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Abstract

We define and solve classes of sparse matrix problems that arise in multilevel modelling
and data analysis. The classes are indexed by the number of nested units, with two-level
problems corresponding to the common situation, in which data on level-1 units are
grouped within a two-level structure. We provide full solutions for two-level and three-
level problems, and their derivations provide blueprints for the challenging, albeit rarer
in applications, higher-level versions of the problem. While our linear system solutions
are a concise recasting of existing results, our matrix inverse sub-block results are novel
and facilitate streamlined computation of standard errors in frequentist inference as well
as allowing streamlined mean field variational Bayesian inference for models containing
higher-level random effects.
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1. Introduction

Higher-level sparse matrices arise in statistical models for multilevel data, such as units
grouped according to geographical sub-regions or repeated measures on medical study
patients [4]. Other areas of statistics and econometrics that use essentially the same
types of models are longitudinal data analysis [2], panel data analysis [1] and small-
area estimation [12]. Linear mixed models [9] are the main vehicles for modelling,
fitting and inference. While they can be extended to generalized linear mixed models
to cater for skewed, categorical and count response data, ordinary linear mixed models
for Gaussian responses have the most relevance for the sparse matrix results presented
here.

Both frequentist and Bayesian estimates of the fixed and random effects can be
expressed succinctly in terms of ridge regression-type expressions involving design
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matrices (for example, [6]). However, typically the design matrices are sparse, and
naı̈ve computation of the fixed and random effects estimates for large numbers of
groups is inefficient and storage-greedy. For example, a random intercept linear
mixed model for data with 1000 groups and 100 observations per group involves a
random effects design matrix containing 100 million entries of which 99.9% are zeros.
Streamlined computation of the best linear unbiased predictors of the fixed and random
effects are well documented, with Pinheiro and Bates [11, Section 2.2] being a prime
example. The matrix algebraic notion of “QR decomposition” plays a central role in
numerically stable least-squares-based fitting of linear models [3], and also arises in
the current context. It is important to note that such computations are performed after
estimates of the covariance matrix parameters have been obtained via approaches such
as minimum norm quadratic unbiased estimation or restricted maximum likelihood.
Streamlined computation of covariance matrix estimates is tackled by, for example,
Langford [8]. Given the covariance matrix estimates, implementation-ready matrix
algebraic results for streamlined standard error calculations are not, to the best of our
knowledge, present in the existing literature. These rely on efficient extraction of sub-
blocks of the inverses of potentially very large sparse symmetric matrices. Presentation
of these results, in the form of four theorems, is our main novel contribution. In
the interests of conciseness and digestibility, we do not delve into the linear mixed
model ramifications here – which are long-winded due to the various cases that require
separate treatment. This paper is purely concerned with generic matrix algebraic facts
and, while motivated by statistical analysis, is totally free of statistical concepts in its
main results and derivations. Ramifications for statistical inference are described by
Nolan et al. [10].

There is a related, but essentially nonoverlapping, literature concerning inversion
of so-called “arrowhead” matrices, which are invertible matrices that have all entries
equal to zero except for those on the main diagonal and in one row and one column.
Houbowski et al. [7] explain that such matrices “often appear in areas of applied
science and engineering such as head-positioning systems of hard disk drives or
kinematic chains of industrial robots” and then develop a fast method for inversion of
a generalization of arrowhead matrices known as “block arrowhead” matrices. Other
recent contributions of this type are by Nejafi et al. [13] and Stanimirović et al. [14].
It is important to note that while block arrowhead matrices coincide with two-level
sparse matrices, the class of problems treated here and their motivating statistical
applications are different from the central goal of the arrowhead matrix inversion
literature. In multilevel sparse matrix problems, the full matrix inverse is not of interest
but, instead, inverse matrix sub-blocks matching the nonsparse sections of the original
matrix. Arrowhead matrix inversion methods provide much more than is required and,
therefore, are overly slow for large sparse two-level matrix problems. In addition,
multilevel sparse matrices beyond the two-level case do not have block arrowhead
forms. In summary, multilevel sparse matrix problems are, in essence, distinct from
arrowhead matrix inversion problems.
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Motivated by applications described elsewhere (for example, [10]), our main
focus in this paper is on the provision of full, implementable results for both two-
level and three-level sparse matrix problems with statistically relevant matrix inverse
sub-blocks. Both general situations and least-squares-form situations, with QR-
decomposition enhancement, are covered. We believe that it is best to treat each
higher-level case separately. If a future application would benefit from the solution to
the four-level version of sparse matrix problems treated here, then, while notationally
and algebraically challenging, our two-level and three-level derivations point the way
to a solution.

We cover two-level sparse matrix problems in Section 2 and three-level sparse
matrix problems in Section 3. Some concluding remarks are made in Section 4.
Appendix A contains proofs of all theorems.

2. Two-level sparse matrix problems

We begin by defining a two-level sparse matrix problem.

Definition 2.1. Let A be a symmetric and invertible matrix of the form

A =



A11 A12,1 A12,2 . . . A12,m

AT
12,1 A22,1 O . . . O

AT
12,2 O A22,2 . . . O
...

...
...

. . .
...

AT
12,m O O . . . A22,m


, (2.1)

where the dimensions of the sub-blocks of A are as follows:

A11 is p × p and, for each 1 ≤ i ≤ m, A12,i is p × q and A22,i is q × q.

The two-level sparse matrix problem is defined as follows.

(I) Solve the linear system
Ax = a.

(II) Obtain the sub-blocks of A−1 corresponding to the positions of the sub-blocks
A11, A12,i and A22,i, 1 ≤ i ≤ m, in A.

If p and q are small relative to m then matrices defined by A are sparse, since, as
m→∞, the leading term of the fraction of nonzero entries of A is {1 + 2(p/q)}m−1.
In motivating statistical applications, m corresponds to sample size, which often is
large, while p and q correspond to dimensions of model parameter spaces, which are
moderate in size. In the area of longitudinal data analysis, typical values are p = q = 2.
The dimension variable m matches the number of subjects in the longitudinal study,
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which may be in the hundreds or even thousands. If m = 1000, then for p = q = 2, only
about 0.3% of the entries of A are nonzero. Throughout this paper, we assume that p
and q are small relative to m. Similar remarks apply to the three-level case treated in
Section 3.

