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Abstract

In this paper, we focus on the multivariate Hausdorff operator of the form
(4, % Xy

Ho()(x) = f g

(0,400)" Hiy« Iy

where dt = dt; dt, - - - dt, or dt = dt| dyt> - - - dyt, is the discrete measure in g-analysis. The sharp bounds
for the multivariate Hausdorff operator on spaces L” with power weights are calculated, where p € R\{0}.
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1. Introduction

The aim of this paper is to study Hausdorff operators in the framework of quantum
calculus (g-calculus). g-calculus, while in a sense dating back to Euler, Jacobi,
and also Jackson more recently (see [10]), is now beginning to be more useful
in quantum mechanics, having an intimate connection with commutativity relations
and Lie algebra. The reader can investigate [2, 4, 6] and [7] to observe numerous
applications in various fields of mathematics. One interesting topic, g-analogues of
the many inequalities derived from classical analysis, has been established. Its use can
be seen in works such as [3, 8, 13, 15, 17]. These integral inequalities can be used for
the study of qualitative and quantitative properties of integrals, see [1, 14, 19].

Let G = (0, +0)" and let O(¢1,1,, ..., 1,) be a locally integrable function on G. For
any x = (x1, X2, ..., X,) € G, the multivariate Hausdorff operator is defined on G by

Hof(x) = f — ) dn diy - dy. (1.1)
G 1ty
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Let yg be the characteristic function of a set E. If we take ®(ty,...,1,) = ;?:1

X[1,+oo)(tj)t;1, then the Hausdorff operator Hg is reduced to the multivariate
Hardy operator H,, which can be found in [16]

H,f(x) = o ff ff(fl,fz,-- ty) dty dt; - -

If we take ®(t1,15,...,t,) = [1" 1 X0,11(¢}), then the Hausdorff operator Hg, is reduced
to the adjoint of multivariate Hardy operator H,

oo (L t,. ..,
Hf(x) = f f flnteol) g,
hty- -1,
For any x = (x1,x2,...,x,) €G, a = (ozl,a/z,...,a,,) with a; e R (1 <i<n), let
xt = )c‘ll‘)c2 <+ xp" and dx = dx; dx; - - - dx,. We notice that the Hausdorf' operator

and its varieties have attracted a lot of research related to modern harmonic analysis
in the last decade. One can find these facts in recent survey papers [5] and [12].
Among numerous research results in recent publications, one that interests us most
is the work of Wu and Chen [18]. They showed that the operator Hy is bounded on
power weighted Lebesgue spaces L? (1 < p < +00), that is

1/p 1/p
( f Hof(oPx"dx) <G, f fredd)”

provided that ®(x) > 0 and Cy = fG O(x) [T, (1“’ P71 gx < +o0. Moreover, they
proved that the constant Cy is the sharp one. On the other hand, in [13] Maligranda,
Oinarov and Persson derived some g-analysis variants of the classical Hardy inequality
and obtained their corresponding best constants. Motivated by their work, a natural
question raised is whether the g-analogue of a multivariate Hausdorff operator enjoys
the same properties as the classical multivariate Hausdorff operator defined in (1.1).

To this end, we first introduce some basic notations and definitions of g-calculus,
which are necessary for understanding this paper. Fix a positive number g € (0, 1). For
a function f : [0,b) —» R, 0 < b < +0o0, the g-integral or the g-Jackson integral of f is
defined by the formula:

j; ") dgt = (1 - q)xio 4" f(¢"x), for x € (0,b], (1.2)
k=0
and the improper g-integral of a function f : [0, +c0) — R is defined by the series
fo " fdp =0 -0 f 4“1(d"), (13)
k=—o0
provided that the series on the right-hand sides of (1.2) and (1.3) converge absolutely
(see [9] and [11]). In the following, for simplicity of notation, for &« € R and p € R\{0},

we will write f € LP(t* d,t) if f satisfies

+00
f [fOIP 1" dyt < +oo,
0
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and let

oo 1/p
Hﬂmm@n=(i: e dy)

