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1 Introduction

This Element begins with an intuitive illustration of the two types of variation

that underlie statistical process control methodology: ‘common cause’ variation,

inherent in the process, and ‘special cause’ variation, which operates outside of

that process. It then briefly describes the history, theory, and rationale of statistical

process control methodology, before examining its use to monitor and improve

the quality of healthcare through a series of case studies. The Element concludes

by considering critiques of the methodology in healthcare and reflecting on

its future role.

The statistical details for constructing the scores of charts found in statistical

process control methodology are beyond the scope of this Element, but tech-

nical guides are signposted in Further Reading (see Section 6) and listed in the

References section.

1.1 Understanding Variation by Handwriting the Letter ‘a’

In this section, we use the process of handwriting to demonstrate the ideas that

underpin statistical process control methodology. Imagine writing the letter or

signature ‘a’ by hand using pen and paper. Figure 1a shows seven ‘a’s written by

the author. While the seven letters appear unremarkable, what is perhaps

remarkable is that even though they were produced under the same conditions

(same hand, date, time, place, pen, paper, temperature, light, blood pressure,

heart rate, and so on) by the same process, they are not identical – rather, they

show controlled variation. In other words, even a stable process produces

variation or ‘noise’.

In seeking to understand this controlled variation, it might be tempting to

separate the ‘a’s into better and worse and try to learn from the best and eliminate

the worst. This would be a fundamental mistake, since the conditions that produced

themwere the same, and so no ‘a’ is better orworse than its peers. The total variation

seen in the seven ‘a’s has a common cause, which is inherent in the underlying

process. Efforts to improve the quality of the letters need to focus on changing that

process, not on trying to learn from the differences between the letters.

What changes could we make to the underlying process to reduce the

variation and improve the quality of the ‘a’s? We could change the pen, paper,

or surface, or we could use a computer instead. Of these suggestions, we might

guess that using a computer will result in marked improvements to our ‘a’s.

Why? We can draw useful insight from the theory of constraints, which

compares processes to a chain with multiple links.1 The strength of a chain is

governed or constrained by its weakest link. Strengthen the weakest link and the

chain improves. Strengthening other links simply uses up resources with no

1Statistical Process Control
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benefit. In the handwriting process, the weakest link (constraint) is the use of the

hand to write the letter. The pen, paper, light, and so on are non-constraints; if

we change one of them, we will not make a material difference to the quality of

our ‘a’s. Switching to a computer to produce our ‘a’s, however, will see

a marked improvement in performance because we would have overcome the

weakest link or process constraint (handwriting). So, a stable process produces

results characterised by controlled variation that has a common cause, which

can only be reduced by successfully changing a major portion of the underlying

process.

Now consider the ‘a’ in Figure 1b. It is obviously different from the others.

A casual look suggests that there must be a special cause. In this case, the author

produced the letter using his non-dominant (left) hand. When we see special

cause variation, we need to find the underlying special cause and then decide

how to act. Special cause variation requires detective work, and, if the special

cause is having an adverse impact on our process, we must work towards

eliminating it from the process. But if the special cause is having a favourable

impact on our process, we can work towards learning from it and making it part

of our process (see the Elements on positive deviance2 and the Institute for

Healthcare Improvement approach3).

In summary, the handwritten ‘a’s demonstrate two types of variation –

common cause and special cause – and the action required to address each

type of cause is fundamentally different. The origins of this profound under-

standing of variation are described in the next section.

1.2 A Brief History of Statistical Process Control Methodology

This understanding of variation – which underpins statistical process control

methodology – comes from the physicist and engineer Walter Shewhart.4 His

pioneering work in the 1920s at Bell Laboratories in Murray Hill, New Jersey,

successfully brought together the disciplines of statistics, engineering, and eco-

nomics and led to him becoming known as the ‘father ofmodern quality control’.5

Shewhart noted that the quality of a product is characterised by the extent to

which the product meets the target specification, but with minimum variation.

A key insight was his identification of two causes of variation:

(a) (b)

Figure 1 Handwritten letter ‘a’

2 Improving Quality and Safety in Healthcare
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• common cause variation, which is the ‘noise’ intrinsic to the underlying

process

• special cause variation, which ‘signals’ an external cause.

This distinction is crucial: reduction of common cause variation needs action to

change the process, whereas special cause variation needs identification of the

external cause before it can be addressed.

Shewhart developed a theory of variation which classified variation accord-

ing to the action required to address it, turning his abstract concept into

something that can be measured in the form of statistical process control

methodology. The methodology has proven to be very useful in efforts to

improve the quality of manufactured products. Its migration to healthcare

appears to have happened initially via applications to quality control in

laboratory medicine in the 1950s.6 Since the 1980s, the use of these methods

has continued to expand, especially in monitoring individual patients,7 for

example following kidney transplantation,8 for asthmatic patients,9 and for

patients with high blood pressure.10 Statistical process control is now used

across a wide range of areas in healthcare, including the monitoring and

improvement of performance in hospitals and primary care, monitoring surgi-

cal outcomes, public health surveillance, and the learning curve of trainees

undertaking medical or surgical procedures.11–14

2 What Is Statistical Process Control Methodology?

Statistical process control methodology offers a philosophy and framework for

learning from variation in data for analytical purposes where the aim is to act on

the underlying causes of variation to maintain or improve the future perform-

ance of a process. It is used in two main ways:

• to monitor the behaviour or performance of an existing process (e.g. complica-

tions following surgery), or

• to support efforts to improve an existing process (e.g. redesigning the path-

way for patients with fractured hips).

By adopting this methodology, the user is going through the hypothesis-

generation and testing cycle of the scientific method, as illustrated by the plan-

do-study-act (PDSA) cycle (see the Element on the Institute for Healthcare

Improvement approach3), supported by statistical thinking to distinguish

between common and special cause variation.

Box 1 highlights various descriptions and features of common versus special

cause variation. In practice, a graphical device – known as a statistical process

control chart – is used to distinguish between common and special cause variation.

3Statistical Process Control
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In the next section, we look at the three main types of statistical process control

charts commonly used in healthcare.

2.1 The Statistical Process Control Chart

Statistical process control methodology typically involves the production of

a statistical process control chart (also known as a process behaviour chart) that

depicts the behaviour of a process over time and acts as a decision aid to

determine the extent to which the process is showing common or special

cause variation. Scores of control charts exist,15 but three main types have

been used successfully in healthcare:

• run charts16

• Shewhart control charts17

• cumulative sum (CUSUM) charts.18

This section introduces the three main types of charts by using systolic blood

pressure data from a patient with high blood pressure (taken over 26 consecutive

days at home before starting any corrective medication). Figure 2 shows the

BOX 1 FEATURES OF COMMON VERSUS SPECIAL CAUSE VARIATION

Common Cause Variation Special Cause Variation

• Is caused by a stable process
(like writing a signature)

• Is sometimes referred to as ran-
dom variation, chance variation,
or noise

• Depicts the behaviour of a stable
process and affects all those who
are part of the process

• Can only be reduced (but not
eliminated) by changing the
underlying process

• Can be predicted, within limits,
with the aid of a statistical pro-
cess control chart

• The variation between individual
data points from a stable process
has no assignable cause extrinsic
to the underlying process

• Is variation which is extrinsic to
a stable process arising from an
assignable cause

• Can be favourable or
unfavourable

• Does not affect all those who are
part of the process

• Is a distinct signal which differs
from the usual noise of the
process

• Is sometimes referred to as non-
random variation or a signal of
systematic variation

• Signals of special cause variation
can be seen on a control chart but
need further detective work to
identify the assignable cause

4 Improving Quality and Safety in Healthcare
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blood pressure data over time using a run chart, a Shewhart control chart, and

a CUSUM chart.

• The run chart (top panel) shows the behaviour of the blood pressure data over

time around a central horizontal line.

• The Shewhart chart (middle panel) shows the same data around a central line

along with upper and lower control limits.

• The CUSUM chart (bottom panel) doesn’t show the raw data, but instead

shows the differences between the raw blood pressure data and a selected

target, accumulated over time.

As Figure 2 demonstrates, several charts can usually be used to examine

the variation in a given data set. In general, run charts are the simplest to

construct and CUSUM charts are the more complex. This highlights an

important point: although several (appropriate) chart options are usually

available to choose from, there is usually no single best chart for a given

data set. The ideal is to consider multiple charts, but in practice people may

lack the time, skill, or inclination to do so – and may opt for a single chart that

suits their circumstances.

We will now consider each of the three charts in Figure 2 in more detail.

2.1.1 The Run Chart

The first chart (Figure 2, top panel) is known as a run chart.16 The simplest form

of a chart, the run chart plots the data over time with a single central line that

represents the median value.

