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RATIONAL HOMOTOPY TYPES 
WITH THE RATIONAL COHOMOLOGY ALGEBRA 

OF STUNTED COMPLEX PROJECTIVE SPACE 

GREGORY LUPTON AND RONALD UMBLE 

ABSTRACT. We consider the number of spaces, up to rational homotopy equiva­
lence, which have rational cohomology algebra isomorphic to that of stunted complex 
projective space CP" /CP*. Using a classification theory due to Schlessinger and Stash-
eff, we determine the number of rational homotopy types with rational comology alge­
bra isomorphic to H*(CP" /CP*; Q), for any given n and k. The necessary computations 
make use of a spectral sequence introduced by the second named author. 

1. Introduction and notation. A fundamental problem in homotopy theory is to 
classify all homotopy types that realize a given commutative graded algebra //, i.e., that 
have cohomology algebra isomorphic to H. A general solution to this problem is un­
known; indeed, it is difficult in general to decide whether or not there is any space that 
realizes H. In rational homotopy theory, however, the situation is more straightforward. 
Quillen showed, among other things, that rational homotopy types of simply connected 
spaces are in bijective correspondence with homotopy types of connected, rational, dif­
ferential graded Lie algebras [Qu]. It follows from this that every one-connected, finite-
type, commutative graded algebra over the rationals is realized by some simply con­
nected space [Qu, p. 206]. Subsequently, Sullivan's concept of a minimal model was 
extended into the differential graded Lie algebra setting by a number of authors [B-L], 
[Ne]. A rational homotopy equivalence between two spaces corresponds to an isomor­
phism between the corresponding minimal models, and this makes the classification of 
rational homotopy types a more tractable problem. Solutions to the problem of classi­
fying rational homotopy types that realize a given algebra H, using minimal models, 
have been given by Félix [Fe], Halperin and Stasheff [H-S], Lemaire and Sigrist [L-S] 
and Schlessinger and Stasheff [S-S]. We describe the Schlessinger-Stasheff classification 
below (Theorem 1.2). 

Each of these solutions to the rational classification problem is theoretical, in the sense 
that direct application is limited by the elaborate calculations required. However, Um-
ble [Um] introduced a spectral sequence that helps perform some of the calculations 
necessary for the Schlessinger and Stasheff approach. The basic facts concerning this 
spectral sequence are reviewed in Section 2. 
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1242 G. LUPTON AND R. UMBLE 

In this paper we use the Schlessinger and Stasheff classification, with the spectral 
sequence introduced in [Um] and analyze the family of algebras H — H*(CPn /£Pk\ 0); 
for each n and k we determine the number of rational homotopy types that realize H. The 
spaces CPn /CPk, known as stunted complex projective spaces, are discussed in Section 
2. Our main result is the following: 

THEOREM 1.1. H*(CPn/CPk; Q) is realized by 
(a) one rational homotopy type if 

(i) k=l, 
(ii) n — oo, 

(Hi) n < 4k + 8, or 
(iv) k = landn = 21,22,23 or 30; 

(b) two rational homotopy types if 
(i) n = 4k + 9, 
(ii) k — 3 and n — 29, or 

(Hi) k — 2 and n = 20; 
(c) a countably infinite number of rational homotopy types otherwise. 

This result is the composite of Theorems 2.3, 2.6, 2.7, 2.9, 4.1 and 4.2 below. 
The paper is organized as follows: In Section 2 we determine certain values n and k 

for which H*(CP" /CPk; Q) is realized uniquely. Here we prove part (a) of Theorem 1.1, 
and in particular obtain a new proof of the fact that H*(CP°° /CPk\ Q) is realized by a 
unique rational homotopy type for all k—a result due to Tanré [Tai ]. Other values for n 
and k are analyzed in Sections 3 and 4; in these cases we show that H*(CPn /CPk; Q) is 
realized by multiple rational homotopy types. 

We assume familiarity with basic rational homotopy theory, and in particular 'pertur­
bation' techniques relevant to differential graded Lie algebra minimal models. A brief re­
view of these ideas is given below, following some notation. References for basic rational 
homotopy theory are [B-G], [D-G-M-S], [G-M], [Ha], [Ne], [Qu] and [Su]. References 
for differential graded Lie algebra minimal models and perturbations are [B-L], [Mi], 
[N-M], [St]. A treatment of rational homotopy theory from both the differential graded 
commutative algebra and differential graded Lie algebra points of view is included in 
[Ta2], which is a useful reference. 

For basic terminology and notation, see [B-L]. In particular, we adopt the following 
notation: The prefix DG means differential graded; algebra means one-connected, com­
mutative, finite type graded algebra over Q; Lie algebra means connected graded Lie 
algebra over Q. L(V) denotes the free graded Lie algebra on the graded vector space 
V, and (V) denotes the abelian Lie algebra on V. If x is an element of a graded vector 
space, |JC| denotes the degree of x. A linear map 6 of degree p on a graded Lie algebra 
L, is a derivation of degree p if for all x, y G L, 6([x,y]) = [9(x),y] + (— ly^'fx, 9(y)]. 
We will frequently write ad(x)(j) for the Lie bracket [x,y], or more generally adr(x)(y) 
for the bracket uc, [JC, . . . , [x,y] • • -1 with x occurring r times. For an algebra //, the dual 
coalgebra will be denoted by H*. 
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Every algebra H is realized by some rational homotopy type; in particular, H is real­
ized by a unique formal rational homotopy type [H-S]. This formal rational homotopy 
type should be thought of as the canonical choice of rational homotopy type that realizes 
H. According to Quillen [Qu], every rational homotopy type corresponds to some DG 
Lie algebra; so for the purposes of rational homotopy theory, spaces can be thought of as 
DG Lie algebras and vice-versa. Let s~l //* denote the graded vector space obtained from 
//* by setting 0_1//*)o = 0 and (s~lH*)n = (H*)n+\, for n > 1. Here and in the sequel, 
the symbol s~l denotes desuspension. Then the multiplication in H induces a quadratic 
differential d of degree —1 on L(s~~lH*) in a standard way [Qu, p. 287]. The free DG 
Lie algebra (L(s~lH*), d) is called the Quillen model of H\ we denote it by L(s-1//*, d). 
Under the bijection between homotopy types of DG Lie algebras and rational homotopy 
types of spaces referred to above, the Quillen model of H corresponds to the unique 
formal rational homotopy type that realizes H. Furthermore, if X is a formal space that 
realizes //, then the Quillen model of H satisfies H(l(s~lH*,d)) = TT*(QX) ® Q, the 
rational homotopy Lie algebra of X. 

Let H be an algebra, with Quillen model L(s-1//*, d). A perturbation of d is a de­
gree — 1 derivation P on L(s~l //*) such that P extends bracket length by at least two, and 
d+P is a differential [N-M]. Given a perturbationP of d, the DG Lie algebra L(s~lH*,d+ 
P) represents some rational homotopy type that realizes H [Ne, p. 437]. Conversely, ev­
ery rational homotopy type that realizes H can be represented by 10 - 1 / /* , d + P), for 
some P [Mi], [B-L]. Whereas many perturbations can represent the same rational ho­
motopy type, the problem of classification up to rational homotopy type corresponds to 
identifying isomorphism classes of perturbations. 

Occupying a central place in the Schlessinger and Stasheff classification program is a 
certain DG Lie algebra of derivations that arises as follows: Given an algebra //, construct 
LO-1//*, d) and re-grade L(>-1//*) so that elements in degree n are now in degree — n. 
Denote the re-graded DG Lie algebra by (L//, d)\ LH is negatively graded and d is a 
degree +1 differential. This step, while unnecessary, is consistent with [S-S] and aligns 
our statements with theirs. Consider the DG Lie algebra (DerL//,<$), where DerL// is 
the graded Lie algebra of graded derivations on L# and 6 = ad(d) is given by 6(6) = 
d6 — (—l)^0d for 0 G DerL//; 6 is a degree +1 differential. If x G LH is homogeneous 
with respect to bracket length; define the weight of x by wt(jc) = |JC| — length(jc). If x is 
zero, define its weight to be — oo. Furthermore, since L# is free, every element of DerL// 
can be written as the sum of its bi-homogeneous components, i.e., degree and change in 
bracket length; so for a bi-homogeneous derivation 0, say that 0 is weight-decreasing if 
wt(0(x)) < wt(x), for all non-zero x G LH. Since dis quadratic of degree +1, wt(<5#(jt)) < 
wt(0(jc)) for 6 G DerL//. Thus, if LH denotes the sub-Lie algebra of DerL// generated by 
weight-decreasing derivations, then 6 restricts to LH giving a DG Lie algebra (L//,<$), 
which is the one that appears in the classification theory. 

