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PRIME PRODUCING QUADRATIC 
POLYNOMIALS AND CLASS-NUMBERS 

OF REAL QUADRATIC FIELDS 

STÉPHANE LOUBOUTIN 

1. Introduction. Frobenius-Rabinowitsch's theorem provides us with a nec­
essary and sufficient condition for the class-number of a complex quadratic field 
with negative discriminant D to be one in terms of the primality of the values 
taken by the quadratic polynomial 

9 1 -D 
fl(k) = k2 + k+—j-

with discriminant/) on consecutive integers (See [1], [7]). M. D. Hendy extended 
Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the 
class-number of a complex quadratic field with discriminant D to be two in 
terms of the primality of the values taken by the quadratic polynomials 

9 D , 4-D 
f2(k) = 2k2-- or f2(k) = 2k2 + 2k+ —— , 

and 

9 P2-D 
fp{k)=pk2+pk + P-^-

with discriminant D (see [2], [7]). 
R. A. Mollin and H. C. Williams [9] proved that if we transpose Frobenius-

Rabinowitsch's result to the real quadratic case, we get a characterization for 
the class-number of certain real quadratic fields to be one. Then, in [10] they 
conjectured some transpositions of Hendy's results to the real quadratic case: 
they noticed that if some quadratic polynomials with positive discriminant D 
take only prime values on some consecutive integers, then the class-number of 
the real quadratic field Q(\/D) equals one and the field is of Richaud-Degert 
type. It may be relevant to remind the reader that, whenever d is a positive 
square free integer, the real quadratic field Q(y/d) is of Richaud-Degert type 
if d can write: d = m2 + r with — m < r ^ m or r = ±4m/3, and with 
r dividing 4m. It was proved by Louboutin [4] and independently by Mollin-
Williams (using different techniques) in [9]-[10] that under the assumption of 
the extended Riemann's hypothesis there are 43 real quadratic fields of Richaud-
Degert type with class-number one (See [4]): d = 2, 3, 5, 6, 7, 11, 13, 14, 17, 
21, 23, 29, 33, 37, 38, 47, 53, 62, 69, 77, 83, 93, 101, 141, 167, 173, 197, 
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213, 227, 237, 293, 398, 413, 437, 453, 573, 677, 717, 1077, 1133, 1253, 1293 
and 1757. Moreover, in [11] Mollin and Williams were able to remove the 
extended Riemann's hypothesis assumption and proved that there exists at most 
one more such field. (See [11].) Thus, in our Theorems 2, 3, 5, 8, 5, 9 and 10 the 
known values are the only possible ones under the assumption of the extended 
Riemann's hypothesis. Moreover, without this assumption there exists at most 
one more value of d which satisfies one of these theorems. 

We first give Theorem 2 that collects together results from [9] and [10] un­
der a single proof and therefore simplifies the proofs. We will then prove in 
Theorems 2, 5, 9 and 10 that whenever one of the polynomials f\(k), fi{k) or 
fp(k) with positive discriminant D is prime valued on consecutive integers, then 
the real quadratic field with discriminant D is essentially a principal field of 
Richaud-Degert type. Conversely, we will strive to characterize in Theorems 
2, 2' and 5 the principal real quadratic fields of Richaud-Degert type in such 
terms. However, we will not be able to achieve this task in the case involving 
the polynomial fp(k) (see Section 4). We will give in Conjecture 2 a precise 
statement of what is still to be proved to get this missing characterization. 

Notations, p, q are odd prime integers. Whenever d > 1 is a square free 
positive integer, D, R, \, 9{ and h(d) are the discriminant, ring of algebraic 
integers, character, ideal class-group and class-number of the real quadratic field 
Q(yd). B is a Minkowski's upper bound, i.e., such that the ideal class-group is 
generated by the non-inert prime ideals with norm p, p ^ B. It is well known 
that we can take B = \VD in the real quadratic case. Whenever I is an ideal, 
we write I' its conjugate. A primitive integral ideal I with norm N — N(l) of a 
quadratic field can be written as a Z-module: 

. „ „b + VD f b + </Ë)\ 
I = Z/V + Z —- = hV, — , 

with b uniquely determined modulo 2N. Furthermore, such a Z-module is an 
ideal if and only if N divides (b2 — D)/4. The real quadratic surd 

b + y/D 

*o(I) = "2ÂT 

is called the quadratic irrationality attached to the ideal I. We then define JC/(I) 

as the z-th complete quotient of the continued fractional expansion of JCO(I), and 
write XQ(I) the conjugate in the field of this irrationality. Hence, 

^ o ( i ) - ^ ( i ) = ^ . 

