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This study proposes a self-learning algorithm for closed-loop cylinder wake control
targeting lower drag and lower lift fluctuations with the additional challenge of sparse
sensor information, taking deep reinforcement learning (DRL) as the starting point. The
DRL performance is significantly improved by lifting the sensor signals to dynamic
features (DFs), which predict future flow states. The resulting DF-based DRL (DF-DRL)
automatically learns a feedback control in the plant without a dynamic model. Results
show that the drag coefficient of the DF-DRL model is 25 % less than the vanilla
model based on direct sensor feedback. More importantly, using only one surface
pressure sensor, DF-DRL can reduce the drag coefficient to a state-of-the-art performance
of approximately 8 % at Reynolds number (Re) = 100 and significantly mitigates lift
coefficient fluctuations. Hence, DF-DRL allows the deployment of sparse sensing of
the flow without degrading the control performance. This method also exhibits strong
robustness in flow control under more complex flow scenarios, reducing the drag
coefficient by 32.2 % and 46.55 % at Re = 500 and 1000, respectively. Additionally,
the drag coefficient decreases by 28.6 % in a three-dimensional turbulent flow at Re =
10 000. Since surface pressure information is more straightforward to measure in realistic
scenarios than flow velocity information, this study provides a valuable reference for
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experimentally designing the active flow control of a circular cylinder based on wall
pressure signals, which is an essential step toward further developing intelligent control
in a realistic multi-input multi-output system.

Key words: drag reduction, machine learning

1. Introduction

Flow control has been a popular research area of great academic and industrial interest,
which can be divided into passive flow control and active flow control on the basis of
whether external energy input is necessary. Passive control has the advantages of requiring
no energy, being easy to set up and having low cost, but if the actual situation of the flow
field differs from that expected, it is often difficult to achieve the best effect. Active control
can be divided into open-loop control and closed-loop control according to whether it is
necessary to obtain feedback information from the flow field and to adjust the flux of
the actuator (Duriez, Brunton & Noack 2017). It has been found that, compared with
open-loop control, closed-loop active control has a robust adaptive ability, which can
give full play to the potential of the actuator with a small amount of energy input. For
example, Korkischko & Meneghini (2012) has presented a sequence of experiments on the
flow around a cylinder, which included moving surfaces boundary control. This method
involved injecting momentum into the boundary layer of the cylinder by using two rotating
cylinder modules, thereby delaying separation and preventing vortices. Nevertheless, the
complexity of the nonlinear Navier–Stokes equations leads to a flow field with high
dimensionality and multimodal characteristics, thus making it challenging to devise
effective real-time closed-loop active flow control procedures.

In recent years, machine learning has made significant advances, and active flow control
is becoming more effective and intelligent (Brunton & Noack 2015). One of the earliest
machine learning techniques applied in this field is genetic programming (GP). Genetic
programming uses a population of computer programs as potential solutions to a problem.
The programs evolve using genetic operators such as mutation and cross-over, and the
fittest ones produce the next generation of solutions. Gautier et al. (2015) applied GP to
search explicit control laws to reduce the recirculation zone behind a backward-facing
step. Zhou et al. (2020) applied the linear GP to control the dynamics of a turbulent
jet and discovered novel wake patterns. Ren, Wang & Tang (2019) adopted GP-identified
control laws to successfully suppress vortex-induced vibrations in a numerical simulation
environment. Pino et al. (2023) demonstrated that many techniques from the machine
learning (ML) family could be applied to active flow control (AFC) tasks, from GP to
Bayesian optimization (Blanchard et al. 2021; Ji et al. 2022), Lipschitz global optimization
(Pintér 1995) and reinforcement learning (Mnih et al. 2015; Rabault et al. 2020; Wang et al.
2022b), and that these methods have trade-offs relative to each other.

Artificial neural networks (ANNs) can also be trained to learn complex patterns and
relationships in fluid dynamics data and to generate control strategies that optimize fluid
manipulation, which can be used for various tasks, including predicting fluid flow patterns,
controlling robotic arms that manipulate fluids and optimizing the design of microfluidic
devices. Lee et al. (1997) applied an adaptive controller based on a neural network for
turbulent channel flow, demonstrating a simple control scheme that reduced skin friction
by up to 20 % and produced an optimum wall blowing and suction proportional to a local
sum of wall-shear stress.
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The rapid development of deep reinforcement learning (DRL), which is effective at
interacting with complex nonlinear environments, has brought new ideas to the above flow
control problems. Previous studies have shown that DRL can effectively acquire control
strategies in high-dimensional, nonlinear and other complex environments. Suppose that
DRL is employed to interact with a flow control environment. In such a scenario, it is
essential for the closed-loop flow control method to establish the control law based on
the learned strategy after continuous trial and error and adjustment of the optimization
strategy.

Rabault et al. (2019) made a groundbreaking contribution by introducing DRL to
AFC for the first time by applying DRL to blunt body drag reduction at Reynolds
number (Re) = 100 and successfully demonstrated a closed-loop active control strategy
that could achieve stable drag reduction of approximately 8 % by using proximal strategy
optimization method. This study uses the velocity measured by 151 sensors around the
cylinder and in the downstream flow field (each sensor collects both the flow lateral
velocity) as the feedback signal. To investigate higher Reynolds numbers, Ren, Rabault
& Tang (2021a) applied the lattice–Boltzmann method to establish a computational fluid
dynamics (CFD) environment with weak turbulence conditions, and a Reynolds number
of up to 1000 was effectively controlled. The results show that the DRL agent could find
an effective feedback law and achieve a drag reduction of more than 30 %. Applications
in even more chaotic conditions, corresponding to a two-dimensional (2-D) cylinder at
a Reynolds number Re = 2000, have recently been presented by Varela et al. (2022),
highlighting that DRL-based controllers can learn drastically different control laws as the
underlying dominant physics is changed. In another study, Tang et al. (2020) placed four
synthetic jets on the lower and upper sides symmetrically for AFC of the cylinder.

Apart from the jet actuator, two small rotating cylinders were placed obliquely behind
the main cylinder at a Reynolds number of 240 in the Xu et al. (2020) study. The rotational
speed of the small cylinders was controlled by a DRL agent. This experimental set-up
aimed to investigate the potential of wake stabilization using DRL-controlled rotating
control cylinders. The study findings were later confirmed by Fan et al. (2020), who
experimentally verified the effectiveness and feasibility of this approach.

In addition to its application in the field of AFC tasks, researchers have also aimed to
utilize the DRL approach to achieve other objectives. These objectives include reducing
the energy expenditure of the follower (Novati et al. 2017; Verma, Novati & Koumoutsakos
2018), mitigating vortex-induced vibration (Ren et al. 2019; Mei et al. 2021; Ren, Wang
& Tang 2021b; Zheng et al. 2021), shape optimization (Garnier et al. 2021; Li, Snaiki &
Wu 2021; Viquerat et al. 2021) or the control of turbulent channel flows (Guastoni et al.
2023). As the field of DRL applications for fluid mechanics is evolving fast, we refer the
reader curious for more details to any of the recent reviews on the topic, e.g. Garnier et al.
(2021) and Vignon, Rabault & Vinuesa (2023).

Most of the aforementioned studies have collected state information using a large
number of velocity sensors in the wake region, which poses significant challenges for
practical structural flow fields. For instance, in the case of vehicles and high-rise buildings,
it would be more convenient and easier to maintain and deploy surface pressure sensors.
However, compared with the state in the wake region, the pressure on the surface of the
structure may have insufficient characteristic information, making it difficult for the DRL
agent to estimate the state of the entire flow field. This will result in typical reinforcement
learning methods being unable to learn effective control strategies. Based on this fact, we
introduce the dynamic feature (DF) lifting approach to DRL and propose the DF-DRL
method. In the case of flow around the cylinder, this method can significantly enhance the
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convergence performance of the DRL algorithm, enabling it to achieve a drag-reduction
effect that is almost consistent with the benchmark (147 velocity sensors deployed in the
wake region) with a reduction of 99.3 % of the sensor quantity.

In the present study, we utilized the DRLinFluids package (Wang et al. 2022a) to
train a DRL agent and execute interactions. The package leverages the Tensorforce
(Schaarschmidt et al. 2018) and Tianshou (Weng et al. 2022) packages to provide
DRL algorithm libraries, and OpenFOAM (Jasak, Jemcov & Tukovic 2007) as the
CFD interaction environment. Firstly, we compare the performance of vanilla DRL and
DF-DRL-based plants to a benchmark case study of flow around a circular cylinder with a
Reynolds number of 100. Subsequently, we varied the number of pressure surface sensors
to validate the effectiveness of the proposed method. Finally, we trained a DF-DRL agent
with a single surface pressure sensor and deployed it to more complex flows at higher
Reynolds numbers to illustrate the robustness of the approach.