There is a bijection between rational homotopy types that realize H and isomorphism 
classes of DG Lie algebras L(s~lH*,d + P), where P is a perturbation of d [Mi]. The 
perturbation P is thought of as representing the corresponding rational homotopy type. 
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Now a group of Lie algebra automorphisms of L(s H*) induces a group action on the set 
of perturbations, i.e., the set V = {P G Ll

H \ (d + P)2 = 0}. Thus, perturbations P and Q 
represent the same rational homotopy type that realize H if P and Q lie in the same orbit 
under such an induced action. There are two such actions, namely, an 'exponential action 
of £>#' and an action induced by AutH—the algebra automorphisms of H. We refer the 
reader to [S-S]for details and state the following fundamental results for reference: 

THEOREM 1.2 ([S-S]). Let H be an algebra and let V = {P e L]
H \ (d +P)2 = 0}. 

There is a bisection of sets: 

f Rational Homotopy Types ) J V 
\ of Spaces That Realize H J |exp(ad£^) 

If an algebra is realized by only one rational homotopy type, the algebra is called 
intrinsically formal. \ÏHX{LH,£)) — 0, then it can be shown that v/exp(adiL^) = {0}. 
This proves: 

THEOREM 1.3 ([S-S, 8.01). IfHl(LH,6) = 0, then H is intrinsically formal. 

All intrinsic formality results in this paper are obtained by applying Theorem 1.3. 

2. Intrinsic formality and the algebras H*(CPn / CPk; Q). In this section we prove: 

THEOREM 2.1. H*(CPn /CPk;Q) is intrinsically formal if 
(i) k = 1, 

(ii) n = oo, 
(Hi) n <4k + $or 
(iv) k = 2 and n = 21,22,23 or 30. 

The proof of Theorem 2.1 is a composite of Theorems 2.3, 2.6, 2.7 and 2.9 below. In 
Sections 3 and 4 we show that Theorem 2.1 is a sharp result. Although the case n = oo, 
which is Theorem 2.6 below, was obtained by Tanré [Taj ], our proof is of independent 
interest for two reasons: First, because we use the Schlessinger and Stasheff approach 
and second, because the calculations are used subsequently. 

Theorem 1.3 asserts that H\LH,è) = 0 is a sufficient condition for intrinsic for­
mality. In general, however, direct computation of H1(LH,6) is a formidable task. One 
helpful tool is a spectral sequence, introduced by Umble [Um], which was invented for 
the purpose of calculating //*(£//, 6). Since our calculations use the spectral sequence, 
we review the basic facts here and refer the reader to [Um] for details. 

Given an algebra H with Quillen model 10"1//*, J), let LH be the graded Lie algebra 
obtained by negatively re-grading L(s~lH*), as in the introduction. Let {xj}jeJ be an 
additive basis for s~]H*, and let {XJ} be the corresponding free Lie algebra basis for L#; 
i.e., \XJ\ — —\xj\. The basis {XJ} is said to have cellular indexing if / <j implies | Jc/| < \XJ\ 
or equivalently \XJ\ > \XJ\. It is always possible to choose a basis with cellular indexing, 
so assume that {XJ} is such a basis. 

/ AutH 
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Let a, xi G L# with x, a generator, and let a • dxi denote that derivation sending JC/ to a, 
and other generators of L# to zero. Similarly, if W is a sub-vector space of L//, then W-9JCP 

denotes the vector space of derivations consisting of all derivations w • dxp for w £ W. 
Since any element of Der L# can be written as a sum of these so-called basic derivations, 
the cellular indexing of the indécomposables induces a decreasing filtration of DerL# 
with (JP — (&k>P{a ' dxk | a G L//}. Now DerL// is bigraded with respect to cellular 
index p and derivation degree q\ Derp,q LH denotes the (p, g)-component. Furthermore 
there are compatible maps 5,-: Der77'47 LH —» Derp+i'g+l LH, i = 0,1,2,.. . , such that 5 = 
ad(d) = £/>o<S* with 5/ defined as follows: Write the differential in LH in terms of basic 
derivations, d — J2jeJ Pj ' dxj, and consider an element a • dxp G Der^ L//. Then <5o(a • 
dxp) = (da) • 3xp and for / > 0 we have <5/(a • dxp) = —(—l)^(a • dxp(f3p+ij} • 3*̂ +/. Thus 
the bigraded vector space Der** L//, with maps Si, is a filtered multi-complex that gives 
rise to a spectral sequence {£?'*, <5r}, with E%q = Der77*7 LH and <$o = <$o- The differential 
Er on £ r is induced by the maps <5, for 0 < / < r. In particular, the E\ -term satisfies 
Z?^ ^ [i^^_q{QX) 0 Q) • 3 ^ , where jcp has positive degree and X is the formal space 
that realizes H\ this latter follows from the fact that H(L(S~1H*, d)) = 7r*(QX) ® Q. The 
sequence {£*/*, <5r} is a spectral sequence of vector spaces; in general, the multiplicative 
structure is lost in the limit. 

The spectral sequence restricts to the sub-DG Lie algebra LH C DerL//. Here, the 
£i-term satisfies BP{q = ®s>q+2(^\xp\-q,s(^0 ® Q) • dxp where ^ ( Q X ) ® Q denotes the 
homology generated by cycles of bracket length s in the Quillen model of H. This makes 
sense because fl_0 *//*, d) has quadratic differential. The nature of the E\ -term suggests 
that the spectral sequence will be most useful when there is a good description of the 
rational homotopy Lie algebra of the formal space that realizes H. We now give such a 
description for the algebras H = H*(CPn/CPk; Q). 

Let CPm denote m-dimensional complex projective space. For 1 < k < n < oo, 
define CPn /CPk as the cofibre of the natural inclusion map /: CPk —> CPn. The map / 
is a so-called formalisable map and it is well-known that the cofibre of such a map is a 
formal space [F-T], Thus CPn /CP* is formal, and hence is the formal space that realizes 
H*(CPn/CPk; Q). Following Tanré [Taj, we give the following useful descriptions of 
the multiplicative structure of H*(CP°°/CPk; Q), and the rational homotopy Lie algebra 
ofCP°°/CPk. 

PROPOSITION 2.2 ([TA], PROPOSITION 1]). 

H*(CP00/CPk;Q)^Q[yk+l9...,y2k+i]/!K, 

where |_yz-| = 2/ and %^ is the ideal generated by {yk+\+iyic+\+j ~~yk+\yk+\+i+j 
}for0 < i+j < 

k and {yk+\+iyk+\+j ~ >'Li y i+j }fork+\ < i+j <2k. m 
For any / > k + 1, write / = p(k + 1) + q with 0 < q < k, 1 < p; then the elements 

yi — /k+\lyk+\+q f ° r m a t>asis f°r m e vector space H*(CP°°/CF*; Q). 
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THEOREM 2.3. Ifn < oo, then H*(CPn/CP] ; Q) is intrinsically formal. 

PROOF. If n < oo, write n + 1 = 2p + q with q = 0 or 1, so that H*(CPn/CPl ; Q) ^ 

Qb^al / té - ^ " W - Alsc/rcc/^/CP^Q) = Q[y2,y3]/(yl-yll in either 
case, the algebras are the quotient of a free algebra by a regular sequence of relations; 
and such algebras are well-known to be intrinsically formal ([Su, p. 317]). • 

We include Theorem 2.3 for completeness only; indeed, it is implicit in the work of 
Tanré. Henceforth, for the space CPn/CPk, it is assumed that k > 2. 