Our solution to the two-level sparse matrix problem benefits from the following
notation for the sub-matrices of A−1, a and x:

A−1 =



A11 A12,1 A12,2 . . . A12,m

A12,1T A22,1 × . . . ×

A12,2T × A22,2 . . . ×
...

...
...

. . .
...

A12,mT × × . . . A22,m


, a ≡



a1

a2,1

a2,2

...

a2,m


and x ≡



x1

x2,1

x2,2

...

x2,m


, (2.2)

where× generically denotes sub-blocks of A−1 which are in the same positions as the
O blocks in A. The dimensions of the sub-vectors of a and x are as follows:

both a1 and x1 are p × 1 and, for 1 ≤ i ≤ m, both a2,i and x2,i are q × 1.

Armed with the notation in (2.2), part (II) of Definition 2.1 can be expressed as follows.

Obtain the matrix A11 and, for each 1 ≤ i ≤ m, obtain the matrices A12,i and A22,i.

In applications involving multilevel data analysis, the sub-blocks corresponding
to the × symbols are usually not of interest, since they correspond to between-
group covariances. On the other hand, the sub-blocks of A−1 which are in the
same position as the nonzero sub-blocks of A are required for obtaining standard
errors of within-group fits. In the case of mean field variational inference, these sub-
blocks are sufficient for both coordinate ascent and message passing optimal parameter
computation with minimal product restrictions. Details of how these sub-blocks of A−1

are used in linear mixed model inference are given by Nolan et al. [10].
Theorem 2.2 provides a streamlined solution to this problem, such that the number

of operations is linear in m. An analogous expression for |A|, the determinant of A, is
also provided.

Theorem 2.2. Consider the two-level sparse matrix problem given by Definition 2.1
and suppose that all A22,i, 1 ≤ i ≤ m, are invertible. The solution to part (II) of
Definition 2.1 is

A11 =

(
A11 −

m∑
i=1

A12,i A−1
22,i AT

12,i

)−1
,

A12,i = −(A−1
22,i AT

12,i A11)T , and A22,i = A−1
22,i(I − AT

12,i A12,i), 1 ≤ i ≤ m.
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The determinant of A is

|A| = |(A11)−1|

m∏
i=1

|A22,i|.

The solution to part (I) of Definition 2.1 is

x1 = A11
(
a1 −

m∑
i=1

A12,i A−1
22,i a2,i

)
and x2,i = A−1

22,i(a2,i − AT
12,i x1), 1 ≤ i ≤ m.

A proof of Theorem 2.2 is given in Appendix A.1.

2.1. Least squares form and QR-decomposition enhancement In statistical
applications involving linear mixed models, it is common for A to admit a “least
squares form” that lends itself to a solution based on QR decomposition. QR
decompositions of rectangular matrices are a numerically preferred method for solving
least squares problems. A QR decomposition of a rectangular n × p (n ≥ p) matrix X
involves representing X as

X = Q
[
R
O

]
,

where Q is an n × n orthogonal matrix and R is a p × p upper-triangular matrix. Such
a decomposition affords computational stability for least squares problems.

Suppose that x is chosen to minimize the least squares criterion

‖b − Bx‖2 ≡ (b − Bx)T (b − Bx) (2.3)

for matrices

B ≡



B1
•

B1 O . . . O

B2 O
•

B2 . . . O
...
...
...
. . .
...

Bm O O . . .
•

Bm


and b ≡



b1

b2

...

bm


, (2.4)

with sub-matrices and sub-vectors having the following dimensions:

Bi is ni × p,
•

Bi is ni × q and bi is ni × 1, for 1 ≤ i ≤ m,

such that B is full rank. Then it is easily verified that the x that minimizes (2.3) is the
solution to

Ax = a, where A = BT B and a = BT b. (2.5)

Moreover, A is a two-level sparse matrix of the form given by (2.1). The nonzero
sub-blocks of A and the sub-vectors of a are

A11 =

m∑
i=1

BT
i Bi, a1 =

m∑
i=1

BT
i bi,
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and
A12,i = BT

i

•

Bi, A22,i =
•

BT
i

•

Bi, a2,i =
•

BT
i bi, 1 ≤ i ≤ m.

The form of the matrix B in (2.4) arises in statistical models containing both fixed
effects and random effects with two-level structure (for example, [4]). Full details on
this motivational connection are given by Nolan et al. [10].

Theorem 2.3 extends Theorem 2.2 by employing a QR-decomposition approach for
the purpose of numerical stability. Here, and later, we use the following notation for
matrices M1, . . . ,Md each having the same number of columns:

stack
1≤i≤d

(Mi) ≡


M1
...

Md

 .
Theorem 2.3. Suppose that A and a admit the forms defined by (2.4) and (2.5), where
B is full rank. Then the two-level sparse matrix problem may be solved using the
following QR-decomposition-based approach.

(1) For i = 1, . . . ,m,

(a) decompose
•

Bi = Qi
[Ri

0
]

such that Q−1
i = QT

i and Ri is upper-triangular,
(b) then obtain

c0i ≡ QT
i bi, c1i ≡ first q rows of c0i, c2i ≡ remaining rows of c0i,

C0i ≡ QT
i Bi, C1i ≡ first q rows of C0i and C2i ≡ remaining rows of C0i.

(2) Decompose stack
1≤i≤m

(C2i) = Q
[R
O
]

such that Q−1 = QT and R is upper-triangular

and let
c ≡ first p rows of QT

{stack
1≤i≤m

(c2i)}.

(3) The solutions are
x1 = R−1c, A11 = R−1R−T ,

and, for 1 ≤ i ≤ m,

x2,i = R−1
i (c1i − C1ix1), A12,i = −A11(R−1

i C1i)T , A22,i = R−1
i (R−T

i − C1i A12,i).

(4) The determinant of A is

|A| =
{
(product of the diagonal entries of R)

×

m∏
i=1

(product of the diagonal entries of Ri)
}2
.

