Can. J. Math., Vol. XXXII, No. 3, 1980, pp. 628-630

BLOCKING SETS AND SKEW SUBSPACES
OF PROJECTIVE SPACE

AIDEN A. BRUEN

In what follows, a theorem on blocking sets is generalized to higher
dimensions. The result is then used to study maximal partial spreads of
odd-dimensional projective spaces.

Notation. The number of elements in a set X is denoted by |X|. Those
elements in a set 4 which are not in the set B are denoted by 4 — B. In
a projective space £ = PG(n, g) of dimension » over the field GF(gq) of
order ¢, T'y(Qq4, Ay, etc.) will mean a subspace of dimension d. A hyperplane
of £ is a subspace of dimension # — 1, that is, of co-dimension one.

A blocking set in a projective plane = is a subset S of the points of =
such that each line of m contains at least one point in S and at least one
point not in .S. The following result is shown in [1], [2].

THEOREM 1. Let S be a blocking set in the plane = of order n. Then
IS| = n 4+ vn + 1. If equality holds, then S is the set of points of a Baer
subplane of .

We proceed to generalize this to higher dimensions.

THEOREM 2. Let Sbe a set of pointsin 2 = PG(n,q),n = 2. Suppose that
(1) Every hyperplane of Z contains at least one point of S.
(2) S does not contain any line.

Then |S| 2 g+ Vqg+ 1. If |S| = ¢ + Vq + 1, the poinis of S are the

points of a Baer subplane of some plane in Z.

Proof. The case n = 2 follows from Theorem 1, and we proceed by
induction on 7. Let us assume that |S| =< ¢ + /¢ + 1. Now let «, v be
any two points of S. By hypothesis there exists a point x on the line
joining # to v such that x is not in S. The lines of = through x form the
Points of the Quotient Geometry Z,. By joining each to x, the points .S
of Z then yield a set of Points S, in Z,. The dimension of Z,is n — 1.
Each hyperplane ¢ of £ through x yields a Hyperplane o, in Z,. By
hypothesis, ¢, contains at least one Point of .S,. Since x, u, v are collinear,
we have

IS < IS =g+ Vg+ L
Thus [S,| < ¢ + v/¢ + 1. Then, by induction, some Line in £, consists
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entirely of Points of .S,. Translating back into Z, this means that some
plane 7= of 2 containing x also contains at least ¢ 4+ 1 points of S. Let
A = A,—; be any hyperplane of 2 containing w. Suppose that some
subspace I' = T',_s of A of dimension » — 2 contains no point of .S. Each
member of the pencil of ¢ + 1 hyperplanes of Z that contain T contains
at least one point of S. Since A contains at least ¢ + 1 points of .S, we get

ISlz1-(¢g+1)+g-1=2¢+ 1
This contradicts the assumption that |S| < ¢ + /¢ + 1. Thus each

hyperplane T of A contains at least one point of .S. Since S/ A contains
no line we obtain by induction that

ISN Al zg+Vg+ 1,

with equality if and only if the points of S/ A are the points of a Baer
subplane of some plane 7= of A. Now [S/M A| £ |S|, and |S| £ ¢ +
V¢ + 1, by assumption. Since |S/M Al = ¢ + V¢ + 1 it follows that
SM A =S, and we are done.

We turn our attention to maximal partial spreads of £ = PG(2t + 1,
g),t = 1. A partial t-spread or, simply, a partial spread of Z is a collection
W of t-dimensional subspaces of 2 such that no two members of W have a
point of £ in common (i.e., any two members of W are skew). If each
point of Z lies on a (unique) member of W, then W is called a spread of
2. In that case |W| = ¢'t! 4+ 1. A partial spread W is maximal provided
that (1) and (2) below are both satisfied.

(1) W is not a spread
(2) W is not contained in any larger partial spread of Z.

The integer d = ¢! + 1 — |W| is then called the deficiency of W.

THEOREM 3. Let W be a maximal partial t-spread of T = PG(2t + 1, q).
Assume that ¢ = 4. Then |[W| = ¢ + v/q + 1.

Proof. Put W = {w, w,, ..., w:}. By way of contradiction assume
that

Wl=k<qg+VG+ 1

Using this assumption on |W/|, and counting incidences, it follows that
there exists a hyperplane @ = Q,, of £ containing none of the w,. In Q
we now have k skew subspaces of the type w; M Q. Repeating the above
argument we can find a hyperplane of Q containing none of the w; M Qs,.
Proceeding like this we obtain a subspace A = A, such that
w; M A = [; where [, is a line of A. Now put R = {l1, l»,...,L}. No
two lines /;, /; meet if ¢ 5 j. Let P be any point on any line /; of R. Sup-
pose that u was a line on P, # ¢ R, such that each point of % is on a line
of R. Similarly, let » be any other transversal of R through P. Now
IR—1{L}| < g+ +q Also ¢+ (g —1) > ¢+ +/q if ¢ = 3. It follows
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that some two lines /s, I of R would have as transversals the two co-planar
lines # and ». Then /, and /s would intersect, a contradiction. Thus, for
any point P on any line /; of R, there is at most one transversal of R
through P. So the total number of transversals to R is at most k = |W|.

Let X denote those lines of A which are either lines of R or transversals
to R. Then

X] £ 2k <200+ Va+ D).

The number of hyperplanes of A that contain a given line is equal to
g'+q-'4+ ...+ 1. For ¢ = 4 we have

200+ Va+ D@+ g+ .+ D) <gtr4 gt 4L+ L

The total number of hyperplanes of A is ¢**? + ¢'*2 + ... + 1. From
the above inequality we can therefore find a hyperplane I' = T',;; of
A = A such that T' contains no line of X. Then w; M I' = x,, with x;
being a point of T'. By our choice of T' the set S = {x1, %2, . .., %)} con-
tains no line of T'. Since W is a maximal partial {-spread, each hyperplane
of T' contains at least one point of S. An appeal to Theorem 2 shows that
the assumption & < ¢ + +/¢ + 1 leads to a contradiction. Thusk = ¢ +
v q + 1, and the proof is complete.

Notation. Let W be a maximal partial ¢-spread of £ = PG(2t + 1, q)
having deficiency d. Then we set f(d) = 3(d — 1)(d® — d*> + d + 2).

THEOREM 4. The following bounds hold:

() g+ Vg+ 1= |Wforqz4

(i) [W| = ¢ — V3.

(iii) If q is not a square, then f(d) = q't'.

(iv) If t = Lthen g + Vg + 1 < |W|.

Proof. Part (i) has been shown in Theorem 3. Parts (ii) and (iii) follow

exactly as in the proof of Theorem 5 in [3] which makes use of Bruck’s
embedding theorem. Part (iv) is shown in [4].

Remark. In Theorem 3.1 of his paper in Math. Zeit. (211-229, 1975)
A. Beutelspacher obtained bounds which were stronger than those in
Theorem 4 above. However, his proof is in error, as he points in a subse-
quent paper in Math. Zeit., and his results have been retracted.
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