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The etiology of the observed relationship between reading and mathematics per formance was
examined by analyzing data from samples of same-sex twin pai rs tested in the Colorado Learning
Disabi l i ties Research Center. Bivar iate phenotypic and genetic structural  equation models were
fitted to data from 526 twin pai rs selected for  reading defici ts (290 identical  and 236 same-sex
fraternal ) and 355 control  pai rs (220 identical  and 135 same-sex fraternal ). Subtests of the Peabody
Individual  Achievement Test (PIAT; Reading Recogni tion, Reading Comprehension, and Spel l ing)
were used as measures of reading per formance, and scores from the Wechsler  Intel l igence Scale
for  Chi ldren-Revised (WISC-R) or  Wechsler  Adul t Intel l igence Scale-Revised (WAIS-R) Ar i thmetic
subtest, the Wide Range Achievement Test Ar i thmetic subtest, and the PIAT Math subtest were
used as indices for  mathematics per formance. The resul ts of these confirmatory factor  analyses
indicate that genetic and envi ronmental  covar iances between reading and math latent factors do
not di ffer  significantly for  tw in pai rs in the proband and control  groups. Estimates of her i tabi l i ty
for  reading per formance in the proband and control  samples were 0.81 and 0.69, respectively, and
those for  math per formance were 0.88 and 0.67, respectively. Moreover, genetic influences
accounted for  83% of the covar iation between the reading and math factors in the proband group
and for  58% of the covar iation between these two latent var iables in the control  group; in contrast,
shared envi ronmental  influences did not contr ibute significantly to the relationship between the
reading and math latent factors nor  to thei r  independent var iation.
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Reading and mathematics defici ts frequently
co-occur. For example, Badian

1
reported that 56% of

elementary and junior high school  chi ldren wi th
reading disabi l i ty (RD) also mani fested poor math
achievement, and that 43% of the chi ldren wi th
math disabi l i ty (MD) also had reading di fficul ties.
Subsequently, Rourke

2
noted that chi ldren wi th

reading and/or spel l ing disabi l i ty have di fficul ty
remembering mathematical  tables or remembering a
particular step in the correct procedure for solving a
problem and tend to avoid problems that requi re the
reading of printed words. Thus, defici ts in reading
and math could both be due in part to language-
based defici ts or problems wi th short-term
memory.

3,4

The genetic and envi ronmental  etiologies of the
comorbidi ty between reading and mathematics defi-
ci ts were first examined by Light and DeFries.

5
Data

from a sample of tw in pai rs selected for reading
defici ts were fi t to a bivariate extension of the basic
mul tiple regression model  for the analysis of

selected twin data (DeFries and Fulker
6,7

). The
resul ting estimate of bivariate heri tabi l i ty (an index
of the extent to which the proband reading defici t is
due to genetic factors that also influence math
disabi l i ty) was 0.26 ± 0.11, suggesting that proband
reading defici ts are due at least in part to genetic
factors that also influence math performance. Moreo-
ver, the ratio of bivariate heri tabi l i ty to the standard-
ized covariance between reading and mathematics
performance indicated that over hal f (0.55) of thei r
observed covariance was due to genetic influences.

Knopik et al
8

subsequently employed this method-
ology to assess the etiology of the comorbidi ty of
reading and mathematics defici ts in two twin sam-
ples: one selected for reading defici ts and one
selected for math defici ts. Resul ts of these analyses
provided addi tional  evidence for the heri table
nature of reading and math defici ts, and also sug-
gested that the observed comorbidi ty between read-
ing and math di fficul ties is due substantial ly to
genetic influences.