Continuing our description of ^(QCCP^/CP*)) (g) Q, given a basis element yt G 
H*(CP°°/£Pk; Q), lety; also denote the corresponding dual basis element in the homol­
ogy coalgebra H*(CP°°/CPk\ Q). Let xt = s'lyt for / > k + 1. Then the Quillen model 
ofH*(CP°°/CPk\ Q) is given by l(xk+uxk+2,... ; d), with 

Y m-(k+\) 

Z i=k+\ 

for m > 2k + 2, and d(Jcm) = 0 otherwise. In particular, for k + 1 < / < 2k + 1, the 
d-cycles xt each represent distinct classes in H(L(xk+\ ,xk+2, • • • ', d)\ The full Lie algebra 
structure of H(L(xM , Jt*+2, •.. ; d)) = ^(^(CP^/CP*)) ® Q is described by: 

PROPOSITION 2.4 ([TAJ, PROPOSITION 2]). 77zer<? is a short exact sequence of Lie 
algebras 

0 -+ L(^+ 2 ,^+ 3 , •. . , % + i ) - > 7r#(n(CP°°/C/>*)) <g> Q — (**+1 ) -+ 0 

with the remaining brackets in TT* given by [xk+\,xk+2] = 0, and 
[xk+] ,xk+r] = - \ Ep2 [xk+hxk+r+{-i]for 3 < r < fc + 1. • 

NOTATION 2.5. Let H be an algebra and let (£#, 6) be the DG Lie algebra of weight 
decreasing derivations on LH as constructed above. If H — H*(CPn /CPk\ Q), then we 
denote LH by LH{n/k). 

We now prove part (ii) of Theorem 2.1. We remark once more that this is a new proof 
of a theorem of Tanré's. We include all details since the calculations in this proof form a 
starting point for the calculations in our subsequent results. 

THEOREM 2.6 ([TAI , 3.2]). H*(CP°°/CPk- Q) is intrinsically formal. 

PROOF. Consider the £1 -term in the spectral sequence described above: 

&" = © Kh9,.v(Q(CF-/CP*)) ® Q • dxP> 
s>q+2V 7 

and the differential Sx:EF{q -> E?{
+Uq+l induced by 5l:L

p
H

q
oo/k) -> Lp^Jk\. If a • dxp 

G ^foQ/^ and J is written d = £//3y • àxy, then <5i is in turn given by 6\(a • dxp) — 

(a • 3^(^+1 ))• dxp+l. Now in the Quillen model, dxp+\ =-\ Y.pZk\x [Xi,xp+\-i\ = (3P+\, 
so a - dxp(l3p+\ ) = 0 since (3p+\ contains no bracket with an entry in xp. Thus 6\, and hence 
E\\EP« -> ^+,<7+1 is zero. Similarly, 6r: Ef/q+l - • ££+r,*+1 is zero for all r = ! , . . . , £ ; 
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thus EP{q = E?£ and it is necessary to understand Ek+] : £™ —• ̂ + 1 ^ + 1 . As a vector 

space, ££;* = (xk+] ) 0 l (** + 2 , . . . ,*2*+i). For an element a • 3 ^ G £P
H

q
(oo/ky 

Sk+l(a • 3Ap) = ( a • d*j,(/W+i)) ' <*xP+k+\ 

1 / ^ \ 
= - - ( a • 3*p( 53 [*/,-V*+i-/]) ) * dxP+k+\ 

= - ( a • 9Vt**+i >-*>])) ' d-V*+i, 

where this last step follows from the fact that a • dxp is zero on all other brackets of f3p+k+\. 
Hence the differential Ek+l : £™ -» ££f+u+1 is induced by 

6ifc+i(a • 3^) = - ( - l ^ f o + i , a] • dxp+k+l 

and if p — k+1, then a ^ should be placed before the bracket. Thus Ek+\ can be understood 
in terms of the action of adfe+i ) on the vector space (JC*+I ) 0 Lfe+ 2 , . . . , X2k+\ ), and this 
is described by Proposition 2.4. For brackets a G L(̂ +2> • • • »̂ 2it+i)» Ek+\(a • dxp) = 
6(a) - dxp+k+i, where 0 is a derivation that satisfies 

0fe+2) = 0 

#ta:+3 ) = — - to+2 , -*£+2 ] 

1 *~2 

#C*2*+l) = — X X]L**+2+/»*2*-iL 
Z i=0 

CLAIM. £^ 2 = 0. 

PROOF OF CLAIM. Recall that #*(CP*; 0) has Quillen model L(^1//*(CP/:; Q), ^ ) , 
where if {zt}i=\,...,k is achoice of basis for 5~1//*(CPfc; Q), then ̂ (fp) = —5 Efj/ [£/, Zp-/] 
for 2 < /7 < k, and d#(£i) = 0. It is well-known that this Quillen model has ho­
mology H(Us-lH*(CI*',Q), dgj) = (zwn)\ where z\ G iiul(Cl(CPk)) ® Q, and rj G 
2̂̂ ,2 (^(CP*)) 0 Q is represented by the homogeneous bracket length two cycle, 77 = 

— \ Ef=i [zi,Zk+\-i]- With suitable re-indexing, the brackets and the above differential 
6 on L(xk+2, . . . ,*2*+i), can be identified with the Quillen model t(^s~lH^(CPk; Q),d#). 

Now, since £j;\ ^ ©,>3 ( ^ ^ ( Q C C P ^ / C P * ) ) (g) Q ) • dxp, any element in Efk^ will 

have coefficient represented by brackets of length at least three. In particular, any Ek+\ -
cocycle in EP^lx will have a coefficient that can be identified with a length > 3 cycle of 
l(s-lH*(CPk; Q),d0), and hence will be Ek+{-exact by a suitable element of E?k~lk+l)'°. 
Thus H(E£r8k+l)* ^ 2 = 0. 
END OF PROOF OF CLAIM. 

Hence E*k^2 = E%£ = 0, so Hl(LHioQ/k),è) = 0 and the conclusion follows from Theo­
rem 1.3. • 
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Recall that a shallow space is one whose cohomological dimension is a small multiple 

of its connectivity [S-S, 8.4]. Now Hodd(CPn/CPk; Q) = 0, so that if n < Ak + 8, then 

CPn/CPk is essentially of shallow type and the intrinsic formality of H*(CPn/CPk\ Q) 

for n in this range can be obtained by applying any of the standard techniques applicable 

to shallow spaces [H-S, 5.16], [S-S, 8.4]. Nevertheless, we give the proof of this result 

to demonstrate how easily such results fall out of the spectral sequence machinery. 

For the purposes of our analysis, it is sufficient to consider H*(CPn/CPk\ Q) through 

degree 2n, and TT*(£l(CPn/CPk)) 0 Q through degree 2n — 1. In this range, the algebras 

H*(CPn/CPk\ Q) and H*(CP°°/CPk', Q) are isomorphic, as are their respective Quillen 

models, and homotopy Lie algebras. Thus, many of the required calculations have al­

ready been done in Theorem 2.6. The notation above will be retained, so {Jc/}*+!</<„ is a 

basis ofs-lH*(CPn/CPk; Q), and H\CPn/CPk; Q) has Quillen model L(xk+],...,xn\ d), 

where d is as described in the discussion that follows Theorem 2.3. 

THEOREM 2.7. Ifn < Ak + 8 then H*(CPn/CPk; Q) is intrinsically formal. 

PROOF. We use the spectral sequence to show Hx{LH(n/k),è) = 0. As in the proof 

of Theorem 2.6, the differentials Et for 1 < i < k are all zero and E?k^{ = Ef{
,q. We now 

show that E%12 = 0. 

To simplify notation we use 7i>̂  to denote irrj(p.(CPn/CPk)>) <g> 0 . Recall that the 1-

line of the spectral sequence is given by Ef^x = 05>3 ^2{p~\),s • dxp. However, since 

all generators xt have odd degree, E^{ = ®t>2^2(p-\),2t • dxp. As remarked above, 

7T* (Q(C/* I CPk)) <g) Q is isomorphic with TT* (Q(CP°° / CPk)) ® Q in the degrees of inter­

est here, which in turn is isomorphic with (xk+\ ) 0 L(xk+2, • • •, *2k+\ ) as a vector space. So 

the least/? for which Ef^x could be non-zero satisfies 2(p — 1) = Sk + 14, orp = Ak + 8. 

If n < Ak + 8, therefore, then E?£x — 0 for each /?, since /? < n < Ak + 8, and so each 

I%12 = 0 also. Likewise, if n = Ak + 8 and /? < n, then £ ^ 2 = 0. 

The only case remaining is p — n — Ak + 8. In this case we have E*k^x = E^x = 

8̂*+14,4 ' dxp = Q, with basis element r\ — \xk+2, [̂ +2» [^+2*^+3]] ' dxn. Note that 

Ek+\ (l) — 0 for lacunary reasons. 

CLAIM. In the case under consideration, Ek+\ : Ek+\ ' —> EP^X is onto. 

