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Abstract

We derive conditions for recurrence and transience for time-inhomogeneous birth-and-death processes
considered as random walks with positively biased drifts. We establish a general result, from which the
earlier known particular results by Menshikov and Volkov [‘Urn-related random walk with drift ρxα/tβ’,
Electron. J. Probab. 13 (2008), 944–960] follow.
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1. Introduction

Menshikov and Volkov [14] studied the time-inhomogeneous random walk Xt ∈ R,
t = 1, 2, . . ., with the drift satisfying the condition

E{Xt+1 − Xt | Xt = x} ∼ ρ |x|
α

tβ
, (1.1)

where ρ > 0, α and β were some constants, and the meaning of the symbol ‘∼’
was further clarified for the case studies of the paper. There were some assumptions
(indicated below) and conditions on the parameters α, β and ρ in [14], under which the
random walk was recurrent or transient. The study of this random walk was associated
with urn models and random walks with vanishing drifts that have been intensively
studied in the literature (see the references in [14]), and the results obtained covered
many known models from these areas.

The basic assumptions, under which the study in [14] was conducted, are quite
natural:

(H1) uniform boundedness of jumps;
(H2) uniform nondegeneracy on [a,∞); and
(H3) uniform boundedness of time to leave [0, a].
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In the case when α < β, it was shown that the random walk is transient if (α, β)
satisfies 0 ≤ β < 1, 2β − 1 < α < β and it is recurrent otherwise. In the case when
α = β = 1, the random walk started at zero is described by the equalities

P{Xt+1 = n ± 1 | Xt = n} = 1
2
± ρ n

2t
, 1 ≤ n ≤ t, (1.2)

P{Xt+1 = 1 | Xt = 0} = 1.

It was shown that this random walk is transient for ρ > 1/2 and recurrent for ρ < 1/2.
Along with these cases, [14] also discussed a number of other cases, one of

which was left undecided, since the martingale methodology used there seems to be
insufficient to resolve it. The boundary configurations of this case are α = 2β − 1 and
β ∈ (0, 1

2 ) ∪ ( 1
2 , 1). This motivates us to find a new approach to the problem to cover

this case. With the new approach, we shall study a generalised version of (1.2):

P{Xt+1 = n ± 1 | Xt = n} = 1
2 ± ϕ(n, t), 1 ≤ n ≤ t, (1.3)

P{Xt+1 = 1 | Xt = 0} = 1,

for which the required assumptions will be provided later in the paper.
The random walks defined by (1.1) and (1.2) have positively biased drift. Consid-

erations provided in [14] implicitly assumed that the drifts considered in the random
walks all vanish as t → ∞. The conditions for the parameters under which this is true
were not discussed. In the analysis provided in the present paper for some particular
examples, this issue is considered as well.

Another possible model of random walks in R with positively biased drift when the
random walk takes positive values and negatively biased drifts when the random walk
takes negative values, closely related to that considered in [14], is

E{Xt+1 − Xt | Xt = x} ∼ ρsign(x)|x|α
tβ

, t = 1, 2, . . . ,

where the meaning of ‘∼’ is the same as in [14]. The study of this model is similar to
that of (1.1) because of the symmetry.

Since the processes described by (1.1) and (1.2) have positively biased drifts,
they can be assumed to be given in R+. Furthermore, the assumptions (H1),
(H2) and (H3) enable us to further specify the random walks assuming that
they are time-inhomogeneous processes of the birth-and-death type (or simply
time-inhomogeneous birth-and-death processes). That is, we will further assume
that the jumps of the random walks take the values ±1 with probabilities depending on
state and time, and the continuous time processes take values in Z+. This will enable
us to approach the model described by (1.3).

