRPV1 blocker
(Gobira et al., 2017), supporting the hypothesis of opposite roles
for CB1 and TRPV1. In agreement with this possibility 1) the
administration of a CB1 antagonist or a TRPV1 agonist into the
dorsolateral PAG induced the same effect on fear expression
(Uliana et al., 2016); 2) a CB1 antagonist prevented the retrieval
deficits induced by TRPV1 blockers in the HPC (Iglesias et al.,
2023) and 3) a TRPV1 blocker prevented the enhancement of
memory retrieval induced by CB1 antagonists in the PAG (Uliana
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et al., 2016). Altogether, these data support our proposal that CB1
and TRPV1 act in concert to mediate opposite functions of
anandamide in the control of fear responses.

Extinction

Anandamide infusion into the dorsal HPC facilitates extinction, an
effect prevented by pre-treatment with AM251 (de Oliveira et al.,
2008). In addition, administration of AM404 systemically
(Pamplona et al., 2008), via intracerebroventricular (Bitencourt
et al., 2008) or directly into the dorsal HPC (Abush and Akirav,
2010), facilitates fear extinction. These effects seem to depend on
the activation of CB1, but not TRPV1 (Bitencourt et al., 2008).
However, TRPV1 involvement in AM404 effects on extinction was
observed in auditory fear conditioning (Llorente-Berzal
et al., 2015).

Conclusion and future directions

The evidence reviewed here supports our hypothesis that
anandamide, CB1 and TRPV1 act in concert as a neurochemical
system regulating fear memory. Low-intensity aversive stimuli
could promote moderate anandamide release, which activates CB1
receptors and decreases the release of glutamatergic neuro-
transmission, with subsequent inhibition of fear. However, in
response to highly aversive stimuli, anandamide levels would
further increase; as a result, TRPV1 channels would be activated to
promote Caþ2 influx, increase neuronal firing and, finally, activate
the neuronal mechanisms promoting fear.

However, some limitations should be considered. For instance,
most studies have focused on male rodents as experimental
subjects. Since only recently has sex been included as an
experimental variable, little is known regarding differences in
anandamide/CB1/TRPV1 interactions between males and females.
A recent study showed that eCB signalling facilitation had no effect
on fear extinction in males, while extinction was impaired in
females, probably via TRPV1 activation (Morena et al., 2021).
Another biological variable to be taken into consideration is
development, since TRPV1 (Huang et al., 2014) and CB1 (Liu et al.,
2003) expression change along the lifespan. Future research should
address the impact of these variables in anandamide/CB1/TRPV1
interactions in specific brain regions. Finally, a remaining question
is how this tripartite system could be targeted for developing new
drugs for the treatment of certain psychiatric disorders, particu-
larly those resulting from exacerbated responses to aversive
stimuli.
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