2. Active flow control system with DRL-based jet actuators

The present section is partitioned into two components: (i) an illustration of the DRL
algorithm, especially for the soft actor-critic (SAC) method, which will be used as the
DRL part in the whole study; (ii) a detailed introduction of the DF-based DRL framework,
including the DF lifting and the coupling with the flow simulation.

2.1. Deep reinforcement learning
Deep reinforcement learning is a powerful method of optimal control based on a
parameterized policy, commonly called an agent, that learns through trial and error. In
the context of CFD, the environment can be modelled as the flow over a circular cylinder.
During the optimization procedure, the DRL agent interacts with this environment to
generate experiences according to the current policy. These experiences are then cached in
a buffer and used by the training algorithm to improve the policy. This iterative process is
repeated until the agent can yield a control strategy that satisfies the desired performance
criteria. Thus, DRL has the potential to revolutionize the field of fluid mechanics by
enabling the discovery of previously unknown control strategies that can enhance the
performance of fluid systems.

There are several types of DRL algorithms (François-Lavet et al. 2018). One of the most
popular types of DRL algorithms is Q-learning (Mnih et al. 2013; Bellemare, Dabney
& Munos 2017; Andrychowicz et al. 2018), which uses a neural network to approximate
the optimal action-value function, and updates the network’s weights using the Bellman
equation to minimize the difference between the predicted and actual reward. Another
type of algorithm is employed in policy gradient methods (Schulman et al. 2015, 2017;
Mnih et al. 2016), which directly optimize the agent’s policy to maximize the expected
reward and often use techniques like Monte Carlo sampling or trust region optimization.
Actor-critic methods (Fujimoto, van Hoof & Meger 2018; Haarnoja et al. 2018; Lillicrap
et al. 2019) combine the advantages of both Q-learning and policy gradient methods by
simultaneously learning a value function and a policy. Another type of DRL algorithm is
model-based reinforcement learning (Silver et al. 2017; Ha & Schmidhuber 2018; Weber
et al. 2018), which involves learning a model of the environment dynamics and using it
to plan actions. Model-based algorithms can be more sample efficient than model-free
algorithms like Q-learning but require additional computational resources to learn and
maintain the model. Referring to our previous work (Wang et al. 2022a), the SAC
algorithm is a feasible choice selected in the following study.
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The SAC method (Haarnoja et al. 2018) is an actor-critic off-policy DRL algorithm
that learns by leveraging a maximum entropy reinforcement learning algorithm. The agent
aims to maximize entropy and prospective reward and reach the desired value while acting
as randomly as possible. Since it is an off-policy algorithm, training can be performed
efficiently with limited samples. The optimal policy can be formulated as

π∗ = arg max
π(θ)

E(st,at)∼ρπ

⎡
⎢⎣∑

t

R (st, at)︸ ︷︷ ︸
Reward

+α H (πθ (· | st))︸ ︷︷ ︸
Entropy

⎤
⎥⎦ , (2.1)

H (πθ (· | st)) = −
n∑

i=1

p (πθ (· | st)) log p (πθ (· | st)) , (2.2)

where E(st,at)∼ρπ represents the expected sum of the objective function, where (st, at)
are sampled according to ρπ. This distribution, ρπ, captures the state and state-action
marginal distributions of the trajectory induced by policy π. Additionally, p denotes the
unknown state transition probability, defining the likelihood of transitioning from one state
to another given a specific action within a Markov decision process, R(st, at) represents
the reward for taking action at in state st, H(πθ (·|st)) is the entropy of the policy πθ at state
st and α is the temperature coefficient. The smaller α is, the more uniform the distribution
of the output action becomes, and the maximum entropy reinforcement learning degrades
to standard reinforcement learning (i.e. α→ 0). The objective is to find the optimal policy
πθ that maximizes the expected reward while maximizing entropy.

The core idea behind the maximum entropy approach is to randomize the policy by
distributing the probability of each action output widely rather than concentrating on a
single action. This approach enables the neural network to explore all possible optimal
paths and avoid losing the essence of maximum entropy to a single action or trajectory.
The resulting benefits include: (i) learning policies that can serve as initializations for
more complex tasks, as the policy learns multiple ways to solve a given task, making
it more conducive to learning new tasks; (ii) strengthening the ability to explore makes
identifying better patterns easier under multimodal reward conditions; and (iii) enhancing
the robustness and generalization ability of the approach since the optimal possibilities are
explored in different ways, making it easier to adjust in the presence of interference.

The entropy term in the SAC algorithm affects the policy’s exploration in two important
ways. First, the entropy term encourages the policy to take more exploratory actions by
adding a penalty to the objective function for actions with low probability under the
current policy. This penalty is proportional to the negative entropy of the policy, which
measures the degree of randomness or uncertainty in the actions selected by the policy.
Minimizing this penalty incentivizes the policy to explore more widely and try out new
actions that may lead to higher rewards. Second, the entropy term also helps prevent the
policy from becoming too deterministic, which can limit its ability to adapt to changes in
the environment or learn new behaviours. By adding an entropy term to the objective
function, SAC encourages the policy to maintain a balance between exploration and
exploitation rather than becoming overly focused on a single optimal action. This can
be particularly important in environments with multiple suboptimal solutions or where the
optimal solution may change over time. In summary, the entropy term in SAC encourages
exploration by penalizing the policy for taking low-probability actions. It helps prevent the
policy from becoming too deterministic by promoting a balance between exploration and
exploitation. This can lead to better performance and more robust learning in complex,
dynamic environments.
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Figure 1. Schematic of the DF-DRL (SAC) framework used in the present study. The term wrapper refers to
the process of encapsulating actions from the agent and sending them to the OpenFOAM solver. In contrast,
extractor refers to the process of parsing CFD results and providing feedback to the agent. This framework is
derived from the DRLinFluids package (Wang et al. 2022a).

The SAC algorithm used in this study employs a maximum entropy target as its
optimization objective, which has been shown to enhance the algorithm’s exploration
properties and robustness. The ability to effectively explore is achieved by maximizing
information entropy, which promotes a uniform distribution of the probability of each
action output rather than focusing on a single action. For instance, the uniform strategy is
a high-entropy strategy. On the other hand, the robustness of the algorithm is reflected in
its ability to generate alternative action outputs when faced with environmental noise. In
contrast, a previous greedy strategy may lead to the agent’s inefficacy due to the certainty
of its actions. The SAC algorithm ensures that every action has a varying probability rather
than being either high or low. Therefore, the agent can still produce alternative action
outputs without failure when the environment encounters noise. From these perspectives,
the SAC algorithm is highly suitable for the present study, which involves the application
of AFC using surface pressure temporal series. For a more detailed description of the SAC
algorithm, please refer to Haarnoja et al. (2018).

The present work employs a closed-loop control framework for the AFC task described
in § 3.2, as depicted in figure 1. The framework comprises two main components: the
environment and the DRL agent (critic and actor in the case of the SAC algorithm used).
The flow around a circular cylinder is simulated by OpenFOAM, as described in § 3.2. The
flow velocity or pressure measured by specific sensors is collected as the state provided to
the agent. Following the set-up of sensors in the Rabault et al. (2019) study, 147 sensors
can capture sufficient flow information for control policy learning, which is adopted as
a baseline. The DRLinFluids package (Wang et al. 2022a) is used to accomplish the
interaction between the DRL agent and the CFD simulation, and Tianshou (Weng et al.
2022) is employed as the DRL algorithm backend. The DRL policy network consists of
two dense layers, each with 512 fully connected neurons. The input layer receives data from
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pressure sensors, and the output layer gives the jet velocity. The time interval between each
step is set to 7.5 % of the vortex-shedding period of the cylinder without actuators. The
SAC agent interacts with and updates the ANN parameters every 50 steps. The process
is repeated three times with the same hyperparameters to ensure the stability and validity
of the training. To save training time and provide a consistent start point, a vanilla case
without control is simulated in advance until it reaches stable status. Then, the state of the
flow field is stored and utilized as the initialization for the following DRL training stage.

To avoid non-physical abrupt changes in pressure and velocity resulting from the use
of incompressible CFD algorithms, a continuous-time approach is adopted for the control
mechanism. The control for each jet is determined at every time step during the simulation
and smoothed to obtain a continuous control signal over time. An appropriate interpolation
method is crucial to serialize this system’s received time-discretized control signal. Hence,
we smooth the jet actuation to ensure a continuous change in the control signal without
excessive lift fluctuations due to sudden changes in jet velocity. Based on the interpolation
functions demonstrated by Tang et al. (2020), the control action is set to change as follows:

VΓi(t) = VΓi(t−1) + α[a− VΓi(t−1)], i = 1, 2, (2.3)

where α = 0.1 is a numerical parameter determined by trial and error, VΓi(t) and VΓi(t−1)

are the jet flow velocities used at the non-dimensional times t and t − 1, respectively, and
a is one jet flow velocity in an agent step, i.e. the action generated by the DRL agent.

