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Complete Metric Spaces

MONSIEUR JOURDAIN: Well, what do you know about that! These forty
years now I’ve been speaking in prose without knowing it!

–Molière, The Bourgeois Gentleman, 1670

1.1 Maps

Imagine that a map of the county, city or village you are living in is placed
on the ground somewhere within the country’s, city’s or village’s borders. It
can be proved, and our intuition confirms this conjecture, that there is a point
(precisely one!) on this map that lies directly above the point it describes. This
statement is true regardless of the map scale. And of course it does not matter
which country, city or village we have in mind. What is important is only that
the map describes the entire area in which it is placed.

Moreover, there is nothing special about two dimensions in this example.
If a one-dimensional ‘map’ of a road from town A to town B is prepared and
placed somewhere on this road, then a point on this map can be found that
lies directly above the place on the road it describes. The same is true in three
dimensions: if a three-dimensional map of a lecture hall is placed in that lecture
hall, there is a point in this map that is placed precisely at the point it describes.

We have thus found a common denominator for a number of ‘spaces’:
these spaces are distinguished by the fact that their maps, when placed in
the corresponding spaces, have one point lying precisely in the place it
describes.

There are also, of course, spaces that do not posses this property. Think, for
example, of a punched ball B, that is, of a ball with removed center, call this
center O. Any smaller punched ball B ′, with the same center, that is contained
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2 Complete Metric Spaces

in B, can be thought of as a map of B. Namely, if k > 1 is the ratio of radii of
B and B ′, a point P ′ ∈ B ′ can be thought of as an image of P ∈ B if and only

if
−→
OP = k−−→

OP ′. Certainly on the map B ′ there is no point P ′ that is an image
of itself. The reason for this situation is that O, the removed point, is the only
candidate for having this property.

There are thus two types of spaces: those with holes and those without holes.
The latter are professionally termed complete and the holey spaces are said to
be incomplete (see further down for a more precise definition).

1.2 Roots

We have encountered complete metric spaces in mathematics a number of
times before without perhaps knowing it (like Monsieur Jourdain from our
Molière quote). To present an example of such an encounter, we start from the
Bernoulli inequality

(x + 1)n ≥ 1 + nx, where x ≥ −1,n ≥ 1, (1.1)

which is easy to prove by induction. We will show first, following Lech
Maligranda (see [28] and the papers cited there; an almost identical proof was
given even earlier by Bengt Åkerberg [3]), that (1.1) implies the following
relation:1

x1 · x2 · · · xn ≤
(
x1 + x2 + · · · + xn

n

)n
, x1,x2, . . . ,xn > 0,n ≥ 1. (1.2)

Let An = x1+x2+···+xn
n

. Since An
An−1

> 0, taking x := An
An−1

− 1 > −1
in (1.1), we have(

An

An−1

)n
≥ 1 + n

(
An

An−1
− 1

)
= nAn − (n− 1)An−1

An−1
= xn

An−1
.

It follows thatAnn ≥ xnAn−1
n−1. This allows proving (1.2) by induction: for n = 1

the inequality is obvious, and assuming it holds for n− 1 we obtain

Ann ≥ xnAn−1
n−1 ≥ xn(x1 · · · xn−1) = x1 · · · xn,

as claimed.
Using the obtained inequality, in turn, we will show2 that for every positive

number a and every integer n, there is a number bn, denoted n
√
a and termed

the nth root of a, such that bnn = a (how could you check that such a

1 Written as n
√
x1 · x2 · · · xn ≤ x1+x2+···+xn

n , this becomes the well-known inequality between
the arithmetic and geometric means. However, we do not want to use the notion of root at this
point.

2 Following Daniel Daners, Ulmer Seminare 2013, Notebook 18, Three Line Proofs.
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1.2 Roots 3

number is uniquely determined?). To this end, let’s consider the sequence given
recursively by

x1 = a, xk+1 = 1

n

(
(n− 1)xk + a

xn−1
k

)
. (1.3)

This sequence is bounded from below by 0: all its members are positive, which
is easy to check by induction. Also, because of (1.2), we have

xnk+1 =

⎛⎜⎜⎜⎜⎝
(n−1)terms︷ ︸︸ ︷

xk + · · · + xk + a

xn−1
k

n

⎞⎟⎟⎟⎟⎠
n

≥ a ,

and this proves that

nxk+1 =
(
(n− 1)+ a

xnk

)
xk ≤ nxk,

that is, that the sequence is non-increasing. Hence, it has the limit bn :=
limk→∞ xk . Letting k tend to infinity in (1.3), we obtain

bn= 1

n

(
(n− 1)bn + a

bn−1
n

)
.

