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Abstract
In an unstructured environment, the arm can perform complicated tasks with rapidity, flexibility, and robustness. It
is difficult to configure multiple artificial muscles similar to an arm in the compact space of a robotic arm. When
muscle tension is transferred, mechanisms like tendon-sheath/tendon-pulley may be installed in a compact space to
develop musculoskeletal robots that are closer to the arm. However, handling variable frictional nonlinearity and
elastic cable deformation is necessary for transmission stability. In this study, the modular artificial muscle system
(MAMS), including motor cable artificial muscle and tendon sheath–pulley system (TSPS), that can be installed
remotely and transmit muscle tension in narrow paths, is designed. The feed-forward multi-layer neural network
(FF-MNN) approach is utilized to discuss the relationship between the measurable input tension of TSPS and the
unmeasurable output tension and cable elongation. Subsequently, the lightweight musculoskeletal arm (LM-Arm)
is built to verify the validity of MAMS. Through trials, the experiments of MAMS after friction compensating
and the LM-Arm’s end-point 3D trajectory tracking are investigated. The results show that average errors of the
active and passive muscles tension are 3.87 N and 3.51 N, respectively, under conditions of larger load and higher
contraction velocity. The average muscle length error of trajectory tracking is 0.00078 m (0.72%). The suggested
MAMS may successfully build a musculoskeletal robot that has similar flexibility and morphology to the arm. It
can also be utilized to power various pieces of machinery, such as rescue robot, invasive surgical robots, dexterous
hands, and wearable exoskeletons.

1. Introduction
Redundantly configured muscles and flexible skeletal structures can be found in human arm [1]. It can
rapidly, flexibily, and robustly execute difficult operation tasks. Muscles are composed of tendons and
fibers, whose unique physical structure and control mechanism of neural signal excitation enable them
to demonstrate strong compliance and robustness [2–5]. Designing an artificial muscle that can replace
muscle to drive a musculoskeletal robot is difficult. There are several demands of the artificial muscle
system for the musculoskeletal robot: (1) Multiple artificial muscles should be installed in a small space
to power skeletal movement; (2) The artificial muscle should be capable of rapid contraction/relaxation
with large load and shrinkage ratio to satisfy the rapid and flexible movement of skeleton; (3) Two work-
ing states of active and passive artificial muscle should be imitated to satisfy antagonistic relationship
between multiple muscles. To explore devices that can replace muscles, several artificial muscles have
been investigated [6–10]. Pneumatic artificial muscle (PAM) and MC-AM are currently the two most
popular driving techniques [11, 12]. There are others technology that cannot be matured, such as fiber-
based artificial muscle [13], twisted and coiled soft actuators [9], and novel material artificial muscle
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[10]. According to the PAM theory, the cavity naturally resembles muscle in physical tissues in that it
contracts or expands in response to variations in internal air/hydraulic pressure. However, it is challeng-
ing to operate the robot steadily and safely due to the issues, including gas/oil leaking, tough control,
and complex attachments. The MC-AM, which offers several benefits, including mature control tech-
nology, high energy density, convenient installation, and removable power, is becoming the top option
for artificial muscle power.

In the previous work [14], the MC-AM was designed, but insufficient consideration was given to
the way of muscle tension transmission. Conforming to particular work situations that necessitate a
difficult transmission path (limited space and varied shape), the TSPS frequently collaborates with MC-
AM to power remote devices without adding unnecessary components to them. It is frequently used
in applications with limited installation space, such as humanoid robotic hands [15], exoskeleton [16],
parallel robots [17], and invasive surgical robot [18]. But the TSPS also has problems such as nonlin-
ear friction, time-varying hysteresis, and elastic deformation of the cable. To address this issue, output
feedback control techniques are frequently employed [19, 20]. The arm’s forearm, wrist, fingers, and
other areas have an exceptionally high concentration of muscles, making it difficult to implant tension
sensors. In the conditions of remote sensorless, Wang et al. [21] focused on the friction analysis for the
fixed-path tendon sheath configurations, and the effect of tendon length on friction attenuation was mod-
eled. Subsequently, Sun et al. [22] proposed a remedy to enhance the system tolerance against potential
unmodeled perturbations along the transmission route during operation. Do et al. [23] combined the
Stribeck function and the modified normalized Bouc-Wen model to model the tendon sheath friction
characteristics when discontinuity as the system operates near areas of zero velocity. Wu et al. [24] pro-
posed a general mathematical double tendon sheath transmission model suitable for arbitrary types of
load conditions and executed the torque/position-tracking experiments. Wang et al. [25] established an
analytic and compact model for cable guiding mechanisms, and the velocity and acceleration mapping
from the moving platform to the cables was derived. Jeong et al. [26] proposed a novel method of com-
pensating for the changing nonlinearity of the Bowden cable based on a Bowden-cable angle sensor.
The above researchers have studied friction compensation for a range of tendon sleeve/tendon pulley
applications and obtained satisfactory results. However, there are still some shortcomings, such as the
need for the feedback of sheath bending angle, small load capacity, and single application scenario.