Also, we write f € LP(d,t) if @ =0, and write dyx = dyx| dgx; - - - dyx, for any x =

(x1,%x2,...,%,) €G and 0 < g < 1. We now define the g-analogue of multivariate
Hausdorft operator by
X1 X2 Xn
Hdmw=f—ilL#l%mm%n@wm@mm@%
G nty---ty

the g-analogue of the multivariate Hardy operator by

nf(-x)— f f f f(t19t23" tn)dtldIZ

and the g-analogue of multivariate adjoint Hardy operator by

o= [ [ [Tt g,

Now let us describe our main results. These results are new even if @ = 0.

THeEOREM 1.1. Let @ = (a1, az,...,a,) and a; R fori=1,...,n. Assume that ® is a
nonnegative function and f € LP(x" d,x). If 1 < p < +oo, then the following inequality
Mo f1lzr e a0 < Crll fllLr e d,)- (1.4)

holds, provided that
C = f O, 1, ) [ |6 gty dyt - dyty < oo (1.5)
G i=1

If p <1 (p # 0), then we have the reverse inequality

Mo fllLr e a0 = Crll fllLr e d)-

provided that (1.5) holds. Here we assume f # 0 and ® > 0 if p < 0. Moreover, for
p € R\{0}, the constant C| is the best possible one.

When applied, we can easily obtain the following results.

CoroLLARY 1.2. Let @ = (a1, @3, ...,ay) and (1 + a))/p <1 fori=1,...,n Assume
that @ is a nonnegative function and f € LF(x* d,x). If 1 < p < +oo, then the following
inequality

H fllr e dyxy < Call fllie e a0
holds with

Cr=(1-¢g) I_Il ll/p alp’
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If p <1 (p #0), then the following inequality

H fllr e dyxy = Call fllee e a0

holds. Here we assume that f # 0 if p < 0. Moreover, for p € R\{0}, the constant C; is
the best possible one.

CoroLLARY 1.3. Let @ = (a1, @3, ...,ay) and (1 + a;)/p >0 fori=1,...,n Assume
that @ is a nonnegative function and f € LP(x* d,x). If 1 < p < +oo, then the following
inequality

G, fller e d,) < C3llfller e a0

holds with

n s 1
CG=(1-9 l:[ —1 —q(1+ai)/p'

If p <1 (p # 0), then we have the reverse inequality

] fllr e dy = Call fllree dyx-

Here we assume that f # 0 if p < 0. Moreover, for p € R\{0}, the constant Cj is the
best possible one.

It is interesting to see that the constant C; in Theorem 1.1 and the constant Cy
obtained by Wu and Chen [18] are in the same integral form, but with different
measures, one is continuous and the other is discrete. More significantly, we are
able to see that C; is also the sharp constant in the case of p <1 (p # 0) with a
reverse inequality for the g-analogue multivariate Hausdorft operator Hg. With the
same method, in the last section we will show that Cy is also the best constant for the
reverse inequality

[Ho fllzr(xe axy = Coll fllroe dax)s
in the case of p < 1 (p # 0).
It should be pointed out that from Theorem 1.1 we can obtain LP(x® d,x)
boundedness for g-analogues of many well-known operators when we take different
functions ®. These operators include the Cesaro operator, the Hardy-Littlewood—

Pélya operator, the Riemann—Liouville fractional derivatives, and the weighted Hardy
operator, among many others.