The primitive ideal I is said to be invariant or ramified if I = I', i.e., if I is a 
primitive ideal product of prime ramified ideals. Moreover, we will make use 
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of the theory of cycles of reduced ideals, as delineated in Louboutin [5], [6]. 
We will mainly use the fact that two integral ideals are equivalent in the ideal 
class group if and only if the periods of the continued fractions of their attached 
quadratic irrationalities are equal, a circular permutation apart. 

2. Cases involving the polynomial k2 + k + (1 — d)/4. 

LEMMA 1. d ^ 1 [8], d > 5. d — m2 ± 2 or there exists a prime p such that 
?>ûpû \fd and X(p) 7^-1. 

Proof. We can write d — m2 + r with — m < r ^ m (thus \r\ < \fd). If p 
is an odd prime dividing r, then d = m2[p] and \(p) ^ —1 and we have the 
result. If r = d=2", n ^ 0, by using d = 5 [8] or d = 2, 3 [4], one easily gets: 
d = m2± 1, d = m2±2 or d = m2±4. If d = m2 + 1 or ra2 + 4, then x(p)¥^ ~ 1 
and 3 ^ p ^ \fd whenever p divides m. If d = m2 — 1 or d = m2 — 4, then 
X(p) T̂  —1 and 3 ^ /? ^ A/5 whenever /? divides m — 1 or m — 2. 

THEOREM 2. L f̂ J = 5 [8], d > 5. The four following assertions are equiva­
lent: 

1) f(k) — —k2—k+(d—\)/4 is prime or equal to one for 1 S k ^ (\fd—\)/2. 
2) d /s square free, d = p2 +4, (p + 2)2 — 4 or 4p2 + 1 a«d x(g) = —1,2 ^ 

g â \fd and q ^ p. 
3) J is square free, d — m2 +4, m2 — 4 or 4m2 + 1 and h(d) — 1. 
4) (J/,?) = -\l2èq< \y/d-\ (q prime). 
Known values: d = 13, 21, 29, 37, 53, 77, 101, 173, 197, 293, 437 and 677. 

Proof. 1)=>2) 

Since J = 5 [8], d is not a perfect square. The/(£)'s, 

2 

are hence odd integers. 
If d is not square free, there exists q odd with q ^ 3 and g2 dividing J. Then 

" 2 " 2 

and g2 divides/((^ — l)/2) which consequently is not prime. Hence d is square 
free. 

Let p be a prime such that 3 ^ /? ^ V^ and \(p) ^ —1 (Lemma 1). Let P 
be a prime ideal over (p). We have 

_ f 2b+\ + Vd\ 
P = /?, — With 1 ^ / 7 ^ / 7 . 
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The conjugate ideal P ' then writes 

P ' = 
f 2b' + 1 + V5A 

J z 

and we can take bf = p — 1 — b or b' = 2p — 1— b. Hence either b or b', let 
us take /?, satisfies 

l ^ b ^ ^ ^ - or b=p-l. 
2 

Since P is an ideal, p divides 

a) Let us assume 2 ^ b ^ (p — 3)/2. Then/(£) is prime and 

Hence /?2 ^ ^ ^ /72 + 4. Since d = 5 [8], we have J = /?2 + 4. 
/?) Let us assume b = (p — l)/2. Then 

P=f(b)=^?- and d = /?(/? + 4) = (/7 + 2 ) 2 - 4 . 

7) Let us assume b ~ p — \ and 

/ ^ 

Then 

p = / ( P - l ) = < f - ( 2 f + 1 ) 2 - and d = V + l -

6) Let us assume 

/ ? = / ? — ! and /? > — - — . 

Then p divides f(p — 1) and hence d = 4/?w + 1. But then 

y/d- 1 
n < , 
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hence p + 1 — n > 2 and f(n) = n(p + 1 — n) is not prime. This case cannot 
occur. 

Since d uniquely writes d = m2 + r with — m < r ^ m, whenever d — 
m2 + 4, m2 — 4 or 4m2 + 1, d ^ 5, d writes in only one of these three forms. 
Hence \{q) = — 1, 3 ^ # ^ \fd and q^ p. 