In real-world applications, the TSPS can have a variety of unpredictable impacts, including variations
in lubricant viscosity, manufacture and installation errors, and elastic cable deformation. One of the best
ways to solve complex nonlinear error problems is using neural networks [27–29]. In order to fulfill the
demands of various high-precision force sensing environments, such as surgical machines, Su et al.
[30] introduced two multi-layer neural network approaches to enhance the sensing accuracy of the end-
of-manipulator tool. Wang et al. [31] applied deep learning approach called uncertainty compensation
model for the first time to aid robot dynamic parameter identification of six DOF robot manipulator for
compensation of uncertain factors. Akhmetzyanov et al. [32] proposed the application of deep learning
methods for kinematic error compensation of four-DOF cable-driven parallel robot. In addition, some
scholars compensate and optimize the uncertainty factors of the robot through the method of online opti-
mization estimation [33, 34]. Considering the complexity of the practical application of TSPS and the
requirements of musculoskeletal robots, multi-layer neural networks are preferred to solve the problems
of nonlinear friction, time-varying hysteresis, and elastic deformation of the cable. Moreover, this work
also contains the following research:

1. The MAMS, which consists of the MC-AM and TSPS, is built with the benefits of distal
mounting and mechanical traits resembling muscles. It may be utilized to build a multi-MAMS
configuration musculoskeletal robot. We introduce the working concept, material choice, design
strategy, and application examples.

2. The FF-MMN is proposed to solve the problems of nonlinear friction, time-varying hysteresis,
and elastic deformation of the cable of TSPS. Moreover, the friction compensation performance
trials of active and passive muscles are carried out using the simplest artificial muscle application
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Figure 1. Design schematic of MC-AM.

system, and the relationship between the measurable input tension of TSPS and the unmeasurable
output tension and cable elongation was discussed.

3. The application of LM-Arm, which includes seven DOF and 15 MAMSs is built in accordance
with the anatomy of the arm. In addition, the experiments of end-point 3D trajectory tracking
are conducted, and the result of trajectory error and muscle length error is discussed to verify
the validity of the MAMS and LM-Arm.

The enhanced friction compensation technique of TSPS, the design of the MSMS, and FF-MMN
method are presented in Section 2. The minimum artificial muscle application system and LM-Arm
are built. Simultaneously, the verified experiments based on the minimum artificial muscle application
system and LM-Arm are proposed in Section 3. The experimental findings and analyses are presented
in Section 4. Section 5 finishes the project and suggests more work.

2. Material and method
Only tension can be produced by muscles. In this section, we propose a designed scheme of MSMS,
including MC-AM and TSPS, and a method of the FF-MNN to compensate for friction of TSPS.
Focuses on analyzing the existing tendon sheath–pulley mathematical models and discusses the rela-
tionship between the measurable input tension of TSPS and the unmeasurable output tension and cable
elongation.

2.1. Design of MSMS
The skeleton is driven by a combination of active and passive muscles. The DC motor was selected as the
power of MSMS in order to meet the requirements of high energy density, mature control, and remote
installation. In order to tighten or loosen the cable, the winch is powered by the motor and reducer.
Figure 1 shows the structural design of the MC-AM. The length, width, and height are 142 mm, 60 mm,
and 40 mm, respectively. DC motors and reducers may be swapped out depending on the demands of
various loads. The bracket is made from Nylon NO.7500 (HP3DHR-PA12) which is manufactured by
high-precision 3D printing technology. The steel cable will be loose and broken due to wear under
the condition of large curvature transmission, so we selected high-strength polyester fiber cable as the
transmission medium [35]. The sheath is made up of a lubricated polytetrafluoroethylene (PTFE), a
metal tube, and a rubber tube. The inner tube and cable are separated by a 0.2-mm gap, allowing the
cable to slip freely within. To minimize friction between the cable and the supporting surface, the grease
has been applied to the cable’s surface.
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Figure 2. Artificial muscle system case schematic.