Flow control of circular cylinders is a highly popular topic in both the academic and
industrial sectors. This research aims to reduce or eliminate drag and lift forces using
advanced reinforcement learning techniques. This objective can be achieved by setting an
appropriate reward function. A reward function that combines drag and lift coefficients is
proposed to achieve the optimization goal, which is designated as follows:

rt = (CD)Baseline − 〈Ct
D〉T − 0.1 ∗ |〈Ct

L〉T |, (2.4)

where (CD)Baseline is the mean drag coefficient of the circular cylinder without flow
control, Ct

D and Ct
L are the temporal drag and lift coefficients at the time t, respectively,

and 〈·〉T indicates the sliding average back in time over a duration corresponding to one
jet flow control period T with AFC. It consists of three parts: (i) the mean drag coefficient
of the non-controlled flow around a cylinder, serving as a baseline for the reward function,
which helps to shift the overall mathematical expectation of the function closer to zero.
This prevents the probability of sampling a potentially optimal action from decreasing as
the gradient ascent progresses in the action space (Weaver & Tao 2013); (ii) the moving
average drag coefficient with two DRL-based actuators that is the main component of the
overall reward function. It aims to indicate to the DRL agent that its primary objective is to
reduce drag force (coefficient); and (iii) the absolute value of a scaled moving average lift
coefficient as a penalty term. In the absence of this penalization, the policy network within
the SAC algorithm has the potential to manipulate the flow pattern in order to achieve a
greater reduction in drag, reaching up to approximately 18 % drag reduction (Rabault &
Kuhnle 2019) in some cases. However, this comes at a significant trade-off as it also results
in a substantial increase in induced lift, which is detrimental in the majority of practical
applications.

2.2. Active flow control with dynamic feature-based DRL enhancement
Computational fluid dynamic numerical simulations allow the collection of space–time-
resolved data within the considered computational domain. However, in the real world,
obtaining a comprehensive view of the flow field is often difficult, which means only
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a limited number of time-resolved sensor measurements s are accessible. This study
aims to demonstrate how recent advancements in system identification and machine
learning can be utilized to construct reduced-order models directly from these sparse
sensor measurements. To achieve this, we simulate experimental conditions using direct
numerical simulations and focus on a single-sensor measurement represented by

s (t) := p (t;L) , (2.5)

where p represents the surface pressure, and L denotes the various sensor layout schemes,
which are detailed in § 3.3. The measurement vector s can generally comprise various
measurements such as the lift and drag coefficients, pressure measurements on a cylinder
or velocity field measurements at specific locations, e.g. wake region. However, for the
scope of this study, the pressure alone is deemed adequate to characterize the flow
according to the results shown in § 4.1.

Given the sensor measurements s, our objective is to develop a practical flow state
estimation that enables a DRL agent to obtain efficient information based on it. However,
raw signals may not be ideal for this purpose, and an augmentation or DF lifting is required
to incorporate sensor measurement functions. In this regard, we define the augmented state
S as a feature vector that encompasses such parts

S = g(s). (2.6)

Numerous options exist for the mapping function g, which can enhance sensor
measurements and improve model accuracy. If the sensors are adequate to determine the
system state, the identity map can be utilized as g, which means S = s. Alternatively, g
can leverage proper orthogonal decomposition mode coefficients when the measurements
provide high-dimensional snapshots. Takens (1981) and Brunton et al. (2017) use
delay embedding technology to augment the measurements, resulting in a sufficiently
high-dimensional feature vector that fully characterizes the system dynamics. Selecting
an effective transformation function g is a critical unresolved issue relevant to both
representation theory and the Koopman operator viewpoint on dynamical systems.
Both Mezić (2005) and Brunton et al. (2016a) are actively investigating this problem.
In this study, we choose g to augment the sensor measurement with its time
derivative while appropriately scaling the augmented measurement. Furthermore, Loiseau,
Noack & Brunton (2018) propose a comprehensive sparse reduced-order modelling
for flow full-state estimation, which includes time-resolved sensor data and optional
non-time-resolved particle image velocimetry snapshots. Inspired by the facts mentioned
above, we present a novel approach, named DF-based DRL, to overcome the limitations of
measurements in the real world and highlight the potential of DRL techniques for sparse
surface pressure sensing. An effective augmentation function g at time t is used to lift the
sensor signals so that a high-dimensional DF space is formed, which can be expressed as

St =

⎛
⎜⎝
s1

t−M · · · si
t−M a1

t−M · · · a j
t−M

...
. . .

...
...

. . .
...

s1
t · · · si

t a1
t · · · a j

t

⎞
⎟⎠ ∈ R

(M+1)×(i+j), (2.7)

where a is the agent action at time t, M is the number of backtracking time steps t, which
is set to 30 in this study, corresponding to twice the number of time steps of the baseline
vortex shedding period, i and j are the identifiers of sensor and actuator, respectively, and
 and  are the corresponding scaling factors. The final algorithm is listed in Algorithm 1.
In the context of DF-DRL with SAC, the approach involves a cyclic iteration of gathering
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Algorithm 1: The DF-DRL algorithm with SAC

Input: sensor state vector s ∈ R
1×i, initial critic network parameters θi, initial

actor network parameters φ, state transition probability p (deterministic
CFD simulation in this study)

Initialization: target network weights θi ← θi, replay buffer D← ∅
for each iteration do

for each environment step do
at ∼ πφ(at | st);
st+1 ∼ p(st+1 | st, at);
St ← g({s1, s2, . . . , st+1} ∪ {a1, a2, . . . , at});
D← D ∪ {(St, at, r(st, at))};

end
for each gradient step do

Update θi, φ, θi, and temperature T according to (Haarnoja et al. 2018);
end

end
Output: actuator control vector a ∈ R

1×j

experience from the environment based on the current policy and updating the function
approximators by utilizing stochastic gradients from batches sampled from a replay pool.
The original state vector within a state-action tuple will first be lifted according to the
augmentation function g, then dumped to the replay buffer D.

In past studies, a common practice has been to use a single snapshot of the flow field as
state data, such as four sensors worth of pressure data in one time step, to provide input
to the policy network. This is illustrated by the upper panel of figure 2. By contrast, the
DF-DRL method uses pressure data assembled from sensor measurements extracted from
the 30 previous action time steps t, resulting in an augmented agent state. The details of DF
lifting within the DF-DRL method are illustrated in lower figure 2. More specific DF-DRL
hyperparameters have been listed in table 4 of the Appendix. It is expected (and confirmed
in § 4.1) that the policy will be improved using such DF lifting input data. However, a
possible challenge is that this may increase the dimensionality of the state input to the
ANN quite a bit since it is a two-dimensional array with one dimension corresponding
to the sensor number and another corresponding to the time series index. In particular,
sensors on the surface observe lower magnitude variations in flow velocity and pressure
than sensors in the wake. They cannot observe changes in the trend of the wake and the
shedding of cylinder vortices. Therefore, using the DF-DRL method is most appropriate
for the surface sensors’ AFC training process, which involves fewer sensors. Besides, it is
also vital to use an input standardization method individually on each sensing time series.
In particular, it is necessary to normalize the surface pressure sensor observations so that
these fluctuations are well perceived even though these have a very different dynamic range
compared with sensors in the wake region.

3. Numerical plant: flow around a circular cylinder

In this section, we choose benchmarks proposed by Schäfer et al. (1996), laminar
flow around a cylinder and place jets symmetrically arranged on both lateral sides as
actuators for active flow control. The objective is to reduce the cylinder’s drag force and
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Figure 2. Flowchart of the two approaches for the state collected from the environment. (a) Vanilla method
(sensor feedback): the agent only collects the flow field state at a single time step. For example, the signal
obtained from four pressure sensors located in the flow field at the 40th time step returns a state vector s ∈ R

4×1;
(b) DF-DRL method: the agent collects data from the most recent thirty time steps t, including historical sensor
pressure p ∈ R

30×1 and action data a ∈ R
30×1 provided by the agent. This process indicates DF lifting and the

dimension of the state vector S ∈ R
30×2. Moreover, scaling the state vector will amplify signal fluctuations,

which is helpful in capturing the flow characteristics.

lift fluctuation. Firstly, we formalize the research problem in § 3.1. Then, we provide a
detailed description of the flow configuration and numerical solution methods in § 3.2,
followed by a validation of the accuracy of the numerical algorithms. Finally, we define
three types of sensor layout schemes in § 3.3.

3.1. Problem formalization
The AFC task formulated in this study aims to find a real-time control policy π of two
jet actuators located on a circular cylinder with sensor feedback, which can effectively
reduce the fluid force on it. Generally, the surface pressure information st can be regarded
as the input state of the control policy π, and the jet intensity can be viewed as the
DRL action at at the time t. The action is decided by the DRL controller based on the
state observation. Therefore, the control processing can be modelled as a deterministic or
stochastic relationship

at ∼ π(st|θ). (3.1)

Hence, given a DRL agent with the control policy π, the objective is to minimize the lift
and drag coefficients of the cylinder by optimizing the set of weights θ of the DRL agent
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policy network

π∗ = π
(
θ∗

)
, (3.2)

θ∗ = arg max
π(θ)

E(st,at)∼ρπ(θ)
T (st, at), (3.3)

where the superscript * represents the optimal value, E is the expected value operator and
T denotes a target function, which represents the current policy π.