The median is a midpoint value (=174) that separates the blood pressure

data into an upper and lower half. This is useful because, in the long run, the

Reading
number 1 2 3 4 5 6 7 8 9 10 11 12 13

Systolic blood 
pressure 169 172 175 174 161 142 174 171 168 174 180 194 161

Reading
number 14 15 16 17 18 19 20 21 22 23 24 25 26

Systolic blood 
pressure 181 175 176 186 166 157 183 177 171 185 176 181 174

(a)

Figure 2 Three types of control charts based on the blood pressure readings of

a hypertensive patient. In part b, the top panel is a run chart, the middle panel is

a Shewhart control chart, and the bottom panel is a cumulative sum chart

5Statistical Process Control
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Figure 2 (cont.)

6 Improving Quality and Safety in Healthcare
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output of a stable process should appear above the median half the time and

below the median the other half of the time. For example, tossing a coin

would, in the long term, show heads (or tails) half the time. On a run chart, the

output of a stable process will appear to bounce around the central line without

unusual, non-random patterns.

The appearance of unusual (non-random) patterns would signal the presence

of special cause variation. A run of six or more consecutive points above (or

below) the median constitutes an unusual run, because the probability of this

happening by random chance alone is less than 2% (=0.5^6) – for example the

equivalent of tossing a coin and getting six heads in a row.

As illustrated by Figure 3, four commonly used rules16 may detect special

causes of variation with run charts (although other rules have been

suggested19,20).

• Rule 1: A shift.

• Rule 2: A trend.

• Rule 3: Too few or too many runs above or below the median.

• Rule 4: A data point judged by eye to be unusually large or small.16

The run chart can be especially useful in the early stages of efforts to monitor

or improve a process where there is not enough data available to reliably

calculate the control limits.

When there is enough data (typically we need 20–25 data points), we can plot

a Shewhart control chart (middle panel in Figure 2).15

Figure 3 Four rules for detecting special cause variation on a run chart

Adapted from Perla et al.
16

7Statistical Process Control
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2.1.2 Shewhart Control Charts

This, like the run chart, also shows the blood pressure data over time but now

with three additional lines – an average central line, and lower and upper control

limits – to help identify common and special cause variation.

Data points that appear within the control limits (without any unusual

patterns) are deemed to be consistent with common cause variation. Signals

of special cause variation are data points that appear outside the limits or

unusual patterns within the limits.

Five rules are commonly used for detecting special cause variation in

a Shewhart control chart (also shown in Figure 4, enclosed by an oval

shape).15

• Rule 1 identifies sudden changes in a process.

• Rule 2 signals smaller but sustained changes in a process.

• Rule 3 detects drift in a process.

• Rule 4 identifies more subtle runs not picked up by the other rules.

• Rule 5 identifies a process which has too little variation.

In a Shewhart control chart, the central line is usually the mean/average

value. The upper and lower control limits indicate how far the data from

a process can deviate from the central line based on a statistical measure of

spread known as the standard deviation. Typically, about

• 60%–70% of data from a stable process will lie within ± one standard

deviation of the mean.

• 90%–98% of data points lie within ± two standard deviations of the mean.

• 99%–100% of data points lie within ± three standard deviations of the

mean.

Upper and lower control limits are usually set at ± three standard devi-

ations from the mean. Setting the control limits at ± three standard deviations

from the mean will capture almost all the common cause variability from

a stable process. In practice, it is not uncommon to see control charts with

two and three standard deviation limits shown – usually as an aid to visual-

isation, but also as a reminder that a judgement has to be made about where

to set the limits. That judgement needs to balance the cost of looking for

special cause variation when it doesn’t exist against the cost of overlooking

it when it does.4,15

It is important to understand that the variability in the data is what determines

the width between the lower and upper control limits. For example, Figure 5

illustrates the impact of variability on the control limits. We see two randomly

8 Improving Quality and Safety in Healthcare
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4  Two out of three consecutive points near
(outer one-third) a control limit

5  Fifteen consecutive points close 
(inner one-third of the chart) to the centre line

1  A single point outside the control limits 2  A run of eight or more points in a row above
(or below) the centre line

3  Six consecutive points increasing
(trend up) or decreasing (trend down)

O
ut

er
 o

ne
-t

hi
rd

 o
f c

ha
rt

In
ne

r o
ne

-t
hi

rd
 o

f c
ha

rt

Figure 4 Rules for detecting signals of special causes of variation on a Shewhart control chart. Signals of special cause

variation are enclosed by an oval

Adapted from Provost et al.
15
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generated data sets (y1 and y2) with 100 numbers having the same mean (10)

but different standard deviations (1 and 2, respectively). These data are shown

with control limits set at ± three standard deviations from the mean. The

increased variability in y2 is associated with wider control limits. Both pro-

cesses are stable in that they show random variation, but the process on the right

has greater variation and hence wider control limits.

We next consider another approach to charting based on accumulating differ-

ences in the data set using CUSUM charts.

2.1.3 Cumulative Sum Charts

The bottom panel in Figure 2 shows a CUSUMchart.18 Unlike the other two charts,

it doesn’t show the raw blood pressure measurements. Instead, it shows the

differences between the raw data and a selected target (the mean in this case)

accumulated over time. For a stable process, the cumulative sumswill hover around

zero (the central line is zero on a CUSUM chart), indicating common cause

variation. If the CUSUM line breaches the upper or lower control limit, this is

a sign of special cause variation, indicating that the process has drifted away from

its target.

CUSUMcharts aremore complex to construct and less intuitive than run charts

or Shewhart charts, but they are effective in detecting signals of special cause

variation – especially from smaller shifts in the behaviour of a process. The

CUSUM chart in Figure 2 is a two-sided CUSUM plot because it tracks devi-

ations above and below the target. But in practice, a one-sided CUSUM plot is

often used because the primary aim is to spot an increase or decrease in perform-

ance. For example, whenmonitoring complication rates after surgery, the focus is

on detecting any deterioration in performance – for which a one-sided CUSUM

plot is appropriate.21

5

10

15

0 25 50 75 100
1:100

y1

5

10

15

0 25 50 75 100
1:100

y2

Figure 5 Control charts for two simulated random processes with identical

means (10) but the process on the right has twice the variability
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An important use for CUSUMcharts in healthcare is tomonitor binary outcomes

on a case-by-case basis, such as post-operative outcomes (e.g. alive or died)

following surgery. As an illustration, we can indicate patients who survived or

died with 0 and 1, respectively. Let’s say we have a sequence for 10 consecutive

patients, as 0,1,0,1,1,0,1,0,0,0. Although we can plot such a sequence of 0s and 1s

on a run chart or Shewhart chart, this proves to be of little use because the data steps

up or down on the chart constrained at 0 or 1 (Figure 6, top panel). However, the

CUSUM chart (Figure 6, bottom panel) uses these data more effectively by

accumulating the sequence of 0s and 1s over time. A change in slope indicates

a death, and a horizontal shift (i.e. no change in slope) indicates survival.

3 Statistical Process Control in Action

In this section, we look at how statistical process control charts are used in

practice in healthcare, where they generally serve two broad purposes: (1) to

Patient number
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4
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1

Figure 6 Plots showing the outcomes (alive = 0, died = 1) and cumulative

outcomes for 10 patients following surgery
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monitor an existing process, or (2) as an integral part of efforts to improve

a process. The two are not mutually exclusive: for example, we might begin to

monitor a process and then decide that its performance is unsatisfactory and

needs to be improved; once improved, we can go back to monitoring it. The

following case studies show how statistical process control charts have been

used in healthcare for either purpose. We begin with the run chart.

3.1 Improving Patient Flow in an Acute Hospital Using Run Charts

Run charts offer simple and intuitive ways of seeing how a process is behaving

over time and assessing the impact of interventions on that process. Run charts

are easy to construct (as theymainly involve plotting the data over time) and can

be useful for both simple and complex interventions. This section discusses how

run charts were used to support efforts to address patient flow issues in an acute

hospital in England.22

Patients who arrive at a hospital can experience unnecessary delays because

of poor patient flow, which often happens because of a mismatch between

capacity and demand. No one wins from poor patient flow: it can threaten the

quality and safety of care, undermine patient satisfaction and staff morale, and

increase costs. Enhancing patient flow requires healthcare teams and depart-

ments across the hospital to align and synchronise to the needs of patients in

a timely manner. But this is a complex challenge because it involves many

stakeholders across multiple teams and departments.

A multidisciplinary team undertook a patient flow analysis focusing on older

emergency patients admitted to the Geriatric Medicine Directorate of Sheffield

Teaching Hospitals NHS Foundation Trust (around 920 beds).22 The team

found a mismatch between demand and capacity: 60% of older patients (aged

75+ years) were arriving in the emergency department during office hours, but

two-thirds of subsequent admissions to general medical wards took place

outside office hours. This highlighted a major delay between arriving at the

emergency department and admission to a ward.