A proof of Theorem 2.3 is given in Appendix A.2.
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Table 1. Averages (standard deviations) of elapsed computing times in seconds for solving the two-level
sparse matrix problem naı̈vely and with the streamlined approach provided by Theorem 2.3. The fourth
column lists the ratios of the median computing times.

m Naı̈ve Streamlined Naı̈ve/streamlined

100 0.103 (0.0173) 0.00253 (0.000541) 40.8
200 0.768 (0.0214) 0.00429 (0.000574) 179.0
400 6.050 (0.1110) 0.00798 (0.000586) 758.0
800 48.300 (0.7830) 0.01530 (0.001650) 3150.0
1600 386.000 (6.0200) 0.03000 (0.001900) 12900.0

Remark 2.4.

(1) In Theorem 2.3, Step 1 involves determination of m upper-triangular matrices
Ri, 1 ≤ i ≤ m, via QR decomposition which is a standard procedure within most
computing environments. Each of the matrix inversions in Step 3 involve R−1

i ,
which can be achieved rapidly via back-solving.

(2) Calculations such as QT
i bi do not require storage of Qi and ordinary matrix

multiplication. Standard matrix algebraic programming languages are such that
information concerning Qi is stored in a compact form, from which matrices
such as QT

i bi can be efficiently obtained.
(3) Pinheiro and Bates [11, Section 2.2] make use of this QR-decomposition-based

approach for fitting two-level linear mixed models. However, their descriptions
are restricted to the x1 and x2,i formulae, and not those for the sub-blocks of A−1.

Table 1 summarizes the results of a numerical study, for which 100 A matrices
of the form (2.1) were randomly generated and the solution to the streamlined two-
level sparse matrix problem using Theorem 2.3 was compared to the naı̈ve solution,
where the sparse structure was ignored, for increasingly large versions of the problem.
Throughout the study, p = q = 2 and m ranged over the set {100, 200, 400, 800, 1600}.
The ni values were generated uniformly on the set {30, . . . , 60}. To aid maximal
speed, both approaches were implemented in the low-level language Fortran 77,
with LINPACK subroutines used for numerical linear algebra. The naı̈ve approach
involved matrix inversion via Gaussian elimination. The study was run on a MacBook
Air laptop computer with a 2.2 GHz processor and 8 GB of random access memory.
The table lists the average and standard deviation times in seconds across the 100
replications.

From Table 1 we see that the streamlined solutions are delivered in a small
fraction of a second, even for very large versions of the problem. By contrast,
naı̈ve computation takes several minutes for the m = 1600 case, and is more than ten
thousand times slower.
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3. Three-level sparse matrix problems

Three-level sparse matrix problems are such that the A matrix is symmetric and
invertible, but the two-level structure is repeated down the main diagonal. The notation
for the general case becomes difficult to digest, so we start with a concrete example of
such an A:

A =



A11 A12,1 A12,11 A12,12 A12,2 A12,21 A12,22 A12,23

AT
12,1 A22,1 A12,1,1 A12,1,2 O O O O

AT
12,11 AT

12,1,1 A22,11 O O O O O

AT
12,12 AT

12,1,2 O A22,12 O O O O

AT
12,2 O O O A22,2 A12,2,1 A12,2,2 A12,2,3

AT
12,21 O O O AT

12,2,1 A22,21 O O

AT
12,22 O O O AT

12,2,2 O A22,22 O

AT
12,23 O O O AT

12,2,3 O O A22,23



. (3.1)

The general three-level sparse matrix problem is defined as follows.

Definition 3.1. Let A be a symmetric and invertible matrix with partitioning

A =

A11 A12

AT
12 A22

 ,
where A11 is p × p and

A12 =
{[

A12,i A12,i j . . . A12,ini

]}
1≤i≤m,

such that for each 1 ≤ i ≤ m, A12,i is p × q1, and for each 1 ≤ j ≤ ni, A12,i j is p × q2.
The lower right block is

A22 = blockdiag
1≤i≤m





A22,i A12, i, 1 A12, i, 2 . . . A12, i, ni

AT
12, i, 1 A22,i1 O . . . O

AT
12, i, 2 O A22,i2 . . . O
...

...
...

. . .
...

AT
12, i, ni

O O . . . A22,ini




where, for each 1 ≤ i ≤ m, A22,i is q1 × q1, and for each 1 ≤ j ≤ ni, A12, i, j is q1 × q2
and A22,i j is q2 × q2. The three-level sparse matrix problem is defined as follows.
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(I) Solve the linear system
Ax = a.

(II) Obtain the sub-blocks of A−1 corresponding to the positions of the sub-blocks
A11, A12,i, A22,i, 1 ≤ i ≤ m, and A12,i j, A12, i, j, A22,i j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, in A.

For the example three-level sparse matrix given by (3.1), we have m = 2, n1 = 2 and
n2 = 3. To enhance digestibility, we will use these values for m, n1 and n2 throughout
our discussion regarding the three-level sparse matrix problem. However, this can be
easily generalized to any three-level sparse matrix, where m and {ni}1≤i≤m are arbitrary.

The solution to the thee-level sparse matrix problem benefits from the following
notation for the sub-matrices of A−1, a and x:

A−1 =



A11 A12,1 A12,11 A12,12 A12,2 A12,21 A12,22 A12,23

A12,1T A22,1 A12,1,1 A12,1,2 × × × ×

A12,11T A12,1,1T A22,11 × × × × ×

A12,12T A12,1,2T × A22,12 × × × ×

A12,2T × × × A22,2 A12,2,1 A12,2,2 A12,2,3

A12,21T × × × A12,2,1T A22,21 × ×

A12,22T × × × A12,2,2T × A22,22 ×

A12,23T × × × A12,2,3T × × A22,23



, (3.2)

a ≡



a1

a2,1

a2,11

a2,12

a2,2

a2,21

a2,22

a2,23



and x ≡



x1

x2,1

x2,11

x2,12

x2,2

x2,21

x2,22

x2,23



.

The dimensions of the partitioned vectors are as follows:

• a1 and x1 are p × 1 vectors;
• for each 1 ≤ i ≤ m, a2,i and x2,i are q1 × 1 vectors;
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• for each 1 ≤ i ≤ m and 1 ≤ j ≤ ni, a2,i j and x2,i j are q2 × 1 vectors.

As in Section 2, × denotes the blocks of A−1 that are not of interest. Using the
notation exemplified by (3.2), part (II) of Definition 3.1 can be expressed as follows.

Obtain the matrix A11, for each 1 ≤ i ≤ m, obtain the matrices A12,i, A22,i and
for each 1 ≤ i ≤ m, 1 ≤ j ≤ ni, obtain the matrices A12,i j, A12, i, j, A22,i j.