For the study of recurrence and transience, this assumption is not restrictive. If a
process of the birth-and-death type is recurrent (or transient), then there is a wide class
of closely related Markov chain models satisfying the same property of recurrence (or
transience respectively), the jumps of which take values in Z rather than in {−1, 1}.
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For simplicity of explanations, consider a time-homogeneous (that is ordinary)
birth-and-death process with positive birth rates λn and positive death rates μn
(with λn > μn, λn + μn = 1). Observe this continuous process at the discrete times
t = 0, 1, 2, . . . . At the initial time t = 0, the birth-and-death process is in state 0. Up
to time t = 1, a random number of births and deaths can occur, and the state of the
system at t = 1 is defined as the difference between the numbers of births and deaths
before time t = 1 to be denoted by n1. Similarly, at time t = 2, the state of the system
is denoted n2, and so on.

Apparently, for a time-inhomogeneous birth-and-death process (that will be defined
later in the paper), the construction of a Markov process with the jumps belonging to Z
is the same. Specifically, we obtain a new Markov chain Yt, the jumps of which belong
to Z. For this newly defined Markov chain, (1.3) is rewritten as

E{Yt+1 − Yt | Yt = n} � 2ϕ(n, t), n→ ∞.

Condition (H1) in [14] is restrictive. According to (H1), the jumps of a Markov
chain are uniformly bounded for all t. For the model that is built above, the assumption
is weaker. The jumps are not uniformly bounded, but have all moments. The only
difference is that the jumps of Markov chains studied in [14] take values in R, while
the example below suggests the jumps belong to Z. We think, however, that this is not
crucial.

Thus, the aforementioned arguments enable us to conclude that the model described
by (1.3) is not less general than the model described by

E{Xt+1 − Xt | Xt = n} = ϕ(n, t), t = 0, 1, 2, . . . ,

under (H1).
In the present paper, we suggest a new approach to the problem on recurrence

and transience for time-inhomogeneous Markov chains. By using the techniques
of stochastic calculus, we provide simpler and transparent proofs of the results
under general assumptions on the increments. We first derive a stochastic vari-
ant of the Chapman–Kolmogorov equations. Then we apply martingale techniques
for continuous time processes and reduce the problem to the known criteria of
recurrence or transience for birth-and-death processes. The stochastic variant of the
Chapman–Kolmogorov equations appeared for the first time in the paper of Kogan
and Liptser [11], and then it has been used in many papers (for example, [1–3, 12]),
the majority of which are from the area of queueing networks.

The rest of the paper is structured into four sections. In Section 2, we formulate the
theorem and in Section 3, we prove it. The proof of the theorem in Section 3 consists
of three parts: in Section 3.1, for a time-inhomogeneous birth-and-death process,
we derive a stochastic variant of the Chapman–Kolmogorov equations and prove the
convergence of the characteristics of the time-inhomogeneous birth-and-death process
to the ordinary one; in Section 3.2, we recall some facts on recurrence and transience
of birth-and-death processes known from the literature; in Section 3.3, we finalise the
proof of the theorem. In Section 4, we provide some examples for the random walks
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studied in the paper. Some of the examples support the results obtained in [14]. In
Section 5, we conclude the paper.

2. Formulation of the main result

Let Xt be the random walk defined by

P{Xt+1 = n ± 1 | Xt = n} = 1
2 ± ϕ(n, t), 1 ≤ n ≤ t, (2.1)

P{Xt+1 = 1 | Xt = 0} = 1,

for t = 0, 1, . . . . Assume that ϕ(n, t) well defines the right-hand side of (2.1) (that is,
keeps the probability distributions correctly defined), and is a decreasing in t Borel
function.

THEOREM 2.1. The random walk Xt is recurrent if there exist c < 1 and n0 such that
ϕ(n, n2) ≤ c/(4n) for all n ≥ n0, and Xt is transient if there exist c > 1 and n0 such that
ϕ(n, n2) ≥ c/(4n) for all n ≥ n0.

The proof of Theorem 2.1 is given in the next section.