3.2. Flow configuration and numerical method
In this work, we use the open-source CFD package OpenFOAM to perform simulations.
Under the assumption of incompressible viscous flow, the governing Navier–Stokes
equations can be expressed in a non-dimensional manner as

∂u
∂t
+ u · (∇u) = −∇p+ Re−1�u, (3.4)

∇ · u = 0, (3.5)

Re = ŪD
ν

, (3.6)

where u is the non-dimensional velocity, t is the non-dimensional time, p is the
non-dimensional pressure, ν is the kinematic viscosity of the fluid and Ū is the mean
velocity at the inlet. The corresponding Reynolds number Re is 100 in the training stage.

This study focuses on 2-D simulations of flow around a circular cylinder with a diameter
D, which is the characteristic length scale. The computational domain has dimensions of
L = 22D and B = 4.1D in the streamwise and cross-stream directions, respectively, as
shown in figure 3. Following the widely recognized benchmark conducted by Schäfer
et al. (1996), the cylinder is slightly off centre to induce faster development of the
vortex-shedding alley during the initial simulation convergence stage. The outlet boundary
is placed 19.5D downstream of the cylinder to allow the wake to develop fully.

The inlet boundary, denoted as Γin, is subject to the parabolic velocity inlet boundary
condition. The no-slip constraint, ΓW , is applied to both the top and bottom of the channel
and the surfaces of the cylinder. Additionally, the right boundary of the channel, Γout, is
designated as a pressure outlet, wherein zero velocity gradient and constant pressure are
maintained. The inlet boundary is assigned as a parabolic velocity form and expressed as
the following in the streamwise direction:

U(0, y) = 4Umy(H − y)/H2, (3.7)

where Um is the maximum inflow velocity at the middle of the channel. Employing a
parabolic inflow profile, Um is 1.5 times the mean velocity Ū, as defined by

Ū = 1
H

∫ H

0
U( y) dy = 2

3
Um. (3.8)

To accomplish the AFC, a flow control technique using two jet actuators (Γ1 and Γ2)
located on opposite sides of the cylinder is employed. A parabolic velocity profile with a
jet width of ω = 10◦ is imposed at both jets, as depicted in figure 3. Due to the velocity
of the jet flow being orthogonal to the inflow direction, drag reduction is strictly achieved
by effective actuation rather than by momentum injection. Moreover, the jet flow on both
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Γ1
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ΓW

Γout
ΓW

θ

Γin
10°

(a) (b)

Figure 3. Description of (a) the numerical set-up, which is adapted from Schäfer et al. (1996). The origin of
the coordinates is located at the lower left corner of the entire computational domain. Here, Γin stands for the
inflow velocity with a parabolic flow profile, while Γout is for the outflow. A no-slip wall boundary constraint
ΓW is applied on the bottom and top of the channel and on the cylinder surfaces. Two jet holes (Γ1 and Γ2) are
present at both sides of the cylinder. (b) An enlarged view of the dashed box in panel (a). The 0◦ azimuthal
angle corresponds to the foremost point on the cylinder’s windward surface and increases clockwise. The jet
actuator opening angle is 10◦, consistent with Rabault et al. (2019).

sides is constrained as synthetic jet flow, i.e. VΓ1 = VΓ2 , so the jets collectively do not add
to or remove mass from the flow. The normalized jet flow rate Q∗i of a jet is defined as

Q∗i =
Qjet,i

Qref
= Ujet,i·Djet

ŪD
, (3.9)

where Ujet,i is the ith jet velocity, Djet is the width of the jet and Qref is the reference mass
flow rate intercepting the cylinder; Q∗i is not greater than 0.2 during this study.

The current study adopts unstructured meshes for CFD simulations. Emphasis has been
laid on refining the mesh around the surface boundary and the wake flow regions, as these
are crucial for ensuring the appropriate resolution of these significant flow domains and
the physics happening there. The numerical solution is obtained at each time step, and
the drag (FD) and lift (FL) forces are computed by integrating over the cylinder surface,
following:

F =
∫

(σ · n) · ej d, (3.10)

where σ is the Cauchy stress tensor, and the unit vector n is defined as normal to the
cylinder surface. At the same time, ej is denoted as a unit vector in the direction of the
inflow velocity for drag force calculations and as a vector perpendicular to the inflow
velocity for lift force calculations. Specifically, the drag CD and lift CL coefficients can be
expressed as follows:

CD = FD
1
2ρŪ2D

, (3.11)

CL = FL
1
2ρŪ2D

, (3.12)

where FD and FL are denoted as integral drag and lift force, respectively.
To further validate the accuracy of the CFD simulations, a series of mesh convergence

studies is performed at a Reynolds number Re = 100. In particular, meshes of three
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Case Grid number Cmax
D Cmax

L CD St

Grid I 13 572 3.27 1.01 3.21 0.301
Grid II 16 200 3.24 1.024 3.205 0.299
Grid III 39 382 3.24 1.04 3.21 0.302
Schäfer et al. (1996) — 3.22–3.24 0.99–1.01 — 0.295–0.305
Rabault et al. (2019) 9262 3.245 1.020 — 0.302

Table 1. Numerical results of mesh convergence study for the 2-D flow around a circular cylinder at
Re = 100.

different resolutions are employed. The corresponding results for the maximum values
of the drag coefficient (CD) and lift coefficient (CL), denoted as Cmax

D and Cmax
L ,

respectively, are reported in table 1. The numerical analysis reveals that the discrepancies
among various mesh resolutions are insignificant. Considering the trade-off between
computational cost and numerical accuracy, the meshing scheme of grid II is preferred
for the DRL training stage. More specific flow configurations have been listed in table 3
of the Appendix.

3.3. Layout of surface pressure sensors
The present study proposes a series of pressure sensor layout schemes to study the
influence of sensor location. First, a baseline configuration proposed by Rabault et al.
(2019) with 147 pressure sensors is set up both around the cylinder and in the wake region,
as shown in figure 4(a). Then, a varying number of pressure sensors, e.g. 4, 8 or 24 sensors,
are symmetrically arranged on the surface of the cylinder (along the direction of inflow).
To avoid inadequate information with more minor pressure fluctuations at the front of the
cylinder, the sensors are uniformly distributed except for the point at the front, as shown
in figure 4(b). Finally, a comprehensive study is carried out using a single sensor location.
The placement of the single sensor is started by putting it at the front of the cylinder as
θ = 0◦ relative to the incoming flow. We change its position by gradually increasing its
angular position on the cylinder in increments of 15◦ until it reaches the rear edge of the
cylinder (θ = 180◦), as shown in figures 3(c) and 4(c). As a consequence, a total of 17
single pressure sensor positions are investigated. One could expect that pressure sensors
on the surface of the cylinder can provide valuable information about the flow to the
DRL controller. However, using surface sensors like those shown in figures 4(b) and 4(c)
presents a challenge due to the limited quantity of data provided and the placement being
solely on the surface of the cylinder. This results in insufficient information regarding the
cylinder wake and vortex-shedding pattern during the DRL training stage.

To facilitate the description in the next sections, the notation L is used to describe the
different sensor layout schemes. The subscripts represent different sensor layout types.
For example, LI represents the baseline configuration with 147 sensors placed inside the
flow field, LII represents the sensor configuration placed on the cylinder surface and LIII
represents a single-sensor configuration placed on the cylinder surface. For type LN

II , the
superscript N indicates the number of sensors, and the polar coordinates of sensor i can be
expressed as

ri = 1
2

D, θi = 2πi
N + 1

, i = 1, 2, . . . , N, (3.13)
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Figure 4. Number and configuration of the sensors used to generate the DRL controller state observation.
(a) Using 147 sensors provides sufficient flow information for DRL training, stated as LI . (b) Layout using
4, 8, 12, 24 or 36 sensors in the surface of the cylinder respectively, denoted by L4

II , L8
II , L12

II , L24
II and L36

II .
(c) Layout using only one sensor located on the surface of the cylinder with an azimuthal angle of 0◦, 30◦, 60◦,
90◦ or θ◦, signified by L0

III , L30
III , L60

III , L90
III and Lθ

III .

while for type Lθ
III , the superscript θ indicates the degree of the sensor placement where

the coordinate axis of the polar coordinate system has an origin opposite to the inflow
direction, i.e. the leading edge of the cylinder is denoted as the 0◦ point, which is illustrated
in figure 4.