Figure 2(a) shows an application case of the MSMS. The TSPS can be used to transport that tension
from MC-AM’s output-end to the distal anchor. The benefit of this design is that the MC-AM is mounted
at the remote of the load, reducing the weight of the equipment and increasing the number of config-
urable muscles on the skeleton. As shown in Fig. 2(b), the motor has four working modes. The active and
passive working requirements of the muscles are represented by the first and fourth quadrants, respec-
tively. The MSMS’s circuit control scheme is depicted in Fig. 2(c). The industrial Ether CAT protocol is
selected to connect the physical level (motors and various sensors) with the lower level (control system
in Matlab/Simulink software) with a communication frequency of 1 kHz. The UDP protocol transmits
data between lower level and higher level (development computer) with a communication frequency of
500 Hz. Such a control scheme can meet the information transmission in the case of multiple MSMS
and multiple sensors, including muscle tension sensors, angle sensors, and vision sensors.

2.2. Friction compensation mathematical model of TSPS
The movement of the skeleton requires the antagonism of multiple MAMSs. TSPS can not only realize
the transmission of muscle tension from the distal MC-AM to the skeleton anchor, but also brings neg-
ative problems such as nonlinear friction and elastic deformation of the cable. The tension equilibrium
may be used to calculate the tension distribution along the cable at a quasi-static condition, producing
the well-known Capstan equation [36].

dT = F = μN · δ; N = T(p)dφ (1)

Tout = Tine
−μφ·δ (2)

where F is friction tension, T(p) is the cable tension at position p along the cable, N is normal force
exists between the cable and the inner wall of the sheath, and μ is a friction coefficient. δ is the sign of
velocity of the cable relative to the sheath.

Due to factors such as the transmission efficiency of the cable itself, the lubricant viscosity, elastic
cable deformation, the practical application of Eq. (2) to the cable drive is inapplicable. To accommodate
the real operating circumstances, the friction model needs to be modified. A rudimentary musculoskele-
tal application scenario for one joint and two MAMSs is shown in Fig. 3. A tension sensor is installed at
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Figure 3. Diagram of friction in the musculoskeletal system.

the output end of the MC-AM, which is a closed-loop control between current and tension. The accuracy
tension from MC-AM is assumed in this work. The combined transmission mode of TSPS is used from
the MC-AM output end to the distal anchor of the skeleton. The joint angle affects the cable-pulley enve-
lope angle. Considering the energy transfer efficiency of the cable itself, viscous friction, and reference
[25, 26], we get

φ =
n∑

i=1

∫ θpi

0

dφp +
∫ ls

0

dφs (3)

v = dTin

dt
(4)

μ = δ(v) (5)

θpi = H(qi, r, n) (6)

Tout = η−sign(v)Tine
−μφ·sign(v) + T0 (7)

where η is energy efficiency of the cable, φ is sum of cable bending angles; q is joint angle, φs and φp

is elements of cable bending angle in cable sheath and cable pulley subsystem. Correspondingly, ls is
length of sheath, r is radius of pulley, n is number of pulley, θpi is pulley wrap angle relative to joint
angle, H(qi, r, n) is the function of pulley wrap angle related to joint angle and number of pulley, Tout is
tension of skeleton remote anchors, Tin is the tension at the output of the MC-AM, T0 is pretension of
the cable, and μ is viscosity coefficient function of relative velocity of cable relative to the sheath.

The feed-forward compensation rule follows the inverse of the Eq. (7):

Tr = ηsign(vs)Ts

(
1 − eμφ·sign(v)

)
(8)

vs = dTj

dt
(9)

where, Tr is compensated friction. Tj is tension after filtering at the output of MA-AM (in order to prevent
control jitter).
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Figure 4. Multilayer neural network structure diagram.