3. Proof of the theorem

3.1. Time-inhomogeneous birth-and-death processes. We consider a time-
inhomogeneous version of the birth-and-death process Z(τ) with the instantaneous
positive rates λn,τ and μn,τ in state n at time τ. To emphasise the continuous time
process, we use τ as a continuous time parameter, rather than t which was a discrete
time. The process Z(τ) is assumed to be right-continuous with left limits. The functions
λn,τ and μn,τ are assumed to be continuous in the variable τ with finite positive limits

λn = lim
τ→∞
λn,τ, (3.1)

μn = lim
τ→∞
μn,τ. (3.2)

Additionally, we assume the existence of the limits below satisfying

lim
n→∞
λn > 0, lim

n→∞
μn > 0. (3.3)

The system of equations for the process Z(τ) in terms of the indicators I{Z(τ) = n}
is a stochastic analogue of the Chapman–Kolmogorov equations:

I{Z(τ) = n} = I{Z(τ−) = n + 1} I{Mn+1(τ) −Mn+1(τ−) = 1}
+ I{Z(τ−) = n − 1} I{Λn−1(τ) − Λn−1(τ−) = 1}
+ I{Z(τ−) = n} I{Mn,(τ) −Mn(τ−) = 0} I{Λn(τ) − Λn(τ−) = 0},

for n = 1, 2, . . . , and

I{Z(τ) = 0} = I{Z(τ−) = 1} I{M1(τ) −M1(τ−) = 1}
+ I{Z(τ−) = 0} I{Λ0(τ) − Λ0(τ−) = 0}.
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Here, Z(τ−) denotes the value of the process Z(τ) immediately before the point τ (if τ
is a point of continuity of Z(τ), then Z(τ−) = Z(τ), otherwise |Z(τ) − Z(τ−)| = 1), and
Λn(τ) and Mn(τ) for each fixed n denote the time-inhomogeneous Poisson processes
with the instantaneous rates λn,τ and μn,τ, respectively.

According to the Doob–Meyer semimartingale decomposition (see [9, 13, 15]),
written here in the form of stochastic differentials, dΛn(τ) = λn,τdτ + dMΛn(τ) and
dMn(τ) = μn,τdτ + dMMn(τ). Here, λn,τdτ and μn,τdτ are the compensators of dΛn(τ)
and dMn(τ), and dMΛn(τ) and dMMn(τ) are the square integrable martingales all written
in the form of stochastic differentials.

It is not difficult to explain that the compensators for the stochastic differentials
dΛn(τ) and dMn(τ) have the forms λn,τdτ and μn,τdτ. The compensator of an ordinary
Poisson process with rate λ is known to be equal to λτ (see [9, 13]). That is, for its
stochastic differential, we have λdτ. In the case of a time-inhomogeneous Poisson
process, the instantaneous rate coincides with the rate of an ordinary Poisson process
given at the point τ.

Using these facts, our system of equations can be rewritten as follows:

dI{Z(τ) = n} = I{Z(τ−) = n + 1}μn+1,τdτ + I{Z(τ−) = n − 1}λn−1,τdτ
− I{Z(τ−) = n}[λn,τ + μn,τ]dτ + I{Z(τ−) = n + 1}dMMn+1(τ)

+ I{Z(τ−) = n − 1}dMΛn−1(τ) − I{Z(τ−) = n}d[MΛn(τ) +MMn(τ)],

for n = 1, 2, . . . , and

dI{Z(τ) = 0} = I{Z(τ−) = 1}μ1,τdτ − I{Z(τ−) = 0}λ0,τdτ
+ I{Z(τ−) = 1}dMM1(τ) − I{Z(τ−) = 0}dMΛ0(τ).

Next, we rewrite the last two equations in their integral forms by taking the expectation
and averaging:

0 = lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = n + 1}μn+1,τdτ

+ lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = n − 1}λn−1,τdτ

− lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = n}[λn,τ + μn,τ]dτ

+ lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = n + 1}dMMn+1(τ)

+ lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = n − 1}dMΛn−1(τ)

− lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = n}d[MΛn(τ) +MMn(τ)],
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for n = 1, 2, . . . , and

0 = lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = 1}μ1,τdτ

− lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = 0}λ0,τdτ

+ lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = 1}dMM1(τ)

− lim
T→∞

1
T
E
∫ T

0
I{Z(τ−) = 0}dMΛ0(τ).

In these equations, all the terms containing an expectation over martingales (such as
limT→∞ T−1E

∫ T
0 I{Z(τ−) = n − 1}dMΛn−1(τ)) are equal to zero. From these equations,

we finally arrive at the system of equations:

0 = Pn+1μn+1 + Pn−1λn−1 − Pn(λn + μn),

for n = 1, 2, . . . , and

0 = P1μ1 − P0λ0,

where Pn = limτ→∞ P{Z(τ) = n} are the final probabilities, if they exist. It is readily
seen that the system of equations for the final probabilities coincides with the standard
system of equations for the ordinary birth-and-death process.