Simple algebra now shows that bnn = a, completing the proof.
Let’s have a closer look at this argument. Besides somewhat straightforward

(though ingenious) calculations, it involves the following important step:

any non-increasing sequence that is bounded from below has a limit.

As we shall see later (see Exercise 1.5), this sentence is a disguised
statement that the set of real numbers is complete, without holes, full.

Is this completeness completely obvious? It seems to be: from our child-
hood we became accustomed to the fact that real numbers can be identified
with points on a line (this was not at all obvious before R. Descartes, though),
and the line does not have holes. We were also taught that real numbers are
limits of sequences of rational numbers, and we think of π , for example, in
a similar way. Therefore, we tend to think of the set of real numbers as a
completion of the set of rational numbers: if there is any hole in the latter
set, a real number fills this place.3

3 A formal proof that real numbers fill the gaps in the set of rational numbers can be found in [34].
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4 Complete Metric Spaces

By the way, in the reasoning presented above we take it for granted that Q,
the set of rational numbers, is holey. Are there any grounds for such prejudice?
Of course, there are. To explain, we know that some computations do not make
sense in Q. For example, in Q

√
2 is meaningless, that is,

√
2 is not a rational

number,4 and this has a bearing on our previous argument on the existence
of n

√
a.

For, if a is rational number then, by induction, all elements of the sequence
obtained from the recurrence (1.3) are rational also. The algebra remains
the same, proving that the sequence does not increase and is bounded from
below. As we have just recalled, the limit cannot be a rational number for
a = n = 2 (and a great many other cases). Thus we have found a sequence of
rational numbers that converges to an irrational number. If we were unaware
of the existence of irrational numbers (for some, something that cannot be
expressed as a fraction m

n
where m and n are integers is as strange as a

pink elephant and does not resemble a number at all), we would be forced to
say that

not all sequences of rational numbers that are non-increasing and
bounded from below converge.

This, however, means that Q is not a ‘full’ set; this set is not complete, for it
has holes. A closer look at Q reveals that between any two distinct rational
numbers there are infinitely many non-rational numbers. One could even say
that there are more holes than there are non-holes (Q is countable, R and R\Q
are uncountable). The most significant difference between Q and R is that the
former has holes whereas the latter is complete.

4 For, supposing that

√
2 = l

m
= 2l2 3l3 · · ·plp

2m2 3m3 · · · qmq ,

where l2 is the number of times 2 shows up in the prime factorization of l, and so on, then by
taking squares and multiplying both sides by m2 we obtain

22m2+132m3 · · · q2mq = 22l2 32l3 · · ·p2lp .

Note that on the left-hand side 2 is raised to an odd power, but on the right-hand side it is raised
to an even power. Since this contradicts uniqueness of prime factorization,

√
2 cannot be

rational.
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1.3 Achilles 5

1.3 Achilles

Some readers may dislike the previous section. Not all of us think taking roots
is something they fancy doing. It is hard to argue against such an attitude, for it
is possible to have a good living (in fact, be a billionaire) while being illiterate.
But, in fact, completeness lies at the heart of something that for ages fascinated
philosophers.

To see what I mean, let’s recall Zeno of Elea, one of the most prominent
students of Parmenides, who lived around 490 to 430 bce. He is mostly known
for his paradoxes, which were to substantiate his teacher’s beliefs that plurality,
change and motion in particular are but an illusion. Let’s look at the apparently
most famous and representative of these paradoxes: Achilles and the tortoise
(see Figure 1.1). We all know that nobody is able to outrun the swift Achilles
– and this is definitely impossible for a tortoise. But is the latter truly in a
hopeless position? Suppose that initially the tortoise is at a distance d > 0
away from its pursuer, and that Achilles runs 1

k
times faster than the little

animal (where k < 1). The ill-matched competition begins – the tortoise tries
to escape, and Achilles chases it. However, before Achilles catches the tortoise,
he needs to come to the place where the tortoise had been at the beginning, and
by that time the tortoise has moved a little (by a distance kd). Thus, Achilles
faces a similar situation to the one he had initially: he needs to chase the
tortoise who is at a distance kd away. Again, by the time Achilles comes to the
place where tortoise had been this time, the tortoise has moved slightly away.
This cycle will repeat infinitely, without end! And so, Achilles will never catch
the tortoise. Quite a paradox!