The team was clear that more beds was not the answer, saying that an

operational strategy that seeks to increase bed stock to keep up with demand

was not only financially unworkable but also ‘diverts us from uncovering the

shortcomings in our current systems and patterns of work’.22

The team used a combination of the Institute for Healthcare Improvement’s

Model for Improvement (which incorporates PDSA cycles – see the Element on

the Institute for Healthcare Improvement approach3), lean methodology (a set

of operating philosophies and methods that help create maximum value for

patients by reducing waste and waits), and statistical process control

12 Improving Quality and Safety in Healthcare
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methodology to develop and test three key changes: a discharge to assess policy,

seven-day working, and the establishment of a frailty unit. Overall progress was

tracked using a daily bed occupancy run chart (Figure 7) as the key analytical

tool. The team annotated the chart with improvement efforts as well as other

possible reasons for special cause variation, such as public holidays. This

synthesis of process knowledge and patterns on the chart enabled the team to

assess, in real time, the extent to which their efforts were impacting on bed

occupancy. Since daily bed occupancy data are not serially independent – unlike

the tossing of a coin – the team did not use the run tests associated with run

charts and so based the central line on the mean, not the median.

The run chart enabled the team to see the impact of their process changes and

share this with other staff. It is clear from the run chart that bed occupancy has

fallen over time (Figure 7).

The team also used run charts to concurrently monitor a suite of measures

(shown over four panels in Figure 8) to assess the wider impact of the

changes:22 bed occupancy, in-hospital mortality, and re-admission rates over

time before and after the intervention (vertical dotted line). Bed occupancy

was the key indicator of flow. In-hospital mortality was an outcome measure,

while admission and re-admission to hospital were balancing measures. The

latter are important because balancing measures can satisfy the need to track

potential unintended consequences of healthcare improvement efforts (see the

Element on the Institute for Healthcare Improvement approach3). Plotting this

bundle as run charts alongside each other enabled visual inspection of the

alignment between the measures and changes made by the team. The charts in

Figure 8 show:

• a fall in bed occupancy after the intervention

• a drop in mortality after the intervention

• no change in re-admission rates

• a slight increase in the number of admissions (116.2 (standard deviation 15.7) per

week before the intervention versus 122.8 (standard deviation 20.2) after).

While introducing major changes to a complex adaptive system, the team

was able to use simple run charts showing a suite of related measures to

inform their progress. They demonstrated how improving patient flow

resulted in higher quality, lower costs, and improved working for staff: ‘As

a consequence of these changes, we were able to close one ward and transfer

the nursing, therapy, and clerical staff to fill staff vacancies elsewhere and so

reduce agency staff costs.’22 As Perla et al. note: ‘The run chart allows us to

learn a great deal about the performance of our process with minimal

mathematical complexity.’16
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Figure 7 Daily bed occupancy run chart for geriatric medicine with annotations identifying system

changes and unusual patterns

Adapted from Silvester et al.
22
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The next example shows the use of control charts for managing individual

patients with high blood pressure.

3.2 Managing Individual Patients with Hypertension through Use
of Statistical Process Control

Chronic disease represents a major challenge to healthcare providers across the

world. A crucial issue is finding ways for healthcare professionals to work in

partnership with patients to better manage it. In this section, we look at a case

study that shows how this was achieved using statistical process control

methodology.

Hebert and Neuhauser describe a case study of a 71-year-old man with

uncontrolled high blood pressure and type 2 diabetes.23 Managing high blood

pressure presents difficulties for both physicians and patients. A key challenge

is obtaining meaningful measures of the level of blood pressure control and of

changes in blood pressure after an intervention. In this case, the patient’s mean

office systolic blood pressure was 169mmHg over a three-year period (spanning

13 visits to general medical clinics) compared with the target of 130mmHg. The

patient was then referred to a blood pressure clinic.

At the initial clinic visit in April 2003, the first pharmacologic intervention

was offered: an increase in the dose of hydrochlorothiazide from 25mg to 50mg

daily, along with advice to increase dietary potassium intake. The physician also

ordered a home blood pressure monitor and gave the patient graph paper to

record his blood pressure readings from home in the form of a run chart. On

his second visit, the patient brought his run chart of 30 home blood pressure

readings. The physician later plotted these data on a Shewhart control chart

(Figure 9, left panel). The mean systolic blood pressure fell to 131.1mmHg

(target 130mmHg), with upper and lower control limits of 146mmHg and

116mmHg, respectively. The patient agreed to continue recording his blood

pressure and returned for a third visit in September 2003. Figure 9 (right panel)

shows these blood pressure observations with a reduced mean value of

126.1mmHg, which is below the target value with no obvious special cause

variation.

The perspectives of both patient and physician are recorded in Box 2, which

highlight how partnership working was enhanced by the use of control charts.

A systematic review of statistical process control methods in monitoring

clinical variables in individual patients reports that they are used across

a range of conditions – high blood pressure, asthma, renal function post-

transplant, and diabetes.7 The review concludes that statistical process control

charts appear to have a promising but largely under-researched role in
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monitoring clinical variables in individual patients; the review calls for more

rigorous evaluation of their use.

The next example shows the use of statistical process methods to monitor the

performance of individual surgeons.

3.3 Monitoring the Performance of Individual Surgeons through
CUSUM Charts

The Scottish Arthroplasty Project aims for continual improvement in the quality

of care provided to patients undergoing a joint replacement in Scotland.24

Supported by the Chief Medical Officer for Scotland and wholly funded by

the Scottish government, the project is led by orthopaedic surgeons and reports

to the Scottish Committee for Orthopaedics and Trauma. Its steering committee

includes orthopaedic surgeons, an anaesthetist, patient representatives, and

community medicine representatives. Scotland has a population of 5.2 million

and is served by 24 orthopaedic National Health Service (NHS) provider units

with about 300 surgeons.

The project analyses the performance of individual consultant surgeons based

on five routinely collected outcome measures: death, dislocation, wound infec-

tion, revision arthroplasty, and venous thromboembolism. Every three months,

each surgeon is provided with a personalised report detailing the outcomes of all

their operations.

Outcomes are monitored using CUSUM charts, which are well suited to

monitoring adverse events per operation for individual surgeons while also

accounting for the differences in risk between patients. Figure 10 shows three

examples of CUSUM charts.
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Figure 9 Blood pressure control charts between two consecutive clinic visits

Adapted from Herbert and Neuhauser
23
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BOX 2 A PATIENT’S AND A PHYSICIAN’S PERSPECTIVES ON USING CONTROL CHARTS
23

The Patient’s Perspective The Physician’s Perspective

I enjoyed plotting my readings and
being able to clearly see that
I was making progress. The
activity takes about 10 minutes
out of my day, which is only
a minor inconvenience. After
several weeks of recording daily
readings, I settled on readings
approximately three times
a week. After five months,
I think this is an activity that
I will be able to continue
indefinitely. I feel that my target
blood pressure has been met
because the systolic blood
pressure is generally below
130mmHg. Since I began this
activity I have a good idea of the
status of my blood pressure,
whereas prior to starting, I had
only a vague idea, which
bothered me. Occasionally,
a reading would be unusually
high, for example 142. In such
cases, I worried that the device
may not be working, and I would
check my wife’s blood pressure.
She too has high blood pressure,
and if her reading was close to
her typical pressure, I would say
that my own pressure really was
high that day. I would not change
what I do because of a single
high reading and I would not be
alarmed. If my pressure was
more than 130mmHg for a week
or so then I’d probably call the
doctor.

My job was made easier by the
presence of a continuous stream
of data. I was able to learn with
a fair degree of certainty that the
intervention was effective at
lowering blood pressure, and if
the level of elevated blood pres-
sure persists, then the interven-
tion should lower cardiovascular
risk. . . . I have preliminary data
on the 33 patients in our clinic
with high blood pressure, who
have follow-up data to compare
baseline and current blood pres-
sure. This group consists exclu-
sively of patients with a history
of poorly controlled blood pres-
sure. Of the 33 patients, 31 have
lowered their blood pressure, by
a mean of 20 points.

Of these patients, 22 are presently
keeping run charts and periodic-
ally bringing them back to the
office, whereas the others are
more comfortable with record-
ing the values in tabular form.
A few were initially uncomfort-
able with graphing, but then
began after seeing copies of run
charts created by their peers in
the programme. Among the
patients using run charts,
a consistent message is that it is
not a burden, and furthermore
many have expressed the opin-
ion that it is an enlightening
activity.
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
32

68
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009326834


• The left panel is a CUSUM chart for a surgeon who operated from 2004 to

2010. Each successful operation is shown as a grey dot; each operation with

a complication is shown as a black dot. The CUSUM rises if there is

a complication and falls if there is not. The CUSUM for this surgeon remains

stable, indicating common cause variation.

• The middle panel shows a surgeon with a rising CUSUMmostly above zero –

indicating a consistently higher-than-average complication rate. In 2010, the

upper control limit is breached triggering a signal of special cause variation

that merits investigation.

• The right panel shows a CUSUM chart that is unremarkable until 2009 but

suggests a possible change to the underlying process thereafter, such as a new

technique or new implant, for example.

