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μ∗-ZARISKI PAIRS OF SURFACE SINGULARITIES

CHRISTOPHE EYRAL and MUTSUO OKA

Abstract. Let f0 and f1 be two homogeneous polynomials of degree d in three

complex variables z1, z2, z3. We show that the Lê–Yomdin surface singularities

defined by g0 := f0+zd+m
i and g1 := f1+zd+m

i have the same abstract topology,

the same monodromy zeta-function, the same μ∗-invariant, but lie in distinct

path-connected components of the μ∗-constant stratum if their projective

tangent cones (defined by f0 and f1, respectively) make a Zariski pair of curves

in P
2, the singularities of which are Newton non-degenerate. In this case, we

say that V (g0) := g−1
0 (0) and V (g1) := g−1

1 (0) make a μ∗-Zariski pair of surface

singularities. Being such a pair is a necessary condition for the germs V (g0)

and V (g1) to have distinct embedded topologies.

§1. Introduction and statement of the result

Let g0 and g1 be two polynomials in three complex variables z1, z2, z3. We assume

that they vanish at the origin 0 ∈ C
3 and that the corresponding germs of surfaces,

V (g0) := g−1
0 (0) and V (g1) := g−1

1 (0), have an isolated singularity at 0. It is well known

that if V (g0) and V (g1) have the same embedded topology (i.e., if the pairs (C3,V (g0))

and (C3,V (g1)) are homeomorphic in a neighborhood of the origin, or equivalently, by

[28], if the pairs (S5ε,Kg0) and (S5ε,Kg1) are diffeomorphic for any ε small enough), then

they have the same Milnor number (see [18], [23], [33]). Here, Kgl denotes the link of gl
(l ∈ {0,1}), that is, Kgl := S

5
ε∩V (gl) for ε small enough, where S5ε is the sphere with radius

ε centered at 0 ∈C
3. (Note that the diffeomorphism type of the embedded link (S5ε,Kgl) is

independent of ε, provided that ε is small enough.) On the other hand, it is quite possible

for two isolated surface singularities V (g0) and V (g1) to have the same Milnor number

and non-diffeomorphic embedded links. In [3], [4], using Luengo’s theory of superisolated

singularities [20], Artal-Bartolo even showed that the embedded topology of the link of

a superisolated surface singularity is not determined by the topology of the abstract link

and the characteristic polynomial of the monodromy. However, in practice, given g0 and

g1 with the same characteristic polynomial (or equivalently, the same monodromy zeta-

function), the same abstract topology, and even with the same Teissier μ∗-invariant, it is

extremely difficult to determine whether (S5ε,Kg0) and (S5ε,Kg1) are diffeomorphic or not.

The goal of this paper is to investigate a special class of Lê–Yomdin surface singularities

which are “likely to systematically produce” pairs of germs sharing all these invariants but

having non-diffeomorphic embedded links. Such pairs are called μ∗-Zariski pairs of surface

singularities and are defined as follows.

Consider a classical Zariski pair of (reduced) projective curves C0 = {f0 = 0} and

C1 = {f1 = 0} of degree d in the complex projective plane P
2, that is, there are regular

neighborhoods N0 and N1 of C0 and C1, respectively, such that (N0,C0) and (N1,C1) are
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homeomorphic, while (P2,C0) and (P2,C1) are not. The first example of such a pair was

found by Zariski [36] in the early 1930s, and their systematic study was initiated by Artal-

Bartolo [5] in the mid-1990s (for a detailed survey on this topic, see [6], [25]). By a linear

change of the coordinates z1, z2, z3, we may assume that the singularities of the curves C0

and C1 are not located on the coordinate lines zi = 0 (1 ≤ i ≤ 3) and that their defining

polynomials f0 and f1 are convenient1 and Newton non-degenerate on any face Δ of their

(common) Newton diagram if Δ is not top-dimensional. The fact that the singularities

of the curves do not sit on the coordinate lines implies that for any integers m ≥ 1 and

1≤ i≤ 3, the polynomials

g0 := f0+zd+m
i and g1 := f1+zd+m

i

define an isolated surface singularity at 0 (see [21, Th. 2]). Such singularities are called

m-Lê–Yomdin singularities and were first investigated by Yomdin and Lê in [19], [13],

respectively. The monodromy zeta-function (or the characteristic polynomial) of such a

singularity was computed by Siersma [29], [30], Stevens [31], and Gusein-Zade, Luengo, and

Melle-Hernández [11] (see also [26]). (The Milnor number was already known from [21].)