2) => 3) If J = p2 + 4, p(p + 4) or 4p2 + 1 then 

/? + 2 + <v/5 p + Vd , 2p + 1 + A/5 
^ ? — ^ — a n d ^ 

2 2 2 

have norm ±/?. Thus the prime ideals over (p) are principal. Since y/D = \fd 
is a Minkowski's upper bound and since x(2) = — 1, we have /z(d) = 1. 

3) => 4) follows from Louboutin [5], Theorem 3. 
4) => 1) Whenever 

2 

we have 

i ^ / ( t ) < ^ . 

If f(k) is neither prime nor equal to one, there exists a prime p dividing f(k) 
such that 

Since f(k) = (2k - l)2 [pi we get x(p) ^ - 1 . 

We will later on show in Theorem 4 that the right bounds for k, i.e., those 
suggested by the fact that \\[d is a Minkowski's upper bound, are 

Whenever d = 4m2 + l , /(0) = m2 is not prime. Nevertheless we have: 

THEOREM 2'. Let d = 5 [8], d > 5. The four following assertions are equiva­
lent: 

1 ) f(k) = — k2 — k + (d—\)/4 is prime or equal to one for 0 Û k ^ | \fd — \. 
2) d is square free, d = p2+4 or d = (/?+2)2— 4 vw7/i /? pn'me ««J x(#) = ~~1> 

2ûq£ \yfd. 
3) d /s square free, d — m2 ± 4 a«d /z(d) = 1. 
4) (d/q) = -l,2ûq< \yfd (q prime). 

Proof. Since there exists a prime q such that 
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if and only if d = 4q2 + 1, and since \\[d is a Minkowski's upper bound, here 
again we have 2) => 3) => 4) => 1). 

1) => 2) remains to be proved. If q2 divides d, since d = 5 [8] is not a perfect 
square, we have 

5q2Sd and 2 ^ ^ - S \Vd + ^ 

and g2 divides f((q+ l)/2) which consequently is not prime. Hence J is square 
free. 

Let us suppose that there exists a prime p such that 

3^p^{^/d and x(p)^-\. 

Now we can take b such that 

2 

(since we can take 0 ^ b è p — 1). Hence, we are in case a) or /?) in the proof 
of Theorem 2), 1) => 2), and d = p2 + 4 or /?(/? + 4). In these two cases we have 
p > \\fd, hence \{q) = — 1, 3 ^ # ^ 5 V"- According to the previous theorem, 
we have d = p2 + 4 or d = p(p + 4) (since \(p) = +1 whenever d = 4/?2 4- 1). 

After having given as small of a bound as possible such that whenever the 
f(kYs are prime or equal to one whenever k is nonnegative and less than this 
bound then the field is principal and of Richaud-Degert type, we now show that, 
inversely, whenever the field is one of those principal fields considered above 
we can give the optimal upper bound ko such that/(/:) is prime or equal to one 
whenever 0 ^ k < ko, and such that /(ko) is neither prime nor equal to one. 

THEOREM 3. Let d > 5, d = 5 [8] be square free and 

fl(k) = k2+k+1-^-. 

1) If d — m2 + 4 then h(d) = 1 if and only if \f\(k)\ is prime or equal to one 
whenever 

2 

Note that 

is not prime. Known values: d = 13, 29, 53, 173 and 293. 
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2) If d — m2 — \ then h(d) = 1 if and only if \f\{k)\ is prime or equal to one 
whenever 

2 

Note that 

(3m-l\ 
fx (—y—J =(m-2)(2m-5) 

is not prime. Known values: d — 21,77 a/7d 437. 
3) If d = Am2 + 1 f/ierc /z(d) = 1 if and only if \f\(k)\ is prime or equal to 

one whenever 1 ̂  k ^ 2m — 2. Atote r/ẑ r 

fi(2m — 1) = m(3m — 2) 

zs wctf prime. Known values: d — 37, 101, 197 and 611. 

Proof. According to previous theorems these conditions of primality are suf­
ficient to state h(d) = 1. Conversely, let us suppose that h(d) — 1 and prove that 
the |/i(£)|'s are prime or equal to one. 

Case 3. Whenever 1 ^ k ^ 2m — 2 we have \f\(k)\ < d. If one of the 
|/i(£)|'s is neither prime nor equal to one, there exists a prime p dividing \f\(k)\ 
such that 3 ^ p ^ yfd and \(p) ^ — 1. Thus, p — m (Theorem 2). Since 
m divides f\(k) = k2 + k + m2 if and only if k = m — 1, m [m] and since 
\fi(m— 1)| = \f\(m)\ = m is prime, we obtain what we wanted. 