Theorem 3.2 presents the solution for any matrix that has the same sparsity structure
as A when m and {ni}1≤i≤m are arbitrary. An analogous expression for |A| is also
provided.

Theorem 3.2. Consider the three-level sparse matrix problem given by Definition 3.1,
and suppose that all A22,i j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are invertible. For 1 ≤ i ≤ m, define

h2,i ≡ a2,i −

ni∑
j=1

A12, i, j A−1
22,i j a2,i j, H12,i ≡ A12,i −

ni∑
j=1

A12,i j A−1
22,i j AT

12, i, j

and

H22,i ≡ A22,i −

ni∑
j=1

A12, i, j A−1
22,i j AT

12, i, j

and suppose that all H22,i, 1 ≤ i ≤ m, are invertible. The solution to part (II) of
Definition 3.1 is:

A11 =

(
A11 −

m∑
i=1

ni∑
j=1

A12,i j A−1
22,i j AT

12,i j −

m∑
i=1

H12,i H−1
22,i HT

12,i

)−1
,

A12,i = −(H−1
22,i HT

12,i A11)T , A22,i = H−1
22,i(I − HT

12,i A
12,i), 1 ≤ i ≤ m,

A12,i j = −{A−1
22,i j(AT

12,i j A11 + AT
12, i, j A12,i T )}T ,

A12, i, j = −{A−1
22,i j(AT

12,i j A12,i + AT
12, i, j A22,i)}T ,

A22,i j = A−1
22,i j(I − AT

12,i j A12,i j − AT
12, i, j A12, i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

The determinant of A is

|A| = |(A11)−1|

m∏
i=1

(∣∣∣∣∣A22,i −

ni∑
j=1

A12, i, j A−1
22,i j AT

12, i, j

∣∣∣∣∣ ni∏
j=1

|A22,i j|

)
.

The solution to part (I) of Definition 3.1 is:

x1 = A11
(
a1 −

m∑
i=1

H12,i H−1
22,i h2,i −

m∑
i=1

ni∑
j=1

A12,i j A−1
22,i j a2,i j

)
,

x2,i = H−1
22,i(h2,i − HT

12,i x1), 1 ≤ i ≤ m,

x2,i j = A−1
22,i j(a2,i j − AT

12,i j x1 − AT
12, i, j x2,i), 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

A proof of Theorem 3.2 is given in Appendix A.3.
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3.1. Least squares form and QR-decomposition enhancement The three-level
sparse matrix problem also lends itself to QR-decomposition enhancement. For the
special case of A, with m = 2, n1 = 2 and n2 = 3, the least squares criterion has the
form (2.3) with

B ≡



B11
•

B11
••

B11 O O O O O

B12
•

B12 O
••

B12 O O O O

B21 O O O
•

B21
••

B21 O O

B22 O O O
•

B22 O
••

B22 O

B23 O O O
•

B23 O O
••

B23


and b ≡



b11

b12

b21

b22

b23


.

For general values of m and {ni}1≤i≤m, the forms of B and b are

B ≡ [stack
1≤i≤m

{stack
1≤ j≤ni

(Bi j)} | blockdiag
1≤i≤m

{[stack
1≤ j≤ni

(
•

Bi j)| blockdiag
1≤ j≤ni

(
••

Bi j)]}] (3.3)

and
b ≡ stack

1≤i≤m
{stack
1≤ j≤ni

(bi j)}. (3.4)

For each 1 ≤ i ≤ m and 1 ≤ j ≤ ni, the dimensions of the sub-blocks of B and b are as
follows:

Bi j is oi j × p,
•

Bi j is oi j × q1,
••

Bi j is oi j × q2 and bi j is oi j × 1.

We also assume that B is full rank. Then the x that minimizes (2.3) is the solution to
the three-level sparse linear system with

A = BT B and a = BT b. (3.5)

For general m and {ni}1≤i≤m the nonzero components of A and the sub-vectors of a are,
for 1 ≤ i ≤ m,

A11 =

m∑
i=1

ni∑
j=1

BT
i jBi j, a1 =

m∑
i=1

ni∑
j=1

BT
i jbi j, A22,i =

ni∑
j=1

•

BT
i j

•

Bi j,

A12,i =

ni∑
j=1

BT
i j

•

Bi j, a2,i =

ni∑
j=1

•

BT
i jbi j

and

A22,i j =
••

BT
i j

••

Bi j, A12, i, j =
•

BT
i j

••

Bi j, A12,i j = BT
i j

••

Bi j,

a2,i j =
••

BT
i jbi j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

The form of the matrix B in (3.3) arises in statistical models containing both fixed
effects and random effects with three-level structure [4]. Fuller details on this
connection are given by Nolan et al. [10].

Theorem 3.3 provides a QR-decomposition enhancement of Theorem 3.2 for the
least-squares-forms situation.
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Theorem 3.3. Suppose that A and a admit the least squares forms defined by
(3.3)–(3.5), where B is full rank. Then the three-level sparse matrix problem may
be solved using the following QR-decomposition-based approach.

(1) For i = 1, . . . ,m:

(a) for j = 1, . . . , ni:

(i) decompose
••

Bi j = Qi j
[Ri j

0
]
, such that Q−1

i j = QT
i j and Ri j is upper-

triangular,
(ii) then obtain

d0i j ≡ QT
i jbi j, d1i j ≡ first q2 rows of d0i j,

d2i j ≡ remaining rows of d0i j, D0i j ≡ QT
i jBi j,

D1i j ≡ first q2 rows of D0i j, D2i j ≡ remaining rows of D0i j,
•

D0i j ≡ QT
i j
•

Bi j,
•

D1i j ≡ first q2 rows of
•

D0i j,
•

D2i j ≡ remaining rows of
•

D0i j;

(b) (i) decompose stack
1≤ j≤ni

(
•

D2i j) = Qi
[Ri

0
]

such that Q−1
i = QT

i and Ri is

upper-triangular,
(ii) then obtain

c0i ≡ QT
i {stack

1≤ j≤ni

(d2i j)}, c1i ≡ first q1 rows of c0i,

c2i ≡ remaining rows of c0i, C0i ≡ QT
i {stack

1≤ j≤ni

(D2i j)},

C1i ≡ first q1 rows of C0i, C2i ≡ remaining rows of C0i.