2.3. Tendon elongation mathematical model of TSPS
The elastic deformation of cable would make the inaccurate position control of the system using TSPS.
There is a serious problem for applications that require time-varying configurations of the TDPS but
without equivalent sensory feedback at the distal end due to location limitations, such as surgical robots
and musculoskeletal robot. As the main medium for transmitting tension, the cable will produce elastic
deformation under the action of external tension. Incorporate references [21, 36], the elongation δl of
the cable under input tension Ts as follows:

δl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρR

μ
ηsign(v)Tj

⎛
⎝1 − e

−
μl

R
·sign(v)

⎞
⎠− ρT0lc if lc < L1

ρR

μ
ηsign(v)Tj

⎛
⎝1 − e

−
μL1

R
·sign(v)

⎞
⎠− ρT0L1 if lc ≥ L1

(10)

L1 = min
{
lc ∈ Tj (lc) = T0

}
(11)

where, lc is length of cable. ρ = 1
EA

, E is the Youngs’ modulus of cable, A is the cross-sectional area of
the cable; R is the bending radius of the sheath; T0 is pretension of the cable, L1 is the maximum length
along the tendon until where the input tension can be transmitted.

2.4. FF-MMN parameter identification method
The TSPS do not have standard consistency in design, manufacture, and installation, making friction
compensation impossible through conventional model-based algorithms. As a flexible object, the cable
will deform when it transmits the tension and generate nonlinear friction with the surface of the con-
tacting object under the tension. It is difficult to complete the nonlinear regression prediction of friction
by means of polynomial fitting. This section examines the relationship between the TSPS’s measurable
input tension and unmeasurable output tension as well as cable elongation using the FF-MMN, accord-
ing to the theory depicted in Fig. 4. Although FF-MMN can establish complex functions and nonlinear
relationships between a set of input and output data with multiple dimensions, there are still some limi-
tations that need to be addressed, such as overfitting, underfitting, and serious time-consuming issues. In
order to improve the prediction performance of the constructed model, such as high precision, stability
and high velocity, this work adopts a FF-MNN method to establish the regression model of the TSPS.
The principle formula is as follows:
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y = W0

K∑
k=1

�

(
N∑

i=1

M∑
j=1

(
Wi,jk · Xjk + bjk

))+ b0 (12)

� = argmin
�

N∑
t=1

(
ŷt − yt

)2 (13)

where, Xjk is input of the jth neuron in the kth layer, Wi,jk and bjk are the weighting factors and bias,
respectively. W0 and b0 are initial value of the weighting factors and bias, respectively. � is the optimal
parameter, which can be calculated by the minimum least squares between the predicted result ŷ and the
real value y.

There are three common evaluation indices to measure the performance of the built FF-MNN
models, namely mean square error (MSE), root mean square error (RMSE), and Pearson correlation
coefficient ρ:

MSE =
∑N

t=1

(
ŷt − yt

)2

N
(14)

RMSE = √
MSE (15)

ρ = 1

N − 1

N∑
t=1

(
ŷt − μŷ

σŷ

)(
yt − μy

σy

)
(16)

where, the time t can be regarded as the number of observations. μŷ and σŷ are the average and standard
deviation of ŷ, while μy and σy are the same values of y. The best score for the Pearson correlation
coefficient ρ is 1 while for the other errors, it is 0. The FF-MNN model aims to predict the tension close
to the measured value.

Although there are alternative ways to evaluate sheath bending accumulation angle [37], they are not
available in the musculoskeletal robot. In the musculoskeletal robot, the posture of the sheath and the
number of pulleys are fixed, and the wrapping angle of the cable on the pulley is related to the joint
angle q. According to Eqs. (8) and (10) we get

Tr = τ (�, Ts, ls, vc, q, n) (17)

lr = l(�, Ts, vc, q, lc, L1) (18)

Where, q is the joint angle of the driven equipment, in order to calculate the wrap angle of the cable
pulley.

The number of training samples and nodes is critical to the accuracy of the training results and
the computation time. According to the experimental experience of TSPS, 500,000 (total time 500 s,
sampling time 0.001 s) sample data and 30 nodes were selected for friction compensation and cable
elongation rate prediction.

3. Experiment design
There are two sub-sections in this section. The first step in the process is to construct a minimal MSMS
friction experiment bench to assess the performance of the TSPS. The other involves building an LM-
Arm platform with seven DOF and 15 MSMSs then using end-point 3D trajectory tracking tests to verify
the viability of MSMS and LM-Arm.
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Figure 5. Minimal MSMS friction experiment bench. (a) Designed scheme. (b) Real test bench.