3.2. Criteria for recurrence and transience. In the proof of the theorem, we
use a simplified (degenerate) version of the criteria for recurrence or transience of
birth-and-death processes [5], which is sufficient for the purpose of this paper. It is as
follows.

LEMMA 3.1. An ordinary birth-and-death process is transient if there exists c > 1 and
n0 such that for all n ≥ n0,

λn

μn
≥ 1 +

c
n

,

and it is recurrent if there exists n0 such that for all n > n0,

λn

μn
≤ 1 +

1
n

.

The statement of Lemma 3.1 follows immediately from the well-known
Karlin–McGregor criteria [10], according to which an ordinary birth-and-death
process is recurrent if and only if

∞∑
n=1

n∏
k=1

μk

λk
= ∞,
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by application of Raabe’s convergence (divergence) test for positive series. The more
general results formulated in [5, 6] were a consequence of the extended version of the
Bertrand–De Morgan test [5] and Bertrand–De Morgan–Cauchy test [6].

For the time-inhomogeneous birth-and-death process, the parameters of which obey
(3.1)–(3.3), similar conditions apply. For transience, it is the existence of c > 1 and n0
such that for all n ≥ n0,

λn,τ

μn,τ
≥ 1 +

c
n

.

For recurrence, it is the existence of c < 1 and n0 such that for all n ≥ n0,
λn,τ

μn,τ
≤ 1 +

c
n

.

Here we keep in mind that τ→ ∞ together with n→ ∞ with probability 1.

3.3. The final part of the proof. To finish the proof, we adapt the criteria for recur-
rence and transience for the time-inhomogeneous birth-and-death process with birth
rates λn,τ = 1/2 + ϕ(n, τ) and death rates μn,τ = 1/2 − ϕ(n, τ). The birth-and-death
process is a continuous time process, while the random walk Xt we deal with in
the formulation of the theorem is a discrete time process. To correctly specify our
argument, we assume that we deal with the continuous càdlàg process Z(τ), where
the moments of jumps characterise the random walk Xt. The meaning of t is the tth
consecutive event of the Poisson processes, the parameters of which are specified at
the moments of jumps, and depend on state n and discrete time t. Let ut denote the
time moment of the tth jump. It is assumed that for any τ with ut ≤ τ < ut+1, the
function ϕ(n, τ) = ϕ(n, ut), and consequently the rates of the Poisson processes are
λn,τ = λn,ut and μn,τ = μn,ut . Notice that the rates of Poisson processes are specified
such that the mean time between two jumps is equal to 1. It is worth noting that
the replacement of the original random walk that is a discrete time process with a
continuous time-inhomogeneous birth-and-death process does not change the basic
property of these two stochastic processes: both of them are either recurrent or
transient. The idea of such replacement is not new (see, for example, [4, 7]).

Denote by Fτ the filtration of the process Z(τ). If ϕ(Z(τ), τ) is a positive process
vanishing in L1 as τ→ ∞, then denoting by 
Zτ,τ+σ the increment of the process Z(τ)
in the interval [τ, τ + σ), for the process Z2(τ) − τ,

E[Z2(τ + σ) − (τ + σ) | Fτ−] = E[(Z(τ−) + 
Zτ,τ+σ)2 − (τ + σ) | Fτ−]

= Z2(τ−) + 2E(Z(τ−)
Zτ,τ+σ | Fτ−) − τ
= Z2(τ) − τ + o(Z(τ)),

since E(Z(τ−)
Zt,t+s | Fτ−) = o(Z(τ)) and E(
Z2
τ,τ+σ|Fτ−) = E
Z2

τ,τ+σ = σ for any τ.
The last equality follows from Wald’s identity [8]. Specifically, we have E
Z2

τ,τ+σ =

E
∑Nσ

i=1 1 = σ, where Nσ denotes the number of events in time σ of a Poisson process
with rate 1.
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This asymptotic relationship implies that ϕ(Z(τ), τ) � ϕ(Z(τ), Z2(τ)) for large τwith
probability approaching 1. It also implies that ϕ(Xt, t) � ϕ(Xt, X2

t ) for large t with
probability approaching 1.