PROOF OF CLAIM. £^{ 7 ' 0 = ®s>2 ̂ 6k+\3,s • dx3k+1. In the underlying multi-complex 

the element ( = [xk+3, [^+2,^+3]] • dx3k+1 G L ^ ^ satisfies 

àk+\ ( 0 = ~~ \xk+\ » [Xk+3 » ixk+2, *£+31J ' dxn 

Xk+3 » [•**+1 » ta+2, *À:+31J — [ [*k+1 » *fc+3 ] » [**+2 » **+3 ] J ) ' 9^w, 

by the Jacobi identity. The bracket structure in E*x* gives [xk+\,xk+3] = — \[xk+2,Xk+2\ 

and [xk+\,xk+2] = 0; so using the Jacobi identity, \xk+\, [^+2,^+3]] * dxn = 0 in E?klx. 

Consequently Ek+l(Q = 5 [[^+2,^+2], [^+2.^+3]] * d*n = rj. 
END OF PROOF OF CLAIM. 
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Thus if n = 4k + 8, then E^2 = 0. We have shown that if n < 4k + 8, then £*;'2 = 0 and 
hence Hl (LH^n/ky 6) = 0. The result now follows from Theorem 1.3. • 

We finish this section with a proof of case (iv) of Theorem 2.1. For any k, denote the 
spectral sequences for the algebras H\CPOG/CPk\ Q) and H*(CPn/CPk;Q) by 
{(Er)°°,E™} and {(Er)\E

n
r} respectively. As in the proof of Theorem 2.6, En

r = 0 for 
1 < r < k, so that (EFk^)n = (EP{q)n. We next give a technical result that is the basis for 
all further computation. In particular, it shows that in the spectral sequence calculation 
of H[(LH(n/k),è), the only non-trivial differential is En

k+{. 

LEMMA 2.8. Using the above notation, (£^ )n = (E^+2)
n for each p and ifp < n — k, 

then (£§, )n = (Efk+2)
n = 0. Furthermore, suppose that a • dxp G (£f+1)

n with n — k < 
p <n. Then a • dxp survives to {Ef^J1, and thus to (E%£ f, if and only if 6^ (a • dxp) ^ 0. 

PROOF. We use the notation and calculations of Theorems 2.6 and 2.7. Since each 
generator xp has odd degree, we have E%+1 = ®t>\ ^2p-\,2t+\ • dxp and EF£X = 
®t>2 K2(p-\),2t ' dxp> Now considerp <n — k— 1. In this range of p, En

k+X and E^ can be 
identified. As in the proof of the claim in Theorem 2.6, we identify (E*^)00 and E^ with 
terms from the Quillen model of CP*, and conclude that (E?kf2)°° = 0 and C ^ ) 0 0 = 0, 
since the only non-exact cycles in the Quillen model of CPk have bracket length 1 or 2. 
Thus ifp<n-k-l, then (Ef£2)

n = 0 and if n - k < p < n, then for each / > k + 2, 
Ef. (£f ̂ ' V -> (£f V is trivial since (£f _ / 'V = 0. On the other hand, ifn-k<p<n, 
then E?(E%'l)n = 0 for / > k + 1, for lacunary reasons. This proves the first assertion. 

Now assume that a • dxp G {Ef^x)
n with n — k < p < n. By the proof of Theorem 

2.6, £°° - 0 for 1 < i < k, and (E^l2)°° = 0. Hence ££,(« • 3*,) = 0 if and only 
if there is some r\ • dxp_k^i G (i^"*-1 '0)00 such that ^ ( 7 7 • dxp^k_\) = a • dxp. But 
(£P-*-i.0)oo = (tf-f-1-0)» mdS&iri'dxp-t-x) = ^ ( 7 7 - a ^ - i ) , so the result follows. 

THEOREM 2.9. #/i = 21,22,23 or 30, then H*(CPn/CP2; Q) w intrinsically formal 

PROOF. Once more we use the spectral sequence to show that Hl(LH^nikyè) — 0. 
As in the proof of Theorem 2.7, and according to the remarks above Lemma 2.8, it is 
sufficient to consider E^,{ = ®t>2 ^2p-2,2t • dxp for n — 2 < p < n. Length 4 brackets in 
7r*(Q(CPyCP2)) 0 Q have degree < 34, with pc5, [jC5,[JC4,Jt5]] having maximal degree. 

Length 6 brackets have degree > 44, with ad^x^fe) having minimal degree. If n — 21 
or 22, the inequalities 34 < 2p — 2 < 44 hold, and so E% = 0 for p in the range 
n — 2 < p < n, and hence (E^)n = 0. If n = 23, then the critical range for p is 
21 < p < 23; here E%1 = 0 unless p = 23, and Éf,{ has basis consisting of the single 
element ad5(jC4)(x5) • 3*23. By direct calculation, this element vanishes under #3°, so that 
(E^)n = 0 by Lemma 2.8. Finally, if n = 30 the argument is similar to the case n — 23 
with the single basis element in the critical range being ad7(x0(;t5) • 3*30 £ E^0,1. Thus 
in all cases (E%})n = 0 and the result follows from Theorem 1.3. • 
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3. H\LH{n/k),8) ^ 0 and the algebras H*(CPn/CPk\ Q). Having determined cer­

tain values of n and k for which Hx (LH(n/k), è) — 0, we now consider the remaining values 

for n and k and show that Hx (LH{n/k), <5) ^ 0 in all other cases—see Propositions 3.5, 3.6 

and 3.9 below. This information is critical in Section 4 where we prove that an algebra 

H\CPn/CPk; Q) is intrinsically formal if and only if Hl(LH(n/k),6) = 0—a fact that is 

not true for all algebras H. 

We consider three cases separately: k > 4, k = 3 and k = 2. In each case we identify 

particular elements in the spectral sequence that survive to E^, so that Hx(L,b) ^ 0. If 

k > 3, then the following lemma, when combined with Lemma 2.8, provides a useful 

criterion in this regard. We use the same notation as in Section 2, with x denoting an 

element of L(s~lH*) and x denoting the negatively re-graded element of LH. 

LEMMA 3.1. Let (3 e l(Jc*+2,... ,x2k+\) C ir*(Çl(CP°°/CPkj) ®Qbean element of 

the following type: 

with (i) max{ / i , . . . , ir_\} < ir and (ii) ir < ir+\. Then 8^ {(3 • dxp) ^ 0. 

The proof of Lemma 3.1 is a consequence of the following lemma, which gives a useful 

test for linear independence among certain types of elements in a free Lie algebra: 

LEMMA 3.2 ([Lu, 4.7]). In the free Lie algebra L(xk+2,..., JC2*+i)> let X be an element 
X — Y^=j^.2[xi,Bi\; where each B[ has the form 

Bi = TlXjlXh,lxh,l...,[xJr_1,xJ,]]---] 
J 

where J = (j\,... Jr), satisfying Xlj = 0 unless max{ij\,... Jr-i} < j r and j r - \ < j r . 

Then \ = 0 implies each B\ = 0. 

PROOF. This is proved by a straightforward argument using the universal enveloping 

algebra, which in this case is the tensor algebra T(xk+2,...,x2k+i )• • 

PROOF OF LEMMA 3.1. Suppose that ^((3 -dxp) = 0. Recall from the proof of Theo­

rem 2.6 t h a t ^ ^ / 3 - 3 ^ ) = 6(J3)-dxp+k+u where 0(xk+2) = 0,0(xk+3) = -^[xk+2,xk+2],...9 

Q(x2k+\) — —\ T^tk+2[xi,X3k+2-i]- Thus, if S^i/3 • dxp) = 0 with (3 as in the hypotheses, 

then 6(f3) = 0, which implies that 

o = E(-iy+11^, [..., mi;), [..., [xlr,xirj] • • •] 
7 = 1 

+ ( - i r i [ x / l , [ . . . , [ ^ 1 , [ ^ v ) , x / V + 1 ] ] - . . ] 

+ ( - i r 2 [ i i p [ . . . , [ i / r , ^ + l ) ] ] - - - ] . 