3.1. Experiment design of friction compensation
Figure 5 depicts the minimal MSMS friction experiment bench using two MA-AMs and a TSPS. One of
MA-AM acts as the distal load and is coupled to the other end through TSPS. A transmission distance
and the length of the sheath are around 1667 mm and 806 mm, correspondingly, which can accommodate
most of the musculoskeletal system utilization requirements. Each MA-AM is equipped with a MAXON
DC35 motor (rated power 120 W), an RV-type reducer (53:1), and a high-precision tension sensor. The
16 braided Nylon cable with a diameter of 3 mm is selected, and the Young’s modulus of cable is about
1.4 GPa (the maximum allowable tension is about 800 N). The surface of the cable is coated with an
appropriate amount of grease (MOLYKOTE G-0052FG, the viscosity is 115 cst at 40◦C).

The tendon sheath friction related to the length and bending angle of the sheath have been studied
by many scholars [26, 37, 38]. These principles are applicable to the time-varying sheath bending angle
and feedback. The MSMS designed in this study is used under the condition that the sheath’s length and
posture remain unchanged. Under larger load and higher contraction velocity conditions, it is not possible
to install additional sensors in the sheath. So that according to Eqs. (17) and (18), the experimental
variables are designed as muscle tension (Ts and Tout) and muscle contraction velocity (v). The specific
implementation method is as follows:

1. Experiments of active muscle: the motor working in the first quadrant supply a tension. The range
of expected muscle tension (Tout) and contraction velocity (v) is 40–∼200 N and 0.02–∼0.12 m/s,
respectively.

2. Experiments of passive muscle: the motor working in the fourth quadrant supply a tension. The
range of expected muscle tension (Tout) and contraction velocity (v) is 40–∼200 N and −0.12–
∼−0.02 m/s, respectively.

3.2. Design of LM-Arm
Based on the designed MSMS, we built the LM-Arm platform, which is strikingly comparable to the
anatomy of the human arm [39]. As illustrated in Fig. 6, it consists of four skeleton (shoulder blade,
humerus, ulna, and radius), seven DOF (shoulder three DOF, elbow one DOF, forearm one DOF, and
wrist two DOF), and 15 MSMSs (the shoulder, elbow, forearm, and wrist joint have seven MSMSs, two
MSMSs, two MSMSs, and four MSMSs, respectively). The lengths of upper arm, forearm, and hand are,
respectively, 0.33 m, 0.39 m, and 0.26 m. It is essential to have a high-precision sensing system, which
includes individual muscle tension and joint angle sensors. At least two MSMSs control each DOF, and
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Figure 6. LM-Arm design diagram.

each MSMSs controls only one joint. This has the benefit of decreasing the coupling between the muscle
and the joint space, provided that the antagonistic connection between the multiple muscles is satisfied.

Although friction compensation is carried out for MSMS, it cannot compensate for the manufacturing
and installation errors and dynamic model errors. We therefore introduce a straightforward computa-
tional muscle force feedback control strategy to improve the effect of controlling LM-Arm. The control
amount is accurate to the muscle tension. The kinematic of the skeletons refers to the method of
Denavit–Hartenberg Matrix. We can calculate muscle length l according to the following formula.

l = g(q) (19)

The Jacobian matrix L(q) maps the relationship between muscle and joint space. Combined with the
principle of virtual work [40], we get the following relation:

dl = −L(q)dq (20)

τ = −L(q) · F (21)

where, q is a vector of joint variables, muscle length matrix dl = [dl1, dl2 . . . dl15]; joint angle matrix
dq = [dq1, dq2 . . . dq7]; F = [f1, f2, f3 . . . f15] is the muscle tension matrix; τ = [τ1, τ2, τ3 . . . τ7] is joints
torque matrix. The direction of muscular contraction is indicated by the negative sign. Optimize level
of muscular tension under the following conditions:

min
Fd

‖Fd‖2 Subject to

⎧⎨
⎩

τ = −L(q) · Fd

Fmin ≤ Fd ≤ Fmax

(22)

where, Fd is optimal muscle tension; Fmin and Fmax is upper and lower limits of muscle tension.
The dynamic of LM-Arm is calculated with Lagrangian dynamic:

H[ − L̇+(q)l̇ − L(q)l̈] − �L+(q)l̇ + G = −L(q)F − d (23)
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where H represents a symmetric positive defined inertia matrix, � denotes the Centripetal and Coriolis
force, G is the gravitational force, F is muscle tension, and d represents the uncertain interference of
system friction and model error.