4. Results and discussion

In this section, we first evaluate the performance and reliability of the proposed DF-DRL
approach in § 4.1, comparing it with a vanilla DRL algorithm. Then, the impact of different
numbers of surface sensor configurations and layouts of single surface sensors on the
performance of flow control is investigated in § 4.2. Furthermore, we verify the robustness
of the DF-DRL controllers under two different Reynolds numbers, Re = 500 and Re =
1000 in § 4.3.

4.1. The DRL-based AFC with sparse surface pressure sensing
To evaluate the effectiveness and reliability of the DF-DRL approach, sensor locations
LI and L4

II are selected for illustration, as depicted in figures 4(a) and 4(b), respectively.
Figure 5 shows the learning curves for active flow control using both vanilla DRL
and DF-DRL techniques under two different sensor quantity configurations (4 and
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Figure 5. Comparison of (a) the mean CD, (b) reward and (c) the std of CL when using different DRL methods,
i.e. using the DF-DRL method or not, and a different number of sensors (4 sensors in the surface of cylinder
and 147 sensors around the cylinder). The learning case condition, which contains 147 sensors without time
series, reaches the maximum reward. These cases are trained three times repeatedly, and we present the average
between the three runs (thick line) and the std between these runs (shadowed area).

147 sensors). The three panels (a), (b) and (c) correspond to the mean CD, reward, and the
standard deviation (std) of CL, respectively. It seems that the CL learning curve, as shown
in figure 5(c), has not reached a converged state, especially for the two cases that utilize
the DF lifting technique. However, we maintain that DRL training stabilizes as evidenced
by the clear convergence observed in the CD learning curve as depicted in figure 5(a). This
is because, as explained in § 2.1, CL is only used as a penalty term to prevent the policy
network from finding control strategies that are not practical or realistic.

The results indicate that there are significant differences between these four cases. Using
a vanilla DRL algorithm, the maximum drag reduction of 8 % was achieved with the use
of 147 sensors (scheme LI), and the maximum reward value is 19.13. Moreover, the std
of CL is reduced to 0.15 when learning has converged. For the case of 4 sensors with the
vanilla DRL method (scheme L4

II), the maximum drag reduction is only 6.4 %, and the std
of CL decreases to only 0.29, as shown in figure 5. These two cases show that, with few
surface sensors, AFC performance worsens. This is due to the inability of DRL to estimate
the flow field and limited observable data correctly.

As for the results using the DF-DRL method, it is observed that both LI and L4
II achieve

similar drag-reduction amplitudes of 8 %, corresponding to the maximum drag reduction
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also observed using the 147 pressure sensors. However, the latter approach achieves a
higher reward value, as indicated by the decrease in the std of CL due to the lift penalty
term within the reward function. This performance improvement is happening even though
both the LI and L4

II approaches undergo a temporary rebound in their learning. Therefore,
when utilizing the DF-DRL method, fewer sensors, as used in scheme L4

II , can achieve
the same drag reduction as scheme LI , which achieves 25 % better than the vanilla model
based on direct sensor feedback. This can be obtained while also improving the reduction
of lift fluctuations. These observations suggest that the DF-DRL method can maintain
drag-reduction performance while reducing the number of sensors required. The difference
in reward observed between the two cases can be attributed to the reduction in the std of
CL achieved in scheme L4

II .
For scheme LI , with many sensors distributed around the cylinder and wake region,

the DRL controller can obtain exhaustive flow field information. Thus, the inclusion of
historical data provided by the DF-DRL method has a minor impact. However, scheme
L4

II , with limited sensor numbers and sparse information on the cylinder surface, has
more information available to perform effective flow control with the DF-DRL method.
These results suggest, unsurprisingly, that using more sensors leads to better CD reduction
effects and more stable reward convergence with naive DRL agents. Moreover, when the
flow field information is limited in quantity and placement of the sensors (due to physical
restrictions), the DF-DRL method demonstrates better convergence and yields a superior
control policy.

4.2. Control performance and learning convergence with DF-DRL method
To further investigate the impact of sensor quantity and placement azimuth on the
control effectiveness and convergence performance of the DF-DRL-based controller, we
conducted case studies with different quantities of sensors, i.e. 1, 4, 8, 12, 24 and 36, as
well as various placement azimuth layouts of 0◦ to 180◦ with a 15◦ spacing.

4.2.1. Sensor quantity
Five typical layout schemes LII of surface pressure sensors are investigated in this section.
The arrangement of these sensors is depicted in figure 4(b), where the sensors are evenly
distributed, and all the leading edge sensors are removed, as described in 3.3. Since the
state includes the jet actions component, the pressure sensors distributed around the jet
will not significantly impact the results.

The impact of adding more surface pressure sensors on training performance is
illustrated in figure 6. Results show that increasing the number of sensors does not lead
to a significant improvement in drag and CL reduction, which remains around 8 % across
all schemes. Additionally, all cases converge at approximately 200 episodes. Figure 6(b)
displays learning curves that follow the same trend as the CD, indicating that the final
DF-DRL performance is very similar to the benchmark case for different numbers of
pressure sensors on the surface of the cylinder.

As depicted in figure 6(c), the standard deviation of the lift exhibits a comparable
declining pattern to that observed in the previous section. Following an initial decrease and
temporary increase at around episode 200, all five groups undergo a consistent decrease
until the completion of DF-DRL training.

This result can be explained by the fact that the pressure on the cylinder surface,
as a surrogate for lift, is a better DF than wake measurements, where varying vortex
shedding destroys the phase relationship. The pressure on the cylinder surface provides
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Figure 6. Evolution of (a) mean CD reduction, (b) reward and (c) std lift coefficient for different numbers
of sensors with DF-DRL method. Sensors are uniformly located on the surface of the cylinder as indicated
in figure 4(c).

a more accurate representation of the dynamic behaviour of the flow, leading to a better
understanding of the underlying physics. This conclusion agrees with previous work by
Loiseau et al. (2018). Using pressure as a DF highlights the potential for feature-based
approaches in reduced-order modelling of fluid flows.

Even though the final drag-reduction effect is very similar, an interesting subtle
difference can be observed from figure 6, where the DRL algorithm with DF lifting
does not show a monotonically increasing relationship between the number of sensors
and control performance.

The counterintuitive scenario mainly arises from the potentially redundant information
(features) in the state (Roghair et al. 2022). This can be explained by the phenomenon
of the curse of dimensionality (Altman & Krzywinski 2018) commonly observed in
deep learning. The curse of dimensionality refers to a series of problems and challenges
encountered in high-dimensional spaces. It describes the difficulties and obstacles faced
when dealing with data with a large number of dimensions.

The main issues associated with the curse of dimensionality in high-dimensional
spaces include: (i) the distances between data points become very large, leading to
data sparsity. This means that it becomes challenging to find other similar data points
near a given data point, making data analysis and modelling difficult; (ii) selecting

988 A4-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

33
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.333


Q. Wang and others

and extracting meaningful features becomes complex. Due to the large number of
dimensions, it is difficult to determine which features are most important for solving
a specific problem; (iii) statistical inference and model estimation in high-dimensional
data become challenging. Due to data sparsity and computational complexity, obtaining
reliable statistical results from limited data samples becomes difficult, leading to issues
like overfitting or underfitting.

In this study, the data collected by each sensor can be regarded as a feature. For a
case with i sensors and two actuators, considering the commonly used DF lifting, which
includes the past M time steps of pressure and the magnitude of the actuator jet velocity,
the dimensionality increases from R

1×i to R
M×(i+1). When the dimensionality of the state

increases, the complexity and variability of the data also increase. If there are too few
sensors, important information and patterns may be missed, leading to suboptimal control
performance. Insufficient sensors may result in incomplete data coverage or inadequate
representation of the system dynamics, making it difficult to capture crucial features or
relationships necessary for effective control.

On the other hand, if there are too many sensors, the curse of dimensionality comes into
play. The high-dimensional space poses challenges in terms of data sparsity, computational
complexity and feature selection. The abundance of sensors may introduce noise,
redundancy or irrelevant information, which can hinder the control process. It becomes
difficult to discern which sensors are truly informative and contribute meaningfully to the
control objective.

Given that the disparities in CD and CL fluctuation reduction among the experiments are
not substantial, to further demonstrate the potential of using surface pressure as a DF for
a nonlinear system and its combination with DRL, we will reduce the number of sensors
to one in the next section.

4.2.2. Placement azimuth
Based on the results above, it is apparent that an increase in the number of sensors utilized
in DF-DRL-based AFC tasks does not necessarily result in better performance, including
drag and lift reduction. To explore the maximum performance potential of DF-DRL and
obtain the optimal sensor layout scheme, single-sensor schemes LIII are selected in the
following study, as illustrated in figure 4(c). According to the symmetry of the geometry
of the set-up and the boundary conditions, this study only considers deploying sensors
on the upper semicircle region for training and analysis purposes. The cylinder surface
features a single pressure sensor located every 15◦, covering a range of 0◦ to 180◦, with
a total of 13 configurations. Three training repetitions are performed for each case with
the same hyperparameters to eliminate randomness. As shown in figure 7(a), the mean
CD indicates that AFC performance with only one pressure sensor is almost as optimal as
baseline scheme LI . The results suggest that scheme LIII on cylindrical surfaces using the
DF-DRL method can achieve the best AFC performance.

