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Etiology of covariation between reading and mathematics

performance: a twin study

Valerie S Knopik and John C DeFries

Institute for Behavioral Genetics, University of Colorado, Boulder, USA

The etiology of the observed relationship between reading and mathematics performance was
examined by analyzing data from samples of same-sex twin pairs tested in the Colorado Learning
Disabilities Research Center. Bivariate phenotypic and genetic structural equation models were
fitted to data from 526twin pairs selected for reading deficits (290identical and 236 same-sex
fraternal) and 355 control pairs (220identical and 135 same-sex fraternal). Subtests of the Peabody
Individual Achievement Test (PIAT; Reading Recognition, Reading Comprehension, and Spelling)
were used as measures of reading performance, and scores from the Wechsler Intelligence Scale
for Children-Revised (WISC-R) or Wechsler Adult Intelligence Scale-Revised (WAIS-R) Arithmetic
subtest, the Wide Range Achievement Test Arithmetic subtest, and the PIAT Math subtest were
used as indices for mathematics performance. The results of these confirmatory factor analyses
indicate that genetic and environmental covariances between reading and math latent factors do
not differ significantly for twin pairsin the proband and control groups. Estimates of heritability
for reading performancein the proband and control sampleswere 0.81 and 0.69, respectively, and
those for math performance were 0.88 and 0.67, respectively. Moreover, genetic influences
accounted for 83% of the covariation between the reading and math factorsin the proband group
and for 58% of the covariation between these two latent variablesin the control group;in contrast,
shared environmental influences did not contribute significantly to the relationship between the
reading and math latent factors nor to their independent variation.
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Reading and mathematics deficits frequently
co-occur. For example, Badian' reported that 56% of
elementary and junior high school children with
reading disability (RD) also manifested poor math
achievement, and that 43% of the children with
math disability (MD) also had reading difficulties.
Subsequently, Rourke® noted that children with
reading and/or spelling disability have difficulty
remembering mathematical tables or remembering a
particular step in the correct procedure for solving a
problem and tend to avoid problems that require the
reading of printed words. Thus, deficits in reading
and math could both be due in part to language-
based deficits or problems with short-term
memory.>*

The genetic and environmental etiologies of the
comorbidity between reading and mathematics defi-
cits were first examined by Light and DeFries.® Data
from a sample of twin pairs selected for reading
deficits were fit to a bivariate extension of the basic
multiple regression model for the analysis of
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selected twin data (DeFries and Fulker®’). The
resulting estimate of bivariate heritability (an index
of the extent to which the proband reading deficit is
due to genetic factors that also influence math
disability) was 0.26 + 0.11, suggesting that proband
reading deficits are due at least in part to genetic
factorsthat also influence math performance. Moreo-
ver, the ratio of bivariate heritability to the standard-
ized covariance between reading and mathematics
performance indicated that over half (0.55) of their
observed covariance was due to genetic influences.

Knopik et al® subsequently employed this method-
ology to assess the etiology of the comorbidity of
reading and mathematics deficits in two twin sam-
ples: one selected for reading deficits and one
selected for math deficits. Results of these analyses
provided additional evidence for the heritable
nature of reading and math deficits, and also sug-
gested that the observed comorbidity between read-
ing and math difficulties is due substantially to
genetic influences.

In order to assess the etiology of the covariation
between individual differences in reading and
mathematics performance, Gillis et al® conducted a
confirmatory factor analysis on data from twin pairs
tested in the Colorado Twin Study of Reading
Disability. Reading performance was measured by
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the Peabody Individual Achievement Reading Rec-
ognition, Reading Comprehension, and Spelling
subtests, whilst mathematics performance was
indexed by the Peabody Individual Achievement
Math subtest, the Wechsler Arithmetic subtest, and
the Primary Mental Abilities Spatial Test. Individual
differencesin reading and mathematics performance
were found to be highly heritable in both a sample of
twins  with reading disability (heritabili-
ty = a® = 0.78 and 0.51 for reading and math, respec-
tively) and in twin pairswith no learning difficulties
(@® = 0.74 and 0.60, respectively). Moreover, results
of this confirmatory factor analysis also suggested
that genetic influences account for almost all (98%)
of the observed correlation between reading and
math performance within the sample of twins with
reading disability, and for 55% of the observed
correlation in the control sample. Therefore, it was
concluded that individual differences in both read-
ing and mathematics performance are highly herita-
ble and appear to be caused bg many of the same
genetic influences (Gillis et al®). These results are
highly similar to those of a twin study of scholastic
achievement by Thompson et al'® in which the
genetic correlation between reading and math per-
formance was 0.98.