In [7], Artal-Bartolo, Cogolludo-Agust́ın, and Mart́ın-Morales gave a characterization for

the abstract link of a Lê–Yomdin singularity to be a rational homology sphere.

In the special case where m = 1, a 1-Lê–Yomdin singularity is called a superisolated

singularity. Superisolated singularities were introduced by Luengo [20] to answer important

questions and conjectures. For example, in [20], Luengo gave examples of superisolated

surface singularities for which the μ-constant stratum in the miniversal deformation is not

smooth.

Now, let us make precise the notion of Zariski pair of surface singularities. Let g0 =

f0 + zd+m
i and g1 = f1 + zd+m

i be two Lê–Yomdin surface singularities obtained from a

Zariski pair of curves f0 and f1 as above.

• We say that (V (g0),V (g1)) is a weak ζ-Zariski pair of surface singularities if g0 and g1
have the same monodromy zeta-function (in particular, the same Milnor number).

• A weak ζ-Zariski pair for which the germs V (g0) and V (g1) (or equivalently, the links Kg0

and Kg1) have the same abstract topology is called a ζ-Zariski pair (without the adjective

“weak”).

• A (weak) ζ-Zariski pair is said to be a (weak) μ∗-Zariski pair if g0 and g1 have the same

μ∗-invariant while belonging to distinct path-connected components of the μ∗-constant

stratum.

• A (weak) μ∗-Zariski pair is called a (weak) μ-Zariski pair if furthermore g0 and g1 lie in

different path-connected components of the μ-constant stratum.

• Finally, a (weak) ζ-Zariski pair is called a (weak) Zariski pair if the germs V (g0) and

V (g1) (or equivalently, Kg0 and Kg1) have distinct embedded topologies.

Note that a (weak) Zariski pair of surface singularities V (g0) and V (g1) sharing the

same μ∗-invariant is always a (weak) μ-Zariski pair, and hence a (weak) μ∗-Zariski pair.

That is, being a (weak) μ∗-Zariski pair is a necessary condition for being a (weak) Zariski

pair. Indeed, by [10, Th. 5.3], if g0 and g1 lie in the same path-connected component of

the μ∗-constant stratum, then they can always be joined by a piecewise complex-analytic

1 This means that the Newton diagram Γ(fl) of fl (l ∈ {0,1}) meets each coordinate axis.

https://doi.org/10.1017/nmj.2023.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.34


490 C. EYRAL AND M. OKA

path (defined in the relevant natural way), and by a well-known theorem of Teissier [32,

théorème 3.9], this in turn implies that the diffeomorphism type of the pairs (S5ε,Kg0) and

(S5ε,Kg1) is identical.

In [20], Luengo proved that for superisolated singularities (i.e., for m= 1), the abstract

links Kg0 and Kg1 are homeomorphic. The second-named author showed a similar property

for m ≥ 1 if the singularities of the corresponding curves C0 and C1 are Newton non-

degenerate (see [27, Th. 24 and Rem. 25]). In [3, théorème 4.4] and [4, théorème 1.6, §1.7,
and corollaire 5.6.6], Artal-Bartolo proved that if m= 1, then V (g0) and V (g1) also share

the same characteristic polynomial of the monodromy, and if furthermore the Alexander

polynomials of the curves C0 and C1 do not coincide, then V (g0) and V (g1) do not have the

same embedded topology. In particular, combined with Luengo’s result, this shows that, in

this latter case, (V (g0),V (g1)) is a Zariski pair of surface singularities.

In this paper, we prove the following theorem.

Theorem 1.1. If the singularities of the curves C0 and C1 are Newton non-degenerate

in some suitable local coordinates,2 then the pair made up of the m-Lê–Yomdin singularities

V (g0) and V (g1) is a μ∗-Zariski pair of surface singularities.

Again, we emphasize that being a μ∗-Zariski pair is a necessary condition for being

a Zariski pair of surface singularities. We also highlight that in the above theorem, the

Alexander polynomials of the curves C0 and C1 may coincide.