In order to assess the etiology of the covariation
between individual  di fferences in reading and
mathematics performance, Gi l l is et al

9
conducted a

confirmatory factor analysis on data from twin pai rs
tested in the Colorado Twin Study of Reading
Disabi l i ty. Reading performance was measured by
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the Peabody Individual  Achievement Reading Rec-
ogni tion, Reading Comprehension, and Spel l ing
subtests, whi lst mathematics performance was
indexed by the Peabody Individual  Achievement
Math subtest, the Wechsler Ari thmetic subtest, and
the Primary Mental  Abi l i ties Spatial  Test. Individual
di fferences in reading and mathematics performance
were found to be highly heri table in both a sample of
twins wi th reading disabi l i ty (heri tabi l i -
ty = a

2
= 0.78 and 0.51 for reading and math, respec-

tively) and in twin pai rs wi th no learning di fficul ties
(a

2
= 0.74 and 0.60, respectively). Moreover, resul ts

of this confirmatory factor analysis also suggested
that genetic influences account for almost al l  (98%)
of the observed correlation between reading and
math performance wi thin the sample of tw ins wi th
reading disabi l i ty, and for 55% of the observed
correlation in the control  sample. Therefore, i t was
concluded that individual  di fferences in both read-
ing and mathematics performance are highly heri ta-
ble and appear to be caused by many of the same
genetic influences (Gi l l is et al

9
). These resul ts are

highly simi lar to those of a twin study of scholastic
achievement by Thompson et al

10
in which the

genetic correlation between reading and math per-
formance was 0.98.

The primary objective of the present study is to
assess the etiology of the covariation between indi -
vidual  di fferences in reading and mathematics per-
formance by analyzing data from two samples of
twins tested in the Colorado Learning Disabi l i ties
Research Center (DeFries et al

11
): an updated sample

of tw ins ascertained for reading defici ts and pre-
viously analyzed by Gi l l is et al

9
; and a control

sample of tw ins wi thout learning di fficul ties. By
fitting a bivariate (two-factor) structural  equation
model  (Neale and Cardon

12
) to the twin data, the

proportions of phenotypic variance due to addi tive

genetic, shared envi ronmental , and non-shared envi -
ronmental  influences were estimated for reading and
mathematics performance in both samples. In addi -
tion, the phenotypic correlation between the two
factors was parti tioned into components due to
genetic, shared envi ronmental , and non-shared envi -
ronmental  influences.

Methods

Participants and measures

The data for this analysis were col lected from twin
pai rs tested by 31 August 1998 in the Colorado
Learning Disabi l i ties Research Center, which ascer-
tains twin pai rs from 27 school  districts in the state
of Colorado. In order to minimize the possibi l i ty of
ascertainment bias, al l  tw in pai rs in a school  were
identified, wi thout regard to reading status. Parental
permission was then sought to review the twins’
school  records for evidence of reading problems (eg
referral  to a reading therapist, low reading achieve-
ment test scores). Twin pai rs in which at least one
member of the pai r exhibi ted a posi tive school
history of reading problems and a comparison
sample of tw ins wi th no learning di fficul ties were
invi ted to laboratories at the Universi ty of Colorado
to complete an extensive battery of psychometric
tests measuring various cogni tive abi l i ties. This
battery included the Wechsler Intel l igence Scale for
Chi ldren – Revised (WISC-R, Wechsler

13
) or the

Wechsler Adul t Intel l igence Scale – Revised (WISC-
R, Wechsler

14
), the Peabody Individual  Achievement

Test (PIAT, Dunn and Markwardt
15

), and the Wide
Range Achievement Test (WRAT, Jastak and Wi lk-
inson

16
). Complete data were avai lable on al l  meas-

ures wi th the exception of WRAT Ari thmetic, which
was added to the test battery at a later date. Scores
for each of these variables were age-adjusted using
regression deviation scores and then standardized by
expressing each subject’s score as a deviation from
the corresponding control  mean and dividing by the
control  standard deviation. The PIAT Reading Rec-
ogni tion (REC), Reading Comprehension (COMP),
and Spel l ing (SPEL) subtests were used as measures
of reading performance, whi lst PIAT Mathematics
(MAT), WISC-R or WAIS-R Ari thmetic (ARIT), and
WRAT Ari thmetic (WRAT) subtests were used as
indices of mathematics performance.

Pai rs were included in the reading disabled (RD)
sample i f at least one member exhibi ted a posi tive
school  history of reading problems. The control
sample was matched, when possible, to the RD
sample on the basis of age, gender and zygosi ty.
However, both members of control  pai rs have a
negative school  history for reading problems.Figure1 Path diagram for bivariate phenotypic model
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Because of the possibi l i ty of sex-l imi tation for these
measures (Knopik et al

17
), the present study incorpo-

rates only those data obtained from same-sex twin
pai rs.