The primary objective of the present study is to
assess the etiology of the covariation between indi-
vidual differences in reading and mathematics per-
formance by analyzing data from two samples of
twins tested in the Colorado Learning Disabilities
Research Center (DeFries et al'"): an updated sample
of twins ascertained for reading deficits and pre-
viously analyzed by Gillis et al®; and a control
sample of twins without learning difficulties. By
fitting a bivariate (two-factor) structural equation
model (Neale and Cardon®) to the twin data, the
proportions of phenotypic variance due to additive
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Figure1 Path diagram for bivariate phenotypic model
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genetic, shared environmental, and non-shared envi-
ronmental influences were estimated for reading and
mathematics performance in both samples. In addi-
tion, the phenotypic correlation between the two
factors was partitioned into components due to
genetic, shared environmental, and non-shared envi-
ronmental influences.

Methods

Participants and measures

The data for this analysis were collected from twin
pairs tested by 31 August 1998 in the Colorado
Learning Disabilities Research Center, which ascer-
tains twin pairs from 27 school districts in the state
of Colorado. In order to minimize the possibility of
ascertainment bias, all twin pairs in a school were
identified, without regard to reading status. Parental
permission was then sought to review the twins’
school records for evidence of reading problems (eg
referral to a reading therapist, low reading achieve-
ment test scores). Twin pairs in which at least one
member of the pair exhibited a positive school
history of reading problems and a comparison
sample of twins with no learning difficulties were
invited to laboratories at the University of Colorado
to complete an extensive battery of psychometric
tests measuring various cognitive abilities. This
battery included the Wechsler Intelligence Scale for
Children — Revised (WISC-R, Wechsler'®) or the
Wechsler Adult Intelligence Scale — Revised (WISC-
R, Wechsler'*), the Peabody Individual Achievement
Test (PIAT, Dunn and Markwardt'®), and the Wide
Range Achievement Test (WRAT, Jastak and Wilk-
inson'®). Complete data were available on all meas-
ures with the exception of WRAT Arithmetic, which
was added to the test battery at a later date. Scores
for each of these variables were age-adjusted using
regression deviation scores and then standardized by
expressing each subject’s score as a deviation from
the corresponding control mean and dividing by the
control standard deviation. The PIAT Reading Rec-
ognition (REC), Reading Comprehension (COMP),
and Spelling (SPEL) subtests were used as measures
of reading performance, whilst PIAT Mathematics
(MAT), WISC-R or WAIS-R Arithmetic (ARIT), and
WRAT Arithmetic (WRAT) subtests were used as
indices of mathematics performance.

Pairs were included in the reading disabled (RD)
sample if at least one member exhibited a positive
school history of reading problems. The control
sample was matched, when possible, to the RD
sample on the basis of age, gender and zygosity.
However, both members of control pairs have a
negative school history for reading problems.
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Because of the possibility of sex-limitation for these
measures (Knopik et al'’), the present study incorpo-
rates only those data obtained from same-sex twin
pairs.

All twin pairs included in this analysis were
raised in English-speaking, predominantly middle-
class homes, and ranged in age from 8 to 20years,
with the RD and control samples both havingamean
age of 11.73years. Zygosity of the same-sex twin
pairs was determined by selected items from the
Nichols and Bilbro'™ questionnaire, which has a
reported accuracy of 95%. In cases of doubtful
zygosity, blood or buccal samples were analyzed. As
of 31 August 1998, the RD sampleincluded a total of
290 pairs of MZ twins and 236 pairs of same-sex DZ
twins. A total of 220 MZ twin pairs and 135 same-sex
DZ pairs were included in the control sample.

