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e-mail: katai@math.u-szeged.hu

and CSABA SZABÓ
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1. Introduction. For finite algebras there are strong connections between the
structural properties of the algebra and the free spectra. If G is a finite group, then the
size of the n-generated relatively free group in the variety generated by G is polynomial
in n if and only if G is nilpotent and at least doubly-exponential if G is not nilpotent
([3] and [8]).

Let A be a k-element finite algebra and let V denote the variety generated by A.
It is known that the size of the free algebra in V freely generated by n free elements
(|FV (n)|) is less than kkn

. If k ≥ 2, then this number is greater than n. The free spectrum
of a variety V is the sequence of cardinalities |FV (n)|, n = 0, 1, 2, . . . . For example
the free spectrum of Boolean algebras is |FV (n)| = 22n

. The first important question
about free spectra is the following: within the above bounds what are the possible
numbers?

Another theorem on free spectra is Theorem 12.3 in [4]. If V is a nontrivial locally
finite congruence distributive variety, then for every c such that 0 < c < 1, and for
every large n, the free spectrum of V is bounded below by 22cn

. There are so called
gap theorems for the free spectra, as well. At the lower end, for example, there is
Theorem 12.2 in [4] which states the following. Let V be a variety generated by a
k-element algebra. Then either |FV (n)| ≤ cnk for some finite c, or else |FV (n)| ≥ 2n−k

for all n.
For simple algebras there is a characterization of possible free spectra using tame

congruence theory. The tame congruence types are denoted by 1, 2, 3, 4 or 5 and called
unary, affine, Boolean, lattice or semilattice type, respectively. The next result of Joel
Berman is taken from [1]:
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THEOREM 1.1. For each k ≥ 2 there exist positive constants d1, . . . , d5 and c1, c2, c4

such that if A is a k-element simple algebra and V is generated by A, then for every
sufficiently large n,

(1) if typ(A) =1, then d1n ≤ |FV (n)| ≤ c1nlog2 k;

(2) if typ(A) =2, then d2kn ≤ |FV (n)| ≤ c2k(k−1)n;

(3) if typ(A) =3, then kd3kn ≤ |FV (n)| ≤ kkn
;

(4) if typ(A) =4, then kd4kn/
√

n ≤ |FV (n)| ≤ kc4kn/
√

n;

(5) if typ(A) =5, then d5kn ≤ |FV (n)| ≤ kσ (n) for

σ (n) = nk
n − k(k − 1)3

(
n

(k − 1)3

)
(k − 1)n−(k−1)3

.

As we see, for type 5 there is a huge gap between the two bounds. A very interesting
class of type 5 algebras is the class of completely 0-simple semigroups. Completely 0-
simple semigroups are one of the basic building blocks for semigroups like simple
groups for groups. A semigroup is called combinatorial if it contains no nontrivial
proper subgroups. The first natural step in investigating free spectra of semigroups
is to find the free spectrum of the variety generated by the combinatorial completely
0-simple semigroups. In this paper we prove that the free spectrum of this variety is
asymptotically 2n2+2 log n.

Every completely 0-simple semigroup is isomorphic to a so called Rees matrix
semigroup. A Rees matrix semigroup over the group G adjoined with a 0, G0(= G ∪ {0}),
is constructed in the following way: Let I, � be non-empty sets, and let P = (pλi) be a
� × I matrix over G0, such that each row and column contains at least one non-zero
element. The matrix P is called a sandwich matrix. The multiplication rule in the Rees
matrix semigroup M0[G; I,�; P] = (I × G × �) ∪ {0} is

(i, a, λ)(j, b, µ) =
{

(i, apλib, µ) if pλi �= 0,

0 if pλi = 0,

(i, a, λ)0 = 0(i, a, λ) = 00 = 0.

A semigroup is called combinatorial if it contains no nontrivial subgroup. A completely
0-simple semigroup is combinatorial if G = {1}. Here, 1 denotes the identity element of
G. In the case of combinatorial completely 0-simple semigroups for the triple (i, 1, λ)
we write [i, λ]. The two semigroups playing the most important roles among completely
0-simple semigroups are the Brandt-semigroup B2 = M0[G; {1, 2}, {1, 2}; E], where E
is the 2 × 2 identity matrix and

A2 = M0[G; {1, 2}, {1, 2}; P], where P =
(

1 1
1 0

)
.

Both semigroups are simple of type 5. The Brandt semigroup is both completely 0-
simple and a so called ‘inverse semigroup’. The authors proved in [6] that log |FB(n)| ∼
2n log n, where B denotes the variety generated by the Brandt semigroup. Let A denote
the variety generated by A2. ThenA contains all combinatorial 0-simple semigroups. So
the variety generated by all combinatorial completely 0-simple semigroups is generated
by A2. In this paper we investigate the free spectra of A. We prove that |FA(n)| ∼
2n2+2 log n. We do it via associating directed graphs to terms over A2.
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Figure 1. t = x1x3x2x4x4x3x1x3x2.

2. Preliminaries. A term on an algebra A is an expression that can be obtained
using (iterated) compositions of the basic operations and projections. The projections
are the trivial operations pn

i (x1, . . . , xn) = xi.
Two terms t1 and t2 are called equivalent (t1(x1, . . . , xn) ≡ t2(x1, . . . , xn) or shortly

t1 ≡ t2) over an algebra A if the term operations tA
1 and tA

2 are equal, i.e., for every
a ∈ An, tA

1 (a) = tA
2 (a).

For an algebra A the set of n-ary term operations is ClonA. If V is the variety
generated by A then |FV (n)| = |ClonA| for all n.