A l l  tw in pai rs included in this analysis were
raised in Engl ish-speaking, predominantly middle-
class homes, and ranged in age from 8 to 20 years,
wi th the RD and control  samples both having a mean
age of 11.73 years. Zygosi ty of the same-sex twin
pai rs was determined by selected i tems from the
Nichols and Bi lbro

18
questionnai re, which has a

reported accuracy of 95%. In cases of doubtful
zygosi ty, blood or buccal  samples were analyzed. As
of 31 August 1998, the RD sample included a total  of
290 pai rs of MZ twins and 236 pai rs of same-sex DZ
twins. A total  of 220 MZ twin pai rs and 135 same-sex
DZ pai rs were included in the control  sample.

Analyses

The bivariate phenotypic and genetic structural
equation models, and thei r corresponding submo-
dels, were fi tted to the twin data using the Mx
statistical  model l ing package (Neale

19
). Because of

the variabi l i ty in patterns of missing data for the
WRAT Ari thmetic subtest, al l  avai lable raw data
were analyzed by creating a variable length record
and using the fol lowing fi t function (Neale

19
):

RM = –k log(2π) + log |  Σ |
+ (xi – µi)'Σ

–1
(xi – µi),

where RM is the raw maximum l ikel ihood. The
appropriate mean vector µ and covariance matrix Σ
are automatical ly created by Mx for each observa-
tion. In addi tion, this procedure calculates twice the

Figure2 Path diagram for bivariate twin model
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negative log-l ikel ihood for each data point. Because
there is no observed covariance matrix to which the
expected covariance matrix can be compared, evalu-
ation of the fi t of the model  is based on a comparison
of a constrained model  that is nested wi thin a more
general  model . The di fference between the log-
l ikel ihood estimates for these nested models is
distributed as a �2

and thus provides a goodness-
of-fi t index for model  comparison. Because estimates
of �2

are highly sensi tive to sample size, even smal l
di fferences in large samples may resul t in significant
changes in �2

(∆�2
). Therefore, we also employed a

ratio of �2
to the degrees of freedom to assess the

model  fi t, w i th ratios of five or less indicating a
reasonable fi t to the data (Wheaton et al ,

20

Hayduk
21

).

Phenotypic models

A phenotypic model  wi th two correlated factors was
fitted simul taneously to the variable length record
fi les of the RD and control  groups to provide separate
parameter estimates for the two samples. The read-
ing factor loaded on the three PIAT subtests (REC,
COMP, and SPEL), and the mathematics factor
loaded on the PIAT Math (MAT), WISC-R or WAIS-R

Ari thmetic (ARIT), and WRAT Ari thmetic (WRAT)
subtests. In addi tion, one residual  for each of the
measured variables was included to account for
specific influences not shared wi th the factors. The
model , depicted in Figure1, includes the phenotypic
correlation between the two latent variables as wel l
as loadings for each of the measures on the corre-
sponding reading and math factors. In order to test
for homogenei ty of variances and covariances
between the two samples, parameter estimates for
the RD and control  groups were equated and the
resul ting log-l ikel ihood estimate was compared to
that for the ful l  model .

Genetic models

As depicted in Figure2, the bivariate twin model
parti tions the phenotypic variances and covariances
into genetic and envi ronmental  components. For a
given variable (eg READ), the phenotypic correlation
between members of MZ twin pai rs is due to both
addi tive genetic (a

2
) and shared envi ronmental  (c

2
)

influences (rMZ = a
2

+ c
2
). The corresponding phe-

notypic correlation for DZ twin pai rs is 0.5 a
2

+ c
2
,

because DZ twin pai rs share only hal f of thei r
segregating genes but al l  of the shared envi ronmental
influences. Thus, tw ice the di fference between the
MZ and DZ observed correlations estimates heri t-
abi l i ty (a

2
). Consequently, subtracting the heri t-

abi l i ty estimate from the MZ correlation provides an
estimate of the proportion of the total  variance due to
shared envi ronmental  influences (c

2
), and subtract-

ing the MZ correlation from one provides an esti -
mate of the proportion of the variance due to non-
shared envi ronmental  factors (e

2
). The bivariate

model  simply extends these basic principles and
provides estimates of univariate parameters (ie a

2
, c

2

and e
2

for each of the trai ts) in addi tion to cross-trai t
correlations, which can also be parti tioned into
genetic and envi ronmental  components.