It can also be observed from figure 7(b) that the trailing edge sensor of the cylinder
has a higher reward value than the leading edge sensor, resulting in a lower mean CD.
Furthermore, a sudden reduction in CD can be observed between L75

III and L90
III . This can

be attributed to the influence of jet actuators situated on the top side of the cylinder, where
changes in jet velocity can lead to abnormal pressure fluctuations on the surface at 90◦
that confuse the DRL controller. Additionally, a significant jump in performance occurs
between L90

III and L150
III , characterized by a marked decrease in the mean CD. A decreasing

trend can be observed in the std of CL from L0
III to L180

III , as depicted in figure 7(c).

988 A4-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

33
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.333


DF-DRL for flow control with sparse pressure sensing

0°

15°

30°

45°

60°
75° 90° 105°

120°

135°

150°

165°

180°
3.04 2.98 2.92 2.98 3.04

Averaged  CD
2σ averaged  CD
Baseline CD

0°

15°

30°

45°

60°
75° 90° 105°

120°

135°

150°

165°

180°
20 17 14 11 8 5 8 11 14 17 20

Averaged reward  
2σ averaged reward  
Baseline reward

0°

15°

30°

45°

60°
75° 90° 105°

120°

135°

150°

165°

180°
1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0

Averaged  CL
2σ averaged  CL
Baseline CL

Direction angle of single sensor

Direction angle of single sensor

Direction angle of single sensor

3.15

3.10

3.05

3.00

2.95

2.90

0° 30° 60° 90° 120° 150° 180°

0° 30° 60° 90° 120° 150° 180°

0° 30° 60° 90° 120° 150° 180°

30

25

20

15

10

1.2
1.0
0.8
0.6
0.4
0.2

0

Average CD Baseline CD

M
ea

n
 o

f 
C
D

S
td

 o
f 
C
L

R
ew

ar
d

Average CL Baseline CL

Average reward Baseline reward

CD: 2.955

CL: 0.151

Reward: 19.1

(a) (d )

(b) (e)

(c) ( f )

Figure 7. One pressure sensor is placed every 15◦ on the cylinder surface for training, from 0◦ to 180◦, for a
total of 13 sets of training. (a–c) Are the mean CD, reward and the std of CL in the last 10 training episodes,
respectively, (d–f ) are the changing trends of mean CD, reward and the std of CL, respectively.

This further emphasizes that a sensor located closer to the trailing edge of the cylinder
can effectively generate information that can be used to mitigate the std of CL.

To explain this phenomenon more comprehensively, figure 8 depicts the time-averaged
vorticity field of the uncontrolled flow around the cylinder, with the red dots representing
the 13 different single-sensor layout schemes. The sensors located at the trailing edge of the
cylinder, namely L105

III to L180
III , are positioned at the vortex-shedding location, indicating

that these pressure sensors contain crucial information about vortex shedding compared
with the windward side of the cylinder. This observation explains why the trailing edge
pressure sensors outperform the leading edge sensors in the overall training outcomes,
which include the reduction of CD and CL.

To summarize, a general tendency of mean CD, reward and std of CL is presented in
figure 7(d). Notably, a single sensor situated between 0◦ and 180◦ demonstrates near
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Figure 8. Contours of time-averaged vorticity of a plain case, the red points are surface pressure sensors.
Vortex separation occurs between sensors 90◦ and 105◦.

optimal reduced CD and CL, corresponding to an elevated reward value. These results
inspire the training strategy of a single-sensor system LIII at higher Reynolds numbers.

4.3. Robustness of DF-DRL-based plant under more complex flow scenario

4.3.1. Case 1: 2-D flow around a circular cylinder at higher Reynolds number
Based on the promising performance of AFC demonstrated in § 4.2.2, scheme L150

III is
chosen to investigate the robustness of a single surface sensor at higher Reynolds numbers
(Re = 500 and 1000). The policy network architecture is the same as before, consisting
of two dense layers of 512 fully connected neurons, with the input layer receiving data
from a single pressure sensor and the output layer representing the jet velocity. As the
vortex-shedding frequency of the cylinder increases with the rise in Reynolds numbers,
the SAC agent interacts with the environment every 44 and 46 time steps t at Re = 500
and 1000, respectively.

Figure 9 shows the evolution of the mean CD, reward value and CL obtained from
three repeated training processes at Reynolds numbers of Re = 500 and 1000. After
approximately 400 episodes at Re = 500 and 600 episodes at Re = 1000, CD approached
convergence, demonstrating that a stable control strategy was achieved. Meanwhile, the
reward curves gradually increased with each episode, with the std of CL declining and
stabilizing. As described in (2.4), CD and CL are first-order terms, where lift has a weight
of 1, and drag has a weight of 0.1. For the DRL agent, this implies that the reduction
of drag has a higher reward. When it is reduced to its maximum value (2.1 at Re = 500
and 1.9 at Re = 1000), inhibiting lift becomes the only viable option. However, as the
Reynolds number increases, the learning requires more episodes to converge, and the
agents need more trial-and-error steps to comprehend the nonlinear relationships inherent
in the dynamic system.

An interesting phenomenon is observed when comparing the final performance of
drag reduction across different Reynolds numbers. As the Reynolds number increases,
the drag-reduction effect improves. This contradicts our intuition, as we would normally
expect the flow field to become more complex at higher Reynolds numbers, with increased
turbulence and vortex shedding, making it difficult for the DRL agent to learn an effective
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Figure 9. Evolution of the mean CD, reward and the std of CL during the learning process at Reynolds numbers
corresponding to (a–c) Re = 500, and (d–f ) Re = 1000. The averaged curves labelled in blue refer to the
moving average of the mean of all three training curves in each panel. All results are obtained under scheme
L150

III .

strategy for flow control. However, this is not the case. The main reason lies in the
drag force component (Achenbach 1968). The overall drag Fd on the circular cylinder
submerged in a Newtonian fluid can be calculated by

Fd =
∮

p· cos(θ)·dA︸ ︷︷ ︸
Pressure drag

+
∮

τw· sin(θ)·dA︸ ︷︷ ︸
Skin friction drag

, (4.1)
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Figure 10. Component analysis of (a) drag force caused by pressure and skin friction at different Reynolds
numbers, and (b) the proportion of pressure drag in the total drag.

τw = μ·
(

∂vt

∂n

)
Surface

, (4.2)

where p and τw are the normal stress and shear stress on the cylinder surface, respectively,
vt is the velocity along the cylinder surface and n is the normal direction.

Figure 10 shows the magnitudes of pressure drag, skin friction drag and the proportion
of pressure drag in total drag at different Reynolds numbers. It can be observed that, as
the Reynolds number increases, the proportion of pressure drag monotonically increases,
growing from 79.2 % at Re = 100 to 94.5 % at Re = 1500. Under an invariant aerodynamic
shape and inflow velocity, the primary mechanism of AFC was to suppress the shedding
of vortices at the rear end of the cylinder (Wang & Feng 2018). This indicates that the
significant drag-reduction effect was mainly attributed to the reduction of pressure drag
caused by flow separation. As the Reynolds number increased, the proportion of pressure
drag in the overall drag force increased, leading to a more pronounced drag-reduction
effect if the DRL controller effectively manipulates the flow separation.

Tang et al. (2020) also proposed a compelling explanation. The flow around a cylinder
can be decomposed into a superposition of steady base flow and vortex-shedding
components. The base flow is numerically simulated using a symmetric boundary
condition at the equatorial plane of the cylinder. The results showed that the drag force
on the cylinder controlled by DRL was consistent with the drag force of the base flow,
which indicates that the drag reduction of AFC using DRL mainly originates from vortex
shedding, and the drag generated by vortex shedding is primarily attributable to the
pressure drag component. Straightforwardly, under high Reynolds number conditions, the
increased drag caused by the pressure component (both in absolute value and proportion)
allows the DRL agent greater potential for flow control. When the DRL agent finds the
optimal control rate, it leads to a decrease in CD.