We expect that with the assumption of the theorem, (V (g0),V (g1)) is a μ-Zariski pair,

and in fact, a Zariski pair of surface singularities. As mentioned above, in the special

case of superisolated singularities (i.e., m= 1), and provided that the curves have distinct

Alexander polynomials (but not necessarily Newton non-degenerate singularities), this is

already proved by combining Artal-Bartolo’s [3], [4] and Luengo’s [20] results.

§2. Proof of Theorem 1.1

First, we show that (V (g0),V (g1)) is a ζ-Zariski pair of surface singularities, and then

we prove that it is in fact a μ∗-Zariski pair. To simplify, we assume that i = 1, that is,

gl = fl+zd+m
1 (l ∈ {0,1}).

To compute the monodromy zeta-function ζgl,0(t) of gl, we use the classical formula of

Siersma (see [29, Main theorem, p. 183] and [30, Th. 3.4 and Rem. 3.6]), Stevens (see [31,

p. 140]), and Gusein-Zade, Luengo, and Melle-Hernández (see [11, p. 250]) (see also [26,

Lem. 3.2 and Th. 3.7]). More precisely, the ordinary point blowing up at 0 ∈ C
3, denoted

by π : X → C
3, being a biholomorphism over C

3 \V (gl), the tubular Milnor fibration of

gl at 0 can be lifted to X, so that the pullback π∗gl ≡ gl ◦π is a locally trivial fibration

which is isomorphic to it. Let U1 := P
2 \ {z1 = 0} be the standard affine chart of P2 with

coordinates (z2/z1, z3/z1). In the corresponding chart X ∩ (C3×U1) of X, with coordinates

y ≡ (y1,y2,y3) := (z1, z2/z1, z3/z1), the pullback π∗gl is written as

π∗gl(y) = yd1(fl(1,y2,y3)+ym1 ).

The first factor, yd1 , corresponds to the exceptional divisor E 	 P
2, while the second one

represents the strict transform Ṽ (gl) of V (gl). Outside of the exceptional divisor, Ṽ (gl) has

no singularities. On the exceptional divisor, it has a finite number of isolated singularities,

2 For instance, this is always the case if the singularities are “simple” in the sense of Arnol’d [2].
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which are given by the singular points p ∈Σ(Cl) of the reduced curve Cl. Then the formula

for the zeta-function mentioned above is written as

ζgl,0(t) = ζd(t)× (1− td)μ
tot(Cl)×

∏

p∈Σ(Cl)

ζπ∗gl,p(t), (2.1)

where ζd(t) is the zeta-function of a Newton non-degenerate homogeneous polynomial of

degree d (i.e., ζd(t) = (1−td)−d2+3d−3), Σ(Cl) is the set of singular points of Cl, and μtot(Cl)

is the total Milnor number of Cl (i.e., the sum of the local Milnor numbers at the singular

points of Cl).

By our assumption, there exist local coordinates x= (x1,x2,x3) and u= (u1,u2,u3) near

p0 ∈ Σ(C0) and p1 ∈ Σ(C1), respectively, where x1 = u1 = y1 and (x2,x3) and (u2,u3) are

analytic coordinate changes of (y2,y3),
3 such that

π∗g0(x) = xd
1(h0(x2,x3)+xm

1 ) and π∗g1(u) = ud
1(h1(u2,u3)+um

1 ),

where h0 and h1 are Newton non-degenerate. Moreover, if the singularities (C1,p1) and

(C0,p0) are topologically equivalent, then we may assume that the Newton diagrams, Γ(h0)

and Γ(h1), of h0 and h1 coincide. It follows that π∗g0 and π∗g1 are Newton non-degenerate

with the same Newton diagram, and hence, by Varchenko’s formula (see [34, Th. (4.1)]),

we have

ζπ∗g0,p0(t) = ζπ∗g1,p1(t).

Since (C0,C1) is a Zariski pair of projective curves, the total Milnor numbers μtot(C0) and

μtot(C1) coincide, and the equality ζg0,0(t) = ζg1,0(t) follows immediately from (2.1).

To conclude that (V (g0),V (g1)) is a ζ-Zariski pair, it remains to observe that the links

Kg0 and Kg1 have the same abstract topology; this is proved in [27, Th. 24 and Rem. 25].