Some may see this argument as pure sophistry. Many others (those who
see that this argument cannot be easily refuted) may in fact start to doubt
the world they see with their eyes is real. Such cases are known in history
– for example, Georgias of Leontinoi, one of the philosophical followers of
Zeno, became famous for his three nihilistic statements that can roughly be
expressed as follows (see [40], p. 23): 1) there is nothing, 2) even if there
were something, that something could not be apprehended, and 3) even if
something were apprehended, this knowledge could neither be communicated
nor understood by others. This leads to the following bold hypothesis:

Ignorance (of mathematics) is harmful.

Let’s take neither of these roads, for both are disastrous. Zeno’s paradoxes
cannot be taken lightly or disregarded, because, as stated by W. Tatarkiewicz
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6 Complete Metric Spaces

Figure 1.1 Way to go, tortoise!

(see [40] p. 25), ‘Zeno’s paradoxes (. . . ) were inspiring for and discussed by
outstanding philosophers, including Bayle, Descartes, Leibniz, Kant, Hegel,
Herbart, Hamilton, Mili, Renouvier, Bergson, and Russell.’ Great minds have
contemplated these matters, and we should appreciate the solution that came
with the development of modern mathematical analysis and with the theory of
convergence of infinite series in particular in the nineteenth century (after over
two thousand years!).

Here is an explanation of the paradox. First of all, we note a gap in Zeno’s
reasoning: the fact that something takes place infinitely many times need not
imply that it will take place for ever. More specifically, the sum of infinitely
many terms need not be infinite. And that’s the crux of the matter.

Let us take an even closer look at the paradox. Let t0 be the time Achilles
needs to reach the place where the tortoise was initially. As we have noted
before, by that time the tortoise moves away by the distance dk. Thus the time
needed for Achilles to cover the latter distance is kt0. In that time, the tortoise
moves k2d away, and the time needed for Achilles to cover this distance is
k2t0, etcetera. Notice that ‘etcetera’ is not a scary word anymore,5 because

t∞ :=
∞∑
n=0

knt0 <∞;

it is at t∞ that Achilles catches the tortoise.

5 Unless you are afraid of Latin.
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1.4 Completeness 7

Let’s work out the details: for any natural N , we have

N∑
n=0

knt0 = 1 − kN+1

1 − k t0

(to see this, it suffices to multiply both sides by 1−k and do a little canceling),
and the last expression converges to t0

1−k asN → ∞. It does, we hasten to add,
because k is smaller than 1, Achilles being faster than the tortoise. For k > 1,
the sum on the right converges to infinity and Achilles turns out to be not so
swift after all. By the way, for k = 1 he is not so swift either, but the formula
above is different (can you provide it?).

It is perhaps worth looking at the yet more specific case of k = 1
2 (Achilles

is twice as fast as the tortoise) and t0 = 1. Here, we are dealing with the sum
of the infinite series

1 + 1

2
+ 1

4
+ · · · .

Some might argue that this sum cannot be equal to 2, because it never ‘reaches’
2. But even such notorious doubters can be somewhat convinced: beyond
reasonable doubt, the finite sums

1 + 1

2
+ 1

4
+ · · · + 1

2N
, N ≥ 1,

increase with N , and are bounded from above by 2. Zeno’s paradox disappears
if we agree that a non-decreasing sequence that is bounded from above has a
limit; it is immaterial whether the limit here is 2; what is important is that the
limit exists – the limit is the time when Achilles catches the tortoise. In other
words, Zeno’s paradox disappears if we agree that (see Exercise 1.4)

time is a complete space, a space without holes.

If we reject this assumption, there need not be a time when Achilles catches
the tortoise, and we will need to admit that reality does not agree with reason.
As we see, completeness influences our living with no quarter. It is simply
impossible to live without it.

1.4 Metric Spaces, Cauchy Sequences, Completeness

Let us come back to the subject of Section 1.1. What lies behind the fact that on
a map of a county there is a point that lies directly above the point it describes?
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8 Complete Metric Spaces

The reason seems to be related to the notion of distance: there is a constant
q ∈ (0,1) (termed the scale of a map) equal to the ratio of distances between
points on a map and corresponding points in the area the map describes (this
ratio is independent of the choice of these points). It is thus reasonable to start
with the notion of distance.