2. Proof of Theorem 1.1

Proor. Using the definition given in (1.3),

+00
> cb(%,...,x—jf’)f(qf'l,...,qfn),
g g

n=—09

Hof(x)=(1-q" ) -
Ji=—00 J
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where ji,... j, are integers. Then for p € R\{0}, by changing variables k; = [; — j; for
1 <i < n, we have

1/p

[l a0 = f o fC0 ¢ dy)

- q)n<1+<1/p>>( Z Z nql(m)

[] =—00 l,=—c0 i=

ln . .
ol L)

- q)n<1+<1/p>>( Z Z nql(m)

[1:—00 n:—oo i=

Z Z DG, q" "

kl——OO

P)I/P

,,)1/,,. 2.1)

We first study the case 1 < p < co. Assume that (1.5) holds. Using the above
expression (2.1) and the Minkowski inequality,

IHo fllrcee a0 < (1 = g +0/7 Z Z O(q",....q")
1/p
(Z Z l_[q”“‘”lf(q“ “ ...,q’""‘")f)
lj=—c0 l,=—c0 i=

Changing variables m; = [; — k; for 1 <i < n, the above estimate is

a q)n(1+(1/P)) Z Z q)(qkl’.'.,q )l_[qk(lﬂk)/p

kj=—c0

(% 2 e isaraor)”

mp=—co my=—00 j=

l+a)/p1
= ftl)(tl, e ty) | | tg ra/p dgty - dgty | fllLr e dyx)s
G i=1

which implies that the inequality (1.4) holds with the constant (1.5).
We need to show that the constant (1.5) is the best one in (1.4). Suppose N € Z*
and0<0<1.Lety=(1,y2,...,y2) € G, and

n
Fin®) = [ [ M 2y gen, gnso ().
j=1
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Denote #7 by the number of integers in the interval I. A straightforward calculation

shows that
||f9,N||Zp(Xndqx) -q) Z Z l_[)( N(1+6) q—N(1+H)](qj)

=(1-9 (ﬂ[—N(l +6),N(1 +6)])"
=1 - "IN +6)] + 1)",
where [N(1 + 6)] denotes the integral part of the real number N(1 + 6). Then,

P
HH(DfO,N“LV(xa dyx)

:leq,fg,N(x)V’x"dqx

q)n(p+1) Z Z qum)

l]:—oo l,=—00 i=

p

cb(q"‘, s @V fan(@ g R

)”W“Z Z(Z Z@(q’“,..., )

lj=—c0 l,=—00 k=

P
X 1_[ (qk ((Ha’)/p))([ N+ g N(1+6)](ql[7k[)))

RIS SR i PR

lj=—00 [py==c0 j=1

(Z Z@(qkl,..., )

k,=—00

p
% l_[(qk ((1+rlz)/P)X[ N(L+0) q—N(l+e)](qli_ki))([q9N, q*“NJ(qki)))

q)"“’“)Z Z(Z Z@(q’“,..., )

li=-N [y=—N kj=—c0 =

N 1_[ (D Py q_gN](qk,-)))

i=1

:(l—q)”(”“)(2N+1)”(Z ZCD(qk‘,..., )

kj=—o0

n
y l_[ (qk,»(1+a,»)/pX[qﬂN’ q,wv](qk" ))) .
i=1
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Thus,

+00

[): PSR 01— oy
(I>6‘NL(x<dq)2(2N+1)(1 q):’(z ZCD(qk‘,..., )
ol gy CINA+6O)]+1)

ky=—00

xﬂ@““‘”/f’ @)

+00

(2N +1)'(1 —q)” "
: (2N(1+6) + 1)" (Z Z‘D(q oo g™

ky=—0c0

x ]_[(qk“”')“’ (@)

Now we fix the 8 and let N — +co. This yields the following result.
Ho fonlI7) o )
m ———w
N—oo ||f0N”Lp(xad x)

(m)( -q Z quqkl,...,q )nqkawp).

ky=—00

By letting # — 0", we conclude that

IIHo fo |
fim fim eavleedy g Z Z(D(qkl,,__,q )l—lqkam,)/p

-0 Notoo || fo NllLr(xe d, ) —
”7

Hence, we finish the proof of the case 1 < p < +c0.
When p < 1 and p # 0, we use the Minkowski inequality to conclude that

||H(I)f||Lp(xaqu) > (1 q)n(1+l/p) Z Z cI)(‘]l’61"”7 kn)
kyj=—o0 ky=—00
n

(3 S TTdv g bor)

lj=—c0 l,=—00 i=1

1+a;)/p-1
= fq)(tl, s ty) | | l‘l(- ralp dqtl T dqtn ”f”L/’(x'l dyx)-
G i=1

To show that the constant C, is sharp, we need to choose two classes of suitable
functions according to the values of p. Thus, we divide p into two cases: 0 < p < 1
and p < 0.