For the bivariate twin model  (Figure2), the addi -
tive genetic, shared envi ronmental , and non-shared
envi ronmental  influences on reading performance
are represented by AR CR, ER, respectively. AM, CM,
and EM are the corresponding addi tive genetic,
shared envi ronmental , and non-shared envi ron-
mental  influences on the mathematics performance

Figure3 Parameter estimates for the ful l  bivariate phenotypic
model  of data from individuals in the Colorado Learning Disabi l i -
ties Research Center. Estimates for the control  group are shown in
parentheses

Table 1 Model  comparisons of phenotypic models for tw in data from the Colorado Learning Disabi l i ties Research Center

Model –2log l ikel ihood NPAR vs χ2 df P χ2/df AIC

1 Saturated 24238.57 360
2 Ful l 24584.98 158 1 346.41 202 �0.005 1.71 –57.59
3 RD = CONT 24654.76 145 2 69.78 13 �0.005 5.37 43.78
4 readRD = readCONT 24637.93 152 2 52.95 6 �0.005 8.83 40.95
5 mathRD = mathCONT 24600.86 152 2 15.88 6 �0.025 2.65 3.88
6 rRD = rCONT 24586.20 157 2 1.22 1 �0.250 1.22 –0.78
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factor. The path coefficients for addi tive genetic,
shared envi ronmental , and non-shared envi ron-
mental  influences on the reading variables are
symbol ized by a, c, and e, respectively. The corre-
sponding coefficients for the math variables are a', c',
and e', respectively. The cross-trai t genetic (rA),
shared envi ronmental  (rC), and non-shared envi ron-
mental  (rE) correlations are also depicted in Figure2,
as are the residuals for each measure parti tioned into
specific addi tive (A), specific shared envi ronmental
(C), and specific non-shared envi ronmental  (E) com-

ponents. The proportions of variance due to genetic
and envi ronmental  influences for the RD and control
groups are obtained by squaring the respective path
coefficients.

Genetic and envi ronmental  parameters, as wel l  as
95% confidence intervals, were estimated by fi tting
both ful l  and reduced models using the Mx statis-
tical  model l ing package (Neale

19
). Because genetic

and envi ronmental  parameter estimates are not
expected to be negative, boundary constraints were
placed on the parameters in order to ensure posi tive
estimates. However, such boundaries can present
interpretational  problems for the computation of
confidence intervals (Neale and Mi l ler

22
). Therefore,

for the present analysis, confidence intervals wi th
lower bounds equal  to zero should be interpreted
wi th caution.

The ful l  models were compared to a saturated
model , which acocunts for al l  of the variance, to
determine goodness-of-fi t. These model  comparisons
and those for corresponding nested submodels were
evaluated using �2

di fference tests and the �2
/df

ratio; however, Akaike’s information cri terion
(AIC = �2

– 2df
23

) was also employed, wi th lower
Akaike’s values representing better fi tting models
(Neale and Cardon

12
). The fol lowing submodels

were examined: (1) submodels in which various
parameter estimates for the RD and control  groups
are constrained to be equal ; (2) a genetic model  in
which rC, c, and c' are constrained to be zero; and (3)

Table 2 Parameter estimates obtained from fi tting the ful l
phenotypic model  to reading and mathematics performance data

Parameter RD 95% CI Control 95% CI

λ1 0.91 (0.88, 0.93) 0.87 (0.82, 0.92)

λ2 0.76 (0.73, 0.80) 0.61 (0.54, 0.66)

λ3 0.72 (0.68, 0.76) 0.65 (0.59, 0.70)

λ4 0.77 (0.72, 0.82) 0.80 (0.74, 0.86)

λ5 0.70 (0.64, 0.76) 0.71 (0.63, 0.78)