To recall, a set X equipped with a function d (called a metric), mapping
X × X to R+ and satisfying the following three conditions, is said to be a
metric space:

(a) for all x,y ∈ X, equality d(x,y) = 0 holds if and only if x = y,
(b) for all x,y ∈ X, we have d(x,y) = d(y,x),
(c) for all x,y,z ∈ X, we have d(x,z) ≤ d(x,y)+ d(y,z).
Of course, d(x,y) is interpreted as a distance between points x and y. With
this interpretation, the conditions given above are plausible and agree with
our intuition nicely: a distance between two points is zero if and only if these
points coincide, distance to y measured from x is the same as the distance to x
measured from y, and the way from x to z that leads through an intermediate
point y cannot be shorter than the way that leads directly from x to z. Because
of the last intuition, condition (c) is termed the triangle inequality and is best
visualized if x,y and z are thought of as vertices of a triangle.

If we think now of the county we live in as a metric space X (with distance
measured with a measuring ruler – even if this ruler is really long), then by
placing a map of the county on a ground we define a transformation of X. In
this transformation, to a point x ∈ X we assign the x′ lying directly below the
point describing x on the map. Then

d(x′,y′) = qd(x,y), (1.4)

where, as before, q < 1 is the map’s scale.
As we shall see in the next chapter, this property, together with complete-

ness ofX, is a key to the property discussed in Section 1.1. For now, having the
notion of distance defined, let us think of how this notion can be used to define
complete spaces. To this end, let us come back to the example of Section 1.2.
We have seen there that the set of rational numbers is not complete, and the
argument for that was that there exists a non-increasing sequence of rational
numbers that is bounded from below, and yet does not converge (to a rational
number).

This idea is promising: why not, following Augustin Louis Cauchy, define
complete spaces with the help of sequences? Why not detect holes by
examining appropriate sequences? In an abstract metric space, however, we
cannot work with non-decreasing or non-increasing sequences because in an
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1.4 Completeness 9

abstract metric space more often than not there is no natural order. Hence, we
need to have a good (gut) feeling what is an ‘appropriate’ sequence. Cauchy’s
brilliant idea was to define them as follows:

1.1 Definition A sequence (xn)n≥1 of elements of a metric space X is said
to be a Cauchy sequence (or a fundamental sequence), if for any ε > 0 there
is an n0 ≥ 0 such that d(xn,xm) < ε, as long as n,m ≥ n0.

In other words, for any ε one can throw away a finite number of elements
of a Cauchy sequence in such a way that distances between any two of
the remaining elements will be smaller than ε. Readers should convince
themselves (at least intuitively) that non-increasing sequences of real numbers
that are bounded from below are fundamental.

Let’s see how fundamental sequences are related to convergent sequences.
The latter are, to recall, defined as follows.

1.2 Definition A sequence (xn)n≥1 of elements of a metric space X is
said to converge if there is an x ∈ X, said to be its limit, such that
limn→∞ d(xn,x)= 0; that is, for all ε > 0 there is an n0 such that d(xn,x) < ε
for n ≥ n0.

It is easy to check that any sequence that converges is fundamental. For, if
x is its limit then, given ε > 0 we can find n0 such that d(xn,x) < ε

2 for all
n ≥ n0. By the triangle inequality this implies, however, that d(xn,xm) < ε
for all n,m ≥ n0, proving the claim.

Nevertheless, the converse is not true: there are Cauchy sequences that
do not converge, and it is precisely the existence of such sequences that
indicates the existence of holes in a metric space. The basic idea is that
Cauchy sequences behave as if they were convergent. If we cannot find
a limit of a Cauchy sequence, we suspect that the space we examine is
holey.