If ir < ir+\, then the last term is linearly independent of all the others, since they all 

contain an entry xir+x of maximal index. Now 6((3) — 0, so in this case 0(xi] ) = ••• = 

#ter_,) = @(xir) = 0, by Lemma 3.2. Thus ir = k + 2, contradicting assumption (i) 

of the hypotheses. On the other hand, if ir — ir+\, then the term written as a sum is 
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linearly independent of the last two elements—terms in the sum are brackets with two 
entries of maximal index, while the last two terms are brackets with one entry of maximal 
index. In this case, 0(J3) = 0 implies (—l)r+l2[jcl-1,[..., [xir_x, [0(xir\xir]] • • •] = 0, so that 
9(xir) — 0 by Lemma 3.2. But since ir = ir+\, then 0(13) = 0 implies ir = k + 2, again 
contradicting assumption (i). Now ir < ir+\, by assumption (ii), so 0(/3) ^ 0 and hence 
àk+i(P ' dtp) T̂  0 as claimed. • 

A bracket having the form as in the hypotheses of Lemma 3.1 will henceforth be 
referred to as a (3-type bracket. An element (3 • dxp in the spectral sequence will be of 
(3-type if the coefficient (3 corresponds—under the re-grading—to a /3-type bracket in 
7T* (Q(CPn/CPk)) 0 Q. Lemmas 2.8 and 3.1 imply that elements in the spectral sequence 
of/3-type survive to (Ef^ )n whenever n — It <p <n. In fact if k > 3, then such elements 
can be found in this critical range, for all but one value of n. Our proof of this fact follows 
from the next two lemmas. 

LEMMA 3.3. If2kr+3r + 2 <s< Akr-r+2, then 7T2s(£l(CPn / CPk)) ® Q contains 
a (3-type bracket of length 2r. 

PROOF. If s = 2kr + 3r + 2, then ad2r~2(xk+2)([xk+3,xk+3]) G l2s(xk+2, • •. ,*2*+i) C 
7T2s(^Çl(CPn/CPk)^ (g) Q is a /3-type bracket of length 2r. For the next k-2 values of s, 
successively replace the right-most entry xk+3+i, by xk+3+i+\ for 0 < / < k — 2; obtaining a 
sequence of brackets ending with ad2r~2(% 2̂)([*A:+3>-*2£+i])- Each replacement increases 
degree by two and gives a /3-type bracket of length 2r in 7r* 
next k — 2 values of s, successively replace the second from right-most entry xk+3+i, by 
Jcfc+3+i+i for 0 < / < k — 2, ending with ad2r~2(xk+2)([x2k+\,x2k+\]). Again, each replace­
ment gives a bracket with the required properties. Now successively replace the right­
most entry in xk+2 by xk+3,..., x2k ending with ad2r~3(xk+2)( \x2k, [x2k+\, x2k+\ ] j), and con­
tinue in this manner, working from right to left until the bracket &d2r~2 (x2k)([x2k+\, x2k+i ]) 
in degree 8/cr — 2r + 4 is obtained. • 

LEMMA 3.4. If(2r— \)k > 4r + 2 for all r > 2; then for all n > 4k + 9, there is 
some p in the range n — k < p < n with (E?k+{)

n containing an element of (3-type. 

PROOF. The /3-type element in (E*k+} )°° having coefficient a length four bracket of 
least negative degree — (Sk +16), is \xk+2, \xk+2, [xk+3,xk+3]M ' ̂ x4k+9- The /3-type element 
in (E*^)00 having coefficient a length four bracket of most negative degree —16/:, is 
\x2k, \x2k, [x2k+\, x2k+\ ] 1 • dxu+\ • Thus, by Lemma 3.3 (Ë£l\ )°° contains a /3-type element 
for each p in the range 4k + 9 ^ p ^ 8/: + 1. That is, for each n in the range 4k 4- 9 ^ n ^ 
9/:+1, there exists some/? with n — k<p<n and a /3-type element in (P?k+l )

n. Similarly, 
/3-type elements with length 6 coefficients begin with ad4(xk+2)([xk+3,xk+3]) • dx6k+\2 in 
minimal cellular degree, and end with ad4(x2k)([x2k+\ ,x2k+\]) • dx\2k in maximal cellular 
degree. Therefore, for each n in the range 6k + 12 < n < 13/:, there is some p with 
n~k <p <n and a /3-type element in ( £ ^ )n. By assumption, r —2 implies 3k > 10 so 
that 6/:+12 < 9/:+2 < 13/:; it follows that a/3-type element with coefficient length 6 can 
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be found in the appropriate range, when it is no longer possible to find /3-type elements 
with coefficient length 4. 

Inductively, given /3-type elements with coefficient length 2r, some r > 2; invoke the 
inequality of the hypothesis to show that /3-type elements with coefficient length 2r + 2 
can be found to extend the range of n, for which the conclusion holds, when it is no longer 
possible to find /3-type elements of coefficient length 2r. m 

PROPOSITION 3.5. If 4k + 9 < n < oo and k>4, then Hx (LH(n/k),6) ^ 0. 

PROOF. Since k > 4, k satisfies the hypothesis of Lemma 3.4 for all r > 2. The 
conclusion now follows from Lemmas 2.8 and 3.1. • 

PROPOSITION 3.6. 7/21 < n < oo, then Hl(LH{ni3),5) ^ 0. 

PROOF. When k — 3, Lemma 3.4 fails. However, if r is required to be at least three, 
the conclusion of Lemma 3.4 holds for all n > 30. Thus it is sufficient to consider the 
range 21 < n < 29. As in the proof of Lemma 3.4,/3-type elements of length 4 begin with 

*5, [x5,[x6,X6lj •3̂ 21 and end with •3x25. Hence for each 21 < n < 28, X6, [x6,[X7,X7]j 

there is a p with n — 3 < p < n and a /3-type element in (E%l)n. For the remaining 
case n — 29, let a • 3̂ 26 = [[*6>*7,L [x7,X7l] • 3x26- Then E^(a • 3x26) = 6(a) • 3x3o, 
where 6(x^) = — ̂ [x5,X5] and #(x7) = —[xs,X6] as in the proof of Theorem 2.6. Direct 
calculation shows that 

£4° (a • 3x26) = ([[#(x6),X7], [x7,X7]j + brackets with 2 entries inx7) • 3x30 

The conclusion follows from Lemma 2.8. • 
We conclude this section with a discussion of the case k = 2. Observe that, as 

a vector space, 7r*(Q(CP°°/CP2)) 0 Q = (x3) © L(x4,x5) and so contains exactly 
one length 2r, /3-type bracket for each r > 2. These brackets appear in degrees too 
sparsely distributed for our purposes. Instead, there is the following: For each r > 2, let 
6J2r — ad(x5)ad2r~2(x4)(x5); the brackets {ad7([x4,X5l)(cj2r)};>o have the suitable prop­
erties. Henceforth, a bracket in this family will be referred to as a 7-type bracket, and 
a corresponding element 7 • dxp in the spectral sequence will be referred to as a 7-type 
element. 

LEMMA 3.7. Ifl • 3x/; <G (EF^)°° is a 1-type element, then Ef(l • dxp) ^ 0. 

PROOF. Recall from the proof of Theorem 2.6 that Ef(l • dxp) = 6(a) • 3x;,+3, where 6 
is induced from ad(x3). Thus, it is sufficient to show that 0(7) 7̂  0 for any 7-type bracket. 
Let "K be a graded Hall basis for L(x4,x5) [N-M, 4.5]. Note that 6(x4) = 0 and 6(x5) = 
— ̂ [x4,x4], so that 0([x4,x5]) = 0. Now 6((jjlr) = ad(—^[x4,X4])ad2r"2(x4)(x5) = 
-ad2r(x4)(x5), by the Jacobi identity. But ad2r(x4)(x5) G 9{, so 6(ujlr) ^ 0. Now if 
7 = ad([x4,x5])(u2r), then 6(1) = acF([x4,x5])(6'(^2r)) = -~ad/([x4,x5])ad2,(x4)(x5). 
But aôi([x4,x5]) ad2r(x4)(x5) G H and it follows that 6(1) ^ 0. • 
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LEMMA 3.8. For n > 38, there exists some p in the range n — 2<p<n, for which 

(£3' )n contains a J-type element. 

