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Introduction

The class of commutative rings known as Baer rings was first discussed by
J. Kist [4], where many interesting properties of these rings were established. Not
necessarily commutative Baer rings had previously been studied by I. Kaplansky
[3], and by R. Baer himself [1 ]. In this note we show that commutative Baer rings,
which generalize Boolean rings and />-rings, satisfy the Birkhoff conditions for a
variety. Next we give a set of equations characterising this variety involving +
and • as binary operations, — and * as unary operations, and 0 as nullary operation.
Finally we describe Baer-subdirectly irreducible commutative Baer rings and state
the appropriate representation theorem.

1. Preliminaries

We will use the following notations:
For a e R where R is a commutative ring,

(a)R = aR = {abibeR}, and (a)£ = {b eR : ab = 0}.

Braces and parentheses without subscripts have their usual meaning. We can now
define a commutative Baer ring: A commutative ring R is a Baer ring iff for any
a e R there is an idempotent a* e R such that

(afR = (a*)R

J. Kist [4] has proved that a commutative Baer ring has no non-zero nilpotents.
Also the idempotent generator 0* of (0)R = R must be a unit 1.

LEMMA, (a)** = [){(b)t : b s {a)*R} satisfies (a)J* = (1 -**)„.

PROOF. Immediate.
The following result is crucial to the whole paper.

PROPOSITION 1. In a commutative Baer ring R, for any pair a, b in R,

(a-b)* = a* + b*-a*-b*.
1
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PROOF. That (a • b)R = (ab)R** can be easily checked where, for S ^ R, the

annihilator of S is (S)R = f]{(s)l :seS}.

Also (ab)*R* = (a)** n (£>)** and so

(ab)*R = ((«)** n (&)£*)£•
Now (a)£* = ( l - a * ) R and similarly for (&)£*. Thus

= (a* + b* — a*b*)R since a* and 6* are idempotent.

And so (ab)* = a* + b* — a*-b* as required.

This Lemma can also be deduced from the isomorphism e\-**£e described by
J. Kist [4], p. 46. The present proof is used to avoid introducing the space of
minimal prime ideals.

2. The variety

Our investigation began with the idea of treating a H* a* as a unary operation
on commutative Baer rings. This led to asking the questions answered in this sec-
tion. Call a subring S of a commutative Baer ring R a Baer-subring if x e S
implies x* e S. Then we have

LEMMA 1. If R is a commutative Baer ring and S is a Baer-subring of R, then
S is a commutative Baer ring.

PROOF. For any x e S, (x)R = (x*)R in R and it is immediate that

Thus the Lemma is proved.

LEMMA 2. If {R^-.aeA} is a family of commutative Baer rings, and
R = XoeA -ft* *s their direct product as commutative rings, we may write <*„>* =
•(x*) and make R into a commutative Baer ring.

PROOF. We must prove that « x a » R = «*«>*)R. Clearly (ya> • <xa> = <0a>
for all a e A iff yxxx = 0 for all a e A. But this is equivalent to

y* 6 (X*)R. = (**)«„ for all <XBA,

or yxx* = yx for all ixeA.

Thus <>«> •<***> = <Ja> or, equivalents, <>»a> e « ^ > * ) R . Finally, we check
that <xa>* as defined, is idempotent, and we are through.
Let us call an ideal / of the commutative Baer ring R a Baer-ideal if for any x, y
of R with x—y e J we also have x* —y* e J. Then we obtain
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LEMMA 3. If R is a commutative Baer ring and J is a Baer-ideal of R, then
R/J is a commutative Baer ring.

REMARK. This result is equivalent to defining a Baer-congruence p in the
obvious manner and proving that the quotient ring R/p is still a commutative
Baer ring.

PROOF. Suppose / is a Baer-ideal. Then R/J is certainly a commutative ring,
and also if e2 = e in R, (e/J)2 — e/J in R/J. We must prove that

(x/J) • (y/J) = (0/7) iff (y/J)(x*/J) = (y/J)
or, equivalently,

xyeJ iff yx*—y e J
for x, y e R.

Assume xy e J. Then (xy — 0) e / and, by the definition of a Baer-ideal,

(xy)*-0* = (x*+y*-x*y*-l)eJ.

Multiplying through by y, we obtainy(x*+y* — x*y*—l) = yx*— y e J.
For the reverse, assume that yx*— ye J. Then — x(yx*— y) = xy e J and

the Lemma is proved.

LEMMA 4. There exist commutative Baer rings with non-empty carriers.

PROOF. Immediate. Take any Boolean ring with unit.

THEOREM 1. If we view commutative Baer rings as algebras 8£ =
<i?; + , - , — , * , 0> with the definitions of subalgebra,product algebra and quotient
algebra given above, then commutative Baer rings form a variety.

PROOF. This follows immediately, using Lemmas 1-4, from Birkhoff's Theo-
rem. See P. M. Cohn [2] pp. 169-170.

The next step in this work was to find a set of equations defining commutative
Baer rings. This proved quite easy, as we see in the next section.