To gain some more insight and to see a connection between fundamental
sequences and holes in a metric space, let us think about a being that is living
in the punched ball of Section 1.1. He/she knows our Euclidean metric but does
not have a way of looking at the ball he/she lives in ‘from outside’ and thus
discovering a hole. He/she only thinks that a point with all three coordinates
equal to zero is not a point at all; for him/her it is a no-point.6 We arrange
things this way because we want him/her to detect the existence of the hole

6 Ancient Greeks asked ‘how can nothing be something?’, and there are still many who cannot
accept the existence of zero as a number. Or a person with zero morale. My dear referee of the
Polish edition hastened, however, to recall S. J. Lec’s aphorism which roughly translated goes
as follows: ‘When I reached the bottom, I heard knocking from below.’
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10 Complete Metric Spaces

from the inside, without looking from the outside. If he/she is a mathematician
he/she can try to use a fundamental sequence. For instance, he/she can think
of (xn)n≥1 given by xn = ( 1

n
, 1
n
, 1
n
), and argue as follows: ‘given ε > 0, I can

throw away a finite number of elements of this sequence in such a way that for
any xn,xm of the remaining elements the distances

d(xn,xm) =
√

3

∣∣∣∣1

n
− 1

m

∣∣∣∣ <
√

3

min(m,n)

between them are smaller than ε: it suffices to throw away all xn with n ≤√
3ε−1. Hence, this sequence seems to converge. However,’ – he/she continues

– ‘I cannot think of a point that could be the limit of this sequence. For, any
point, say x, in my decent space – the best space one can live in – has three
coordinates of which at least one, say a, is non-zero (how ugly it would be for
a point in my space to have all coordinates equal zero!). This shows, then, that
the distance between xn and x is at least | 1

n
− a|, and the latter quantity cannot

converge to 0. I have thus found a Cauchy sequence that cannot converge.
There must be something wrong with my space. I wonder what is it? Does it
have a hole?’.

These considerations lead us to the following definition.

1.3 Definition A metric space is said to be complete if all fundamental
(Cauchy) sequences of elements of this space converge.

As already discussed, the space of real numbers with distance d(x,y) =
|x − y| is a basic example of a complete space. On the other hand, the space
of rational numbers, with the same distance, is full of holes. We will not give
a formal proof of the fact that reals form a complete space – this is done in
any decent course of real analysis (see e.g., [34]). Instead, we will show how
completeness of R implies completeness of Rk,k ∈ N when equipped with a
Euclidean metric; more examples of complete spaces will be presented later in
the book.

The argument that Rk is complete is in fact quite simple. For, let (xn)n≥1,
where

xn = (ξn,1,ξn,2, . . . ,ξn,k) ∈ Rk

is a Cauchy sequence in Rk . An easy-to-establish inequality

|ξn,i − ξm,i | ≤ d(xn,xm) (1.5)

(which holds for all i = 1, . . . ,k) implies that the numerical sequences(
ξn,i

)
n≥1 ,i = 1, . . . ,k are fundamental in R. Indeed, this inequality shows

that |ξn,i − ξm,i | is smaller than a given ε whenever d(xn,xm) is smaller
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than this ε, and we know by assumption that d(xn,xm) is smaller than an
ε for all sufficiently large n,m. Since R is complete, there exist the limits
ξi = limn→∞ ξn,i,i = 1, . . . ,k. Vector x = (ξ1,ξ2, . . . ,ξk) is a member of
Rk . We are left with showing that x is a limit of (xn)n≥1. By assumption, for
all ε > 0 there is n0(ε) such that

d(xn,xm) =
√√√√ k∑
i=1

(ξn,i − ξm,i)2 < ε

as long as n,m ≥ n0(ε). Letting m→ ∞, we obtain

d(xn,x) =
√√√√ k∑
i=1

(ξn,i − ξi)2 ≤ ε

for n ≥ n0(ε). Hence, for n ≥ n1(ε) := n0(ε/2), we have d(xn,x) < ε,
completing the proof.

1.5 Yet Another Encounter

As I have already mentioned above, completeness of metric spaces is a key to a
number of theorems in pure and applied mathematics. Here is another, slightly
more advanced, example: Dirichlet’s test for convergence of functional series.
The test says that a series of the form

∞∑
i=1

aixi(s), s ∈ S,

where S is a set, ai’s are positive numbers and xi : S → R are functions,
converges uniformly with respect to s, provided that the following two
conditions are satisfied:

(a) ai+1 ≤ ai for all i ≥ 1 and limi→∞ ai = 0,
(b) there is anM > 0 such that |∑n

i=1 xi(s)| ≤ M for all s ∈ S and n ≥ 1.