PROOF. In most cases we can take p equal to n: Since n > 38, write n— 10 + 7r + m 

for r > 4 and 0 < m < 7. If 2r + 2 — 2m > 0, then consider the 7-type bracket 

7 = adm([x4,X5])(cj2r+2-2m) in degree 18 + 14r + 2m. This gives a corresponding 7-

type element 7 • 3xio+7r+m G {E^x)n. This leaves the three cases n = 43,44 and 51, 

corresponding to (r, m) = (4,5), (4,6) and (5,6) respectively. In these cases, the gamma-

type brackets ad3([Jc4,X5])(â)4), ad4([Jc4,JC5])(ô)4) and ad4([x4,X5])(cJ5), respectively, give 

gamma-type elements in (E"~2,{)n. m 

PROPOSITION 3.9. If 17 < n < 20, 24 < n < 29 or 31 < n < 00, then 

PROOF. Lemmas 2.8, 3.7 and 3.8 give the result for n > 38. The 7-type bracket £4 

has degree 32, giving a corresponding 7-type element U4 • dx\j. Thus, for n = 17, 18 or 

19, there exists a 7-type element in (E^,{ ) n , for some p in the range n — 2<p<n. Also, 

0)6 has degree 46 and gives a corresponding element ^ • 3^24- Thus for « = 24, 25 or 26, 

there exists a 7-type element in (Z^'1 )n for some /? in the range n — 2<p<n. Consider 

the 7-type brackets 3.^([x4,X5])(ûs-2j) f° r7 = 0 ,1 ,2 ,3 , which range in even degree from 

60 through 66. These give corresponding 7-type elements 7 • dxp for 31 < p < 34. Thus 

for n in the range 31 < n < 36, there exists a 7-type element in (£^' )n for some p in 

the range n — 2 < p < n. The discussion above, together with Lemmas 2.8, 3.7 and 

3.8, implies the result for all n in the hypotheses except for n = 20,27,28 and 37. For 

these, set u = [x4,xs] and v = fe,^] and define â\ — [«, v], ai — [v, [w, v]J and 

«3 = v, [«, [W, V]1 , in degrees 34, 52 and 68 respectively. These give corresponding 

elements a\ • dx\%, 0C2 • dx27 and 0C3 • 8x35. Direct calculation shows that Q{at) ^ 0 for 

each /; so by Lemma 2.8, ct\ • dx\% survives to (E{£,{)n for 18 < n < 20, a2 • dx2j survives 

to (E2^l)n for 27 < n < 29 and a3 • dx35 survives to ( £ ^ V for 35 < n < 37, and this 

completes the proof. • 

4. Perturbations and the algebras H*(CPn/CPk; Q). This section identifies per­

turbations of d in the Quillen model of H with representatives of classes in H{LH{njk), 6). 

We apply Theorem 1.2 to obtain our concluding results: 

THEOREM 4.1. H*(CPn / CF*; Q) is realized by two distinct rational homotopy types 

if: 

(i) n = 4k + 9; 

(ii) k = 3 and n = 29; or 

(Hi) k — 2 and n = 20. 

THEOREM 4.2. If n and k fail to satisfy the hypotheses of Theorem 2.1 or Theo­

rem 4.1, then H*(CPn/CPk', Q) is realized by a countably infinite number of rational 

homotopy types. 
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The proofs of Theorems 4.1 and 4.2 appear in 4.17 and 4.18 below. Together with The­

orem 2.1, this completes Theorem 1.1. 

The following four lemmas and Corollary 4.7 are technical results that give infor­

mation about H{{LH{nik),b) and the structure of V/ exp(ad L^{n ,k)). If 0 G LH(n/k) is a 

derivation, then we will denote its homology class in H](LH(nik),è) by [0]. 

LEMMA 4.3. Hl(LH(n/kyè) is spanned by classes of the form [a • dxp], where 

n — k < p < n and a G L(xk+2,... ,x2k+\). Furthermore, if Q — Y?p=n_k ocp • dxp with 

ap G L(jCfc+2,... ,X2k+\), then Q is both a b-cocycle and a perturbation. 

PROOF. AS in the proof of Theorem 2.7, (EfJ )n = 0 for/? < n-k. For n-k <p < n, 
consider a basic derivation a • dxp in the multi-complex (LH(n/k),6) C (Der LH{n/k),6). 
Recall from Section 2 that è = E/>o £/• In this range, <5(a • 3^) = <5o(a • dxp) = (da) • 3xp. 
Hence representatives a-dx^ of non-vanishing classes in (E?^ )n are <5-cycles that represent 
non-vanishing classes in H{(LH(n/k),6). Furthermore, any non-zero class in (Ep^)n can 
be represented by a <$o-cocycle oc • dxp, with a G H(LH(n/k), d), and a of bracket length at 
least three. But H(LH(njk), d) = (xk+\ ) 0 L(xk+2,... ,x2k+] ) as vector spaces in this range, 
so a can be chosen from L(xk+2,... ,x2k+\). 

Now suppose a • dxp G i l /n, with n — k < p < n, and a G Lfe+2? • • • ,x2k+\ )• 
By considering the connectivity ofH*(CPn/CPk', Q), d(x;) contains no entries in xp, with 
n — k < p < n, for any k + I < i < n. Hence (a • dxp){d) = 0. But d(xi) = 0, for 
/: + 1 < / < 2k + 1, so d(a • 3^) — 0 and thus a • dxp is a <5-cocycle. Now consider 
a' - dxq G £}]<n/ky with n — k < q < n, and a' G L(x^+2,... ,x2k+\). Again by the 
connectivity of H*(CPn/CPk\ Q), a' contains no entries in JCP, so (a • 3x/?)(a

/ • 3JC )̂ = 
(a • 3xp(a

7)) • dxq = 0. For Q = T,"n_k ap • dxp, this implies <22 = 0. But for Q of 
this form, Q is a sum of <5-cocycles, by the above, and hence is a <5-cocycle itself. Thus 
(d + Q)2 = d2 + 5Q + Q2 = 0, so Q is a perturbation. • 

LEMMA 4.4. Létf P G L]
H(n/ky with P = Hp=n_k ap • dxp and ap G L(xk+2, • • •, *2*+i )• 

IfveL°H{n/kythen[rl9P]=0. 

PROOF. 77 G -L%n/k) is a degree zero derivation of LH{njk) that increases bracket 
length by at least one. In this case, however, each generator of LH{n/k) has odd degree 
so that 77 increases bracket length by at least two. As in the previous lemma, the con­
nectivity of 7/*(CPn/CP*; Q) implies that, for k + 1 < / < n and n - k < p < n, r/(x/) 
contains no term in xp. Thus Pr\ — 0. On the other hand, P(JC;) is a sum of brackets from 
L(xk+2,. • • ,X2k+\)- Again, connectivity implies that, for k + 2 < / < 2k + 1,77 (x/) = 0 so 
that r\P = 0 as well and it follows that [17, P] = 77P — P77 = 0. • 

The next two lemmas relate to the 'exponential action of £ 0 , on the set of perturba­
tions V = {P I (d + P)2 = 0}. For details of this see [S-S]. This action can be described 
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briefly as follows: For 6 G L° and P G V, send 

P H-> exp(ad 6)(d + P)-d=YJ—ï adm(6)(d + P)-d 

= p + [e,d + P] + j\6,[0,d + P}} + ..-. 

This defines an equivalence relation on V by Q ~ P if and only if Q — exp(ad 0)(d+P)—d, 
for some ^ G 1°; we denote the orbit of P by {P}. 

Let V = {P | P = Y?p=n_kocP • dxp with ap G l(**+2,... ,*2*+i)}; by Lemma 4.3 
\>C V. 

LEMMA 4.5. /f P G V, then there exists some P G V such that {P} = {P}. 

PROOF. Write P = P2 + P3 + • • -, where Pi extends bracket length by /. We show, by 
induction on bracket length, that {P} = {P} for some P = P2 + P3 + • • • with Pt G V for 
all /. Assume inductively that {P} = {P(m_i)} and P( W -D — Pi + • * • + An-i +Pm + " ', 
with P,: G V for / < m — 1. Since P(m-\) is a perturbation, (J + P ( W _D) 2 = 0, so that 
àPm + [̂̂ 2> An-i] + • • • + ^[Pm-i ,A] = 0 by equating homogeneous components. But 
[Pi,Pj] = 0 for each ij, as in the proof of Lemma 4.3, thus 6Pm = 0. So consider 
the class [Pm] G Hx{LH{n/k),è). By Lemma 4.3 Pm = Pm + 6rjm-\, for some Pm G V 
and rym_i G <L%niky Note that r/m_i increases bracket length by at least m — 1. Now 
[r/m_i, A] = 0 for 2 < / < m — 1, by Lemma 4.4, so 

exp(ad77m_i)(J + P(m_i)) = d + P(w_i) + [77w_i,d] 

+ terms that extend by > m + 1 

+ terms that extend by > m + 1 

because Pm — [d,r)m-\] = Pm. By the inductive hypothesis {P} = {P(m_1}}, so that 
exp(ad r/)(d + P) = d + P(m-\) for some r\ G L®,k). Now 

exp(ad r/m_i) exp(ad n)(d + P) = exp(ad rj')(d + P), 

where r/ is related to rjm^\ and 77 by the Baker-Campbell-Hausdorff formula, rj' = r/m_i + 
r; + ^fam-i^l + • • • [Ja, p. 174]. Thus puttingP(m) = exp(adr/m_i)(J + P(m_i)), we have 
{P} = {P(m)} and the inductive step is complete. Induction starts with m = 1, where 
P — P(0), and the result follows. • 

LEMMA 4.6. IfP G V, then {P} = {0} if and only if[P] = 0 G Hl(LH(n/lc),6). yjf ij unu uniy ij n j — u c: if 

'0 
PROOF. If P = Sr] for some 77 G L^n,k), then [7/, [77,t/]J = — [77,P] = 0, by Lemma 

4.4, so that exp(ad r])(d + P) = d. 