We estimated the compensated muscle acceleration through the error of muscle length and muscle
velocity. The formula is as follows:

�l = le − l (24)

�l̇ = l̇e − l̇ (25)

�l̈ = A · �l − B · �l̇ (26)

where le is the desired muscle length; l is the measured muscle length; l̇e is the desired muscle velocity;
l̇ is the measured muscle velocity; �l, �l̇ are error of muscle length, muscle velocity, respectively.
�l̈ is the compensation of muscle acceleration; A and B are proportional coefficient and differential
coefficient, correspondingly.

To test the flexibility of LM-Arm and the performance of MSMS, we build a sin-function end-point
3D trajectory tracking with two period and an amplitude of 0.15 m. We adjusted the running time to
115 s and repeat the experiment six times.

4. Results and discussion
The experimental findings of friction compensation and LM-Arm end-point 3D trajectory tracking are
examined in this section. Analysis of muscle tension and elongation in active and passive modes is done
to account for friction compensation. The experiments’ analytical criteria for trajectory tracking include
tracking error and muscle length error. The performance of the MSMS and the effect of the LM-Arm is
confirmed by experiments.

4.1. Experiment results of friction compensation
The experiments of the performance of MSMS were carried out using the apparatus described in Section
3.1. The findings of the active and passive muscles are shown in Fig. 7 before friction compensation, and
it is evident that there is a significant average inaccuracy of 88.5 N and 63.9 N, respectively. An error of
this magnitude cannot be utilized routinely. Figure 8 displays the results of active and passive muscles
following FF-MNN. The outcomes demonstrated that both active and passive muscle tension measured
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Table I. Experimental results of FF-MNN friction compensation.

Muscle contraction velocity (m/s)

Object Index 0.02 0.04 0.06 0.08 0.1 0.12 Average value
Active muscle MSE (N) 3.72 1.56 1.43 3.02 3.98 4.38 3.02

RMSE (N) 1.92 1.25 1.20 1.74 1.99 2.09 1.70
ρ 0.9953 0.9996 0.9992 0.9966 0.9941 0.9938 0.9964

Passive muscle MSE (N) 1.27 1.02 1.89 1.60 1.75 1.66 1.53
RMSE (N) 1.13 1.01 1.37 1.26 1.32 1.29 1.23
ρ 0.9992 0.9997 0.9993 0.9995 0.9994 0.9990 0.9994
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Figure 8. Experimental results of FF-MNN friction compensation.

at the load were consistent with the expected value. The total performance of active muscles is inferior
to that of passive muscles, according to the assessment indications. When the expected muscle tension
is stronger, the error is larger (e.g. the crest part). The actual muscle tension curve is rather smooth
when the muscle contraction velocity is between 0.04 m/s and 0.06 m/s, but the jitter increases at high
contraction velocity, especially when the muscle contraction velocity is over 0.08 m/s. Others results are
shown in Table I, and every indicator shows that performance of passive muscle is superior to active
muscle. The best results of MSE, RMSE, and ρ-value are 1.08 N, 1.04 N and 0.9998, respectively. When
the passive muscle contraction velocity is 0.04 m/s. The worst results are the active muscle contraction
velocity of 0.1 m/s and 0.12 m/s. The MES and RMSE were higher than 6.5 N and 2.5 N, respectively,
and the ρ-value was as low as 0.994.