T1READ TIMATH
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Analyses

The bivariate phenotypic and genetic structural
equation models, and their corresponding submo-
dels, were fitted to the twin data using the Mx
statistical modelling package (Neale'). Because of
the variability in patterns of missing data for the
WRAT Arithmetic subtest, all available raw data
were analyzed by creating a variable length record
and using the following fit function (Neale'®):

RM = —k log(2m) +1Iog| 2|

+ (X = w)Z (X = W),
where RM is the raw maximum likelihood. The
appropriate mean vector p and covariance matrix =

are automatically created by Mx for each observa-
tion. In addition, this procedure calculates twice the
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Figure2 Path diagram for bivariate twin model
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negative log-likelihood for each data point. Because
there is no observed covariance matrix to which the
expected covariance matrix can be compared, evalu-
ation of the fit of the model is based on a comparison
of a constrained model that is nested within a more
general model. The difference between the log-
likelihood estimates for these nested models is
distributed as a ¥* and thus provides a goodness-
of-fitindex for model comparison. Because estimates
of x* are highly sensitive to sample size, even small
differencesin large samples may result in significant
changes in y* (Ay®). Therefore, we also employed a
ratio of % to the degrees of freedom to assess the
model fit, with ratios of five or less indicating a
reasonable fit to the data (Wheaton et al,®
Hayduk®").

Phenotypic models

A phenotypic model with two correlated factors was
fitted simultaneously to the variable length record
files of the RD and control groupsto provide separate
parameter estimates for the two samples. The read-
ing factor loaded on the three PIAT subtests (REC,
COMP, and SPEL), and the mathematics factor
loaded on the PIAT Math (MAT), WISC-R or WAIS-R
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Figure3 Parameter estimates for the full bivariate phenotypic
model of data from individualsin the Colorado Learning Disabili-

ties Research Center. Estimates for the control group are shown in
parentheses
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Arithmetic (ARIT), and WRAT Arithmetic (WRAT)
subtests. In addition, one residual for each of the
measured variables was included to account for
specific influences not shared with the factors. The
model, depicted in Figure 1, includesthe phenotypic
correlation between the two latent variables as well
as loadings for each of the measures on the corre-
sponding reading and math factors. In order to test
for homogeneity of variances and covariances
between the two samples, parameter estimates for
the RD and control groups were equated and the
resulting log-likelihood estimate was compared to
that for the full model.

Genetic models

As depicted in Figure2, the bivariate twin model
partitions the phenotypic variances and covariances
into genetic and environmental components. For a
given variable (eg READ), the phenotypic correlation
between members of MZ twin pairs is due to both
additive genetic (azz) and shared environmental (c?)
influences (ryz = a° + ¢®). The correspondin% phe-
notypic correlation for DZ twin pairs is 0.5a° + c?,
because DZ twin pairs share only half of their
segregating genes but all of the shared environmental
influences. Thus, twice the difference between the
MZ and DZ observed correlations estimates herit-
ability (a®). Consequently, subtracting the herit-
ability estimate from the MZ correlation provides an
estimate of the proportion of the total variancedueto
shared environmental influences (c®), and subtract-
ing the MZ correlation from one provides an esti-
mate of the proportion of the variance due to non-
shared environmental factors (e°). The bivariate
model simply extends these basic principles and
provides estimates of univariate parameters (ie a® ¢
and € for each of the traits) in addition to cross-trait
correlations, which can also be partitioned into
genetic and environmental components.

For the bivariate twin model (Figure2), the addi-
tive genetic, shared environmental, and non-shared
environmental influences on reading performance
are represented by Ag Cg, Eg, respectively. Ay, Cy,
and E,, are the corresponding additive genetic,
shared environmental, and non-shared environ-
mental influences on the mathematics performance

Table1 Model comparisons of phenotypic models for twin data from the Colorado Learning Disabilities Research Center

Model —2log likelihood NPAR Vs x df P X2/ df AlIC
1 Saturated 24238.57 360

2 Full 24584.98 158 1 346.41 202 =0.005 1.71 -57.59
3 RD =CONT 24654.76 145 2 69.78 13 =0.005 5.37 43.78
4 readgy = read oyt 24637.93 152 2 52.95 6 =0.005 8.83 40.95
5 mathgy = mathgonr 24600.86 152 2 15.88 6 =0.025 2.65 3.88
6 rro = Foont 24586.20 157 2 1.22 1 =0.250 1.22 -0.78
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Table 2 Parameter estimates obtained from fitting the full
phenotypic model to reading and mathematics performance data

Parameter RD 95% CI Control 95% CI

M 0.91 (0.88, 0.93) 0.87 (0.82,0.92)
Az 0.76 (0.73, 0.80) 0.61 (0.54, 0.66)
s 0.72 (0.68, 0.76) 0.65 (0.59, 0.70)
e 0.77 (0.72,0.82) 0.80 (0.74, 0.86)
As 0.70 (0.64, 0.76) 0.71 (0.63, 0.78)
e 0.67 (0.62,0.72) 0.69 (0.63, 0.74)
Residuals