(2) Decompose stack
1≤i≤m

(C2i) = Q
[R

0
]
, such that Q−1 = QT and R is upper-triangular

and let
c ≡ first p rows of QT

{stack
1≤i≤m

(c2i)}.

(3) For 1 ≤ i ≤ m, the solutions are:

x1 = R−1c, A11 = R−1R−T , x2,i = R−1
i (c1i − C1i x1),

A12,i = −A11(R−1
i C1i)T , A22,i = R−1

i (R−T
i − C1i A12,i),

and, for 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

x2,i j = R−1
i j (d1i j − D1i j x1 −

•

D1i j x2,i),

A12,i j = −{R−1
i j (D1i j A11 +

•

D1i j A12,iT )}T ,

A12, i, j = −{R−1
i j (D1i j A12,i +

•

D1i j A22,i)}T

and A22,i j = R−1
i j (R−T

i j − D1i j A12,i j −
•

D1i j A12, i, j).
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(4) The determinant of A is

|A| =
[
(product of the diagonal entries of R)

×

m∏
i=1

{
(product of the diagonal entries of Ri)

×

ni∏
j=1

(product of the diagonal entries of Ri j)
}]2
.

Appendix A.4 contains a proof of Theorem 3.3.

Remark 3.4. (1) As in Theorem 2.3, Step 1(a) of Theorem 3.3 involves determi-
nation of

∑m
i=1 ni upper-triangular matrices Ri j, for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, via QR

decomposition. In Step 1(b), m upper-triangular matrices Ri, for 1 ≤ i ≤ m, are
also constructed. A final QR decomposition is applied in Step 2. Each of the
inversions in Step 3 can be solved rapidly via back-solving.

(2) The solutions for x1, A11 and x2,i, A12,i, A22,i, 1 ≤ i ≤ m, have the same forms
as in Theorem 2.3 for two-level sparse matrices. The solutions for x2,i j, A12,i j,
A12, i, j and A22,i j are suggestive of a hierarchical pattern emerging for four-level
and higher-level classes of the problem.

4. Conclusion

In this short communication, we have conveyed the essence of higher-level sparse
matrix problems as viewed through the prism of fitting and inference for multilevel
statistical models. Both time-honoured best linear unbiased prediction and new-
fashioned mean field variational Bayes approaches benefit from our four theorems for
the two-level and three-level situations, with details given by Nolan et al. [10]. Future
extensions to higher-level situations are aided by our results and derivations.

Appendix A. Proofs of Theorems

A.1. Proof of Theorem 2.2 In the case of m = 2, the two-level sparse matrix linear
system problem is 

A11 A12,1 A12,2

AT
12,1 A22,1 O

AT
12,2 O A22,2




x1

x2,1

x2,2

 =


a1

a2,1

a2,2

 ,
which immediately leads to

A11x1 + A12,1x2,1 + A12,2 x2,2 = a1
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and
AT

12,ix1 + A22,ix2,i = a2,i, 1 ≤ i ≤ 2.

It is clear that the same pattern applies for general m, and we have

A11x1 +

m∑
i=1

A12,ix2,i = a1 (A.1)

and
AT

12,ix1 + A22,ix2,i = a2,i, 1 ≤ i ≤ m. (A.2)

Conditions (A.2) immediately imply that

x2,i = A−1
22,i(a2,i − AT

12,ix1), 1 ≤ i ≤ m. (A.3)

Substitution of (A.3) into (A.1) then leads to the solution for x1 as stated in Theorem 2.2.
For the matrix inverse derivation, we again start with the m = 2 case, and note that

A11 A12,1 A12,2

AT
12,1 A22,1 O

AT
12,2 O A22,2




A11 A12,1 A12,2

A12,1T A22,1 ×

A12,2T × A22,2

 =


I O O

O I O

O O I

 .
Observing the pattern from the m = 2 case and then extending to general m, we obtain
the system of equations

A11 A11 +

m∑
i=1

A12,i A12,iT = I, (A.4)

AT
12,i A

12,i + A22,i A22,i = I, 1 ≤ i ≤ m, (A.5)

AT
12,i A

11 + A22,i A12,iT = O, 1 ≤ i ≤ m. (A.6)

From (A.6)
A12,iT = −A−1

22,i A
T
12,i A

11, 1 ≤ i ≤ m. (A.7)

Substitution of (A.7) into (A.4) gives

A11 A11 −

m∑
i=1

A12,i A−1
22,i A

T
12,i A

11 = I,

which implies that

A11 =

(
A11 −

m∑
i=1

A12,i A−1
22,i A

T
12,i

)−1
.

Substitution of (A.7) into (A.5) gives

−AT
12,i A

11 A12,i A−1
22,i + A22,i A22,i = I, 1 ≤ i ≤ m,
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implying that

A22,i = A−1
22,i(I + AT

12,i A
11 A12,i A−1

22,i) = A−1
22,i(I − AT

12,i A
12,i), 1 ≤ i ≤ m.

For the |A| result we first prove the following lemma.

Lemma A.1. Let M be a symmetric invertible matrix with sub-block partitioning
according to the notation

M =

M11 M12

MT
12 M22

 and M−1 =

 M11 M12

M12T M22

 .
Then

|M| = |(M11)−1| |M22|.

Proof. Lemma A.1 is a direct consequence of [5, Theorem 13.3.8] concerning the
determinant of a matrix with 2 × 2 sub-block partitioning. �

From Lemma A.1 we have

|A| = |(A11)−1| | blockdiag
1≤i≤m

(A22,i)| = |(A11)−1|

m∏
i=1

|A22,i|.

A.2. Proof of Theorem 2.3 We first note the following simplification:

BT
i Bi = BT

i QiQ
T
i Bi = CT

0iC0i = CT
1iC1i + CT

2iC2i, 1 ≤ i ≤ m,

where the first equality holds by the orthogonality of Qi, and the second and third
equalities hold by Step 1(b) of Theorem 2.3. A similar sequence of steps can be used
to show that

BT
i

•

Bi = CT
1iRi,

•

BT
i

•

Bi = RT
i Ri,

BT
i bi = CT

1ic1i + CT
2ic2i and

•

BT
i bi = RT

i c1i, 1 ≤ i ≤ m.