The cable can only produce a unidirectional tension. When a larger tension needs to be provided, the
deformation of the cable increases, so that the inner elastic tension increases. As a result, the nonlinear
interference of the system is enhanced, resulting in the situation of curve jitter and large error. The

https://doi.org/10.1017/S026357472300005X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472300005X


Robotica 1645

150 200 250 300 350 400

40

60

80

100

120

140

160

180

200

220

)
N(

t
u

o
T

Tin (N)

Muscle vrlocity 0.02 m/s

Muscle vrlocity 0.04 m/s

Muscle vrlocity 0.06 m/s

Muscle vrlocity 0.08 m/s

Muscle vrlocity 0.1 m/s

Muscle vrlocity 0.12 m/s

10 20 30 40 50 60 70 80

50

100

150

200

250

300

)
N(t uo

T

Tin (N)

Muscle vrlocity 0.02 m/s

Muscle vrlocity 0.04 m/s

Muscle vrlocity 0.06 m/s

Muscle vrlocity 0.08 m/s

Muscle vrlocity 0.1 m/s

Muscle vrlocity 0.12 m/s

Active muscle Passive muscle

(a) (b)

Figure 9. Input force and output muscle tension results. (a) Active muscle. (b) Passive muscle.
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Figure 10. Relationship between input muscle tension and cable deformation. (a) Active muscle. (b)
Passive muscle.

tension sensors are installed on both the MC-AM and the load end of the experimental bench system,
and the experiment’s objective is to make the load end tension compatible with the expected value.
When a MSMS is utilized passively, the frictional tension acts as a part of the expected tension, so
that the intrinsic tension of cable is small. So that the actual muscle tension curve smooth, which is
consistent with the results in Fig. 10. In general, the average errors of active and passive muscles are
3.87 N (standard deviation 3.02 N) and 3.51 N (standard deviation 1.53 N), respectively. This outcome
complies with the criteria for using MSMS in the musculoskeletal robot.

The relationship between the input muscle tension and the output muscle tension of TSPS is analyzed
more deeply under different muscle contraction velocity conditions, as shown in Fig. 9. The input and
output muscle tension is close to a linear relationship. The contraction velocity has little impact on
the active muscle. On the contrary, it has a greater impact on the passive muscle. In addition, when
contraction velocity increases, fluctuations become more noticeable. When the input force is large, there
is a larger jitter in the active muscle, which is compatible with the Fig. 8. Table II displays the mean
energy efficiency and standard deviation data for active and passive muscles at various velocities. Taken
together, the average efficiency of the active and passive muscles is 0.408 (standard deviation 0.062)
and 4.36 (standard deviation 1.55), respectively. Although the TSPS has significantly poorer energy
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Table II. Energy efficiency results.

Muscle contraction velocity (m/s)

Object Index 0.02 0.04 0.06 0.08 0.1 0.12 Average value
Active muscle Average efficiency 0.436 0.406 0.404 0.417 0.387 0.396 0.408

Standard deviation 0.048 0.062 0.063 0.078 0.061 0.061 0.062
Passive muscle Average efficiency 3.594 3.564 4.033 4.62 5.607 4.743 4.36

Standard deviation 0.94 0.943 1.194 1.549 2.676 2.019 1.55

Table III. Cable elongation results.

Muscle contraction velocity (m/s)

Object Index 0.02 0.04 0.06 0.08 0.1 0.12 Average value
Active muscle Average efficiency

(×10−3 m/N/m)
0.125 0.125 0.142 0.141 0.153 0.16 0.141

Standard deviation
(×10−3 m/N/m)

0.0123 0.0097 0.0139 0.0195 0.023 0.0219 0.0167

Passive muscle Average efficiency
(×10−3 m/N/m)

0.58 0.55 0.583 0.678 0.66 0.643 0.615

Standard deviation
(×10−3 m/N/m)

0.239 0.224 0.299 0.286 0.266 0.323 0.273

transfer efficiency than gears, belts, and connecting rods, its advantages, such as distant transmission
and adaptability to challenging and constrained paths, are incomparable. The transmission efficiencies
of active and passive muscles can complement each other to achieve an acceptable overall efficiency.
An ideal use effect can still be obtained through an FF-MNN method.

To achieve accurate position control, it is necessary to study cable elongation for the TSPS. The cable
elongation has an approximate linear relationship with the input muscle tension, but when the input mus-
cle tension or contraction velocity is large, there is a significant jitter, as shown in Fig. 10. The mean
elongations of active and passive muscle is 0.141 mm/N/m (standard deviation 0.017 mm/N/m) and
0.615 mm/N/m (standard deviation 0.273 mm/N/m), respectively. Others results are shown in Table III.
The inaccurate position control of MSMS is more likely to occur when the muscle tension and con-
traction velocity are large. The cable elongation is essential for the TSPS to provide precise position
control. The findings of this experiment demonstrate that the input muscle tension and cable elongation
have a clear relationship that may be utilized to increase the control precision of practical robots such
as surgical robots, dexterous hands, and rescue robots, among others.