Conversely, if exp(ad 6)(d+P) = d for some 6 G ̂ (n/kytnen u s e t n e ^act t n a t ^ ' ^ ~ 
0, from Lemma 4.4, to re-write this as exp(ad 0)(d) = d — P. Write P = P2 + P3 + • • • and 
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0 = 6[ + 82 + • • -, where Pt and #, both extend bracket length by /. Assume inductively 
that for some m and all 1 < / < m — 1, there exists 77/ G ̂ %nik) with èrft — P/+i, and that 

(t) exp(ad $(jn))(d) = d- Pm+\ - Pm+2 , 

where 1/V) ^ ^H(nlk) e x t e n ds bracket length by at least m. Write i/V) = ^m + Vwi + 

• • •, so that b%l)m = Pm+\ by equating homogeneous components of (f ). Now apply 
exp(ad-ipm) to (f) and obtainexp(adVv+nX^) = d- Pm+2 - An+3 , where Vwn 
extends bracket length by at least m + 1, from the Baker-Campbell-Hausdorff formula 
and Lemma 4.4. This completes the induction step. Induction starts with m = 1 and 
i/>(i) = 0. Thus there exists 77; with £77; = A for all / > 2 and so 677 = P with 77 = E/>2 Î7M 
as desired. • 

COROLLARY 4.7. Létf P,Q e V. Then {P} = {Q} if and only if[P] = [Q] in 

H (A/(/i/*)»£)-

PROOF. {P} = {Q} if and only if exp(ad 0)(d + P) - Q = d for some 0 G ££(„/ik). 

By Lemma 4.4, this holds if and only if exp(ad 6)(d+P — Q) — d. This is true if and only 

if P — Q = br\, for some 77 G ̂ (n/ky Ŷ Lemma 4.6. • 

The set V / exp(ad L^, /k)) has a vector space structure which we now describe. If 

{P} G v/exp(ad£j* /jt)), use Lemma 4.5 to choose a class representative P G V and 

write P — Ep=n_jta/? ' ^ , with ap G L(xk+2, • • • ,*2*+i)- Define scalar multiplication by 

\{P} = {XP}, where {XP} = Iln
p=n_k(Xap) • dxp. This is well-defined by Corollary 4.7: 

If Q G V is another class representative, then [P] = [Q]by Corollary 4.7, so [XP] = [XQ] 

and hence {XP} = {XQ} again by Corollary 4.7. 

THEOREM 4.8. There is an isomorphism of vector spaces 

PROOF. Define ®({P}) — [P], where P is a representative of {P} chosen from V. 
This is well-defined by Corollary 4.7 and is easily seen to be an isomorphism of vector 
spaces by Lemmas 4.5 and 4.6. • 

The final stage of the Schlessinger-Stasheff classification program identifies perturba­
tions that "differ by a change of basis in //". More precisely, AutH—the group of algebra 
automorphisms of the algebra H—induces an action on V/ exp(ad ^(n/kO whose orbits 
consist of perturbations representing the same rational homotopy type. For details see 
[S-S]. This action can be described as follows: If 0 G AutH, consider the dual coalgebra 
automorphism </>* of//* and desuspend to a vector space automorphism s~l<$>* of s~lH*. 
Extend to a free graded Lie algebra automorphism s~l </>* of L(s~~lH*) and negatively re-
grade so that s~l(f>* is an automorphism of L#. We will abuse notation and denote s~[ (/>* 
by 0*. Then for {P} G v/ exp(ad L°), send {P} »-> {(^)P(^*)"1}. 
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On the other hand, conjugation also induces an action on H (LH,6), given by [P] i—> 
[(cl>*)P((t>*)~ll When H = H*(CPn/€Pk\ Q), the vector space isomorphism of Theo­
rem 4.8 is clearly compatible with these actions. Hence the bijection of Theorem 1.2 
reduces to: 

COROLLARY 4.9. There is a bijection of sets 

j Rational Homotopy Types ) J H (A/(n/*)>^) 1 
j That Realize H*(CPn/CPk; Q) J ' ' \ AutH*(CPn/CPk; Q) J * 

COROLLARY 4.10. H*(CPn/CPk;Q) is intrinsically formal if and only if 
Hl(LH(n/k),e) = 0. 

PROOF. Denote H*(CPn/CPk\ Q) by #(w/ifc). The orbit of [0] in Hl (LH{n/lc), 6) under 
the action induced by AutH(n/k) is just [0]. Hence Hl(LH(n/k^6)/ AutH(n/k) = 0 
implies that Hl(LH(n/k),6) — 0. The converse is Theorem 1.3. • 

For each n < oo, H*(CPn/CPk\ Q) is a finite dimensional vector space over Q. Thus 
Hl(LH(n/Q,6) is a countable set since it has finite rank. Hence by Corollary 4.9 there are 
a countable number of rational homotopy types that realize H*(CPn/CPk\ Q). 

REMARK 4.11. If H is an algebra with FT = 0 for 1 < / < k - 1 and i>4k- 2, then 
the sequence of lemmas leading to Corollary 4.9 carry through with much simplification. 
This proves the following: 

THEOREM 4.12 ([S-S, 8.5]). Let H be an algebra with Hl = Ofor 1 <i <k—\ and 
i >4k — 2. There exists a bijection of sets: 

j Rational Homotopy Types ) J H (LH, S) 1 
j That Realize H j ' ' | Aut// J ' 

Corollary 4.9 and Theorem 4.12, whilst independent, are analogous results. Since 
[S-S, 8.5] is a statement about shallow spaces, it is reasonable to say that the algebras 
H*(CPn/CPk; Q) display shallow-like behaviour. 

We conclude with a discussion of the action induced by AutH*(CPn/CPk; Q) and an 
analysis of the cases in Theorem 1.1 that remain. 

LEMMA 4.13. Let n > 4k + 1 and let {yt}k<i<n be the additive basis for 
H*(CPn/CPk;Q) introduced after Proposition 2.2. Then <j> G AutH*(CPn/CPk',Q) if 
and only if(j>(yi) = Xlyi for some X ^ 0 G Q. 

PROOF. Recall from Proposition 2.2 and as in Theorem 2.3, that H*(CPn/CPk; Q) ^ 
Q[yk+U • • • ,)>2*+i]/5, where S is the ideal generated by {yk+\+iyk+\+j - yk+iyk+i+i+j} for 
0 < / +j < k, {yk+i+iyk+\+j — yl+iyi+j} for k + 1 < / +y < 2k, and all products ytyj with 
/ +7 > w. Let 0 G AutH*(CPn/CPk; Q) and write </>(y/) = A/j,- for each /. Puty = 1 in 
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the first set of relations. If n > 3k + 2, then </>(%+i+ẑ +2 — yk+\yk+2+i) = 0 implies that 
^k+i+2 = A^+/+i(A^+2/A^+i) for —1 <i <k— 1. Recursive application of this gives 

(f) ^k+i+2 = ^k+2 ( T — ) 
y*k+\J 

for —1 < / < k — 1. On the other hand, by setting / = k and j = k — 1 in the second set 
of relations; if n > Ak + 1, then <j>(y2k+\yik — y{+\y2k-\) = 0 implies that 

(Î) ^2k+\ ' ^2k — A +̂1 ' A2jt-1-

Using (f ), re-write each factor in (J) in terms of Â +i and Â +2, both of which are non-zero 
rationals, to obtain A +̂2 = (A*+i)*^. Hence, Xk+\ = Xk+] for some A G Q*, and so for 
each /, <f>(yt) = A' as required. • 

Recall that each <j> G AxxtH induces an action P i—> ((/>*)P((/)*)_1 on perturbations. 
Since Hodd(CPn /CPk; Q) = 0, homogeneous length perturbations always extend bracket 
length by an odd number. 