The results of the DF-based SAC algorithm are presented in figure 11. The entire training
process is parallelized across five environments provided by DRLinFluids. The algorithm
successfully learned to perform active flow control, resulting in a continuous reduction
of drag and suppression of lift. In the absence of actuation, CD oscillates periodically
around a mean value, as shown in figure 11(a). The mean value of CD is 3.20, with a std of
0.283 for CD and 2.17 for CL. With DF-DRL-based AFC, the mean CD is reduced to 2.17,
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Figure 11. (a) Evolution of CD for the cylinder without (no jet) and with (DF-DRL cylinder) AFC at Re = 500,
as well as the associated normalized flow rate of the jet flow. (b) Temporal variations in smoothed CL for the
cylinder without (no jet) and with (DRL cylinder) AFC in Re = 500. (c) Power spectral density (PSD) of CD
during the period of non-dimensional time ranging from 200 to 300 and (d) PSD of CL during the period of
non-dimensional time ranging from 200 to 300.

corresponding to a drag reduction of approximately 32.2 %. Furthermore, the fluctuation
of CD is suppressed, as indicated by the reduced std value of 0.252. Meanwhile, the std
value of CL is decreased slightly to 1.61.

Power spectrum analyses are conducted to compare CD and CL of the cylinder with and
without AFC, and the results are presented in figures 11(c) and 11(d). The power spectrum
curves for both CD and CL of the plain cylinder exhibit a distinct peak. This indicates
a series of distinct vortex shedding at this frequency, contributing to the majority of the
energy required for the mean drag and the fluctuation. By contrast, the peaks disappear in
the power spectrum curves of CD and CL of the cylinder with DF-DRL-based AFC.

The results presented in figure 12 demonstrate that the turbulent conditions are relatively
weak at a Reynolds number of 1000. Precisely, for the plain cylinder, the mean CD is
measured to be 3.48 with a std of 0.455. In addition, CL exhibits a std of 2.76. However,
when AFC is implemented, a significant reduction in the mean CD is achieved, resulting
in a value of 1.86, corresponding to a drag reduction of approximately 46.55 %. Moreover,
the std of CD decreases to 0.31, indicating a more consistent behaviour of the cylinder
under flow control. Notably, the std of CL is also markedly reduced to 1.61, which is
highly desirable for suppressing the lift force and mitigating flow-induced instability of
the cylinder.
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1000, as well as the associated normalized flow rate of the jet flow. (b) Temporal variations in smoothed CL for
the cylinder without (no jet) and with (DF-DRL cylinder) AFC at Re = 1000. Panels (c,d) show the PSD of CD
and CL, respectively, during the period of non-dimensional time ranging from 200 to 300.

The power spectrum analyses of CD and CL for the cylinder with and without active flow
control are presented in figures 12(c) and 12(d). The power spectrum curves for both CD
and CL of the plain cylinder show an obvious peak, indicating the presence of a regular
vortex shedding of significant energy. In contrast, when AFC is implemented, the peak in
the power spectrum curves of CD and CL for the cylinder is eliminated, indicating that the
jet actuation has completely disrupted the regular vortex shedding.

Figure 13 displays the instantaneous flow field around a circular cylinder, with and
without active control. The impact of controlled jet flow on reducing the aerodynamic
force acting on the cylinder is explained in terms of the flow pattern. In figures 13(a) and
13(c), which represent conditions for Re = 500 and 1000, respectively, a vortex-shedding
pattern is observed for the plain cylinder, as expected. This alternate vortex-shedding
pattern directly contributes to fluctuations in both CD and CL, as demonstrated in figures 11
and 12.

Figures 13(b) and 13(d) illustrate the impact of fluctuating actuation on the
vortex-shedding pattern. The alternate vortex shedding is suppressed, reducing
fluctuations of both CD and CL. Meanwhile, an elongated recirculation bubble is formed
in the near wake, associated with increased pressure and a reduction in drag force. The
elongated wake implies a reduced curvature of the shear layer, corresponding to increased
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Figure 13. Typical snapshots of the vorticity channel around the cylinder at Re = 500 corresponding to the
flow without (a) and with (b) control for Re = 1000 corresponding to the flow without (c) and with (d) control.

pressure at the rearward cylinder side. As a result, the cylinder with AFC experiences less
drag.

Figure 14 depicts the mean vorticity contours around a cylinder, with and without active
control. The increase in the recirculation zone is obvious at Re = 500 and 1000 and
illustrates the effective control strategy learned by the DRL agent. The results demonstrate
that well-trained DRL agents, which utilize a single surface pressure sensor’s temporal
information as the state, can achieve efficient control even under flow conditions with
strong nonlinearity and various Reynolds numbers.

It is worth noting that learning a DRL-based control law for the AFC task presents
a significant challenge in utilizing a single surface pressure sensor as the state in weak
turbulent conditions. However, these results demonstrate the efficacy of DF-DRL-based
AFC of a circular cylinder with sparse surface pressure sensing and offer a promising
avenue for reducing drag and enhancing AFC performance in fluid dynamics systems.

4.3.2. Case 2: 3-D turbulent flow around a circular cylinder
Further consideration is given to a more complex flow scenario that closely resembles
real-world conditions. Turbulent flow around a 3-D cylinder with a circular cross-section
at Re = 10 000 is studied in this section. The entire computational domain was discretized
using polyhedral meshes of varying sizes. The mesh is directly generated from the 3-D
simulation region to accurately simulate the physics and minimize numerical diffusion,
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Figure 14. Mean vorticity contours around the cylinder at Re = 500 corresponding to the flow without (a)
and with (b) control and Re = 1000 corresponding to the flow without (c) and with (d) control.

consisting of a total of 1.33 million grids and 15 layers of boundary mesh on the surface of
the cylinder. The dimensions of the computational domain are set following the study
conducted by Navrose & Mittal (2013). The distances from the inlet (upstream) and
outlet (downstream) to the surface of the cylinder are set at 10D and 25.5D, respectively.
Additionally, the distances from the top and bottom surfaces to the cylinder surface are
both 10D. The cylinder has a spanwise distance of 4D, which has been depicted in
figure 15.

The velocity on the surface of the cylinder is subject to a no-slip condition, ensuring
that the fluid adheres to the cylinder’s surface. At the upstream boundary, free-stream
values are assigned to the velocity. The stress vector is set to zero at the downstream
boundary. On the remaining boundaries, the normal component of the velocity and the
tangential component of the stress vector are prescribed a zero value in both directions.
Throughout the time-marching solution process, the position of the cylinder, its velocity
and the boundary conditions are updated at each nonlinear iteration to capture the evolving
flow dynamics accurately. The results of mesh convergence are listed in table 2.

Subsequently, we conducted AFC experiments on three different configurations for 3-D
flow around a cylinder. These configurations include: (scheme A) flow control using a
single surface pressure sensor as the state input for a DF-DRL-based actuator; (scheme
B) flow control using a single surface pressure sensor as the state input for a vanilla
DRL-based actuator; and (scheme C) flow control using wake filed velocity sensors as
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Figure 15. Schematics of the computational domain for 3-D turbulent flow around a cylinder. The red dot
represents the location of a surface pressure sensor, with 0 degrees corresponding to the most front of the
cylinder and θ equal to 135 degrees. The green bar-shaped regions on either side of the cylinder represent the
jet actuators. The blue boxes depict sensor clusters deployed in the wake region. The wake sensors are deployed
at equal intervals along the x, y and z directions, forming an 8× 3× 3 grid configuration.

Mean of Cd r.m.s. of CL St

Gopalkrishnan (1993) 1.186 0.384 0.193
Bishop, Hassan & Saunders (1997) — 0.463 0.201
Norberg (2003) — 0.394 0.202
Dong et al. (2006) 1.143 0.448 0.203
Fan et al. (2020) 1.192 0.482 0.204
Present 1.151 0.431 0.200

Table 2. Comparison of integral flow quantities in the flow past a 3-D circular cylinder at Re = 10 000.
Here, Cd is the drag coefficient, CL is the root-mean-square (r.m.s.) value of lift coefficient and St is the
Strouhal number.

the state input for a vanilla DRL-based actuator. The results of the learning curves during
the training stage are shown in figure 16.

Figure 16(a) shows the evolution of the mean drag coefficient along with the increase
of DRL training episodes with and without DF lifting. The results indicate that both the
method and the vanilla DRL method achieve significant drag-reduction effects. Compared
with the case without control, the mean drag was reduced to 0.822, 0.867 and 1.01 for
schemes A, B and C, respectively. However, some significant differences can be observed
from the reward learning curves, as described in figure 16(b). The reward curve based
on the DF-DRL method shows a steadily increasing trend throughout the entire episode,
eventually reaching around −76. On the other hand, vanilla DRL, especially with a
surface pressure sensor, exhibits a noticeable instability between episodes 50 and 300,
characterized by large fluctuations, followed by a relatively low value near 320. Another
factor contributing to the difference in reward values is the standard deviation of the lift
coefficient, as shown in figure 16(c). Schemes B and C increase lift fluctuations to 0.626
and 0.526, while scheme A with the DF-DRL method is more effective in suppressing lift
fluctuations, resulting in 0.394.
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Figure 16. Evolution of (a) mean drag reduction, (b) reward and (c) std lift coefficient of vanilla DRL and
DF-DRL method with surface pressure sensing, and vanilla DRL method with wake sensing, respectively.
A detailed description of the layout schemes for the two types of sensors is provided in figure 15.