4.2.3 D trajectory tracking experimental results of LM-Arm
The primary purpose of the MSMS is to construct a musculoskeletal robot, so that we can evaluate
the end-point trajectory tracking of the LM-Arm to determine the effective performance of MSMS. The
experimental bench and scheme are described in Section 3.2. According to the findings, shown in Fig. 11,
the six experiments’ end-point trajectories are consistent with the expected trajectories, with a maximum
trajectories error of approximately 0.039 m (3.9%). The sin-function trajectory near starting point has
the highest error, which is brought on by an unbalanced trajectory at the transition location. The mean
of the trajectory of the six experiments is 0.0158 m (1.6%), and the standard deviation is 0.0071 m. The
trajectory error can comprehensively show the performance of the tension control of MSMS, and it is
feasible to construct the complex musculoskeletal robot by designing the MSMS.
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Figure 11. Trajectory tracking results of LM-Arm. (a) Trajectory results. (b) Trajectory error results.

To gain a deeper understanding of the controllable performance of the MSMS, we selected the muscle
length data from one set of experiments for analysis, as shown in Fig. 12. The results show that the
actual feedback length of the 15 MSMS is basically the same as the expected value, but it can be seen
from the curve that the error of the last six MSMS is larger. There are two reasons for this result: the
first is that the MSMS (#10–#15) provide tension for the forearm and wrist joint. Moreover, the longer
transmission distance the weaker friction compensation effect. The second reason is that the forearm
and wrist joints provide dexterity functions, and the greater muscle contraction velocity leads to friction-
compensated jitter, which is consistent with the results in Figs. 8–10. As shown in Fig. 13, the mean error
and standard deviation in muscle length are 0.00078 m (0.72%) and 0.0004 m, respectively. According
to the findings, the MSMS’s control performance is comparatively steady, and the proposed FF-MNN
friction compensation method has produced positive outcomes. Despite the use of feedback control in
this experiment, based on the experimental results of muscle length error, the designed MSMS will be
able to drive the musculoskeletal robot to perform daily tasks.

5. Conclusion
The MSMS, including MC-AM and TSPS, is designed in this study. The strong nonlinear friction prob-
lem of the TSPS is solved using the FF-MNN approach. The MSMS has three advantages: (1) To measure
output tension or position, it does not require sensors to be attached to the cable’s output port or other,
which enables the use of musculoskeletal robot with restricted sensor applications and reduces the size
and complexity of the end-effector; (2) MC-AM has the advantages of small size, high energy density,
and mature control technology and can easily install multiple sets in a small space. For example, LM-
Arm can install 15 MC-AMs in the chest cavity; (3) MSMS can simulate the active and passive working
state of muscles under larger load and higher velocity conditions to meet the motion requirements of
skeleton; (4) The proposed MSMS is low cost, adding only a few dollars to the whole system. This is
very inexpensive compared to the cost of the other system, for example PAM. The experiments using
the smallest artificial muscle system demonstrate that the average errors of actual active and passive
muscle tension compared to expected value are 3.87 N and 3.51 N, respectively, under conditions of
larger load and higher contraction velocity. Based on this, we built an LM-Arm with seven DOF and 15
MSMSs. 3D trajectory tracking investigations confirm the LM-Arm’s effectiveness. The average error
of the end-point trajectory and muscle length is 0.0158 m (1.6%) and 0.00078 m (0.72%), respectively.
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Figure 12. Muscle length results of LM-Arm.
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The proposed model requires no sensory feedback from the distal end, but still can provide commensu-
rable estimation accuracy by monitoring the consequential changes in the configuration after the initial
calibration. MSMS can not only build complex musculoskeletal robots, but also can be used for devices
with strict requirements on power source and tension transmission path, such as rescue robots, wearable
flexible robots, and abdominal invasive surgical robots.

Although some of the issues with TSPS are addressed by this work, there are still several restrictions
on its application, such as its low efficiency and propensity for cable breakage. In the future work, we
will focus on more wear-resistant and high-strength cable and sheath structure with smaller friction
coefficients to improve the performance of MSMS from the mechanical and material aspects. In the
application of MSMS, in addition to building LM-Arm, the design of muscular dexterous hands is also
one of the key directions.
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