Because complications are rare events, they cause a large rise in the CUSUM,

whereas multiple operations that have no complication will each cause a small

decrease in the CUSUM. The twowill therefore tend to cancel each other out, and

if a surgeon’s complication rate is close to or below average, their CUSUM will

hover not far from zero. On the other hand, a surgeon who has an unusually high

number of complications will have a CUSUM that exceeds the horizontal control

limit. Such a surgeon is labelled an ‘outlier’ in the Scottish Arthroplasty Project.

The value of the horizontal control limit line (in this case 2) is a management

decision based on a judgement that balances the risks of false alerts (occurring

by chance when the surgeon’s complication rate is in control), and the risk of not

detecting an unacceptable change in complication rate. The project team chose

a control limit of 2 because it allows detection of special cause variation for as

few as four complications in quick succession.

This CUSUM-based monitoring scheme is part of a comprehensive data

collection, analysis, and feedback system focusing on individual surgeons

(see Figure 11). If a CUSUM plot for an individual surgeon exceeds the

horizontal dotted line (Figure 10), the surgeon will be alerted, asked to review

their complications and to complete and return an action plan to the project

steering committee (see Figure 11).
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Figure 10 Example CUSUM charts for three surgeons

Adapted from Macpherson et al.
24
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Amajor advantage of this CUSUM scheme is that it identifies signals quickly

because the analysis shows the outcome of each operation. This allows for the

rapid identification of failing implants or poor practices and allows implants to

be withdrawn or practices to be changed in a timely manner.

The CUSUM chart is reset to zero once the project steering committee

receives an explanation from the surgeon involved. A comprehensive case

note review reflecting a difficult casemix can also form the basis of

a constructive response. Responses are graded into one of four categories, as

shown in the table in Figure 12. The chart in Figure 12 shows how responses

have changed over time. The authors note: ‘As surgeons have become more

aware of the feedback system, particularly with the introduction of CUSUM,

their responses have become more rapid and more comprehensive.’24

Relevant Trust Chief 
Executive informed 
that less than 
satisfactory response 
or no response has 
been received

All personal consultant data anonymised Anonymisation code broken

Consultants are identified as 
outliers through production of 
monthly data

Letter sent to consultant from 
Committee requesting reasons 
for anomaly and action taken

Anomalies investigated locally

Local review of investigation 
by clinical colleague

Response Action Plan returned
to Committee, signed by
consultant and another doctor

Action Plans are anonymised
by ISD. Actions undertaken
are assessed and graded by
the SASC

Monthly data checks 
continue to monitor for 
further outlying data

Second letter sent 
to consultant

No 
response

No 
response

Consultant is sent a 
letter requesting that
further investigation
is undertaken

First 
response
less than

satisfactory

Second response less
than satisfactory

Exemplary/excellent/
satisfactory response

ISD = Information Services Division
SASC = Scottish Arthroplasty
Steering Committee

Figure 11 Flowchart showing the process of data collection and feedback

Adapted from Macpherson et al.
24
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The authors report that

[w]ithin the Scottish orthopaedic community, there has been a general accept-
ance of the role of Scottish Arthroplasty Project as an independent clinical
governance process. From surgeons’ feedback, we know that notification of an
outlying position presents a good opportunity for self-review even if no obvious
problems are identified. When local management has questioned individual
practice, Scottish Arthroplasty Project data are made available to the surgeon
to support the surgeon’s practice. This type of data has also been valuable in
appraisal processes that will feed into the future professional revalidation
system. Data also can be useful to the surgeon in medical negligence cases.
Although there were initially concerns about lack of engagement from the
orthopaedic surgeons, our methodology has resulted in enthusiasm from the
surgeons and 100% compliance. We have found that the process has nurtured
innovation, education, and appropriate risk aversion.24

The next example is a landmark study that showed how statistical process

control supported reductions in complications following surgery in France.

N
um

be
r o

f o
ut

lie
rs

 

20

18

16

14

12

10

8

6

4

2

0

Action Plan Outcomes

Exemplary   Constructive response with evidence of progress
Excellent  Constructive response
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Figure 12 Table and accompanying graph showing how action

plans were graded

Adapted from Macpherson et al.
24

21Statistical Process Control

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
32

68
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009326834


3.4 Reducing Complications after Surgery Using Statistical Process
Control

Healthcare-related adverse events are a major cause of illness and death.

Around 1 in 10 patients who undergo surgery are estimated to experience

a preventable complication.25 In a landmark randomised controlled trial,

a multidisciplinary team from France investigated the extent to which major

adverse patient events were reduced by using statistical process control charts to

monitor post-surgery outcomes and feed the data back to surgical teams.25

Duclos et al. randomised 40 hospitals to either usual care (control hospitals) or to

quarterly control charts (intervention hospitals) monitoring four patient-focused

outcomes following digestive surgery: inpatient death, unplanned admission to

intensive care, reoperation, and a combination of severe complications (cardiac

arrest, pulmonary embolism, sepsis, or surgical site infection).25 Our focus is

primarily on how the team used statistical process control methods in the interven-

tion hospitals.

P-charts (where p stands for proportion or percentage) are useful for moni-

toring binary outcomes (e.g. alive, died) as a percentage over time (e.g. per-

centage of patients who died following surgery).26 The 20 intervention hospitals

used a p-control chart to monitor the four outcomes (example in Figure 13). The

charts included three and two standard deviation control limits set around the

central line. A signal of special cause variation was defined as a single point

outside the three standard deviation control limit or two of three successive

points outside the two standard deviation limits.

The authors recognised that successful implementation of control charts in

healthcare required a leadership culture that allowed staff to learn from variation

by investigating special causes of variation and trying out and evaluating quality

improvement initiatives.25 To enable successful implementation of the control chart,

‘champion partnerships’ were established at each site, comprising a surgeon and

another member of the surgical team (surgeon, anaesthetist, or nurse).25 Each duo

was responsible for conducting meetings to review the control chart and keeping

a logbook in which changes in care processes were recorded. Champion partners

from each hospital met at three one-day training sessions held at eight-month

intervals. Simulated role-play at these sessions aimed to provide the skills needed

to use the control charts appropriately, lead review meetings for effective cooper-

ation and decision-making, identify variations in special causes, and devise plans for

improvement.

Over two years post-intervention, the control charts were analysed at periopera-

tive team meetings.25 Unfavourable signals of special cause variation triggered

examination of potential causes, which led to an average of 20 changes for each

22 Improving Quality and Safety in Healthcare
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Figure 13 Example statistical process control charts used in a study to reduce adverse events following surgery

Adapted from Duclos et al.
25
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intervention hospital (Figure 14). Compared with the control hospitals, the inter-

vention hospitals recorded significant reductions in rates of major adverse events (a

composite of all outcome indicators). The absolute risk of a major adverse event

was reduced by 0.9% in intervention comparedwith control hospitals – this equates

to one major adverse event prevented for every 114 patients treated in hospitals

using the quarterly control charts.25 Among the intervention hospitals, the size of

the effect was proportional to the degree of control chart implementation. Duclos

et al. conclude: ‘The value of control charts and sharing ideas within surgical teams

designed to eliminate patient harm has been mostly underappreciated.’25

The next example shows the use of statistical process control to compare the

performance of healthcare organisations.

3.5 Comparing the Performance of Healthcare Organisations
Using Funnel Plots

Monitoring of healthcare organisations is now ubiquitous.27 Comparing organ-

isations has often taken the form of performance league tables (also known as

caterpillar plots – see Figure 15a), which rank providers according to

a performance metric such as mortality. Such tables have been criticised for

focusing on spurious rankings that fail to distinguish between common and

special causes of variation.28 Despite these concerns, they were widely used to

compare the performance of provider units until the introduction of statistical

process control-based funnel plots27 (see Figure 15b: here, the funnel plot has two

sets of control limits corresponding to two and three standard deviations).

The funnel plot is a scatter graph of the metric of interest (post-operative

mortality in Figure 15) on the y-axis versus the number of cases (sample size) on

the x-axis across a group of healthcare organisations. Such data are cross-sectional

(not over time), so there is no time dimension to the funnel plot. The funnel plot

takes a process or systems perspective by showing upper and lower control limits

around the overall mean instead of individual limits around each hospital (as shown

in the caterpillar plot).

Figure 14 Compliance of hospitals in the intervention arm using control charts

Adapted from Duclos et al.
25
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Figure 15 Comparison of a ranked performance league table plot with 95%

confidence intervals (part a) versus a funnel plot with 3 sigma control limits

(part b)

Adapted from Spigelhalter
27
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An attractive feature of the funnel plot is that the control limits get narrower

as sample sizes increase. This produces the funnel shape that shows how

common cause variability reduces with respect to the number of cases (the so-

called outcome-volume effect). It makes it very clear that smaller units show

greater common cause variation compared to larger units.