€ 0.42 (0.36, 0.48) 0.49 (0.38, 0.57)
€, 0.65 (0.61, 0.69) 0.80 (0.75, 0.84)
€ 0.69 (0.65, 0.73) 0.76 (0.71, 0.81)
€, 0.64 (0.58, 0.69) 0.60 (0.52, 0.67)
€5 0.71 (0.65, 0.77) 0.70 (0.62,0.78)
€ 0.74 (0.69, 0.78) 0.73 (0.67,0.78)
Phenotypic correlation

e 0.61 (0.55, 0.67) 0.56 (0.46, 0.64)

factor. The path coefficients for additive genetic,
shared environmental, and non-shared environ-
mental influences on the reading variables are
symbolized by a, c, and e, respectively. The corre-
sponding coefficients for the math variables are a', c',
and €', respectively. The cross-trait genetic (rp),
shared environmental (rc), and non-shared environ-
mental (rg) correlations are also depicted in Figure2,
asaretheresidualsfor each measure partitioned into
specific additive (A), specific shared environmental
(C), and specific non-shared environmental (E) com-

ponents. The proportions of variance due to genetic
and environmental influences for the RD and control
groups are obtained by squaring the respective path
coefficients.

Genetic and environmental parameters, as well as
95% confidence intervals, were estimated by fitting
both full and reduced models using the Mx statis-
tical modelling package (Neale'®). Because genetic
and environmental parameter estimates are not
expected to be negative, boundary constraints were
placed on the parameters in order to ensure positive
estimates. However, such boundaries can present
interpretational problems for the computation of
confidence intervals (Neale and Miller®). Therefore,
for the present analysis, confidence intervals with
lower bounds equal to zero should be interpreted
with caution.

The full models were compared to a saturated
model, which acocunts for all of the variance, to
determine goodness-of-fit. These model comparisons
and those for corresponding nested submodels were
evaluated using y° difference tests and the ¥/df
ratio; however, Akaike’s information criterion
(AIC = y*—2df*®) was also employed, with lower
Akaike’s values representing better fitting models
(Neale and Cardon'). The following submodels
were examined: (1) submodels in which various
parameter estimates for the RD and control groups
are constrained to be equal; (2) a genetic model in
which rg, ¢, and ¢’ are constrained to be zero; and (3)

Table3 Twin correlations of standardized variables for MZ and DZ twin pairsin the RD sample (DZ correlations below the diagonal)

TIREC T1COMP T1SPEL TIMAT TI1WRAT T1ARIT T2REC T2COMP T2SPEL T2MAT T2WRAT T2ARIT
T1REC 1.00 0.67 0.65 0.28 0.31 0.14 0.73 0.49 0.52 0.21 0.19 0.10
T1COMP 0.73 1.00 0.47 0.37 0.38 0.23 0.55 0.54 0.35 0.31 0.30 0.22
T1SPEL 0.72 0.57 1.00 0.29 0.37 0.18 0.46 0.32 0.54 0.24 0.24 0.09
T1IMAT 0.48 0.51 0.49 1.00 0.44 0.48 0.24 0.44 0.26 0.62 0.40 0.49
T1IWRAT  0.50 0.43 0.48 0.59 1.00 0.38 0.34 0.35 0.20 0.39 0.76 0.43
T1ARIT 0.45 0.44 0.46 0.55 0.51 1.00 0.06 0.18 0.12 0.39 0.28 0.48
T2REC 0.28 0.25 0.16 0.07 0.10 0.14 1.00 0.63 0.59 0.25 0.37 0.19
T2COMP 0.16 0.24 0.08 0.09 0.04 0.14 0.72 1.00 0.42 0.43 0.39 0.31
T2SPEL 0.22 0.20 0.22 0.12 0.19 0.11 0.68 0.49 1.00 0.24 0.23 0.13
T2MAT 0.17 0.26 0.14 0.32 0.21 0.25 0.45 0.44 0.44 1.00 0.46 0.52
T2WRAT 0.18 0.28 0.19 0.30 0.42 0.23 0.48 0.39 0.52 0.69 1.00 0.49
T2ARIT 0.20 0.21 0.1 0.18 0.20 0.32 0.48 0.42 0.39 0.55 0.57 1.00