Cases 1), 2). These are more tricky to prove, since now \f\(k)\ can be greater 
than d. For example, let us prove the first case. We first notice that, according to 
Theorem 2, m is prime and \(p) 7̂  — 1, 3 ^ /? ^ y/d, p ^ m. Let p be a prime 
such that p <2m — 3 and x(p) 7̂  — 1. For one of the prime ideals P above (p) 
we have: 

_ f 2k+l + Vd\ 

with 

0 ^ £ ^ ^ - - <m-2 mdp/\f(k)\. 

Thus |/i(fc)| < d. Since x(<7) 7̂  —1 whenever q divides any |/i(£)|, if \f\(k)\ is 
not prime then m divides \f\(k)\ and 

m — 3 m+ 1 r n 
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Since 

'AW+ 1 - . m-3 
h m 

is prime, \f\(k)\ is prime and thus/? = |/i(&)|, wheneverp <2m — 3. One easily 
gets the successive minima of |/i(&)|, k ^ 0, as 1, AW, 2m — 3 

/ , AW — 3 AW+ 1 AW — 5 
whenever/: = AW, —-— or —-— , —-— 

V 2 2 ' 2 

Hence x(p) = — 1 , 3 ^ / ? < 2 A W — 3 and p ^ m. Let 

3AW — 3 

we have |/i(&o)| = W(2AW — 3) which is not prime and \f\(k)\ < m(2m — 3) 
whenever O^kûko — l.lfp divides \f\(k)\ then \{p) ^ — 1 and thus p — m. 
Hence, if any \f\(k)\ is not prime, then AW divides it. We have just seen that in 
this case 

AW — 3 AW + 1 
k = —z— or 

2 2 
and \f\(k)\ = AW is prime. 

3. Cases involving the polynomials 2k2 - (d/2) and 2k2 + 2k + (1 - d)/2. 
Let 6 be a square free positive integer dividing D, the discriminant of our real 
quadratic field. There exists only one ramified ideal (i.e., an ideal which is a 
product of prime ramified ideals) with norm 6, we will write it Is and call it the 
ideal over S. We have: 

with e = 0 whenever d = 2 [4] or d = 3 [4] and 6 odd, and e = 1 otherwise. 
The polynomial 

4 4c 

is a quadratic polynomial with integral coefficients and discriminant D. It is odd 
valued only on Z only in the three following cases: 

d = D = 5 [8] and <S odd: f6(X) = 8X2 + SX + ~^d' ) (e = 1) 

d = 3[4] and S even: /5(X) = 6X2 + 8X + ~^D/5) (e = 1) 

d = 2[4] and « even: /5(X) = £X2 - - (c = 0). 
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THEOREM 4. If the \fs(k)[ s 0 Û k ^ (B — l)/2 are prime or equal to 1 and if 
I is a primitive ideal with norm N such that I < N ^ B and G.C.D.(/V,<5) = 1, 
then N is prime and 

Ne l\fs(k)\; O^k <
B-zl 

and I is equivalent in the ideal class-group to the ramified ideal Is. 
Moreover, if B is a Minkowski's upper bound, the ideal class group of the 

quadratic field is generated by the prime ramified ideals with norm dividing 8. 

Proof lis is primitive and writes: 

rc + ^ D ^ 
lh = N8, 

2 

Since lis is included in Is 

n + y/D 

2 

Thus we can write 

eiè. 

n = 2k8 + e8 and II, = (N6, ( 2* + ^ + ^ 

lis being an ideal with norm N8, N8 divides 

((2k + e)8f - D 
4 

and N divides fs(k). 

Since k and k' are only determined modulo N, we can suppose that 0 ^ k ^ N — 1 
holds and we can take k' = N — e — k. Hence, for either k or k' (let us take k) 

2 

holds. If 1 < N ^ /?, then Af divides fs(k) which is prime, hence N = \fô(k)\. 
Thus, the principal ideal 

'(2k + e)8 + \/ZT 
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is included in H$ and with norm No, as Hç. Hence, 11̂  is principal and I is 
equivalent in the class-group to I's = 1̂ . 