Funnel plots are now widely used for comparing performance between health-

care organisations.29–31 Spiegelhalter gives a comprehensive explanation of

funnel plots for institutional comparisons,27 and Verburg et al. provide step-by-

step guidelines on the use of funnel plots in practice (based on the Dutch National

Intensive Care Evaluation registry).29 Steps include selection of the quality metric

of interest, examining whether the number of observations per hospital is suffi-

cient, and specifying how the funnel plot should be constructed.

Guthrie et al.30 show how funnel plots can be used to compare the perform-

ance of general practices across a range of performance indicators. In Figure 16,

the left panel shows a funnel plot for one performance indicator over all the
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Figure 15 (cont.)
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Figure 16 The left panel shows a funnel plot for percentage of patients with type 2 diabetes with HBA1c ≤ 7.4% in 69 Tayside practices. The

right panel summarises the signals from 13 other performance indicator funnel plots across 14 general practices

Adapted from Guthrie et al.
30
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practices in Tayside, Scotland. The right panel shows a statistical process

control dashboard for 13 performance indicators across 14 practices. The use

of red-white-green categories should not be confused with the usual red-amber-

green (RAG) reporting seen in hospital performance reports;32 the former is

based on statistical process control methodology, and the latter is not.

Although funnel plots do not show the behaviour of a process over time,

they can still be used to compare performance across time periods through

a sequence of funnel plots. This can be illustrated using data from a public

inquiry established in 1998 to probe high death rates following paediatric

cardiac surgery at Bristol Royal Infirmary.33 The data included a comparison

of death rates of children under 1 year of age with data from 11 other hospitals

where paediatric cardiac surgery took place. Comparisons were presented

over three time periods: 1984–87, 1988–90, and 1991–March 95. Figure 17

shows this data as side-by-side funnel plots.

Bristol (centre 1) exhibits a signal of special cause variation in the third epoch

(time period) only. The factors that contributed to the high death rates at Bristol were

subject to a lengthy inquiry (1998–2001), which identified a range of issues.33

A closer look at all three panels suggests Bristol’s death rate stood still, whereas all

other centres experienced reduced mortality. Although external action to address

concerns about paediatric cardiac surgery at Bristol Royal Infirmary took place in

1998, monitoring using control charts might have provoked action earlier, in 1987.
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Figure 17 The Bristol data, showing mortality following cardiac surgery in

children under 1 year of age. Each panel of the figure shows a control chart for

the three epochs (panels, left to right: 1984–87, 1988–90, and 1991–March 95).

The numbers in the panel indicate centres (1–12), the horizontal line is the mean

for that epoch, and the solid lines represent three-sigma upper and lower control

limits. Bristol (centre 1) clearly shows special cause variation in the third time

period (1991–95) as it appears above the upper control limit
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The control chart usefully guides attention to high-mortality centres (above the

upper control limit), but it also identifies opportunities for improvement by learning

from centres with particularly low death rates (those below the lower control limit).

For example, centre 11 appears to have made remarkable reductions in mortality

over the three epochs. This clearly merits investigation and, if appropriate, dissem-

ination of practices to other hospitals.

Statistical process control methodology, then, offers an approach to learning

from both favourable (see the Element on positive deviance2) and unfavourable

signals of special causes of variation. So, how might we systematically investi-

gate signals of special cause variation?

3.6 Investigating Special Cause Variation in Healthcare Using
the Pyramid Model

The key aim of using statistical process control charts to monitor healthcare

processes is to ensure that quality and safety of care are adequate and not

deteriorating. When a signal of special cause variation is seen on a control

chart monitoring a given outcome (e.g. mortality rates following surgery),

investigation is necessary. However, the chosen method must recognise that

the link between recorded outcomes and quality of care is complex, ambigu-

ous, and subject to multiple explanations.34 Failure to do so may inadvert-

ently contribute to premature conclusions and a blame culture that

undermines the engagement of clinical staff and the credibility of statistical

process control. As Rogers et al. note: “If monitoring schemes are to be

accepted by those whose outcomes are being assessed, an atmosphere of

constructive evaluation, not ‘blaming’ or ‘naming and shaming’, is essential

as apparent poor performance could arise for a number of reasons that should

be explored systematically.”21

To address this need, Mohammed et al. propose the Pyramid Model for

Investigating Special Cause Variation in Healthcare35 (Figure 18)36 – a systematic

approach of hypothesis generation and testing based on five theoretical candidate

explanations for special cause variation: data, patient casemix, structure or

resources, process of care, and carer(s).

These broad categories of candidate explanations are arranged from most

likely (data) to least likely (carers), so offering a road map for the investigation

that begins at the base of the pyramid and stops at the level that provides

a credible, evidence-based explanation for the special cause. The first two layers

of the model (data and casemix factors) provide a check on the validity of the

data and casemix-adjusted analyses, whereas the remaining upper layers focus

more on quality of care-related issues.

29Statistical Process Control
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A proper investigation requires a team of people with expertise in each of the

layers. Such a team is also likely to include those staff whose outcomes or data

are being investigated, so that their insights and expertise can inform the

investigation while also ensuring their buy-in to the investigation process.

Basic steps for using the model are shown in Box 3.

Mohammed et al. first demonstrated the use of the Pyramid Model to

identify a credible explanation for the high mortality associated with two

Casemix

Carer

Process
of care

Structure or
resources

Data

Group/Individual practice
and treatment methods

Generic treatment and
clinical pathways

Equipment, facilities, or
organisational processes

Appropriateness of
risk adjustments

Data accuracy, reliability,
and completeness

Root cause
investigation

Validation
investigation

Figure 18 The Pyramid Model for investigating special cause variation in

healthcare

Adapted from Mohammed et al.
35

and Smith et al.
36

BOX 3 THE THREE BASIC STEPS FOR USING THE PYRAMID MODEL TO INVESTIGATE

SPECIAL CAUSE VARIATION IN HEALTHCARE

1. Form a multidisciplinary team that has expertise in each layer of the

pyramid, with a decision-making process that allows them to judge the

extent to which a credible cause or explanation has been found, based

on hypothesis generation and testing.

2. Candidate hypotheses are generated and tested starting from the lowest

level of the Pyramid Model and proceeding to upper levels only if the

preceding levels provide no adequate explanation for the special cause.

3. A credible cause requires quantitative and qualitative evidence, which

is used by the team to test hypotheses and reach closure. If no credible

explanation can be found, then the most likely explanation is that the

signal itself was a false signal.
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general practitioners (GPs) flagged by the Shipman Inquiry. Their mortality

data showed evidence of special cause variation on risk-adjusted CUSUM

charts (see Box 4).35

The Pyramid Model has been incorporated into statistical process control-based

monitoring schemes in Northern Ireland37 and Queensland, Australia.36,38 In

Queensland, clinical governance arrangements now include the use of CUSUM-

BOX 4 THE USE OF THE PYRAMID MODEL TO INVESTIGATE HIGH-MORTALITY GENERAL

PRACTITIONERS FLAGGED UP BY THE SHIPMAN INQUIRY

Harold Shipman (1946–2004) was an English GPwho is believed to be the

most prolific serial killer in history. In January 2000, a jury

found Shipman guilty of the murder of 15 patients under his care, with

his total number of victims estimated to be around 250. A subsequent

high-profile public inquiry included an analysis of mortality data involv-

ing a sample of 1,009 GPs. Using CUSUM plots, the analysis highlighted

12 GPs as having high (special cause variation) patient mortality that

merited investigation. One was Shipman.

Mohammed et al.34 used the Pyramid Model to investigate the reasons

behind the findings in relation to two of the GPs. They assembled

a multidisciplinary team which began by checking the data. Once the

data was considered to be accurate, the team had preliminary discussions

with the two GPs to generate candidate hypotheses. This process high-

lighted deaths in nursing homes as a possible explanatory factor.

This hypothesis was tested quantitatively and qualitatively. The mag-

nitude and shape of the curves of a CUSUM plot for excess number of

deaths in each year were closely mirrored by the magnitude and shape of

the curves of the number of patients dying in nursing homes; and this was

reflected in the high correlations between excess mortality and the number

of deaths in nursing homes in each year for the GPs. These findings were

supported by administrative data. Furthermore, it was known that the

casemix adjustment scheme used for the CUSUM plots did not include

the place of death.

The investigation concluded: “The excessively high mortality associ-

ated with two general practitioners was credibly explained by a nursing

home effect. General practitioners associated with high patient mortality,

albeit after sophisticated statistical analysis, should not be labelled as

having poor performance but instead should be considered as a signal

meriting scientific investigation.”34

31Statistical Process Control
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type statistical process control charts (known as variable life-adjusted display plots)

to monitor care outcomes in 87 hospitals using 31 clinical indicators (e.g. stroke,

colorectal cancer surgery, depression) derived from routinely collected data.38

Crucially, monitoring is tied in with an approach to investigation, learning, and

action that incorporates the Pyramid Model as shown in Table 1.

The next example shows how statistical process control methods were used to

modify performance data in hospital board reports.