λ6 0.67 (0.62, 0.72) 0.69 (0.63, 0.74)

Residuals
ε1 0.42 (0.36, 0.48) 0.49 (0.38, 0.57)
ε2 0.65 (0.61, 0.69) 0.80 (0.75, 0.84)
ε3 0.69 (0.65, 0.73) 0.76 (0.71, 0.81)
ε4 0.64 (0.58, 0.69) 0.60 (0.52, 0.67)
ε5 0.71 (0.65, 0.77) 0.70 (0.62, 0.78)
ε6 0.74 (0.69, 0.78) 0.73 (0.67, 0.78)

Phenotypic correlation
rP 0.61 (0.55, 0.67) 0.56 (0.46, 0.64)

Table 3 Twin correlations of standardized variables for MZ and DZ twin pai rs in the RD sample (DZ correlations below the diagonal )

T1REC T1COMP T1SPEL T1MAT T1WRAT T1ARIT T2REC T2COMP T2SPEL T2MAT T2WRAT T2ARIT

T1REC 1.00 0.67 0.65 0.28 0.31 0.14 0.73 0.49 0.52 0.21 0.19 0.10
T1COMP 0.73 1.00 0.47 0.37 0.38 0.23 0.55 0.54 0.35 0.31 0.30 0.22
T1SPEL 0.72 0.57 1.00 0.29 0.37 0.18 0.46 0.32 0.54 0.24 0.24 0.09
T1MAT 0.48 0.51 0.49 1.00 0.44 0.48 0.24 0.44 0.26 0.62 0.40 0.49
T1WRAT 0.50 0.43 0.48 0.59 1.00 0.38 0.34 0.35 0.20 0.39 0.76 0.43
T1ARIT 0.45 0.44 0.46 0.55 0.51 1.00 0.06 0.18 0.12 0.39 0.28 0.48
T2REC 0.28 0.25 0.16 0.07 0.10 0.14 1.00 0.63 0.59 0.25 0.37 0.19
T2COMP 0.16 0.24 0.08 0.09 0.04 0.14 0.72 1.00 0.42 0.43 0.39 0.31
T2SPEL 0.22 0.20 0.22 0.12 0.19 0.11 0.68 0.49 1.00 0.24 0.23 0.13
T2MAT 0.17 0.26 0.14 0.32 0.21 0.25 0.45 0.44 0.44 1.00 0.46 0.52
T2WRAT 0.18 0.28 0.19 0.30 0.42 0.23 0.48 0.39 0.52 0.69 1.00 0.49
T2ARIT 0.20 0.21 0.11 0.18 0.20 0.32 0.48 0.42 0.39 0.55 0.57 1.00

Table 4 Twin correlations of standardized variables for MZ and DZ twin pai rs in the control sample (DZ correlations below the diagonal )

T1REC T1COMP T1SPEL T1MAT T1WRAT T1ARIT T2REC T2COMP T2SPEL T2MAT T2WRAT T2ARIT

T1REC 1.00 0.57 0.61 0.32 0.46 0.25 0.59 0.42 0.46 0.28 0.39 0.30
T1COMP 0.63 1.00 0.38 0.33 0.32 0.33 0.41 0.48 0.31 0.30 0.28 0.31
T1SPEL 0.48 0.21 1.00 0.32 0.37 0.31 0.57 0.38 0.62 0.30 0.29 0.33
T1MAT 0.39 0.35 0.36 1.00 0.58 0.65 0.31 0.43 0.22 0.67 0.50 0.57
T1WRAT 0.31 0.20 0.24 0.54 1.00 0.50 0.33 0.27 0.20 0.52 0.68 0.32
T1ARIT 0.30 0.29 0.26 0.40 0.50 1.00 0.31 0.32 0.21 0.55 0.37 0.56
T2REC 0.31 0.24 0.19 0.19 0.29 0.24 1.00 0.44 0.61 0.39 0.38 0.33
T2COMP 0.34 0.34 0.12 0.16 0.11 0.11 0.52 1.00 0.41 0.41 0.31 0.39
T2SPEL 0.20 0.05 0.27 0.15 0.17 0.13 0.59 0.25 1.00 0.30 0.19 0.24
T2MAT 0.13 0.18 0.06 0.29 0.26 0.27 0.33 0.38 0.18 1.00 0.55 0.55
T2WRAT 0.23 0.07 0.33 0.24 0.47 0.29 0.35 0.25 0.21 0.45 1.00 0.42
T2ARIT 0.25 0.23 0.11 0.21 0.14 0.17 0.32 0.43 0.22 0.58 0.45 1.00
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submodels that test whether specific genetic and
envi ronmental  effects, independent of those that
contribute to the covariance of the factors, sig-
nificantly influence the reading and math variables.