(1) 0< p<1.ForN eZ", letting y = (y1,¥2,...,yn) € G, we take

n
o) = [ g, )
j=1
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A direct calculation shows that
f IivOPy* dgy = (1 —@)"(2N + 1)".
G

Then, also

P
o £l 4,0

- f o fy (0" d,x

q)n(p+1) Z Z l_lql(1+a)

[j==c0 [y==c0 i=

P
X ( Z ... Z (D(qk' e, qkn) 1_1[ (q(ki_li)(l‘*'ai)/p/\/[q}v’ q_N](qli_ki)))
|=—00 P =—00 i=
q)"(P+1) Z Z

ll=—00 =
L p
(Z Z O [ @ xg i)
kj=—o0 ky,=—00 i=1
D IR [Ty
(p+1) ki Kn ki(1+a;)/p
-9 (3 D g g
i=—c0  ly=—c0 kj=h-N  ky=l—N i=1
It follows from Holder’s inequality that
N L+N L,+N n P
Z Z( Z Z (D(qkl’m’qk,,)l_[qkiumo/p)
L= =—N ki=h-N  ky=l—N i=1

N L+N L,+N

S(ZN: Z( >y (D(q/q,___,qkn)ﬁqkfam,»)/p))p
i=1

L=-N  l,=—N ki=h-N  kny=l,—N
N N

SHESNE

L=N

n

<@2N+1) ( Z Z oG, .. g l_lqki(l‘ﬂli)/P)p‘

ki=—2N  k,=—2N i=1

We now complete the proof of the case 0 < p <1, since

|Ho fyllzr e d,x o ilea
im ——————" < lim (1 - )" Z Z O | | g
Notoo || fyllzr e a0 WeN k=N i=1
_(1_q)l’l Z Z (D(qk]"..’q )l_lq (1+(Y:)/17
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(i) p < 0. Assume y = (¥1,...,¥n) € G. Fore > 0, let

fs(y)—l_[ S e 3))-

J=1

1 - n
f [fe Iy dgy = ( qg) ,
G l-g¢q
and

IH(I)fE”Lp(Xad x) )n(P+1) Z Z l—[ ql i(1+a;)

Then,

lj=—00 i =—00 [=
®(qk',---,q AR ---,ql”_k”)p
)n(p+1) ~lie
( Z Z O(q",....q ”)lil(qki(lJra"Jr‘g)/p/\/[l,+oo)(ql"_k")))]7
= k,,:—oo i=1
0 n
)n(P+1)
lFZ—OO Zoo i= q
D) k,-(1+a,-+8)/p)p
X (Z Z q q ];[q
)"(P+1) ~lie
e ZI—Z—OO n—Z—oo 1_[ !
( Z Z (", q n)ﬁqk;(l+(t,-+s)/p)p
( ) ((1 q)n Z Z CD(qk‘,...,q )l_lqk(1+oz,+s)/p) ,
= ky=—oco

where we have used p < 0 and @ > 0. Letting € — 0%, then

Ho fellLr e d,0)
m —— < (1 - g)' Z Z ®(g",....q" )]_[q“““)“’

i
e=0" || fellrxe a0

Combining all the estimates, we show that the constant C is sharp and therefore
finish the proof of the theorem. O
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3. A final remark

In this section, we can modify the previous argument to yield the best constant for
the Hausdorff operator Hg given by (1.1) in the L? spaces with p < 1 (p # 0), ignoring
whether these spaces make sense. The following result can be regarded as fixing the
gap present in Wu and Chen’s result, found in [18]. Using similar notation as before,
welett = (t1,tr,...,t,) € Gand dt =dt dt, .. . dt,.