3.7 Control Charts in Hospital Board Reports

Hospital board members have to deal with large amounts of data related to

quality and safety, usually in the form of hospital board reports.39 Board

members need to look at reports in detail to help identify problems with care

and assure quality. However, the task is not straightforward because members

need to understand the role of chance (or common cause variation) and be able

to distinguish signals from noise.

In 2016, Schmidtke et al.39 reviewed board reports for 30 randomly selected

English NHS trusts (n = 163) and found that only 6% of the charts (n = 1,488)

illustrated the role of chance. The left panel in Figure 19 shows an example chart

which displays the number of unplanned re-admissions within 48 hours of

discharge but provides no indication that chance played a role. The right

panel shows a control chart of the same data but also indicates the role of

chance with the aid of control limits around a central line.

Schmidtke et al. conclude: ‘Control charts can help board members

distinguish signals from noise, but often boards are not using them.’39

They assumed that members might not be requesting control charts because
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Figure 19 Example chart from a hospital board report (left) represented as

a control chart (right)

Adapted from Schmidtke et al.
39
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Table 1 Use of the Pyramid Model to investigate special cause variation in hospitals in Queensland, Australia

Level Scope Typical Questions

Data Data quality issues (e.g. coding accuracy, reliability of
charts, definitions, and completeness)

Are the data coded correctly?
Has there been a change in data coding practices (e.g. are there
less experienced coders)?

Is clinical documentation clear, complete, and consistent?
Casemix Although differences in casemix are accounted for in the

calculation, it is possible that some residual
confounding may remain

Are there factors peculiar to this hospital not considered in the
risk adjustment?

Has the pattern of referrals to this hospital changed (in a way
not considered in risk adjustment)?

Structure or
resource

Availability of beds, staff, and medical equipment;
institutional processes

Has there been a change in the distribution of patients in the
hospital, with more patients in this specialty spread
throughout the hospital rather than concentrated in
a particular unit?

Process of
care

Medical treatments of patients, clinical pathways, patient
admission and discharge hospital policies

Has there been a change in the care being provided?
Have new treatment guidelines been introduced?

Professional
staff/
carers

Practice and treatment methods, and so on Has there been a change in staffing for treatment of patients?
Has a key staff member gained additional training and intro-
duced a new method that has led to improved outcomes?

Adapted from Duckett et al.38
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they were unaware of statistical process control methodology, so they

suggested an active training programme for board members. And, since

hospital data analysts might not have the necessary skills to produce control

charts, they also proposed training for analysts. As a realistic default rec-

ommendation, they suggested using a single chart that has proven robust for

most time-series data – the individuals or XmR chart. This is a useful chart,

but there is controversy about its use across the different types of data in

hospital board reports such as percentage data for which a p-chart is

recommended (as shown in Section 3.4).15,26,40

In response, Riley et al.32 devised a training programme – called Making

Data Count – for board members in English NHS trusts and developed

a spreadsheet tool to allow analysts to readily produce control charts. A 90-

minute board training session on the use of statistical process control was

delivered to 583 participants from 61 NHS trust boards between

November 2017 and July 2019. Feedback from participants was that 99%

of respondents felt the training session had been a good use of their time, and

97% agreed that it would enhance their ability to make good decisions. A key

feature of the whole-board training programme was using hospitals’ own

performance data (from their board reports) to demonstrate the advantages

Figure 20 Example chart from a hospital board report (upper panel) which is

underpinned by multiple statistical process control charts (lower panel)41

Adapted from East London NHS Foundation Trust. Board of Directors Meeting in
Public. Thursday 30 March 2023.

41
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of statistical process control. Participants highlighted this in evaluation

interviews (see Box 5).

Figure 20 shows an extract from a board report with an overview perform-

ance summary (upper panel) based on a multiple statistical process control chart

(lower panel).

Our next example shows the use of statistical process control during the

COVID-19 pandemic.

3.8 Tracking Deaths during the COVID-19 Pandemic through
Shewhart Control Charts

The COVID-19 pandemic, which was declared in March 2020, has posed

unprecedented challenges to healthcare systems worldwide. The daily number

of deaths was a key metric of interest. Perla et al. developed a novel hybrid

Shewhart chart to visualise and learn from daily variations in reported deaths.

They note: “We know that the number of reported deaths each day – as with

anything we measure – will fluctuate. Without a method to understand if these

‘ups and downs’ simply reflect natural variability, we will struggle to recognize

signals of meaningful improvement . . . in epidemic conditions.”42

Figure 21 shows a chart of daily deaths annotatedwith samplemedia headlines.

It highlights how headline writers struggled to separate meaningful signals from

noise in the context of a pandemic and the risk that the data might provoke

‘hyperreactive responses from policy-makers and public citizens alike’.42

Figure 20 (cont.)
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BOX 5 THREE BOARD MEMBERS’ PERSPECTIVES ON CONTROL CHARTS

Themost powerful intervention was to use our own data and play it back to
us. It helped us to see what’s missing.

By exposing the full board to Statistical Process Control (SPC) as a way to
look at measures, the training helped us all learn together and have the
same level of knowledge. We all gained new insights, and it has helped
us to think about where and how to begin experimenting with
presenting metrics in SPC format. I thought it was terrific. In fact,
I wrote a note to the chairperson to share my observation that it was the
best board session I had attended in 4 years. The reason was that the
training was accessible, not too basic but not too advanced; it was not
too short or too long in length; and it was directly relevant and
applicable to the organisation as a whole and also useful for my role.

We are already seeing changes. We have completely overhauled the board
report. The contrast from July is that by September, we can see SPC in
every individual section. It’s made it easier to go through the board paper,
and it’s now significantly clearer about what we should focus on.We also
chose to bring in the performance team. We wanted to get a collective
understanding of what was needed. So, it was not an isolationist session;
it was leaders and people who knew about the data. We wanted everyone
to leave the session knowing what we were aiming for, what to do and
how. There have been no additional costs. All the changes have been
possible within current resources. This is about doing things in a different
way.We were lucky that we had staff with good analytical skills and they
have been able to do this work quickly and effectively.

Reproduced from Riley et al.32

Figure 21 Headlines associated with daily reported deaths in the United

Kingdom during the COVID-19 pandemic

Reproduced from Perla et al.
42
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Using the hybrid chart, the researchers identified four phases (or ‘epochs’) of

the classical infectious disease curve.42,43 The four epochs are shown in

Figure 22 and described in Box 6. The researchers used a combination of

Shewhart control charts to track the pandemic and help separate signals (of

change) from background noise in each phase.

Days since first reported event
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Figure 22 A hypothetical epidemiological curve for events in four epochs

Adapted from Parry et al.
43

BOX 6 THE FOUR EPOCHS OF AN EPIDEMIC CURVE
43

• Epoch 1 ‘pre-exponential growth’ begins with the first reported daily

event. Daily counts usually remain relatively low and stable with no

evidence of exponential growth. Epoch 1 ends when rapid growth in

events starts to occur and the chart moves into Epoch 2.

• Epoch 2 ‘exponential growth’ is when daily events begin to grow

rapidly. This can be alarming for those reading the chart or experiencing

the pandemic. Epoch 2 ends when events start to level off (plateau) or

decline.

• Epoch 3 ‘plateau or descent’ is when daily events stop increasing

exponentially. Instead, they start to ‘plateau or descend’. Epoch 3 can

end when daily values start to return to pre-exponential growth values.

More troublingly, it can also end with a return to exponential growth

(Epoch 2) – a sign that the pandemic is taking a turn for the worse again.

• Epoch 4 ‘stability after descent’ is similar to Epoch 1 (pre-exponential

growth), when a descent in daily events has occurred and daily counts

are again low and stable. Epoch 4 can end if further signs of trouble are

detected and there is a return to exponential growth (Epoch 2).

37Statistical Process Control
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Figure 23 shows these epochs using data from different countries;

Figure 24 shows the hybrid Shewhart chart for the United Kingdom.

Parry et al. state:

“Shewhart charts should be a standard tool to learn from variation in

data during an epidemic. Medical professionals, improvement leaders,

health officials and the public could use this chart with reported epidemic

South Korea: Daily COVID-19 reported deaths
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Figure 23 Shewhart charts for the four epochs of daily reported COVID-19

deaths in different countries

Adapted from Parry et al.
43
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measures such as cases, testing rates, hospitalizations, intubations, and

deaths to rapidly detect meaningful changes over time.”43

The previous case studies have demonstrated the use of statistical process

control methods in healthcare across a wide range of applications. In the next

section, we offer a more critical examination of the methodology to identify and

address the barriers to successful use in practice.
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C
O

VI
D

-1
9 

re
po

rt
ed

 d
ea

th
s 140

120

100

80

60

40

20

0
12 Jun 20

Epoch 4: Stability after descent

26 Jun 20 10 Jul 20 24 Jul 20 7 Aug 20

June to early July
Epoch 3

July 12
The lower limit drops below 2 
signalling Epoch 4

United Kingdom: Daily COVID-19 reported deaths
C

O
VI

D
-1

9 
re

po
rt

ed
 d

ea
th

s

14 Mar 20

Epoch 3: Plateau or descent

18 Mar 20 11 Apr 20 25 Apr 20 9 May 20

March 14
Start Epoch 2

April 9
Special cause signalling a reduction in 
exponential growth. A plateau in deaths follows
First phase in Epoch 3

May 6
Special cause signalling a reduction
A declare in deaths follows
Second phase in Epoch 3

25

20

15

10

5

0

Figure 23 (cont.)
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4 Critiques of Statistical Process Control

Although statistical process control methodology is nowwidely used to monitor

and improve the quality and safety of healthcare, in this section, we consider the

strengths, limitations, and future role of the methodology in healthcare.