Now, let us show that (V (g0),V (g1)) is a μ∗-Zariski pair of surface singularities. For

that, we must first show that g0 and g1 have the same μ∗-invariant at 0. We recall that the

μ∗-invariant of gl at 0, introduced by Teissier in [32], is the triple

μ∗
0(gl) := (μ0(gl),μ0(gl|H),mult0(gl)−1),

where μ0(gl) is the Milnor number of gl at 0, μ0(gl|H) is the Milnor number at 0 of the

restriction of gl to a generic plane H of C
3 through the origin (this number is usually

denoted by μ
(2)
0 (gl)), and mult0(gl) is the multiplicity of gl at 0.

By [21, Th. 2], for any l ∈ {0,1}, the Milnor number μ0(gl) is given by

μ0(gl) = (d−1)3+mμtot,

where μtot is the (common) total Milnor number of C0 and C1.

For a generic plane H of C3 through the origin, the restriction fl|H is a homogeneous

polynomial of degree d with an isolated singularity at 0, so that its Milnor number at 0

is μ0(fl|H) = (d− 1)2. Since fl|H is Newton non-degenerate and the term zd+m
1 is above

the Newton diagram Γ(gl|H) = Γ(fl|H), the restriction gl|H is Newton non-degenerate too.

Thus, its Milnor number at 0 is determined by Γ(gl|H), and hence we have

μ
(2)
0 (gl) := μ0(gl|H) = μ0(fl|H) = (d−1)2.

3 Hereafter, such coordinates will be called admissible coordinates.
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Lastly, since the multiplicities of g0 and g1 at 0 are equal to d, it follows that g0 and g1
have the same μ∗-invariant at 0, namely, for any l ∈ {0,1}, we have

μ∗
0(gl) = ((d−1)3+mμtot,(d−1)2,d−1).

Finally, and this is the heart of the proof, we must now show that g0 and g1 lie in

different path-connected components of the μ∗-constant stratum. To this end, we argue

by contradiction. Suppose that g0 and g1 belong to the same component. Then, by [10,

Th. 5.3], there exists a μ∗-constant piecewise complex-analytic family {gs}0≤s≤1 connecting

g0 and g1. In particular, the multiplicity mult0(gs) of gs at 0 is independent of s∈ [0,1], and

the initial polynomial in(gs) of gs (i.e., the sum of the monomials of gs of lowest degree)

has degree d.

Lemma 2.1. For each s ∈ [0,1], the homogeneous polynomial in(gs) is reduced, so that

the projective curve Cs ⊆ P
2 defined by in(gs) has only isolated singularities.

Proof. We argue by contradiction. Suppose there exists s0 ∈ [0,1] such that in(gs0) is

not reduced (i.e., Cs0 has non-isolated singularities). Then, for a generic linear plane H

of C3, there are coordinates (x,y) for H and linear forms �1(x,y), . . . , �q(x,y) such that

in(gs0)|H(x,y) = �1(x,y)
p1 · · ·�q(x,y)pq

with p1 ≥ ·· · ≥ pq and p1 ≥ 2. By a linear change of coordinates, we may assume that

�1(x,y)≡ x, so that

in(gs0)|H(x,y) = xp1h(x,y),

where h is a homogeneous polynomial of degree d− p1 (in particular, in(gs0)|H is not

convenient with respect to the coordinates (x,y)). By adding monomials of the form xα

and yβ for α, β large enough, we may also assume that gs0 |H is convenient. Now, since the

integral point (1,d−1) is not on the Newton diagram Γ(in(gs0)|H) of in(gs0)|H with respect

to the coordinates (x,y), it follows4 that

ν(Γ−(gs0 |H))> ν(Γ−(g0|H))

(see Figure 1, where Γ+(in(gs0)|H) is the Newton polyhedron of in(gs0)|H in the coordinates

(x,y)). Here, ν(·) denotes the Newton number (see [14] for the definition) and Γ−(gs0 |H)

stands for the cone over Γ(gs0 |H) with the origin as vertex. (Again, Γ(gs0 |H) denotes the

Newton diagram of gs0 |H with respect to the coordinates (x,y).) The polyhedron Γ−(g0|H)

is defined similarly. Since

μ0(gs0 |H)≥ ν(Γ−(gs0 |H))

4 Let us briefly show it, for instance, in the special case where the Newton boundaries are as in Figure 1,
the general case being completely similar. Clearly, in this case,

ν(Γ−(gs0 |H)) = 2S′− (d+ c)− (d+e)+1,

where S′ = S + cq/2 + ep/2 with p ≥ p1 ≥ 2 and S is the area of the triangle (0,d,d). Similarly,
ν(Γ−(g0|H)) = 2S−2d+1. Since p≥ 2, it follows that

ν(Γ−(gs0 |H))−ν(Γ−(g0|H)) = c(q−1)+e(p−1)> 0

(note that if q = 0, then c= 0, and the above inequality still holds true).
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Figure 1.