Let t = t(x1, . . . , xn) be an n-ary term. A term operation tA is said to be
essentially n-ary, if it depends on all of its variables, i.e. if for all 1 ≤ i ≤ n there
exist a1, . . . , ai−1, a, b, ai+1, . . . , an ∈ A such that

t(a1, . . . , ai−1, a, ai+1, . . . , an) �= t(a1, . . . , ai−1, b, ai+1, . . . , an).

For n ≥ 1, denote the set of essentially n-ary term operations over A by En(A), while
E0(A) denotes the set of all constant unary term operations of A. Now we define
pn(A) = |En(A)|. Thus the equations |FV (n)| = |ClonA| = ∑n

k=0

(n
k

)
pk(A) hold.

By the word graph we shall mean a directed graph without multiple edges. For a
graph G we shall denote the vertices and edges by V (G) and E(G), respectively. We
say that a graph G contains an Eulerian walk if there exists a directed walk in G which
contains all edges, possibly several times.

3. Term equivalence over A2. Recall that the sandwich matrix of the combinatorial
0-simple semigroup A2 is

P =
(

1 1
1 0

)
,

the index sets are � = I = {1, 2} and [i, λ][j, γ ] = 0 if and only if λ = j = 2.
Let t(x1, x2, . . . , xk) = t be a term over A2. Let G(t) denote the following directed

graph: G(t) has k many vertices (v1, v2, . . . , vk). There is an edge between vi and vj if xj

follows xi somewhere in t that is, if xixj is a subword of t. For example, we get Figure 1
for the term t = x1x3x2x4x4x3x1x3x2. Constructions of graphs related to semigroup
terms can be found in [2], [5], [7], [10], [12],

Proposition 3.1 is formulated in [12], we omit its proof.
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PROPOSITION 3.1. Let t1(x1, x2, . . . , xk) and t2(x1, x2, . . . , xk) be two terms over A2,
such that t1 = y1y2 . . . ym and t2 = z1z2 . . . zn, where yi, zj ∈ {x1, x2, . . . , xk}, for every
1 ≤ i ≤ m and 1 ≤ j ≤ n. Then t1 ≡ t2 if and only if the following hold:

(1) G(t1) = G(t2);
(2) y1 = z1;
(3) ym = zn.

4. The free spectrum of A. The next lemma is consequence of Proposition 3.1.

LEMMA 4.1. Let G be a directed graph with n vertices and without multiple edges. If G
contains a closed Eulerian walk then there are exactly n2 many non-equivalent essentially
n-ary terms inducing the same graph.

Proof. Let v1, . . . , vn be the vertices of G. As there is a closed Eulerian walk in G,
there is a closed Eulerian walk starting at vj: p1 = vj . . . vj and a walk from vj to vi:
p2 = vj . . . vi. Then p = xj . . . xi, the concatenation of the walks p1 and p2,

(1) covers all edges of G, as p1 covers all edges of G;
(2) start by vj;
(3) ends by vi.

Thus the for corresponding term t = xj . . . xi we have
(1) G(t) = G;
(2) starts by xj;
(3) ends by xi.

We can repeat this construction for any 1 ≤ i, j ≤ n, hence we have n2 many distinct
terms inducing G. On the other hand, by Proposition 3.1 we have listed all possible
terms inducing G. �

PROPOSITION 4.2. Let D(n) denote the number of directed graphs on n vertices with
a closed Eulerian walk. Then D(n) = o(2n2

).

Proof. Let G be a digraph and let |G| = n. If G does not contain a closed Eulerian
walk, then there is a subset S ⊂ V (G) such that there is no edge from S to V (G) \ S.
Let S be a subset of size k. Then there are 2k2

many graphs on S, 2(n−k)2
many graphs

on V (G) \ S and 2(n−k)k possibilities for edges from V (G) \ S to S. Hence there are
2k2

2(n−k)2
2(n−k)k digraphs without outgoing edges from S.

For k = 1 and k = n − 1 we have(
n
1

)
212

2(n−1)2
2(n−1)1 +

(
n

n − 1

)
2(n−1)2

2(1)2
2(n−1)1

= 2 · n2n2−n+1 ≤ n2n2−n+4.

Moreover
(n

k

) ≤ 2n implies

(
n
k

)
2k2

2(n−k)2
2(n−k)k ≤ 2n2k2

2(n−k)2
2(n−k)k = 2n2+n−nk+k2

.

In case 1 < k < n − 1

2n2+n−nk+k2 ≤ 2n2−n+4.
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Let N(n) denote the number of directed graphs without a closed Eulerian walk on n
vertices. Then

N(n) ≤
n−1∑

1

(
n
k

)
2k2

2(n−k)2
2(n−k)k.

Using the above estimates we obtain the following upper bound for N(n):

N(n) ≤ n2n2−n+4 + (n − 2)2n2−n+4 ≤ (2n − 2)2n2−n+4.

As N(n) + D(n) = 2n2
, we have D(n) = o(2n2

). �
THEOREM 4.3.

|FA(n)| = o(2n2+2 log n).

Proof. By Proposition 3.1 terms correspond to directed graphs and pairs of
vertices, hence |FA(n)| ≤ n22n2

holds. From Lemma 4.1 and from Proposition 4.2 we get
pn(A2) = n2 · o(2n2

) for the number of the essentially n-ary terms. Since pn(A2) ≤ |FA(n)|
we have:

|FA(n)| = o(2n2+2 log n).

�
There is still plenty of work to be done. We gave an asymptotic value for the

free spectrum of the variety generated by the combinatorial 0-simple semigroups.
One should ask for the free spectra of a variety generated by a (not necessarily
combinatorial) 0-simple semigroup in general. It seems that even a very special case
looks to be too complicated.

PROBLEM Let G be an arbitrary (abelian, nilpotent) group. Find the free spectra
of M0[G; I,�; P] where P is a 0-1 matrix.
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