PROPOSITION 4.14. Let P2/--1 be a perturbation of the Quillen model of 
H*(CPn/CPk;Q) that extends bracket length by 2r - 1. If <j)X G AutH is given by 
<t>\(yù = X% then ($x*)(P2r-i)(<t>\*rl = X-lPir-\. 

PROOF. Suppose P2r-i(*i) = £/ «/ * / , , [ . . . , [Jc/2r ,, Jc/2j] • • • . Since P2r-\ is of de­

gree — 1, E7
2Ii ij = i + r — 1 for each / = (i\,..., i2r). Now (</>A*)-1(.*;) = A-1*;, so 

(</>A*)(^2,-I)(</>A*)_1(^) = A - ^ A ^ ^ r - i K * ) . But (</>A*)(̂ ) = A^. , and so 
(^( /V- lX^A*)- 1 ^/ ) = Ar-1P2r-l(^i). 

By Proposition 4.14, AutH acts linearly on perturbations that extend bracket length 
by three, and non-linearly on perturbations that extend bracket length by more than three. 
This fact, in light of Corollary 4.9 and subsequent remarks, suggests that for a fixed k, 
most of the algebras H*(CPn /CPk\ Q) are realized by a countably infinite number of 
rational homotopy types. The following technical corollaries make this precise: 

COROLLARY 4.15. Let [Pjr-i] be non-zero in Hx{LH(jlik^S) and suppose Pir-\ ex­
tends bracket length by 2r — 1. If r > 3, then there are a countably infinite number of 
rational homotopy types that realize H*(CPn/CPk; 0). 

PROOF. Consider </>A G AutH\CPn/CPk; Q). By Proposition 4.14 

(<t>\*)[P2r-\](<t>\*rl = y~l[P2r-\] so that for s,t G Q, s[P2r-\] and t[P2r-\] He in the 
same orbit if and only if s = Ar_11. Thus r > 3 implies Hl (LH{nik), 6) has infinitely many 
distinct orbits, and the conclusion follows from Corollary 4.9. • 

COROLLARY 4.16. Ifrarik(Hl(LH(n/k)96)) > 2 as a vector space over Q, then there 
exist a countably infinite number of rational homotopy types that realize 
H*(CPn/CPk;Q). 

PROOF. If [P] and [Q] are linearly independent in H](LH{nik),S), use Lemma 4.3 to 

choose respective representatives a • dxp, (3 • dxq G V, where a and (3 have homogeneous 
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bracket length. If either a or (3 have length 6 or more, the result follows from Corollary 
4.15. So suppose that both a and f3 have length 4, and consider a linear combination 

s[P]+f[G],wherej,f G Q.If^A e Aut//*(CP7CP/:;Q),then(0A*)(4P]+/[Ô])((/>A*)"1 = 
A(J[P] + r[j2]) by Proposition 4.14, and s[P] + t[Q] lies in the same orbit as s'[P] + t'[Q] 
if and only if s' — Xs and *' = Xt. Thus 7/1 (LH{jljky 6) has infinitely many orbits and the 
result follows from Corollary 4.9. • 

4.17 PROOF OF THEOREM 4.1. (i) If n = 4k + 9, the proofs of Propositions 3.5, 3.6 

and 3.9 imply that (EF^)n = 0 for p < n, and that (E%£)n contains a non-zero /3-type 

element Ut+2> [**+2> fe+3>**+3]] • 3xn. Denote this element by (3 • dxn. For k = 2, the 

Jacobi identity implies (£^) n , and hence Hl(LH(n/k),6), has rank 1. For k > 3, (^J/^)" 

*£+2 » ^ + 2 , [*k+2 » *&+4 ] —again is spanned by /? • dxn and ( • dxn, where ( is the bracket 

using the Jacobi identity and degree constraints. Recall the action of 5^ as described in 
Theorem 2.6. This gives e^{(/3 • dxn + £ • dxn) — 0; so Lemma 2.8 implies (£^) n , and 
hence Hl(LH^n/k^6), has rank 1. In either case, Hx{LH^nikyè) is generated by a single 
perturbation that extends bracket length by 3; so Proposition 4.14 implies that Aut// 
acts linearly, with the desired conclusion. 

(ii) In the proof of Proposition 3.6 it is shown that a • 3̂ 26 G (Éf,x)29 survives to 
(£'^'1)29, where a is the bracket [[jC6,X7],[Jt7,jt7]l. Furthermore, if /3 • dxp G (E%l)n, 
for any n, and (3 is a bracket of length 6 or more, then 30 < p < n. So the Jacobi 
identity implies (E^1)29 has rank 1, and degree constraints imply (£^1)29 = 0 for/? = 
27,28 and 29. Thus (i^1)29, and hence Hl(LH(n/k),6) has rank 1 and is generated by a 
single perturbation that extends bracket length by 3. As before, Proposition 4.14 gives 
the desired conclusion. 

(iii) In the proof of Proposition 3.9 it is shown that oc\ -dx\% G (El
3
s,l)2° survives to 

(Zi^'1)20, where ot\ is the bracket [ f e , ^ ] , [JC5, x5]}. An argument identical to that for part 
(ii) above now completes the proof. • 

4.18 PROOF OF THEOREM 4.2. (i) First, suppose k > 3 and n > 6k + 12. By Lem­
mas 2.8 and 3.1 and Corollary 4.15, it is sufficient to identify a /3-type bracket /?, of 
length > 6 such that In - 2k - 2 < \f3\ < In - 2. For a given k, the length 6 /3-type 
bracket having minimal degree 12k + 22 is ad4(Jt^X[^+3,^+3]). By Lemma 3.3, each 
even degree > 12k + 22 contains a /3-type bracket of length > 6. Since n > 6k + 12, or 
equivalently 2n — 2 > \2k + 22, the result follows. 

Now suppose k > 4 and 4k + 10 < n < 6k + 11. By Corollary 4.16 it is sufficient to 
show Hl (LH{n/k), 6) has rank at least two. Recall from Section 2 that rank (if1 {LH{n/k), <S)) 
= rank((£^)n) = rank(0£=n_*(£&V); it is sufficient to show (EfJ)n ^ 0 for at least 
two values of/? in the range n — k < p < n. Now (0^lx)

n = {©*>3 ^2(p-\),s} • 3-fy, and 
in the range n — k < p < n, /3-type elements f3 • dxp survive to (E^)n. By Lemma 3.3 
there exist /3-type brackets of length 4 in every even degree from 8& + 16 through 16k. 
These give corresponding /3-type elements (3 • dxp G ( £ ^ )n for 4k + 9 < p < Sk + 1; 
so if 4A: + 10 < « < 9&, then (i^1)" ^ 0 for two or more values of p. By assumption, 
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k > 4 so that 6/c H- 11 < 9k; thus (£^ )" ^ 0 for two or more values of p whenever 
4k + 10 <n < 6 £ + l l . 

(ii) By the first part of (i) above, it is sufficient to consider 22 < n < 28. If 22 < n < 
27, then an argument identical to that of the first paragraph of (i) above gives the result. 
For n — 28, recall that the proof of Proposition 3.6 identified the element a • 3x26 G 
(ZS46'1)28 surviving to (Z^'1)28, where a is the bracket [[*6,*7L [X7,JC7]]. Furthermore, 

the /3-type element X6,1*6> \*i>xi]] " ^25 survives to (E2^x )28 by Lemmas 3.1 and 2.8. 
Hence, as above, (E*^ )28 has rank at least two and the result follows from Corollary 4.16. 

(iii) As in (i) above, it is sufficient by Corollary 4.15 to identify an element a • dxp 

surviving to (E?^ )n, such that n — 2<p<n and a has length at least 6. Proposition 3.9 
identifies such an element a • dxp for each n > 24, except n — 30. The bracket a in these 
cases must have length at least 6 for degree reasons. For the cases n = 18 and 19, recall 
the proof of Proposition 3.9 in which elements uj^-dx^ G (Z^7'1)" and oc\ -dx\% e (El^,l)n 

were identified, both surviving to (E^,l)n for n = 18 or 19. Thus Hx{LH(n/2),è) has rank 
at least two in these cases, and the conclusion follows from Corollary 4.16. • 
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