Newton diagrams.

(see [14, théorème 1.10]), altogether we have

μ
(2)
0 (gs0) = μ0(gs0 |H)≥ ν(Γ−(gs0 |H))> ν(Γ−(g0|H)) = (d−1)2 = μ

(2)
0 (g0),

which is a contradiction to the μ∗-constancy.

Lemma 2.2. The zeta-function ζgs,0(t) is independent of s ∈ [0,1].

Proof. It is well known that in a μ∗-constant piecewise complex-analytic family {gs}, the
diffeomorphism type of the embedded link (S5ε,Kgs) is independent of s (see [32, théorème

3.9 and remarque 3.12]). Alternatively, we may use [27, Lem. 12], which asserts that in a

μ-constant (a fortiori in a μ∗-constant) piecewise complex-analytic family {gs}, the zeta-

function ζgs,0(t) is independent of s.

Now, by the A’Campo formula (see [1, théorème 3]), we know that the zeta-function

ζgs,0(t) is uniquely written as

ζgs,0(t) =
�∏

i=1

(1− tdi)νi , (2.2)

where d1, . . . ,d� are mutually disjoint and ν1, . . . ,ν� are nonzero integers. The smallest integer

di0 among d1, . . . ,d� is called the zeta-multiplicity of gs and is denoted by mζ(gs). We define

the zeta-multiplicity factor of ζgs,0(t) as the factor (1− tdi0 )νi0 of (2.2) corresponding to the

zeta-multiplicity di0 ≡ mζ(gs). Note that, by Lemma 2.2, the zeta-multiplicity of gs and

the zeta-multiplicity factor of ζgs,0(t) are independent of s. Moreover, by [27, Prop. 11],

we know that mζ(gs)≥mult0(gs) = d, and the formula (2.1) shows that for s= 0 we have

mζ(g0)≤ d. So, altogether, mζ(gs) = d for any s ∈ [0,1].

Lemma 2.3. For any s ∈ [0,1], the zeta-multiplicity factor of ζgs,0(t) is given by

(1− td)−d2+3d−3+μtot(Cs),

and since the latter is independent of s, so is the total Milnor number μtot(Cs).

Proof. Here, to compute ζgs,0(t), we apply a method developed by the second-named

author in [24]. This method, inspired by an approach of Clemens [8], was used in [24,

Chap. I, Proof of Th. 5.2] to generalize the classical zeta-function formula of A’Campo [1].

Roughly, the idea is to decompose the lifted Milnor fibration π∗gs (which is isomorphic
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to the original Milnor fibration of gs at 0) into its restrictions along “controlled” tubular

neighborhoods of the strata in a canonical regular stratification of π−1(V (gs)). Then, by

the multiplicativeness of the zeta-function, it suffices to compute the zeta-functions of the

induced restricted fibrations. More precisely, let p1, . . . ,pk0 be the points of the singular set

Σ(Cs) of Cs, and for each pk, let Bε(pk) be a small ball centered at pk. Put

B :=

k0⋃

k=1

Bε(pk),

and consider tubular neighborhoods N(Cs) and N(E) of Cs \B and E \ (N(Cs)∪B),

respectively. As in [24, Chap. I, p. 56], we assume that the triple

{B,N(Cs),N(E)}, (2.3)

together with its natural associated projections and distance functions, makes a family of

“control data” in the sense of Mather [22, §7]. Consider the restrictions of ĝs := π∗gs to

N(E), N(Cs) and the balls Bε(pk), respectively. The relations (5.2.4) and (5.2.5), together

with Lemmas (5.3) and (5.4), of [24, Chap. I] say that

ζgs,0(t)≡ ζĝs(t) = ζĝs|N(E)
(t) · ζĝs|N(Cs)

(t) ·
k0∏

k=1

ζĝs|Bε(pk)
(t). (2.4)

Thus, it suffices to compute each piece ζĝs|N(E)
(t), ζĝs|N(Cs)

(t), and ζĝs|Bε(pk)
(t) separately.