Resul ts

Phenotypic analysis

The parameter estimates resul ting from the fi t of the
ful l  phenotypic model  to the data are presented in
Figure3, and the goodness-of-fi t indices for the ful l
and corresponding submodels are shown in Table1.
Parameter estimates and 95% confidence intervals
for the ful l  model , which yielded separate parameter
estimates for the RD and control  groups, are also
presented in Table2. Due to the large sample size
(9773 observed data points for 1762 individuals), the
∆�2

value for the ful l  model  compared to the
saturated model  is large (∆�2

= 346.41, df = 202,
P ≤ 0.005); however, both the �2

/df ratio (1.71) and
the Akaike’s information cri terion (–57.59) are low,
suggesting an acceptable fi t to the data.

As shown in Figure3, the phenotypic correlation
between the reading and mathematics performance
factors was 0.61 in the RD group and 0.56 in the
control  group, suggesting a substantial  relationship
between the latent variables in both samples.

As shown in Table1, the factor structure for both
reading and math performance is significantly di ffer-
ent for the RD and control  samples (model 3). When
the parameter estimates were equated across groups,
the change in �2

was significant (∆�2
= 69.78,

df = 13, P ≤ 0.005). In addi tion, the factor structure
for reading performance (model 4), and the factor
structure for math performance (model 5) signifi-
cantly di ffered for the RD and control  groups
(P ≤ 0.005 and P ≤ 0.025, respectively). These
resul ts are due, at least in part, to the greater
variation in the reading-disabled sample (A larcón
and DeFries

24
).

In contrast, when equating the correlation between
reading and math (model 6) for the two groups, a
nonsignificant change in �2

was achieved
(∆�2

= 1.22, df = 1, P ≥ 0.250), suggesting that the
standardized covariance of reading and math per-

formance is simi lar in individuals from the RD and
control  samples.

Genetic analyses

Tables3 and 4 present the twin correlations for the
observed reading and math variables. As shown, the
univariate MZ twin correlations (eg T1REC wi th
T2REC) are substantial ly higher than DZ twin corre-
lations for both groups, indicating that individual
di fferences in these measures are due at least in part
to heri table influences. A l though less striking, the
pattern of cross-twin bivariate correlations (eg
T1REC wi th T2MAT) also suggest genetic covaria-
tion between measures.

For the genetic analyses, the ful l  phenotypic
model  was parti tioned to include addi tive genetic,
shared envi ronmental , and non-shared envi ron-
mental  contributions to the variances of the latent
factors, as wel l  as to the covariance among the
measures. The proportions of variance due to addi -
tive genetic, shared envi ronmental , and non-shared
envi ronmental  sources obtained from the ful l  bivari -
ate twin model  are presented in Table5. In order to
ensure identification of the model , the variances of
the latent variables were constrained such that
a

2
+ c

2
+ e

2
= 1 and a'

2
+ c'

2
+ e'

2
= 1.

Resul ts from the ful l  genetic model  suggest that
al though reading performance is highly heri table in
both the RD sample (0.81) and in the control  sample
(0.69), reading performance is sl ightly more heri ta-
ble in the RD sample. These estimates are highly
simi lar to those found by Gi l l is et al .

9
In contrast,

shared envi ronmental  influences on reading per-
formance account for no variance in the reading-
disabled group (0.00) and only a smal l  proportion of
the variance in the control  group (0.13).