These simplifications allow us to represent the nonzero components of A and the sub-
vectors of a as

A11 =

m∑
i=1

(CT
1iC1i + CT

2iC2i), a1 =

m∑
i=1

(CT
1ic1i + CT

2ic2i),

A12,i = CT
1iRi, A22,i = RT

i Ri, and a2,i = RT
i c1i, 1 ≤ i ≤ m.

The derivation of the inverse matrix problem is as follows:

A11 =

(
A11 −

m∑
i=1

A12,i A−1
22,i A

T
12,i

)−1

=

( m∑
i=1

(CT
1iC1i + CT

2iC2i) −
m∑

i=1

CT
1iRi(RT

i Ri)−1RT
i C1i

)−1
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=

( m∑
i=1

CT
2iC2i

)−1
= [{stack

1≤i≤m
(C2i)}T {stack

1≤i≤m
(C2i)}]−1

=

[R
O

]T

QT Q
[
R
O

]−1

= R−1R−T ,

where the fifth equality holds by Step 2 of Theorem 2.3, and we have used the
orthogonality of Q for the sixth equality. The other components of A−1 are found
by simply substituting the above simplifications into Theorem 2.2.

The derivation of the solution to the linear system is:

x1 = A11
(
a1 −

m∑
i=1

A12,i A−1
22,ia2,i

)
= R−1R−T

{ m∑
i=1

(CT
1ic1i + CT

2ic2i) −
m∑

i=1

CT
1iRi(RT

i Ri)−1RT
i c1i

}
= R−1R−T

m∑
i=1

CT
2ic2i = R−1R−T {stack

1≤i≤m
(C2i)}T {stack

1≤i≤m
(c2i)}

= R−1R−T
[
R
O

]T

QT
{stack

1≤i≤m
(c2i)}

= R−1R−T RT c

= R−1c,

where we have used Step 2 of Theorem 2.3 for the fifth and sixth equalities. The
other sub-vectors of x are found by simply substituting the above simplifications into
Theorem 2.2.

For the |A| result, the |A| expression from Theorem 2.2 implies that

|A| = |(A11)−1|

m∏
i=1

|A22,i|

= |RT R|
m∏

i=1

|
•

BT
i

•

Bi|

= |RT R|
m∏

i=1

|RT
i Ri|. (A.8)

Then

|RT R| = |RT ||R| = (|R|)2 = (product of the diagonal entries of R)2, (A.9)

where we have used the result |MT | = |M| for any square matrix M, and the fact that
the determinant of an upper-triangular matrix is the product of its diagonal entries
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[5, Lemma 13.1.1]. Replacement of R with Ri in (A.9) and substitution into (A.8)
leads to the stated result for |A|.

A.3. Proof of Theorem 3.2 In the case of m = 2, n1 = 2 and n2 = 3, the three-level
sparse matrix linear system problem is

A11 A12,1 A12,11 A12,12 A12,2 A12,21 A12,22 A12,23

AT
12,1 A22,1 A12,1,1 A12,1,2 O O O O

AT
12,11 AT

12,1,1 A22,11 O O O O O

AT
12,12 AT

12,1,2 O A22,12 O O O O

AT
12,2 O O O A22,2 A12,2,1 A12,2,2 A12,2,3

AT
12,21 O O O AT

12,2,1 A22,21 O O

AT
12,22 O O O AT

12,2,2 O A22,22 O

AT
12,23 O O O AT

12,2,3 O O A22,23





x1

x2,1

x2,11

x2,12

x2,2

x2,21

x2,22

x2,23



=



a1

a2,1

a2,11

a2,12

a2,2

a2,21

a2,22

a2,23



.

For arbitrary values of m and {ni}1≤i≤m, we immediately obtain the following set of
equations:

A11x1 +

m∑
i=1

A12,ix2,i +

m∑
i=1

ni∑
j=1

A12,i j x2,i j = a1 (A.10)

AT
12,ix1 + A22,ix2,i +

ni∑
j=1

A12, i, j x2,i j = a2,i, 1 ≤ i ≤ m (A.11)

AT
12,i jx1 + AT

12, i, j x2,i + A22,i j x2,i j = a2,i j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni. (A.12)

Conditions (A.12) imply that

x2,i j = A−1
22,i j(a2,i j − AT

12,i jx1 − AT
12, i, jx2,i), 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

which is the solution for x2,i j as stated in Theorem 3.2. Substituting this result into
conditions (A.11) leads to

AT
12,ix1 + A22,ix2,i +

ni∑
j=1

A12, i, j A−1
22,i j(a2,i j − AT

12,i jx1 − AT
12, i, jx2,i) = a2,i, 1 ≤ i ≤ m.

Solving this equation for x2,i and using the definitions for H12,i and H22,i leads to the
solution for x2,i as stated in Theorem 3.2. Finally, substitution of the results for x2,i

and x2,i j into condition (A.10) gives the solution for x1 stated in Theorem 3.2.
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For the matrix inverse, we again illustrate the problem with m = 2, n1 = 2 and
n2 = 3: 

A11 A12,1 A12,11 A12,12 A12,2 A12,21 A12,22 A12,23

AT
12,1 A22,1 A12,1,1 A12,1,2 O O O O

AT
12,11 AT

12,1,1 A22,11 O O O O O

AT
12,12 AT

12,1,2 O A22,12 O O O O

AT
12,2 O O O A22,2 A12,2,1 A12,2,2 A12,2,3

AT
12,21 O O O AT

12,2,1 A22,21 O O

AT
12,22 O O O AT

12,2,2 O A22,22 O

AT
12,23 O O O AT

12,2,3 O O A22,23



×



A11 A12,1 A12,11 A12,12 A12,2 A12,21 A12,22 A12,23

A12,1T A22,1 A12,1,1 A12,1,2 × × × ×

A12,11T A12,1,1T A22,11 × × × × ×

A12,12T A12,1,2T × A22,12 × × × ×

A12,2T × × × A22,2 A12,2,1 A12,2,2 A12,2,3

A12,21T × × × A12,2,1T A22,21 × ×

A12,22T × × × A12,2,2T × A22,22 ×

A12,23T × × × A12,2,3T × × A22,23



=



I O O O O O O O
O I O O O O O O
O O I O O O O O
O O O I O O O O
O O O O I O O O
O O O O O I O O
O O O O O O I O
O O O O O O O I


.