Remark. Let us suppose d — D = 5 [8] and let I be a primitive ideal with 
norm N such that N ^ B +2 and G.C.D.(N,D) = 1. Then, under the hypothesis 
of Theorem 4, we have 

N G |/,(*)|; O ^ ^ ^ i ) 

In fact, in the proof of Theorem 4, we can suppose that for either k or k' (let 
us take k) 

2 

holds. Otherwise, 

, N-l AK1A..A (6N)2-D 
k — —-— and N divides , 

2 4 
hence divides D. We will need this improvement in Theorem 10. 

Theorem 5 below is a proof of conjecture 3.1 of [12]. 

THEOREM 5. Let d = 2,3 [4], d > 0. The three following assertions are 
equivalent: 

1) |/2(^)| is prime or equals one for 

2 

2) d is square free, d — m2 ± 2 and \{q) = —I, 3 ^ q S \fd, or d = p2 + \ 
or p(p + 2) and \(q) = —1,3 = q = Vd and q ^ p. 

3) d is square free with d = m2 ± 2 and h(d) — 1, or d is square free with 
d = m2±l and h(d) = 2. 

Known values: h(d) = 1 and d = m2 ± 2 = 2, 3, 6, 7, 11, 14, 23, 38, 47, 62, 
83, 167, 227 and 398. h(d) = 2 and d = m2 ± 1 = 10, 15, 26, 35, 122, 143 and 
362. 

Proof This is similar to that of Theorem 2. 
1) => 2) Let p be a prime such that 3 ^ /? ^ v ^ and x(p) ^ — 1. If there 

does not exist such a prime, then d = n2 ±2 and x(p) 7̂  — 1, 3 ^ /? ^ \/d 
(Lemma 1). Otherwise, there exists a prime ideal P over (p) such that 

T « ( ~ 2& + e + A/^A . , „ / , ^ P - 1 
I2P = 2Pl —-— with 0 ^ k Û - . 
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Sincep divides \fi(k)\,p = \f2(k)\. Moreover, we have 0 ^ 2k+e ^ 2k-\-l ^ y/d, 
hence \f2(k)\ = -f2(k). 

a) Let us assume 

2 

Then 

P = -fi(k) ^ • 

Hence p2 ^ d ^ p1 — 2p + 4. This case cannot occur. 
/?) Let us assume 

- ^ -

Then 

^ - Q7 - 1 + 6)2 

P = - /2W = " , 

hence d = p(p + 2) whenever e = 0, and d = p2 + 1 whenever e = 1. Moreover, 
as in Theorem 2, we have %(#) = — 1, 3 ^ <? ^ \/d and qi^p. 

2) =M) Whenever 

we have 

| / 2 ( * ) | ^ < d . 

If ^ is a prime dividing |/2(&)|, then x(#) 7̂  — 1- Hence |/2(&)| is prime or equal 
to one whenever d — m2 ± 2. If d = /?(p + 2) or J = p2 + 1, p divides |/2(£)|, 

2 

if and only if 

In both cases 
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is prime. Hence, \fi(k)\ is prime or equal to one whenever 

2 

2) => 3) In the case of J = m2 ± 2 , the algebraic integer m + yd is with norm 
± 2 . The prime ramified ideal I2 over (2) is thus principal, and h(d) — 1. In the 
cases of J = p(p + 2) or J = p2 + 1, since x(</) = — 1, 3 ^ g ^ \ / d and q ^ p, 
the ideal class-group is generated by any prime ideal P above (p). Moreover, the 
algebraic integers p + 1 + yd or p + \ / S being with norms ±2/7, P is equivalent 
to I2 and h(d) ^ 2. Whenever J = p2 + 1, the fundamental unit eo = p + V ^ is 
with norm —1. By genus theory, we have h(d) ^ 2 and /z(d) = 2. 

3) =4> 2) Whenever d = m2 ± 2, this follows from [5], Theorem 3. Whenever 
J = m2 ± 1, with the notations of Louboutin [6] and by calculating the continued 
fractions expansion of CJQ = \d and *o(l2), one can easily get E(D) = {1, 2, m} 
whenever d = m2 + 1, and £(D) = {1, 2,m — 2, 2(/TZ — 2)} whenever d = m2 — \. 
Hence, by [6], Theorem 3 we get the result. 

PROPOSITION 6. Let I be a primitive integral ideal: X2(I) is reduced if and only 
if —x[ (I) > 0. Moreover, if I is a primitive integral ideal with norm N less than 
yD, then X2(\) is reduced. 