Then for large n,

λn,t

μn,t
�
λn,n2

μn,n2
=

1 + 2ϕ(n, n2)
1 − 2ϕ(n, n2)

= 1 + 4ϕ(n, n2) + O[(ϕ(n, n2))2].

Now, application of Lemma 3.1 yields the required statement of the theorem.

4. Examples

In this section, we provide a number of examples to illustrate the main result of this
paper.

EXAMPLE 4.1. Let ϕ(n, t) � ρn/(2t), n→ ∞ (see [14]). We show that the process is
recurrent if ρ < 1/2 and it is transient if ρ > 1/2. Indeed, in this case, ϕ(n, n2) = ρ/(2n)
for large n. Hence, the required statement follows from the theorem.

Let us now find the condition under which ϕ(Xt, t)→ 0 in L1. We have

E{Xt+1 | Xt} � Xt

(
1 +
ρ

t

)
, t → ∞.

From this, it is readily seen that EXt = O(tρ). Hence, EXt/t → 0 as t → ∞ if and only
if ρ < 1. This means that only under this condition, ϕ(Xt, t)→ 0 in L1.

EXAMPLE 4.2. Let ϕ(n, t) � nα/tβ, β > α, β > 0, n→ ∞ (see [14]). Assuming n large,
for the condition of recurrence,

nα

n2β <
c

4n
, c < 1,

which yields α < 2β − 1. Keeping in mind that α < β, we obtain α < min{β, 2β − 1}.
The condition of transience is obtained similarly. It is complementary to the condition
of recurrence. Namely, it is 0 ≤ β < 1 and 2β − 1 < α < β.

EXAMPLE 4.3. Let ϕ(n, t) � ρnα/tβ, −1 ≤ α ≤ 1, 2β − α = 1, n→ ∞ (the unsolved
problem in [14]). We have β = (1 + α)/2 and the asymptotic expression for ϕ(n, t) takes
the form

ϕ(n, t) � ρnα

t(1+α)/2 , n→ ∞.

For large n,

ϕ(n, n2) � ρn
α

n1+α =
ρ

n
.

Thus, for −1 ≤ α ≤ 1, the process Xt is recurrent for ρ < 1/4 and transient for ρ > 1/4.
Let us now discuss the condition under which ϕ(Xt, t)→ 0 in L1. Here we need

only consider the case of α = 1, since for −1 ≤ α < 1, we obviously have the required
convergence. For α = 1, the problem reduces to the case considered in Example 4.1.
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Taking into account that result, we arrive at the conclusion that in the case α = 1,
ϕ(Xt, t)→ 0 in L1 if and only if ρ < 1/2.

EXAMPLE 4.4. Let ϕ(n, t) � eαn−βt, β > 0, n→ ∞.
For large n, ϕ(n, n2) � eαn−βn2

= o(1/n). Hence, the process Xt is recurrent.

5. Concluding remarks

In this paper, we formulated and proved a new result for recurrence or transience of
time-inhomogeneous birth-and-death processes. Compared with the earlier considera-
tions in [14], our achievements are as follows.

(1) We established simple and general criteria for recurrence or transience of
time-inhomogeneous birth-and-death processes. This enables us to establish
recurrence or transience of the processes in a very simple way for a wide class
of processes. Our approach makes an essential difference to [14], where special
routine derivations for any particular case study were required.

(2) The generality of our main result enabled us to solve the open problem that was
left unsolved in [14].

(3) In Examples 4.1 and 4.3, we also studied the behaviour of the drift. We found the
value of the parameter under which the drift was vanishing in time in the sense
provided in the paper.
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