3. The equations

Writing down all the useful identities satisfied by * in a Baer ring gave the
following result immediately. Equation (x) is crucial, and is shown elsewhere to
characterise Baer rings within a certain class.

THEOREM 2. Suppose & = <i?; + , - , - , * , 0> is an algebra with binary
operations +, •; unary operations —, *; and nullary operation 0; and also that 8%
satisfies the following equations:

(i) (x+y)+z = x+(y+z) (ii) x • (y • z) = (x • y) • z

(iii) x+y = y + x (iv) x-y = y x
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(v) X + 0 = x (vi) x + ( -x ) = O

(vii) x • (y + z) = x • y + x • z (viii) x • x* = 0

(ix) x-(x*)* = x (x) (x-y)* = x*+y* + (-(x* •>>*)).

Then R is a commutative Baer ring where (x)« = (x*)R for the idempotent x*.

PROOF. By a sequence of Lemmas.

LEMMA 5. Equations (i) to (vii) define a commutative ring </?; + , •, —, 0>.

PROOF. This is well known.
We will thus assume that all the usual facts that hold in an arbitrary com-

mutative ring (not necessarily with identity) are valid in 01.

LEMMA 6. The element l e i ? given by 1 = Df0* satisfies the equation 1 • x = x.

PROOF. 0* = (0 • x*)* = 0*+x**-0* • x** by (x) where x** = Df(x*)*.
Thus x** = 0* • x** and so by (x)

x = x** • x = (0* • x**) • x = 0* • (x** • x) = 0* • x

and 1 = 0* is a multiplicative identity.

LEMMA 7. //"x • j = 0 //ze« x* • y = j .

PROOF, x • y = 0 implies x*+j*—x* • y = 0* = 1. Thus

(x*+j*-x* • y*)- y = 1 • y = y

and we obtain x* • y = y since y* • y = 0 by (viii).
The Lemma follows.

LEMMA 8. Ifx* • y = y then x • y = 0.

PROOF, X* • y = y implies, by (x), x**+>'* —x** • y* = y*. But this implies
that

and so, by (x),
x** = x** • y*

x = x • x** = x • x** • y* = xy*.

Finally, applying y, x-y = x-y*-y = 0 and we are through.

LEMMA 9. x* • x* = x*.

PROOF. By (viii), 0 = x • x* and so

1 = J C * + X * * - X * - X * *

follows from (x). But this is

1 = x* + x**

using (viii). Hence
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x* = x* • 1 = x*(x** + x*) = x* • x*
again by (viii).

This proves the Lemma.

PROOF OF THEOREM 2. From Lemmas 7 and 8 we see that for x e R, x • y = 0
iff** • y = y. This means that (x)« = (x*)R where x* is, by Lemma 9, idempotent.
This completes the proof.

4. Sub-direct unions

It is well known that amongst commutative rings with no non-zero nilpotents,
fields are precisely the subdirectly irreducible ones. To emphasise that our notions
are all Baer-notions, we use the terms: Baer-subdirectly irreducible and Baer-
subdirect union.

LEMMA 10. A commutative Baer ring R is Baer-subdirectly irreducible iff R is
an integral domain.

PROOF. By well known results, a commutative Baer ring R is Baer-subdirectly
irreducible if the intersection J of all the Baer-ideals of R is different from zero.
This uses the obvious relation between Baer-ideals and Baer-congruences.

Suppose that R is Baer-subdirectly irreducible and so its / ^ (0)^. Then for
j ^ 0 in J,j-0eJ and so j*-O*eJ and. /**-0** = ; * * e J . Now j * * is an
idempotent and R cannot have idempotents other than 0 or 1 and soy** = 1.
Thus (j%* = R and (;)£ = (0)R. And so we have proved that J = R and no
non-zero element 7 e R has non-trivial annihilator i.e. R is an integral domain.

The fact that integral domains are Baer-subdirectly irreducible commutative
Baer rings is easily proved by reversing the above.

THEOREM 3. Any commutative Baer ring is a Baer-subdirect union of a family
of integral domains. Conversely, any Baer-subring of a Baer-direct union of integral
domains is a commutative Baer ring.

PROOF. Immediate, using Birkhoff's Theorem and Lemma 9. This subdirect
union representation can be given explicitly by

(t>:R-* X RIM, x(j> = <x(M)>
MeM

w h e r e ^ is the set of all minimal prime ideals of R, see [5].

5. Final remarks

One of us (T.P.S.) is shortly publishing some results [5] which discuss many
properties of commutative Baer rings involving prime and minimal prime ideals,
the algebra of idempotents and related ideas. A number of characterisations of
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commutative Baer rings are given from amongst various classes of commutative
rings.

However we have not considered the topic of independence amongst the
equations (i) —(x). And the question: 'When is a commutative Baer ring a Baer-
subdirect union or a Baer-direct union of fields?' seems interesting. Then there is
the problem of describing free commutative Baer rings and so on.
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