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Abstract

Two graphs, the edge crossing graph E and the triangle graph T are associated with a simple
lattice polygon. The maximal independent sets of vertices of E and T correspond to the triangu-
lations of the polygon into fundamental triangles. Properties of E and T are derived including
a formula for the size of the maximal independent sets in E and T. It is shown that T is a
factor graph of edge-disjoint 4-cycles, which gives corresponding geometric information, and is
a partition graph as recently defined by the authors and F. Harary.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 05 C 99, 51 M 05,
52 A 43.

1. Introduction

If the values of a real valued function / are known at a sequence of integral
points 1,2,...,« on the real line there is only one function which is affine
o n UJ +1], 1 < 7 < w — 1, and agrees with / at each j e {1,2, . . . ,«}. The
two-dimensional analog is more interesting. Let P be a simple polygon in
the plane with vertices at lattice points and let a given real valued function /
denned on P and its interior have values y,; = f((i,j)) at lattice points (i,j)
inside and on the boundary of P. In general there will be many functions /
which are piecewise affine approximations to / in the following sense:

(i) f((i,j)) = f({i,j)) - yij for all lattice points (i,j) inside and on the
boundary of P, and
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392 Duane DeTemple and Jack M. Robertson [2]

(ii) / is affine on fundamental triangles (those with exactly three lattice
points on the boundary at the vertices and no interior lattice points) in P.

To emphasize the dependence of / on the triangulation of P, suppose the
values y?ij are linearly independent in the vector space of real numbers over
rational scalars. Let P be triangulated into fundamental triangles with node
(i,j) having valence a,; in the graph which the triangulation induces. By
Pick's Theorem [1] each of the triangles has area 1/2, so if / satisfies (i) and
(ii) we have

(ij) interior to P (ij) on boundary of P

Thus if /i and fi are determined by two triangulations of P, fp fi = fpfi if
and only if each lattice point has the same valence in the two triangulations.
A natural question is how many triangulations are there for a simple lattice
polygon PI

In the following work we relate the problem of determining all possible
triangulations of P to the problem of determining all maximal independent
sets of vertices in each of two related graphs. Properties of the graphs are
discussed. One of the graphs is a special intersection graph and this naturally
introduces partition graphs which have been studied in [2], [3], and [4].

Some related problems are known to be difficult. Given inputs of a graph G
and arbitrary integer k, determining whether or not G has an independent set
with k or more vertices is A^P-complete [5], and finding the number of maxi-
mal independent sets for an arbitrary graph is #P-complete [8], so the results
we give are likely more of theoretical rather than practical interest (except
possibly in special instances). Also Gavril [6] has shown that determining
whether or not a graph is the intersection graphs for a set of rectangles on an
mxn grid is TVP-complete. The graphs T we consider below are intersection
graphs for triangles inside lattice polygons.

We first formalize the terminology and introduce graphs E and T. A
segment joining two lattice points is fundamental if no other lattice point lies
on the segment. A fundamental triangle is one which does not contain any
lattice points in its interior and whose three sides are each a fundamental
segment. A fundamental parallelogram is a parallelogram either of whose
diagonals divides it into two fundamental triangles. A lattice polygon is one
having all of its vertices at lattice points in the plane.

Let P be a simple lattice polygon, and suppose that all fundamental edges
in P are drawn. The edge crossing graph E of P is constructed by letting
each fundamental edge e' in P correspond to a vertex e in E, with ex and ei
adjacent if and only if the corresponding fundamental segments e[ and e'2 in
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FIGURE 1. Two lattice polygons and their associated edge and triangle
graphs

P intersect at a point interior to each segment. Figure 1 shows examples of
edge crossing graphs for two different polygons. Note that all boundary edges
correspond to isolated vertices in E; more generally e is isolated in E if and
only if the corresponding segment e' in P is used in every triangulation of P.
The examples show that E need not be connected even after isolated vertices
are removed.
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Recall that a subset M of the vertices of a graph is independent if no two are
joined by an edge, and is maximal independent if it is not properly contained
in a larger independent set of vertices. The following result is clear from the
construction of the edge crossing graph, since each maximal independent set
of vertices in E determines a unique triangulation of P, and conversely.

THEOREM 1. Ifxis the set of all triangulations P and J!E is the set of all
maximal independent sets in E, then there is a natural bijection x «

Next we define the triangle graph T associated with a given lattice polygon
P. To each fundamental triangle t' in P corresponds a vertex t in T, with
t\ and ti adjacent if and only if the corresponding triangles /', and t'2 share
common interior points (again see Figure 1). Noting that each maximal in-
dependent set in T corresponds to a unique triangulation of P and conversely
we have the following.

THEOREM 2. / / T is the set of all triangulations P and J(T is the set of all
maximal independent sets of vertices in T, then there is a natural bijection
x *

2. Properties of E and T

Let P have b boundary lattice points and / interior lattice points. Pick's
Theorem [1] states that the area A of P is given by A - (b/2) + i - 1.

THEOREM 3. All maximal independent sets in E have the same cardinality,
if ME € J^E, then \ME\ = 2b + 3i - 3. All maximal independent sets in T
have the same cardinality, if Mr e J?T, then \Mj\ = b + 2i - 2.

PROOF. By Pick's Theorem we have 2A = b + 2i - 2 = \Mj\ since each
fundamental triangle has area 1/2. The expressions 3\MT\ + b = 2\ME\ count
each edge twice so that \ME\ = 3/2\MT\ + b/2 = 3/2(6 + 2/ - 2) + b/2 =
2b + 3/ - 3.