4.1 The Statistical Process Control Paradox: It’s Easy Yet
Not So Easy

As the case studies discussed in Section 3 show, statistical process control is

not simply a graphical tool. Rather, it is a way of thinking scientifically

about monitoring and improving the quality and safety of care. But while the

idea of common versus special cause variation is intuitive, the successful

application of statistical process control is not as easy as it might first appear,

especially in complex adaptive systems like healthcare.12 Successfully

using statistical process control in healthcare usually depends on several

factors, which include engaging the stakeholders; forming a team; defining

the aim; selecting the process of interest; defining the metrics of interest;

ensuring that data can be reliably measured, collected, fed back, and under-

stood; and establishing baseline performance – all in a culture of continual

learning and improvement. Several systematic reviews of the use of statis-

tical process control in healthcare provide critical insights into the benefits,

limitations, barriers, and facilitators to successful application.11,12,44 Some

key lessons are shown in Table 2.
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Figure 24 Hybrid Shewhart control chart for monitoring daily COVID-19

deaths in the United Kingdom

Adapted from Parry et al.
43
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A further challenge is that statistical process control charts are not necessarily

easy to build. Even when using a run chart, for example, practitioners face

differing advice on how to interpret them. Three sets of run chart rules – the

Anhoej, Perla, and Carey rules – have been published, but they differ significantly

in their sensitivity and specificity to detecting special causes of variation,19,20 and

there is little practical guidance on how to proceed. So perhaps it is not surprising

that the literature features multiple examples of technical errors. After examining

64 statistical process control charts, Koetsier et al.44 report that almost half

(48.4%) used insufficient data points, 43.7% did not transform skewed data, and

14%did not report the rules for identifying special causes of variation. The authors

conclude that many published studies did not follow all methodological criteria

and so increased the risk of drawing incorrect conclusions. They call for greater

Table 2 Some key lessons from systematic reviews of statistical process control
in healthcare

Benefits • Statistical process control is a simple, relatively low-cost
approach that facilitates process improvement and can be
applied to a wide range of processes

• It is useful for the management of healthcare, for assessment of
the learning curve, and management of individual patients

• It can enhance engagement of different stakeholders, including
patients

Limitations • Presenting data as a statistical process control chart does not
automatically lead to improvements

• A process that is in statistical control is not necessarily clin-
ically acceptable or adequate

• The correct application of statistical process control requires
technical skills

Barriers • Statistical process control can sometimes meet resistance
because it may imply a change of thinking and approach

• Lack of access to reliable data and adequate IT infrastructure
to support the use of statistical process control can hinder
application in practice

• Data collection and analysis for statistical process control can
be time-consuming

Facilitators • Training users in statistical process control methodology and
ensuring expert technical support is available can facilitate
successful application

• Development of easy-to-use IT tools for data management and
statistical process control charting can also help

• Focusing statistical process control on clinical topics can
capture the interest of clinicians

41Statistical Process Control
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clarity in reporting statistical process control charts along with greater adherence

to methodological criteria. All this suggests a need for more training for those

constructing charts and greater involvement of statistical process control experts.

4.2 Two Types of Errors When Using Statistical Process Control

Classifying variation into common cause or special cause is the primary focus of

statistical process control methodology. In practice, this classification is subject

to two types of error4,13,15,28,45 (see Box 7) which can be compared to an

imperfect screening test that sometimes shows a patient has disease when in

fact the patient is free from disease (false positive), or the patient is free from

disease when in fact the patient has disease (false negative).

Either error can cause losses. If all outcomes were treated as special cause

variation, this maximises the losses from error 1. And if all outcomes were

treated as common cause variation, this maximises the losses from error 2.

Unfortunately, in practice, it is impossible to reduce both errors to zero and so

a choice must be made to set the control limit. Shewhart concluded that it was

best to make either error rarely and that this mainly depended upon howmuch it

might cost to look for trouble in a stable process unnecessarily.4,45 Using

mathematical theory, empirical evidence, and pragmatism, he argued that set-

ting control limits to ± three standard deviations from the mean provides

a reasonable balance between making either type of error.

The choice of three standard deviations ensures there is a relatively small

chance that an investigation of special cause variation will be unfounded because

the chances of a false alarm are relatively low. The sensitivity (to special causes)

could be increased by lowering the control limits to, say, two standard deviations.

Although this will increase sensitivity, it will also increase the chances of false

alarms. The extent towhich this is acceptable requires decision-makers to balance

the total costs (e.g. time, money, human resources, quality, safety, reputation) of

investigating (true or false) signals versus the costs of overlooking these signals

(and so not investigating). In practice, this is a matter of judgement which varies

with context. Nevertheless, in the era of ‘big data’ in healthcare (see Section 4.6)

the issue of false alarms needs greater appreciation and attention.

BOX 7 TWO TYPES OF ERROR WHEN USING STATISTICAL PROCESS CONTROL

• Error 1: Treating an outcome resulting from a common cause as if it

were a special cause and (wrongly) seeking to find a special cause, when

in fact the cause is the underlying process.

• Error 2: Treating an outcome resulting from a special cause as if it were

a common cause and so (wrongly) overlooking the special cause.
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4.3 Using More Than One Statistical Process Control Chart

Although earlier sections have shown some examples of plotting more than one

statistical process control chart for the same data, the literature tends to encour-

age people to identify the most appropriate single control chart. This offers

a useful starting point, especially for beginners, but recognition is growing that

use of two (or more) charts of the same data can offer useful insights that might

not otherwise be noticed.46,47

For example, Figure 25 shows inspection data for the proportion of defective

manufactured goods described by Deming.45 The data are charted using two types

of statistical process control chart: the p-chart (left panel) and the XmR chart (right

panel). Each chart shows a central line and control limits at three standard devi-

ations from the mean. While each chart appears to show common cause variation,

marked differences in the width of the control limits across the two charts are

evident. This suggests something unusual about these data. As Deming explains,

these inspection figures were falsified (a special cause) because the inspector feared

the plant would be closed if the proportion of defective goods went beyond 10%.45

So, a systematic special cause has impacted all the data (not just a few data points),

and that’s why the limits between the two charts differ. This means that relying only

on one chart risks overlooking the existence of this underlying special cause,

whereas using two charts side by side provides additional insight.

Although decision-makers may not routinely have time and space to review

multiple types of statistical control charts, analysts working with data might
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Figure 25 Two side-by-side statistical process control charts showing daily

proportion of defective products. The left panel is a p-chart and the right panel is

an XmR-chart. The difference in control limits indicates an underlying special

cause even though each chart appears to be consistent with common cause

variation when viewed alone
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well seek to consider and explore the use of more than one chart. The additional

insight gained could prove useful and requires little extra effort, especially if

using software to produce the charts. Henderson et al.47 suggest the combined

use of run chart and CUSUM plots, and Rogers et al.21 and Sherlaw-Johnson

et al.48 suggest the use of combined CUSUM-type charts.

4.4 The Risks of Risk-Adjusted Statistical Process Control
in Healthcare

A distinctive feature of applying statistical process control in healthcare versus

industry is the use of risk adjustment to reflect differences between patients.13

Typically, this type of control chart relies on a statistical model to estimate the

risk of death for a given patient and then compare this with the observed

outcome (died or survived). When using risk-adjusted charts, the explanation

for a signal of special cause variation might be thought to lie beyond the risk

profile of the patient. But this approach is flawed: it fails to recognise that risk

adjustment, although widely used in healthcare, is not a panacea and poses its

own risks.34,49–55

For example, a systematic review of studies that examined the relationship

between quality of care and risk-adjusted outcomes found counter-intuitive

results: an ‘intuitive’ relationship (better care was associated with lower risk-

adjusted death rates) was found in around half of the 52 relationships; the

remainder showed either no correlation (there was no correlation between

quality of care and risk-adjusted death rates) or a ‘paradoxical’ correlation

(higher quality of care was associated with higher risk-adjusted death rates).

The authors conclude that ‘the link between quality of care and risk-adjusted

mortality remains largely unreliable’. 51

The consequences of prematurely inferring problems with the quality of care on

the basis of casemix-adjusted statistical control charts can be serious (see Box 8).