Mathematics performance is also substantial ly
heri table in both groups (0.88 for the RD sample and
0.67 for controls). A l though these estimates of
heri tabi l i ty for math performance are somewhat
higher than those reported by Gi l l is et al ,

9
di fferent

indices of math performance were used for the
present analysis. As is the case for the reading latent
factors, shared envi ronmental  influences account for
relatively l i ttle variance of math performance in both
samples (0.00 for the RD group, and 0.21 for
controls).

The parameter estimates for the ful l  bivariate twin
model  are shown in Figure4 and Table6. The genetic
correlation (rA) between reading and math is sub-
stantial  in both the reading-disabled and control
samples (rA = 0.61 and 0.47, respectively). Moreo-
ver, 83% of the phenotypic correlation (rP = 0.62 in
the ful l  genetic model ) between reading and math
performance in the RD sample is due to genetic
influences, ie araa'/ rP = (0.90)(0.61)(0.94)/ (0.62),

Table 5 Genetic and envi ronmental  contributions to the
variance of the latent reading and math factors estimated from
the ful l  model

RDa Control b

Measure a2 c2 e2 a2 c2 e2

READ 0.81 0.00 0.19 0.69 0.13 0.18
MATH 0.88 0.00 0.12 0.67 0.21 0.11

arA = 0.61, rC = 0.97, rE = 0.71
brA = 0.47, rC = 1.00, rE = 0.50
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where a and a' are the standardized genetic parame-
ter estimates. In the control  sample, 58% of the
phenotypic relationship (rP = 0.55 in the ful l  genetic
model ) between reading and math is due to genetic
influences. A l though the estimates of rC are close or

equal  to one in both groups, both estimates are not
significantly di fferent from zero (95%
CI = 0.00–1.00 in both groups, Table6).

The resul ts of goodness-of-fi t tests for the various
twin model  comparisons are presented in Table7.

Figure4 Parameter estimates for the ful l  bivariate twin model  (one twin only). Estimates for the control  group are shown in
parentheses
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The ful l  model  provides a reasonable fi t to the data
when compared wi th a ful ly saturated model  wi th a
∆�2

of 420.40 for 246 degrees of freedom
(�2

/df = 1.71, AIC = –71.60). Because we could
equate the correlation between the reading and math
latent factors in the phenotypic model , and based on
inspection of the 95% confidence intervals of the
parameter estimates for the ful l  genetic model , we
equated the common genetic and envi ronmental
parameters for the two samples (ie aRD = aCONT,
rA(RD) = rA(CONT), a'RD = a'CONT, etc.). As expected,
model 3 did not significantly reduce the model  fi t
(∆�2

= 4.20, df = 9, P ≥ 0.750, AIC = –13.80) nor did
model 4, which tested whether shared envi ron-
mental  factors significantly influenced the relation-
ship between the reading and math latent factors
(∆�2

= 0.03, df = 3, P = 0.995, AIC = –5.97).
After examination of the 95% confidence inter-

vals, specific shared envi ronmental  variances were
dropped from the model  (model 5). The change in �2

was not significant (∆�2
= 8.30, df = 12, P ≥ 0.750,

AIC = –15.70); thus, shared envi ronmental  effects
nei ther contribute significantly to the covariation
between the trai ts, nor account for significant inde-
pendent variation in the reading and math variables.
Final ly, in order to determine whether genetic
influences independent of those shared by the two
factors significantly influence the measured varia-
bles, the specific addi tive genetic effects were
dropped from the model . Model 6 fi ts the data

significantly worse than model 5 (∆�2
= 312.28,

df = 12, P ≤ 0.005, AIC = 288.28), indicating that
genetic influences independent of those shared by
the factors significantly contribute to the measures of
reading and mathematics.

Discussion

The etiology of the relationship between reading and
mathematics performance was examined by fi tting
structural  equation models to twin data from the
Colorado Learning Disabi l i ties Research Center. In
the RD sample, at least one member of the twin pai r
(290 MZ and 236 same-sex DZ) had a posi tive school
history of reading problems. In contrast, nei ther
member of each pai r in the control  sample (220 MZ
and 135 same-sex DZ) had a school  history of
reading defici ts. The proportions of observed vari -
ance due to genetic and envi ronmental  influences
were estimated for the various measures, and the
phenotypic correlation between reading and math
performance was parti tioned into components due
to genetic, shared envi ronmental , and non-shared
envi ronmental  influences in both groups. Specific
genetic and envi ronmental  influences, independent
of the covariation between the two factors, were also
examined.