Table4 Twin correlationsof standardized variablesfor MZ and DZ twin pairsin the control sample (DZ correlations below the diagonal)

TIREC TICOMP T1SPEL TIMAT T1WRAT T1ARIT T2REC T2COMP T2SPEL T2MAT T2WRAT T2ARIT
TIREC 100 057 0.61 032 046 025 059 042 0.46 0.28 0.39 0.30
TICOMP 063  1.00 0.38 033 032 033 041 048 0.31 0.30 0.28 0.31
TISPEL 048  0.21 1.00 032 037 0.31 057 038 0.62 0.30 0.29 0.33
TIMAT 039 035 0.36 100 058 065 031 043 0.22 0.67 0.50 0.57
TAWRAT  0.31 0.20 0.24 054  1.00 050 033 027 0.20 0.52 0.68 0.32
TIARIT 030 029 0.26 040 050 100 031 032 0.21 0.55 0.37 0.56
T2REC  0.31 0.24 0.19 019  0.29 0.24 1.00  0.44 0.61 0.39 0.38 0.33
T2COMP 034  0.34 0.12 016  0.11 0.11 052  1.00 0.41 0.41 0.31 0.39
T2SPEL 020  0.05 0.27 015 0.7 013 059 025 1.00 0.30 0.19 0.24
T2MAT 013 0.18 0.06 029 026 027 033 038 0.18 1.00 0.55 0.55
T2WRAT 023  0.07 0.33 024 047 029 035 025 0.21 0.45 1.00 0.42
T2ARIT 025  0.23 0.11 021 0.4 017 032 043 0.22 0.58 0.45 1.00
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submodels that test whether specific genetic and
environmental effects, independent of those that
contribute to the covariance of the factors, sig-
nificantly influence the reading and math variables.

Results

Phenotypic analysis

The parameter estimates resulting from the fit of the
full phenotypic model to the data are presented in
Figure3, and the goodness-of-fit indices for the full
and corresponding submodels are shown in Table1.
Parameter estimates and 95% confidence intervals
for the full model, which yielded separate parameter
estimates for the RD and control groups, are also
presented in Table2. Due to the large sample size
(9773 observed data points for 1762 individuals), the
Ay? value for the full model compared to the
saturated model is large (Ay® = 346.41, df = 202,
P < 0.005); however, both the %*/df ratio (1.71) and
the Akaike’s information criterion (-57.59) are low,
suggesting an acceptable fit to the data.

As shown in Figure3, the phenotypic correlation
between the reading and mathematics performance
factors was 0.61 in the RD group and 0.56 in the
control group, suggesting a substantial relationship
between the latent variables in both samples.

As shown in Table1, the factor structure for both
reading and math performanceis significantly differ-
ent for the RD and control samples (model 3). When
the parameter estimates were equated across groups,
the change in y* was significant (Ay® = 69.78,
df = 13, P < 0.005). In addition, the factor structure
for reading performance (model 4), and the factor
structure for math performance (model 5) signifi-
cantly differed for the RD and control groups
(P<0.005 and P <0.025, respectively). These
results are due, at least in part, to the greater
variation in the reading-disabled sample (Alarcén
and DeFries™).

In contrast, when equating the correlation between
reading and math (model 6) for the two groups, a
nonsignificant change in %* was achieved
(Ay? = 1.22, df = 1, P > 0.250), suggesting that the
standardized covariance of reading and math per-

Table 5 Genetic and environmental contributions to the
variance of the latent reading and math factors estimated from
the full model

RD® Control®
Measure a2 c? e’ a’ c? e’
READ 0.81 0.00 0.19 0.69 0.13 0.18
MATH 0.88 0.00 0.12 0.67 0.21 0.11

o, = 0.61, ro = 0.97, re = 0.71
°r, = 0.47, r; = 1.00, rg = 0.50
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formance is similar in individuals from the RD and
control samples.

Genetic analyses

Tables3 and 4 present the twin correlations for the
observed reading and math variables. As shown, the
univariate MZ twin correlations (eg T1REC with
T2REC) are substantially higher than DZ twin corre-
lations for both groups, indicating that individual
differencesin these measures are due at least in part
to heritable influences. Although less striking, the
pattern of cross-twin bivariate correlations (eg
T1REC with T2MAT) also suggest genetic covaria-
tion between measures.