The examples of Figure 1 suggest that the edge crossing graph E may in
general be considerably simpler than the triangle graph T. That is in fact the
case.

THEOREM 4. There is a mapping f which assigns to each edge of the graph
E a unique A-cycle in T. Furthermore the collection of these 4-cycles forms a
disjoint cover of all edges in T.
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PROOF. The result depends, of course, on the geometry of the lattice struc-
ture inside P. We first construct a function / which associated edges of the
graph E with well defined four cycles in T. It is then established that / covers
each edge of T once and only once.

B= v

FIGURE 2. The kite k(e[,e'2) for two intersecting fundamental edges

Let e\e2 be an edge in E indicating that fundamental segments e\ joining
lattice points A and B and e'2 joining C and D share a common interior point
in P (Figure 2). The convex hull of e[ U e'2 is a quadrilateral we call the kite
k(e'i,e'2). From among the lattice points lying in or on triangle ABC let 5" be
the one nearest but not on e[. Triangle ABS has area 1/2 since it is funda-
mental by the choice of S. Furthermore 5 is uniquely determined in triangle
ABC since it must fall on the next line parallel to e[ which contains lattice
points and the distance between successive lattice points on this parallel line
is the same as the distance from A to B.

Similarly lattice points T, U and V are uniquely determined in the kite so
that triangles ABT, CDU and CDV are all fundamental. In fact ASBT and
CUDV are fundamental parallelograms since vector SA must equal vector
B~T because of the way lattice points fall on the two parallel lines containing
lattice points nearest to AB. Also these fundamental parallelograms must lie
in the original polygon P. To justify this we note that S, for example, must
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lie in P because it falls on the line nearest AB which contains lattice points,
and segment CD is given to lie in P.

Let / assign to the pair e\,e2 the four cycle f(e[,e2) in T given by the
intersection of triangles ABS, CDU, ABT and CDV taken in that order. The
function / is well defined by what precedes and it remains to be shown that
each edge in T is covered once and only once by / . To see that edges in T are
covered at most once, suppose the four cycle f(e\, e2) contains the edge t\ ti in
T generated by the intersection of triangles t\ and t'2. Assume these triangles
and edges are labeled as in Figure 2 where t\ = AABS and t2 = ACDU. If
f(e[',e2) also contains t\t2 for a second pair of crossing fundamental edges
e" and e2, then e" must be a side of t\ and e2 must be a side of t'2 because of
the way / is defined. But if e\ is replaced by e" or e'2 is replaced by e2 then
one of A or B is not an endpoint of e" or one of C or D is not an endpoint
of e'{. Let us assume A is not an endpoint of e". Then the kite k{e",e") does
not contain A and any triangle with A as one of its vertices, in particular t\,
cannot correspond to an endpoint of edges in f{e",e").

1 crossing 2 crossing

3 crossing 4 crossing

FIGURE 3. The four types of intersections of pairs of fundamental triangles

Finally we must observe that any edge t\ t2 in T is part of a four cycle
f(e[,e2). This requires that we identify the proper intersecting sides e[ of
t\ and e2 of t'2 so that both t\ and t'2 lie in k(e[,e'2). For a pair t\,t'2 there

https://doi.org/10.1017/S1446788700033115 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033115


[7] Graphs associated with triangulations 397

may be one, two, three, or four possibilities for the pair e\, e'2 as illustrated in
Figure 3. In every case, any two fundamental triangles sharing interior points
lie in a unique kite determined by two of their intersecting sides, e\ and e'2,
making edge t\ti lie on the four cycle f(e've'2). That the convex hull of two
intersecting fundamental triangles is a kite determined by two intersecting
edges can be shown directly, or by observing that those two triangles are
affine images of a variation of those shown in Figure 3.

COROLLARY 1. The graph T is a factor graph of edge-disjoint 4-cycles and
isolated vertices.

COROLLARY 2. For a given simple lattice polygon, T has four times as many
edges as E.

COROLLARY 3. If P is a lattice polygon in the plane and all fundamental
triangles in P are considered, the number of pairs of such triangles sharing
interior points is a multiple of 4.

The graph T is an example of a partition graph as recently investigated in
[2], [3] and [4]. A graph G is a partition graph if to each vertex v of G there
can be assigned a set Sv ^ 0 so that the following properties hold:

(i) distinct vertices u, v of G are assigned distinct sets SU,SV;
(ii) uv is an edge of G if and only if SunSv / 0 ;
(iii) every maximal independent set of vertices, M, of G gives a partition

of S = \JSU; that is, S = \JW&M^W [\J denotes disjoint union].
Properties (i) and (ii) mean G is an intersection graph [7], and so a parti-

tion graph is a special type of intersection graph.

THEOREM 5. The triangle graph T for a polygon is a partition graph.

PROOF. The system of all fundamental edges in P divides P into disjoint
regions Xj. If t 6 T, let 5, = {x,: x, c t'}, where t' is the corresponding
fundamental triangle inside P. It is clear the graph T is a partition graph for
the family {S,: te T}.

Theorems 3 and 5 and Corollary 1 give three properties of triangle graphs
T. Conversely one can ask: if the graph G is a partition graph and a fac-
tor graph of edge-disjoint four-cycles and isolated vertices with all maximal
independent sets of the same cardinality, is it the triangle graph for some
lattice polygon P? It is interesting to note there are no such graphs with 5 or
6 vertices, so that after C4 the next graph with the three properties is the one
shown in Figure 1.
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