We start with the calculation of the zeta-function ζĝs|N(E)
(t) of the fibration ĝs|N(E).

For admissible coordinates x = (x1,x2,x3) in a neighborhood Up of a point p ∈ E′ :=

E \ (N(Cs)∪B), we may assume that the projection

p : Up∩N(E)→ E′

associated with the family of control data (2.3) is given by x �→ (0,x2,x3), so that E′ is

defined by x1 = 0 and the restriction of ĝs to p−1(p) is given by xd
1. Then, by the relation

(5.2.5) of [24, Chap. I], the normal zeta-function ζ⊥E′(t) of ĝs along E′ (see [24, Chap. I,

p. 59] for the definition) is given by

ζ⊥E′(t) = (1− td)−1.

Thus, by [24, Chap. I, Lems. (5.3) and (5.4)], we get

ζĝs|N(E)
(t) = (ζ⊥E′(t))χ(E\Ṽ (gs)) = (ζ⊥E′(t))χ(P

2\Cs) = (ζ⊥E′(t))χ(P
2)−χ(Cs)

= (1− td)−χ(P2)+χ(Cs) = (1− td)−3+χ(Cs) = (1− td)−3+3d−d2+μtot(Cs).

Here, χ(·) denotes the Euler–Poincaré characteristic, and we recall that for a reduced curve

Cs of degree d, we have χ(Cs) = 3d−d2+μtot(Cs) (see, e.g., [35, Cor. 7.1.4]).

Next, we look at the zeta-function ζĝs|N(Cs)
(t). This time, for admissible coordinates

x= (x1,x2,x3) in a neighborhood Up of a point p ∈ C ′
s := Cs \B, we may assume that the

projection

p′ : Up∩N(Cs)→ C ′
s

associated with the family of control data (2.3) is given by x �→ (0,x2,0), so that C ′
s is

defined by x1 = x3 = 0 and the restriction of ĝs to p′−1(p) is given by xd
1x3. Then, by
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Figure 2.

Bifurcation of singularities.

the relation (5.2.5) of [24, Chap. I], the normal zeta-function of ĝs along C ′
s is given by

ζ⊥C′
s
(t) = 1, and hence, by [24, Chap. I, Lems. (5.3) and (5.4)] again, we get

ζĝs|N(Cs)
(t) = 1.

As for the zeta-function ζĝs|Bε(pk)
(t), since the zeta-multiplicity of gs is d and the (usual)

multiplicity of ĝs at pk is greater than or equal to d+1, it follows from [27, Prop. 11] that

ζĝs|Bε(pk)
(t) does not contribute to the zeta-multiplicity factor of ζĝs(t).

So, altogether, the unique contribution to the zeta-multiplicity factor of ζĝs(t) comes

from the zeta-function ζĝs|N(E)
(t) and is given by (1− td)−3+3d−d2+μtot(Cs).

We can now easily complete the proof of Theorem 1.1 thanks to two theorems of Lê.

Indeed, we first observe that if there exists s0 ∈ [0,1] such that the family {in(gs)} has a

bifurcation of the singularities in a small ball B centered at a singular point p0 of Cs0 ,
5

then, by [17, théorème B] (see also [12], [15]), for s 
= s0 near s0, we have
∑

p∈B∩Σ(Cs)

μp(in(gs))< μp0(in(gs0)),

and hence μtot(Cs) < μtot(Cs0), which contradicts Lemma 2.3. Therefore, there is no such

an s0. But in this case it follows from [16] and the discussion in [9, pp. 17–18, 121] that the

topological type of the pair (P2,Cs) is independent of s, so that (C0,C1) is not a Zariski

pair—again a contradiction.
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[16] D. T. Lê, Sur un critère d’équisingularité, C. R. Acad. Sci. Paris Sér. A–B. 272 (1971), A138–A140.
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Géométrie Analytique, École Norm. Sup., Paris, 1971–1972), Astérisque, Vol. 16, Société Mathématique
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