For the genetic analyses, the full phenotypic
model was partitioned to include additive genetic,
shared environmental, and non-shared environ-
mental contributions to the variances of the latent
factors, as well as to the covariance among the
measures. The proportions of variance due to addi-
tive genetic, shared environmental, and non-shared
environmental sources obtained from the full bivari-
ate twin model are presented in Table5. In order to
ensure identification of the model, the variances of
the latent variables were constrained such that
a®+c’+e’=1anda?+c?+e?=1.

Results from the full genetic model suggest that
although reading performance is highly heritable in
both the RD sample (0.81) and in the control sample
(0.69), reading performance is slightly more herita-
ble in the RD sample. These estimates are highly
similar to those found by Gillis et al.’ In contrast,
shared environmental influences on reading per-
formance account for no variance in the reading-
disabled group (0.00) and only a small proportion of
the variance in the control group (0.13).

Mathematics performance is also substantially
heritable in both groups (0.88 for the RD sample and
0.67 for controls). Although these estimates of
heritability for math performance are somewhat
higher than those reported by Gillis et al,® different
indices of math performance were used for the
present analysis. Asis the case for the reading latent
factors, shared environmental influences account for
relatively little variance of math performancein both
samples (0.00 for the RD group, and 0.21 for
controls).

The parameter estimates for the full bivariate twin
model are shown in Figure4 and Table6. The genetic
correlation (r,) between reading and math is sub-
stantial in both the reading-disabled and control
samples (rp = 0.61 and 0.47, respectively). Moreo-
ver, 83% of the phenotypic correlation (r, = 0.62 in
the full genetic model) between reading and math
performance in the RD sample is due to genetic
influences, ie ar,a'/rp, =(0.90)(0.61)(0.94)/(0.62),
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where a and a' are the standardized genetic parame-
ter estimates. In the control sample, 58% of the
phenotypic relationship (r, = 0.55in the full genetic
model) between reading and math is due to genetic
influences. Although the estimates of r. are close or

.61
(47)

90
(.83)

TIREAD

91 .76 73

(.85) (.61) (.65)
REC COMP SPEL
26 30 23 56 40 56
(.00) (52) (30) (67) (44) (.58)

®) @

12 22 01
(.00) (.30) (18)

a 00)

equal to one in both groups, both estimates are not
significantly different from zero (95%
Cl = 0.00-1.00 in both groups, Table6).

The results of goodness-of-fit tests for the various
twin model comparisons are presented in Table7.

71
(:50)

(81) (.69) (.69)
1
MAT WRAT] ARIT
06 55 48 39 .00 .64
(22) (55) (.36) (51) (28) (.67)

(o)
30 34 36
(.00) (.38) (.00)

Figure4 Parameter estimates for the full bivariate twin model (one twin only). Estimates for the control group are shown in

parentheses
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Table 6 Parameter estimates obtained from fitting the full
bivariatetwin model to reading and mathematics performance data

Parameter RD 95% CI Control 95% CI

a 0.90 (0.84, 0.93) 0.83 (0.62, 0.94)
c 0.00 (0.00, 0.29) 0.36 (0.00, 0.65)
e 0.43 (0.37, 0.50) 0.42 (0.33, 0.52)
a’ 0.94 (0.81, 0.97) 0.82 (0.58, 0.97)
c’ 0.05 (0.00, 0.47) 0.46 (0.00, 0.73)
e 0.34 (0.25, 0.42) 0.33 (0.21, 0.43)
M 0.91 (0.88, 0.94) 0.85 (0.81, 0.89)
Ao 0.76 (0.73, 0.80) 0.61 (0.55, 0.67)
As 0.73 (0.69, 0.76) 0.65 (0.59, 0.71)
M 0.78 (0.73, 0.82) 0.81 (0.75, 0.86)
hs 0.71 (0.65, 0.76) 0.69 (0.60, 0.76)
A6 0.68 (0.63,0.72) 0.69 (0.63, 0.75)
ra 0.61 (0.52, 0.68) 0.47 (0.20, 0.74)
re 0.97 (0.00, 1.00) 1.00 (0.00, 1.00)
re 0.71 (0.49, 0.94) 0.50 (0.17, 0.87)

The full model provides a reasonable fit to the data
when compared with a fully saturated model with a

é of 42040 for 246degrees of freedom

x-/df =1.71, AIC =-71.60). Because we could
equatethe correlation between thereading and math
latent factorsin the phenotypic model, and based on
inspection of the 95% confidence intervals of the
parameter estimates for the full genetic model, we
equated the common genetic and environmental
parameters for the two samples (ie agp = aconm
aro) = Facconty @rp = Aconts €fC.). As expected,
model 3 did not significantly reduce the model fit
(Ay? = 4.20,df = 9, P > 0.750, AIC = —13.80) nor did
model 4, which tested whether shared environ-
mental factors significantly influenced the relation-
Shlp between the reading and math latent factors
(Ay? = 0.03, df = 3, P = 0.995, AIC = -5.97).