Observing the pattern for the m = 2, n1 = 2 and n2 = 3 case and extending to general
m and {ni}1≤i≤m, we obtain the following system of equations:

A11 A11 +

m∑
i=1

A12,i A12,iT +

m∑
i=1

ni∑
j=1

A12,i j A12,i jT = I (A.13)
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AT
12,i A

12,i + A22,i A22,i +

ni∑
j=1

A12, i, j A12, i, jT = I, 1 ≤ i ≤ m, (A.14)

AT
12,i j A

12,i j + AT
12, i, j A

12, i, j + A22,i j A22,i j = I, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, (A.15)

AT
12,i A

11 + A22,i A12,iT +

ni∑
j=1

A12, i, j A12,i jT = O, 1 ≤ i ≤ m, (A.16)

AT
12,i j A

11 + AT
12, i, j A

12,iT + A22,i j A12,i jT = O, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, (A.17)

AT
12,i j A

12,i + AT
12, i, j A

22,i + A22,i j A12, i, jT = O, 1 ≤ i ≤ m, 1 ≤ j ≤ ni. (A.18)

Rearranging conditions (A.17), we obtain

A12,i j = −(A11 A12,i j + A12,i A12, i, j)A−1
22,i j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

from which the result for A12,i j stated in Theorem 3.2 quickly follows. Rearranging
conditions (A.16), we obtain

A12,i = −

(
A11 A12,i +

ni∑
j=1

A12,i j AT
12, i, j

)
A−1

22,i.

Substituting the results for each A12,i j leads, for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, to

A12,i = −

{
A11 A12,i −

ni∑
j=1

(A11 A12,i j + A12,i A12, i, j)A−1
22,i j A

T
12, i, j

}
A−1

22,i.

Solving the above set of equations for each A12,i and using the definitions of H12,i and
H22,i, we obtain the result in Theorem 3.2. Substituting the results for each A12,i j and
A12,i into (A.13), using the definition of H12,i and solving for A11 leads to its stated
result in Theorem 3.2. Rearranging conditions (A.18), we obtain

A12, i, j = −(A12,iT A12,i j + A22,i A12, i, j)A−1
22,i j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

from which the result for A12, i, j stated in Theorem 3.2 quickly follows. Substitution
of these results into the corresponding equations of condition (A.14) leads to

AT
12,i A

12,i + A22,i A22,i −

ni∑
j=1

A12, i, j A−1
22,i j(AT

12,i j A
12,i + AT

12, i, j A
22,i) = I, 1 ≤ i ≤ m.

Solving the above set of equations for each A22,i and using the definitions of H12,i
and H22,i in equation (3.2) of the main text, we obtain the result in Theorem 3.2.
Rearrangement of (A.15) leads to

A22,i j = A−1
22,i j(I − AT

12,i j A
12,i j − AT

12, i, j A
12, i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

From Lemma A.1 in the proof of Theorem 2.2,

|A| = |(A11)−1|

m∏
i=1

∣∣∣∣∣∣∣∣∣∣
A22,i {stack

1≤ j≤ni

(AT
12, i, j)}

T

stack
1≤ j≤ni

(AT
12, i, j) blockdiag 1 ≤ j ≤ ni(A22,i j)

∣∣∣∣∣∣∣∣∣∣ .
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Application of Lemma A.1 and Theorem 2.2 to the two-level sparse matrices in the
last-written expression leads to∣∣∣∣∣∣∣∣∣∣

A22,i {stack
1≤ j≤ni

(AT
12, i, j)}

T

stack
1≤ j≤ni

(AT
12, i, j) blockdiag 1 ≤ j ≤ ni(A22,i j)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣A22,i −

ni∑
j=1

A12, i, j A−1
22,i j A

T
12, i, j

∣∣∣∣∣ ni∏
j=1

|A22,i j|

and the stated result for |A| immediately follows.

A.4. Proof of Theorem 3.3 We first note the following re-expression:

BT
i jBi j = BT

i jQi jQ
T
i jBi j =

[
D1i j

D2i j

]T [
D1i j

D2i j

]
= DT

1i j D1i j + DT
2i j D2i j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

where the first equality holds by orthogonality of Qi j, and the second equality holds
by Step 1(a)(ii) of Theorem 3.3. A similar sequence of steps can be used to show that

•

BT
i j

•

Bi j =
•

DT
1i j

•

D1i j +
•

DT
2i j

•

D2i j, BT
i j

•

Bi j = DT
1i j

•

D1i j + DT
2i j

•

D2i j,

BT
i jbi j = DT

1i jd1i j+ DT
2i jd2i j and

•

BT
i jbi j =

•

DT
1i jd1i j+

•

DT
2i jd2i j, 1≤ i ≤ m, 1≤ j ≤ ni.

We also have
••

BT
i j

••

Bi j =
••

BT
i jQi jQ

T
i j

••

Bi j =

[
Ri j

0

]T [
Ri j

0

]
= RT

i jRi j,

where the first equality holds by orthogonality of Qi j and the second equality holds by
Step 1(a)(i) of Theorem 3.3. A similar sequence of steps can be used to show that

•

BT
i j

••

Bi j =
•

DT
1i jRi j, BT

i j

••

Bi j = DT
1i jRi j and

••

BT
i jbi j = RT

i jd1i j.

The above simplifications allow us to represent the nonzero components of A and the
sub-vectors of a as

A11 =

m∑
i=1

ni∑
j=1

(DT
1i j D1i j + DT

2i j D2i j), a1 =

m∑
i=1

ni∑
j=1

(DT
1i jd1i j + DT

2i jd2i j),

A22,i =

ni∑
j=1

(
•

DT
1i j

•

D1i j +
•

DT
2i j

•

D2i j), A12,i =

ni∑
j=1

(DT
1i j

•

D1i j + DT
2i j

•

D2i j),

a2,i =

ni∑
j=1

(
•

DT
1i jd1i j +

•

DT
2i jd2i j), 1 ≤ i ≤ m,
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and, for 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

A22,i j = RT
i jRi j, A12, i, j =

•

DT
1i jRi j, A12,i j = DT

1i jRi j, a2,i j = RT
i jd1i j.