To further clarify the minor differences in drag reduction observed between the scheme
A and scheme B, additional experiments are conducted under different reward function
settings, notably those excluding the lift coefficient penalty in vanilla DRL training. The
outcomes of these experiments align with the findings of Rabault et al. (2019), wherein the
omission of the penalty term leads to the adoption of a ‘cheating’ control strategy by the
agent. This strategy involves a significant shift towards unilateral continuous jet actuation,
resulting in a decrease in the lift coefficient to 0.62, marking a reduction of 43.6 %.
Concurrently, an increase in the r.m.s. of lift from 1.77 to 6.08 is observed, representing
an increase of 243.5 %. The implementation of such a control strategy, while beneficial for
reducing drag, induces fluctuations in lift that could be deemed unacceptable for certain
practical applications. This highlights the critical need for a well-balanced reward function
in DRL applications, ensuring that the control strategies employed do not compromise the
structural stability and performance in practical scenarios.

After a training phase consisting of 600 episodes, the DF-DRL agent (scheme A)
is further utilized for testing purposes. The results, as shown in figure 17, reveal a
decrease in the drag coefficient from its initial value of 1.151 to 0.822, achieving a drag
reduction of 28.6 %, meanwhile, the r.m.s. of lift coefficient decreases from 0.431 to
0.394. Figures 17(c) and 17(d) demonstrate that DRL-based AFC primarily suppresses
drag and lift forces by inhibiting energy in the relatively low-frequency region, which
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Figure 17. (a) Evolution of CD for the cylinder without (no jet) and with (DF-DRL cylinder) AFC at Re =
10 000, as well as the associated normalized flow rate of the jet flow Q∗i (yellow line), which is defined in
(3.9). (b) Temporal variations in smoothed CL for the cylinder without (no jet) and with (DF-DRL cylinder)
active flow control at Re = 10 000. Panels (c,d) show the PSDs of CD and CL, respectively, during the period
of non-dimensional time ranging from 100 to 200.

is the dominant source of the energy associated with drag and lift forces. It also should
be emphasized that the actuator’s behaviour significantly surpasses the basic dichotomy
of either continuous blowing or suction (at a constant value) and diverges from the
typical operation of a bang-bang controller at its maximum output. Instead, the actuator
matures into an adaptive, real-time controller, adept at dynamically responding to the
environment’s changing conditions.

From the perspective of 3-D vortex structures in the wake field, as shown in figures 18(a)
and 18(b), it is evident that, in the case without any jet injection, small and fragmented
vortices are generated in the wake region near the cylinder. As the flow moves away
from the cylinder, the smaller-scale vortex structures gradually dissipate, making way for
larger-scale vortices. However, when the DF-DRL-based actuator is employed for control,
a more regular elongated vortex structure is formed as a result of the blowing and suction
of air on both sides, combined with the incoming flow.

This elongated vortex structure, resembling a strip created by the actuator, plays a role
in mitigating the generation of fragmented vortices to some extent. As a result, the mid to
far wake region exhibits a more regular and alternating pattern of elongated vortices.

The utilization of the DF-DRL-based actuator introduces a controlled airflow that has
a significant impact on the wake flow characteristics. The formation of the elongated
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Figure 18. Turbulent flow past a circular cylinder at Re = 10 000. Instantaneous vortical structures close to
the cylinder surface coloured by the streamwise velocity (a) without and (b) with DF-DRL-based control, and
streamlines of mean flow (c) without and (d) with DF-DRL-based control.

vortex structure with more regularity and coherence indicates an improved flow control
capability. This controlled vortex structure has the potential to enhance aerodynamic
performance, reduce drag or achieve other desired flow control objectives in various
engineering applications.

The dimensions of the wake recirculation zone, specifically its width and length, directly
influence the base pressure behind a 2-D bluff body (He, Li & Wang 2014; Roy et al. 2019).
As shown in figures 18(c) and 18(d), the wake region of the cylinder, controlled by the
DF-DRL-based actuator, exhibits characteristics compared with the uncontrolled cylinder
that include (i) the disappearance of secondary vortices, (ii) a reduction of 37.1 % in the
maximum width of the wake and (iii) a slight decrease of 15 % in the length of the wake.
The first two factors lead to a significant decrease in drag, which outweighs the adverse
effect of a shorter recirculation zone on drag. This overall effect manifests as a reduction
in drag, resulting in a decrease of approximately 28.6 %.

5. Conclusions and outlook

This study presents significant progress towards practical AFC with surface pressure
sensors located on a circular cylinder as the sole input for a DRL agent. This approach
can potentially advance DRL for real-world applications, such as drag and lift reduction
for vehicles and high-rise buildings. The main results of this study are summarized as
follows.

Firstly, a novel DRL method called DF-DRL is introduced. Essentially, DF-DRL utilizes
prior knowledge to extract one or several features of a nonlinear dynamic system, enabling
it to estimate the complete state of the system to the fullest extent possible. This concept
aligns with the ideas of pattern recognition and reduced-order modelling. The DF-DRL
model combines identification and control, and is not limited to the traditional DRL tasks
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that take the state at a certain moment as input. Instead, suitable DF states are selected
and lifted to a higher-dimensional vector based on the characteristics of different dynamic
systems. Following this step, the vector is used as the state input to the agent. Results show
that DF-DRL with a single surface pressure sensor can achieve the same drag-reduction
performance as the vanilla DRL method using 147 velocity sensors that fully sample the
cylinder wake region.

Secondly, the study investigates the distribution of sensors needed for AFC of the
cylinder wake. We conclude that, in low-to-moderate Reynolds number scenarios, a single
surface pressure sensor can achieve control results comparable to those obtained with 147
wake sensors under AFC when DF-DRL is used. Additionally, we find that the reward
value obtained with a single trailing edge sensor on the cylinder is higher than if the sensor
is located at the leading edge, resulting in a lower mean CD and the std of CL.

Thirdly, three different flow configurations were examined to verify the effectiveness
and robustness of the proposed sensor configuration and DF-DRL method. Results show
that the DRL agent utilizing a single surface pressure sensor is capable of controlling
wake development behind the circular cylinder, even under more complex scenarios
corresponding to higher Reynolds numbers or 3-D turbulent inflow.

Sparse reduced-order modelling (Brunton, Proctor & Kutz 2016b; Loiseau et al. 2018)
is a highly popular research field in which selecting appropriate DF lifting methods for
different fluid dynamic systems can enable more accurate estimation using fewer sensor
data. Processing these features and using them as DRL states is a promising approach.
In the present study, significant reductions in CD of a cylinder are achieved through two
distinct approaches. Specifically, the use of typical DRL resulted in a reduction of 6.4 %
utilizing a 4 sensor layout scheme, while dynamic feature sensing with lifting yielded
a reduction of 8 % compared with the benchmark performance under a low Reynolds
number. Under a turbulent flow around a cylinder at high Reynolds numbers, there
is a more significant reduction in drag coefficient, reaching as high as 28.6 % with a
DF-DRL controller. The results of this investigation demonstrate that the CD value of the
dynamic feature sensing with lift and DRL (DF-DRL) model is impressively lower than
the vanilla model that relies solely on direct sensor feedback, highlighting the efficacy of
this approach for improving aerodynamic performance. The DF-DRL method presents
a promising approach to significantly reducing the number of required sensors while
achieving optimal CD and CL reduction performance, which offers a promising pathway
for taming complex fluid dynamic systems.
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Parameter Value

Numerical time step (non-dimensional dt) 5× 10−4

Maximum action amplitude (non-dimensional) 1.5
Action duration 25/44/46 dt for Re = 100/500/1000
Number of action steps per episode 100 (Wang et al. 2022a)

Table 3. Configurations of flow simulation.

Parameter Value

Actor architecture 512× 512 (two fully connected layers)
Critic architecture 512× 512 (two fully connected layers)
Actor leaning rate 3× 10−4

Critic leaning rate 2× 10−4

Discount factor 0.97
Alpha 0.2
Optimizer Adam (Kingma et al. 2015)
Dynamic feature lifted states S R

30×2 (double vortex-shedding periods in time dimension)
CPU time per episode Up to 20 min
Total CPU time of training stage ≈5200 CPUh

Table 4. Hyper-parameters of the present DF-DRL model.

Author ORCIDs.
Qiulei Wang https://orcid.org/0000-0002-1612-8274;
Lei Yan https://orcid.org/0000-0002-0503-7561;
Gang Hu https://orcid.org/0000-0001-6284-0812;
Wenli Chen https://orcid.org/0000-0002-7471-815X;
Jean Rabault https://orcid.org/0000-0002-7244-6592;
Bernd R. Noack https://orcid.org/0000-0001-5935-1962.

Appendix. Hyperparameters

Tables 3 and 4 present the main numerical parameters of both the simulations and the
learning algorithm.
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