After examination of the 95% confidence inter-
vals, specific shared environmental variances were
dropped from the model (model 5). The changein %°
was not significant (Ay® = 8.30, df = 12, P > 0.750,
AIC = -15.70); thus, shared envrronmental effects
neither contribute significantly to the covariation
between the traits, nor account for significant inde-
pendent variation in the reading and math variables.
Finally, in order to determine whether genetic
influences independent of those shared by the two
factors significantly influence the measured varia-
bles, the specific additive genetic effects were
dropped from the model. Model 6 fits the data

Reading and mathematics performance
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significantly worse than model 5 (Ay* = 312.28,
df =12, P <0.005, AIC = 288.28), indicating that
genetic influences independent of those shared by
the factors significantly contribute to the measures of
reading and mathematics.

Discussion

The etiology of therelationship between reading and
mathematics performance was examined by fitting
structural equation models to twin data from the
Colorado Learning Disabilities Research Center. In
the RD sample, at least one member of the twin pair
(290MZ and 236 same-sex DZ) had a positive school
history of reading problems. In contrast, neither
member of each pair in the control sample (220MZ
and 135 same-sex DZ) had a school history of
reading deficits. The proportions of observed vari-
ance due to genetic and environmental influences
were estimated for the various measures, and the
phenotypic correlation between reading and math
performance was partitioned into components due
to genetic, shared environmental, and non-shared
environmental influences in both groups. Specific
genetic and environmental influences, independent
of the covariation between the two factors, were also
examined.

Reading performance is highly heritable both in
the proband (a® = 0.81) and control (a® = 0.69) sam-
ples, suggesting that 80% of the phenotypic variance
in this latent variable is due to genetic influences in
the RD group, and almost 70% of reading perform-
ancein the control group is accounted for by genetic
factors. Similar results were found for math perform-
ance, with heritability estimates of 0.88 and 0.67 for
the RD and control groups, respectively. In addition,
reading and math performance appear to be due
substantially to the same genetic influences in both
groups (ra = 0.61 and 0.47 for the RD and control
samples, respectlvely sugporting results previously
reported by G|II|s et al,” Light and DeFries,® and
Knopik et al.®

Despite similar estimates in the proband and
control groups, phenotypic parameter estimates for
the two samples could not be equated. It is impor-
tant, however, to note that the phenotypic loadings
are similar for the two groups, as are those in the

Table 7 Model comparisons of twin models for data from the Colorado Learning Disabilities Research Center

Model —2log likelihood NPAR Vs Va df P 23 df AlC

1 Saturated 24238.57 360

2 Full 24658.97 114 1 420.40 246 =0.005 1.71 —71.60
3 Equate common ACE 24663.17 105 2 4.20 9 =0.750 0.47 -13.80
4 c=c'=r,=0 24663.20 102 3 0.03 3 =0.995 0.01 -5.97
5 specificC=0 24671.50 90 4 8.30 12 =0.750 0.69 -15.70
6 specificA =0 24983.78 78 5 312.28 12 =0.005 26.02 288.28
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genetic model. Horn et al®® argue that exact metric
invariance, that is, identical loadings across groups,
is scientifically unrealistic. Cunningham?®® also sug-
gests that models requiring strict metric invariance
are rarely supported by empirical data, and those
that do show reasonable fit usually have a contrived
character. Configural invariance, which requires
only that the configuration of zero loadings and
salient loadings remain the same between two
groups, is therefore a more realistic goal. Employing
this criterion, it appears that configural invarianceis
achieved for both the genetic and environmental
parameter estimates in the RD and control samples.
Therefore, although the phenotypic parameter esti-
mates cannot be equated between groups, the under-
lying genetic and environmental factor structures for
measures of reading and mathematics performance
appear to be highly similar.
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