Another crucial issue with risk-adjustment schemes is that they operate under

the assumption of a constant relationship between patient risk factors and the

outcome (e.g. between age and mortality). But if this relationship is not con-

stant, then risk adjustment may increase rather than decrease50,54 the very bias it

was designed to overcome.

This misconception – that casemix-adjusted outcomes can be reliably used to

blame quality of care – is termed the ‘casemix adjustment fallacy’.34 This bear

trap can be avoided by adopting the Pyramid Model of investigation, described

in Section 3.6, which underscores the point that casemix adjustment has its own

risks, and that care needs to be taken when interpreting casemix-adjusted

analyses.34

44 Improving Quality and Safety in Healthcare

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
32

68
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009326834


4.5 Methodological Controversies in Statistical Process Control

Debates between methodologists on the correct way to think about the design

and use of statistical process control charts have been a long-standing feature of

the technical literature.40 Our purpose here is not to review these issues, but

simply to highlight that these controversies have existed for decades. For

example, Nelson first wrote a note addressing five misconceptions relating to

Shewhart control charts (these are set out in Box 9) in 1999.55

In a similar vein, Blackstone’s 2004 analysis provided a surgeon’s critique of

the methodological issues of using risk-adjusted CUSUM charts to monitor

surgical performance.56 One feature of CUSUM-based schemes is that they

appear to place considerably more emphasis on statistical significance testing

than Shewhart control charts. Blackstone notes that while most ‘discussants’

agree that continual testing is ‘in some sense’ subject to the multiple

BOX 8 WRONGLY SUGGESTING THAT THE SPECIAL CAUSE VARIATION AFTER RISK

ADJUSTMENT IMPLIES PROBLEMS WITH QUALITY OF CARE

A renowned specialist hospital received a letter from the Care Quality
Commission informing them that a risk-adjusted hospital mortality
monitoring scheme had signalled an unacceptably high death rate: 27.8
deaths were expected, but 46 had been observed. In 2017, senior
hospital staff wrote in The Lancet:

One might ask, however, what harm is done? After all, it is better to
monitor than not and a hospital falsely accused of being a negative
outlier can defend itself with robust data and performance monitoring.
That is true but, because of this spurious alert, our hospital morale was
shaken; management and trust board members were preoccupied with
this issue for weeks; and our already stretched audit department
expended over 50 person-hours of work reviewing data and formulat-
ing a response to satisfy the Care Quality Commission that we are most
certainly not a negative outlier, but a unit with cardiac results among
the best in the country.52

Another example is the use of the Partial Risk Adjustment in Surgery
model, which fails to adjust for certain comorbid conditions and
underestimates the risk for the highest-risk patients. This reportedly led
to a negative impression of performance in one UK centre that was
involved in real-time monitoring of risk-adjusted paediatric cardiac
surgery outcomes (for procedures carried out during 2010 and 2011)
using variable life-adjusted display plots.53
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comparisons problem, and one’s interpretation must be affected by how often

the data are evaluated, some statisticians maintain that the multiple comparison

problem ‘is not applicable to the quality control setting’. Blackstone goes on to

say, ‘I am not sure what to believe, frankly, nor do I think this issue will be soon

resolved.’ Happily, practitioners can profit from the use of statistical process

control methodology without having to address these controversies.40

4.6 The Future of Statistical Process Control in Healthcare

The use of statistical process control to support efforts to monitor and improve

the quality of healthcare is well established, with calls to extend its use. 57–60

Although it ‘cannot solve all problems and must be applied wisely’,12 the

future for statistical process control in healthcare looks promising, including

wider use across clinical and managerial processes. However, the use of

statistical process control methodology at scale presents some additional

unique challenges.61–63

As an example, consider a hospital with five divisions, each with five wards:

a single measure (such as staff absence) plotted on a control chart leads to 25

charts across the wards plus five charts across the divisions and one chart across

the organisation (31 charts in total). Rolling out control charts across an entire

organisation would require practical ways for staff to easily produce and collate

charts (see Box 10).

Where there are thousands of control charts, users also need an effective way

to collate them so they can still see the wood for the trees. This is an active area

BOX 9 FIVE MISCONCEPTIONS THAT HAVE LED TO METHODOLOGICAL CONTROVERSY

IN RESPECT OF SHEWHART CONTROL CHARTS
55

1. Shewhart charts are a graphical way of applying a sequential statistical

significance test for an out-of-control condition.

2. Control limits are confidence limits on the true process mean.

3. Shewhart charts are based on probabilistic models, subject to or

involving chance variation.

4. Normality is required for the correct application of a mean (or x bar)

chart.

5. The theoretical basis for the Shewhart control chart has some obscur-

ities that are difficult to teach.

Contrary to what is found in many articles and books, all five of these

statements are incorrect.
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of research, involving proposals based on summary measures shown on a single

graph to visualise the many control charts and spot the ones of most

concern.61–63

A related issue is the massive proliferation of automatically collected digital

data in healthcare.64,65 It has been estimated that up to 30% of the entire world’s

stored data is health related.65 This so-called big data is characterised by high

volume (e.g. a single patient generates up to 80 megabytes of data annually,

which is about 40,000 pages), high velocity (e.g. patient movement can be

automatically collected every 30 seconds), and high variety (with multiple

sources of data which include test results, images, text, movement, etc.).

Although several researchers66–68 have suggested that statistical process control

charting may be useful to monitor big data over time, a number of methodo-

logical challenges need to be addressed, including the cautious choice of the

BOX 10 SCALING UP CONTROL CHARTS ACROSS EAST LONDON NHS FOUNDATION

TRUST61

East London NHS Foundation Trust (ELFT), established in 2000,

provides mental health and community health services to a culturally

diverse and socio-economically deprived catchment area of approxi-

mately 1.5 million people.

In 2014, ELFT launched its trust-wide quality improvement pro-

gramme, which has adopted the Institute for Healthcare Improvement’s

Model for Improvement using tools such as PDSA cycles, driver dia-

grams, and statistical process control charts. This commitment developed

from a desire to shift power in the organisation so that service users,

carers, and staff were better able to understand and improve the quality

of care being provided.

An important challenge was to capture the learning at team level.

Teams recorded their PDSA tests of change locally using paper or local

IT systems. This was not reliable, so, the IT team at ELFT developed an

online quality improvement platform to make it much easier for teams to

log their PDSAs, create driver diagrams, and input and view their data as

control charts. The IT system supports the production of statistical process

control charts which usually require fixing of baselines, recalculating

limits following a successful change and annotations that highlight the

changes. Given the scores of charts to choose from, the automation of

charts overcomes an important barrier, especially for new users. The

Inpatient Mental Health Analytics app has 34,650 statistical process

control charts with over 100,000 charts across the organisation.
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sampling and collection interval.69 For example, if data are available

every second, then should these data be charted every second, minute, hour,

and so on? Also, as more variables are monitored more often, it becomes

increasingly important to keep the number of false alarms at a manageable

number. A false alarm is a signal of special cause variation which is false; if

there are too many false alarms, then the monitoring scheme becomes ineffect-

ive and discredited. The successful use of control charts in the era of big data

will require low false-alarm rates.

So, while the future of statistical process control methodology appears prom-

ising, paradoxically, its use at scale needs to address some unique challenges.

5 Conclusions

Statistical process controlmethodology is based on a fundamental intuitive insight –

that processes are subject to two sources of variation: common cause versus special

cause. As the case studies show, this profound insight enables us to understand,

monitor, and improve a wide range of processes, such as a person’s handwritten

signatures, a person’s blood pressure, the results from surgery, the performance of

hospitals, and the progress of a pandemic. The methodology offers a useful, robust,

versatile, statistical, practical, and evidence-based approach, but its successful

application requires overcoming technical and non-technical barriers. Numerous

studies now demonstrate that such barriers are surmountable. This highlights the

remarkable progress of statistical process controlmethodology frommanufacturing

industry in the 1920s to present-day healthcare.

6 Further Reading

Constructing Statistical Process Control Charts

• Mohammed et al.17 – a step-by-step tutorial paper to show practitioners how

to produce commonly used Shewhart control charts.

• Provost and Murray15 – a comprehensive book that focuses on the use of

statistical process control in healthcare with worked examples on how to

produce a wide range of control charts.

• Rogers et al.21 – an overview of the use of CUSUM-type plots that are

commonly used to monitor outcomes in surgery.

Statistical Process Control Methodology in Healthcare

• Thor et al.12 – a systematic review of the application of statistical process

control in healthcare improvement that also highlights the barriers and

enablers to successful use of these methods.
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• Tennant et al.7 – a systematic review of the use of control charts to monitor

individual patients.

Methodological Challenges and Controversies

• Woodall40 – discusses some of the key methodological controversies in

statistical process control.

• Woodall and Faltin68 – highlight some of the key challenges of using statis-

tical process control at scale and how they might be overcome.
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