Tueorem 3.1. Let @ = (a1, @2, ...,a,) and a; €R for i =1,...,n. Assume that ® is
a nonnegative function and f € LP(x* dx). If p < 1 (p # 0), then we have the reverse
inequality

[Ho fllzrxe axy = Coll fllzrxe dx)

provided that

n
Co = f@(z) [ [a" e dr < +oo. 3.1)
G i=1
Here we assume f # 0 and ® > 0 if p < 0. Moreover, for p <1 (p # 0), the constant
Cy is the best possible one.

Proor. By changing variables,

X1

(2, ..., 2
Haf = | =i ’")f<r1,...,t,,)df=fq)(;—l""’t”)f(ﬂ""’):_")‘”‘ G-
G G n

oty Loty 4

Assume that (3.1) holds. Using the equality (3.2) and the Minkowski inequality for
the case p <1 (p #0),

Vo flerie an = ( fG |Ho f(x)|Px dx)l/p
(L[R2 e ar)”
> [0 [ )

n
1+a; —1
= [0 T4 s
G i=1

The next step is to show that the constant Cy is sharp. Similar to the proof of
Theorem 1.1, we need to construct two classes of functions with different p.

Case 1. 0 < p < 1. For any fixed real number r satisfying 0 < r < 1, letting N € Z*,

we take
n

—(1+a;
fu(x) = ]_[ Iy (), for x = (x5, X,) €G.
i=1
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Let us observe that
AL o gy = N (G

Also,

O(1) Xy r o l/p
“H(DfN“L”(x‘Idx) L L tl f (tl ,Z)dl) X dx)
D7) ( )(1+a /p (Xi) )p )1/17
v x| —|dt] x¥d
f(; fG Iy- 1_[ Xi Xt t; rax

(11]

n 1/p
Cat [ ater- ’dr) x| dx) .
(LS L el []

i=1

Considering the last term, we see that

N rN xi N X, r N n p 1/p
(f f (f f o [ [t d,) [T+ dx)
N N xrV XN i=1 i=1
r—N r*N r*ZN r*ZN n P n 1/]7
< (f f (f f (I)(t)l—[ti(lm)/p_l dt) l—[xi_ldx)
rN rN rZN rZN i=1 i=1
r72N r72N n
= f f (1) Hfi(1+ai)/p_l dt || fullLexe dy-
2N Y L
i=1
Letting N — +o0, gives
-2N -2N n
. Ho fullre ) " 4
lim M < lim f .. f (f) l_[ £ radlp=1 gy
N—+oo N—+oo ) on SN L

1AVl e )
n
= f (1) 1_[ g 1ra/r=l gy
G i=1

Case 2. p < 0. Fore> 0, we let

n

1 i
Fo0) = [ ] s (), forx= (1, 2,) € G
i=1

It is easy to see that
—n

”ngLf’(x"dx) &

[ 2 2)ar) v an
L(Lth)(t) H(x[)(lm,w)/PX[lm)( )dt) £ dx

Also

P
”H(Dfsull’(x”dqx)
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X | Xn n P n
= | e | [t dt) x; 70 dx
LU [ oo [

i=1

—+00 +00 X1 X n P n
> (f f d(1) g +a+a)/p=l dt) 17 dx.
f; ~f1 0 0 l;[ 1_[ !

i=1

Since @(¢) > 0 and p < 0, the last term is greater than or equal to

+00 +00 +00 +00 n a Vip-1 p 1 |
O Yol B A dt) 1 dx
Jo el ] L]
n p
:g‘”( f q)(t)l_[ti(“""*s)/"‘ldt).
G i=1

Letting € — 0%, we see that

=0 || fellere ax) £-0*

Ho follirxe , L L
m M < lim (1) | | g reite)/p=1 gy — f(p(t) | | g red/p=1 gy
¢ ¢ i=1

i=1

This proves the theorem. O
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