Furthermore, each H22,i matrix takes the form

H22,i = A22,i −

ni∑
j=1

A12,i, j A−1
22,i j A

T
12, i, j

=

ni∑
j=1

(
•

DT
1i j

•

D1i j +
•

DT
2i j

•

D2i j) −
ni∑
j=1

•

DT
1i jRi j(RT

i jRi j)−1RT
i j

•

D1i j

=

ni∑
j=1

•

DT
2i j

•

D2i j = {stack
1≤ j≤ni

•

D2i j}
T {stack

1≤ j≤ni

•

D2i j}

=

(
Qi

[
Ri

0

])T

Qi

[
Ri

0

]
=

[
Ri

0

]T [
Ri

0

]
= RT

i Ri, 1 ≤ i ≤ m,

where the fifth equality holds by Step 1(b)(i) of Theorem 3.3. Similarly,

H12,i = CT
1iRi and H12,iH−1

22,iH
T
12,i = CT

1iC1i, 1 ≤ i ≤ m.

We are now in a position to derive the solutions to the inverse matrix problem:

A11 =

{ m∑
i=1

ni∑
j=1

(DT
1i j D1i j+ DT

2i j D2i j) −
m∑
i=i

CT
1iC1i −

m∑
i=1

ni∑
j=1

DT
1i jRi j(RT

i jRi j)−1RT
i j D1i j

}−1

=

( m∑
i=1

ni∑
j=1

DT
2i j D2i j −

m∑
i=i

CT
1iC1i

)−1

=

( m∑
i=1

[{stack
1≤ j≤ni

(D2i j)}T {stack
1≤ j≤ni

(D2i j)} − CT
1iC1i]

)−1

=

( m∑
i=1

[{stack
1≤ j≤ni

(D2i j)}T QiQ
T
i {stack

1≤ j≤ni

(D2i j)} − CT
1iC1i]

)−1

=

 m∑
i=1

[C1i

C2i

]T [
C1i

C2i

]
− CT

1iC1i

−1

=

( m∑
i=1

CT
2iC2i

)−1

= [{stack
1≤i≤m

(C2i)}T {stack
1≤i≤m

(C2i)}]−1 =


(
Q

[
R
0

])T

Q
[
R
0

]
−1

=

[R
0

]T [
R
0

]−1

= R−1R−T ,

where the fourth equality holds by orthogonality of each Qi, the fifth equality holds
by Step 1(b)(ii), the eighth equality holds by Step 2 and the ninth equality holds by
orthogonality of Q. The other components of A−1 are found by simply substituting the
above simplifications into Theorem 3.2, and using a similar sequence of steps.
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For the linear system solution we have

h2,i =

ni∑
j=1

(
•

DT
1i jd1i j +

•

DT
2i jd2i j) −

ni∑
j=1

•

DT
1i jRi j(RT

i jRi j)−1RT
i jd1i j =

ni∑
j=1

•

DT
2i jd2i j

= {stack
1≤ j≤ni

(
•

D2i j)}T {stack
1≤ j≤ni

(d2i j)}

=

[
Ri

0

]T

QT
i {stack

1≤ j≤ni

(d2i j)}

=

[
Ri

0

]T [
c1i

c2i

]
= RT

i c1i, 1 ≤ i ≤ m,

where the fourth and fifth equalities hold by Steps 1(b)(i) and 1(b)(ii), respectively.
Also,

A12,i j A−1
22,i ja2,i j = DT

1i jRi j(RT
i jRi j)−1RT

i jd1i j = DT
1i jd1i j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

The final task is to derive the expressions in Theorem 3.3 for the components of x. For
the first block we have

x1 = A11
{ m∑

i=1

ni∑
j=1

(DT
1i jd1i j + DT

2i jd2i j) −
m∑

i=1

CT
1iR
−T
i RT

i c1i −

m∑
i=1

ni∑
j=1

DT
1i jd1i j

}
= A11

{ m∑
i=1

( ni∑
j=1

DT
2i jd2i j − CT

1ic1i

)}
= A11

( m∑
i=1

[{stack
1≤ j≤ni

(D2i j)}T {stack
1≤ j≤ni

(d2i j)} − CT
1ic1i]

)
= A11

( m∑
i=1

[{stack
1≤ j≤ni

(D2i j)}T QiQ
T
i {stack

1≤ j≤ni

(d2i j)} − CT
1ic1i]

)
= A11

 m∑
i=1

[C1i

C2i

]T [
c1i

c2i

]
− CT

1ic1i

 = A11
{ m∑

i=1

(CT
1ic1i + CT

2ic2i − CT
1ic1i)

}
= A11

m∑
i=1

CT
2ic2i = A11{stack

1≤i≤m
(C2i)}T {stack

1≤i≤m
(c2i)}

= A11
(
Q

[
R
0

])T

{stack
1≤i≤m

(c2i)} = R−1R−T
[
R
0

]T

QT
{stack

1≤i≤m
(c2i)}

= R−1R−T RT c = R−1c,

where the fourth equality holds by the orthogonality of Qi, the fifth equality holds by
Step 1(b)(ii) and the ninth and eleventh equalities hold by Step 2 of Theorem 3.3. We
get the other sub-vectors of x by a similar sequence of computations.
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From Theorem 3.2,

|A| = |(A11)−1|

m∏
i=1

(∣∣∣∣A22,i −

ni∑
j=1

A12, i, j A−1
22,i j AT

12, i, j

∣∣∣∣ ni∏
j=1

|A22,i j|

)
.

From part 3 of Theorem 3.3 we have A11 = R−1R−T , so steps similar to those used for
simplification of |A| in the proof of Theorem 2.3 lead to

|(A11)−1| = (product of the diagonal entries of R)2.

From the above arguments involving the H22,i matrices,∣∣∣∣∣A22,i −

ni∑
j=1

A12, i, j A−1
22,i j AT

12, i, j

∣∣∣∣∣ = |H22,i| = |RT
i Ri| = (|Ri|)2

= (product of the diagonal entries of Ri)2

for 1 ≤ i ≤ m. Lastly,

|A22,i j| = |
••

BT
i j

••

Bi j| = |RT
i jRi j| = (|Ri j|)2 = (product of the diagonal entries of Ri j)2

for 1 ≤ i ≤ m, 1 ≤ j ≤ ni. The stated result for |A| immediately follows.
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