Reading performance is highly heri table both in
the proband (a

2
= 0.81) and control  (a

2
= 0.69) sam-

ples, suggesting that 80% of the phenotypic variance
in this latent variable is due to genetic influences in
the RD group, and almost 70% of reading perform-
ance in the control  group is accounted for by genetic
factors. Simi lar resul ts were found for math perform-
ance, wi th heri tabi l i ty estimates of 0.88 and 0.67 for
the RD and control  groups, respectively. In addi tion,
reading and math performance appear to be due
substantial ly to the same genetic influences in both
groups (rA = 0.61 and 0.47 for the RD and control
samples, respectively), supporting resul ts previously
reported by Gi l l is et al ,

9
Light and DeFries,

5
and

Knopik et al .
8

Despi te simi lar estimates in the proband and
control  groups, phenotypic parameter estimates for
the two samples could not be equated. It is impor-
tant, however, to note that the phenotypic loadings
are simi lar for the two groups, as are those in the

Table 6 Parameter estimates obtained from fi tting the ful l
bivariate twin model to reading and mathematics performance data

Parameter RD 95% CI Control 95% CI

a 0.90 (0.84, 0.93) 0.83 (0.62, 0.94)

c 0.00 (0.00, 0.29) 0.36 (0.00, 0.65)

e 0.43 (0.37, 0.50) 0.42 (0.33, 0.52)

a� 0.94 (0.81, 0.97) 0.82 (0.58, 0.97)

c� 0.05 (0.00, 0.47) 0.46 (0.00, 0.73)

e� 0.34 (0.25, 0.42) 0.33 (0.21, 0.43)

λ1 0.91 (0.88, 0.94) 0.85 (0.81, 0.89)

λ2 0.76 (0.73, 0.80) 0.61 (0.55, 0.67)

λ3 0.73 (0.69, 0.76) 0.65 (0.59, 0.71)

λ4 0.78 (0.73, 0.82) 0.81 (0.75, 0.86)

λ5 0.71 (0.65, 0.76) 0.69 (0.60, 0.76)

λ6 0.68 (0.63, 0.72) 0.69 (0.63, 0.75)

rA 0.61 (0.52, 0.68) 0.47 (0.20, 0.74)
rC 0.97 (0.00, 1.00) 1.00 (0.00, 1.00)
rE 0.71 (0.49, 0.94) 0.50 (0.17, 0.87)

Table 7 Model  comparisons of tw in models for data from the Colorado Learning Disabi l i ties Research Center

Model –2log l ikel ihood NPAR vs �2 df P �2/df AIC

1 Saturated 24238.57 360
2 Ful l 24658.97 114 1 420.40 246 �0.005 1.71 –71.60
3 Equate common ACE 24663.17 105 2 4.20 9 �0.750 0.47 –13.80
4 c = c�= rc = 0 24663.20 102 3 0.03 3 �0.995 0.01 –5.97
5 specific C = 0 24671.50 90 4 8.30 12 �0.750 0.69 –15.70
6 specific A = 0 24983.78 78 5 312.28 12 �0.005 26.02 288.28
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genetic model . Horn et al
25

argue that exact metric
invariance, that is, identical  loadings across groups,
is scientifical ly unreal istic. Cunningham

26
also sug-

gests that models requi ring strict metric invariance
are rarely supported by empirical  data, and those
that do show reasonable fi t usual ly have a contrived
character. Configural  invariance, which requi res
only that the configuration of zero loadings and
sal ient loadings remain the same between two
groups, is therefore a more real istic goal . Employing
this cri terion, i t appears that configural  invariance is
achieved for both the genetic and envi ronmental
parameter estimates in the RD and control  samples.
Therefore, al though the phenotypic parameter esti -
mates cannot be equated between groups, the under-
lying genetic and envi ronmental  factor structures for
measures of reading and mathematics performance
appear to be highly simi lar.
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