All one needs to know to prove validity of this test, besides a bit of algebra,
is that the space of bounded7 functions on S is a complete metric space when
equipped with the distance

d(x,y) = sup
s∈S

|x(s)− y(s)|,

7 Note that, were either x or y not bounded, d(x,y) could be infinite.
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12 Complete Metric Spaces

and after reading a couple of chapters that follow, the reader will be able to
check this completeness with ease, see Exercise 3.10.

As for the algebra, we first let

yn(s) :=
n∑
i=1

aixi(s),

zn(s) :=
n∑
i=1

xi(s), s ∈ S,n ≥ 1.

By assumption (b), we have |zn(s)| ≤ M for all s ∈ S and n ≥ 1. Then, as
long as m > n ≥ 1,

ym(s)− yn(s) =
m∑

i=n+1

ai[zi(s)− zi−1(s)] =
m∑

i=n+1

aizi(s)−
m−1∑
i=n

ai+1zi(s)

=
m−1∑
i=n+1

(ai − ai+1)zi(s)+ amzm(s)− an+1zn(s).

Thus, since ai ≥ ai+1, we see that |ym(s)− yn(s)| does not exceed

M[am +
m−1∑
i=n+1

(ai − ai+1)+ an+1] = 2Man+1,

yielding

d(ym,yn) ≤ 2Man+1.

Now, the second part of assumption (a) tells us that (yn)n≥1 is a
Cauchy sequence. There is thus a bounded function y on S such that
limn→∞ d(yn,y) = 0, that is,

sup
s∈S

|y(s)−
n∑
i=1

aixi(s)|

converges to 0, as n → ∞. But this is precisely the uniform convergence of
the series (to y).

1.6 Exercises

Exercise 1.1. Prove the Bernoulli inequality.

Exercise 1.2. Let (xn)n≥1 be a sequence of elements of a metric space, and
suppose that (xn)n≥1 converges to an x in this space. Use the triangle inequality
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to show that then, for any y in this space, the numerical sequence (d(xn,y))n≥1

converges to d(x,y).

Exercise 1.3. Check that
√

3 and
√

5 are not rational.

Exercise 1.4. Show that if any non-increasing sequence of reals that is
bounded from below converges, then so does any any non-decreasing sequence
of reals that is bounded from above.

Exercise 1.5. Prove that completeness of the space of reals implies that any
non-increasing sequence of reals that is bounded from below converges. Show
also that the fact that any non-increasing sequence of reals that is bounded
from below converges, implies completeness of the space of reals.

Exercise 1.6. Let X := {1, 1
2,

1
22 ,

1
23 , · · · } ⊂ R be equipped with the metric

d(x,y) = |x − y|. Is X complete? What about X ∪ {0}?
Exercise 1.7. Prove (1.5). Hint: A sum of non-negative terms is no smaller
than any of these terms.

Exercise 1.8. LetX be the space of sequences (ξi)i≥1 such that ξi is either +1
or −1 for each i ≥ 1. Check to see that this is a complete metric space with
metric defined as follows:

d(x,y) :=
∞∑
i=1

1

2i
|ξi − ηi |,

where x = (ξi)i≥1 and y = (ηi)i≥1.

Exercise 1.9. If you are already convinced that Achilles will catch the tortoise,
the time needed for him to do that can be found without summing the infinite
series of Section 1.3, but simply by calculating t∞ from the following relations:

k(d + x) = x, t∞ = x

vtortoise
, t0 = d

vAchilles
= dk

vtortoise
.

Provide the details.

Exercise 1.10. Argue as in Section 1.5 to prove the following test for
convergence of series, attributed to Weierstrass (and known as the M-test).
Suppose an,n ≥ 1 are positive numbers such that

∑∞
n=1 an <∞ and xn,n ≥ 1

are functions on a set S. Assume that

|xn(s)| ≤ an, n ≥ 1,s ∈ S.

Then the series
∑∞
n=1 xn(s) converges absolutely and uniformly.

https://doi.org/10.1017/9781009430883.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009430883.002


14 Complete Metric Spaces

� CHAPTER SUMMARY

Guided by basic intuitions, we introduce the notion of a complete metric
space and discover that we have in fact encountered it before in our study
of mathematics. In particular, we learn that if the set of real numbers were
not complete, bounded increasing (or decreasing) sequences would not have
limits. Similarly, we realize that if time were not complete, Achilles would
never catch the tortoise. In a slightly more advanced part, we show that the
criteria for convergence of functional series involve the notion of completeness
of the space of continuous functions.
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