Proof. See Williams-Wunderlich "On the parallel generation of the residues 
for the continued fraction factoring algorithm"; Math, of Comp. 777 (1987), 
4 0 5 ^ 2 3 . 

Remarks. If I is a primitive integral ideal, x\(J) is reduced if and only if A'O(I) 
can be taken reduced. 

Even though this bound \[D cannot help us to give a different proof of 
Theorem 3, it will yet be used to prove Theorem 8 below. 

COROLLARY 7. Let d = m +\ = 2 [4] be a square free integer, P a non inert 
prime ideal with norm p such that p ^ yD. Then, P is not principal and P is 
equivalent in the ideal class-group to the prime ideal I2 over (2) // and only if 
p — 2 or p = m. 

THEOREM 8. Let d = 2, 3 [4], d > 2 be a square free integer. Let us consider 
the two polynomials 

f2(k) = 2k2-d-

whenever 

d = 2[4], and f2(k) = 2k2 + 2k + —^— 
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whenever d = 3 [4]. We have: 

d h(d) upper bound known values 

3m — 6 
m2 - 2 = 2 [4] 1 

m2 + 2 = 2 [4] 1 

m2 - 2 = 3 [4] 1 

m2 + 2 EE 3 [4] 1 

m2 + 1 EE 2 [4] 2 

m2 - 1 EE 3 [4] 2 

2 

3m — 2 

2 

3m — 1 

2 

3m — 3 

2 

3m — 3 

2 

3m — 6 

\4,62 and 39S 

3,6 ûwd 38 

1,23,41 and 167 

11, S3 and 221 

10,26,122 a/a* 362 

15,35 âwd 143 

For instance, the fifth line of this chart reads: whenever d = m2 + I = 2 [4] 
is a square free integer, h(d) = 2 if and only if I/2WI is prime or equal to one 
whenever 

Oèkè 
3m —3 

The only known such values are: d = 10, 26, 122 and 362. Moreover, as in 
Theorem 3, these upper bounds are optimal. 

Proof According to Theorem 5, these conditions of primality are sufficient 
to state the results on h(d). Conversely, let us for example prove the fifth case. 
Let d = m2 + 1 = 2 [4] with h(d) = 2 and let 

3m — 1 

We have \f2{h)\ = m(4m - 3 ) < D. If \f2(k% 0 ^ k ^ k0 - 1 is neither prime 
nor equal to one, there exists a prime p dividing \f2(k)\ such that p < \/D. 
Since \ip) ^ —1, by the previous corollary, p — m. m prime divides \fi(k)\ if 
and only if 

m — 1 m + 1 r ^ 
k = or —-— [mj. 

m — 1 m + 1 

https://doi.org/10.4153/CJM-1990-018-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-018-3


328 STEPHANE LOUBOUTIN 

being prime, we have 

k = 2 

when |/2(^)| is neither prime nor equal to one. 

4. Cases involving the polynomial pk2 +pk + (p — q)/4. Let Q(Vd), d = 
m2 + r > 0 square free, be a real quadratic field of Richaud-Degert type with 
class-number one. 

In the case of d = 1 [8], since the ideal (2) splits completely, Louboutin [5], 
Proposition 2 gives us 2 as a Qt/Qo's and we readily get d = 17 or 33 by 
calculating the continued fractional expansion of 

1 + VS 

according to the parity of m and the sign of r (See [4].) 
In the case of d = 2, 3 [4], we similarly get d — m2 ± 2 (the ideal (2) being 

ramified, 2 is also a Qi/Qo's). 
In the case of d = 5 [8], if the fundamental unit is with norm — 1, then 

d = m2 + 4 or d = Am2 + 1. 
In these three cases, the previous theorems give us a characterization of the 

principality of the field in terms of the primality of the values taken by some 
quadratic polynomials. 

In the case of d = 5 [8], if the fundamental unit is with norm +1, then d — pq 
with p < q odd prime integers such that p = q = 3 [4] (by genus theory). 
Moreover, since the field is of Richaud-Degert type, we have d = p2s2 =L 4p or 
d — 4p2s2 ± p , i.e., q = ps2 ± 4 or q = 4ps2 ± 1. If d — p2 ± 4p (i.e., s — 1), 
then d — m2 — 4 with m—p + 2oxp — 2 and Theorem 2 gives us such a 
characterization. 

By searching on a pocket programmable calculator the d"s with d — pq = 5 
[8], /? = g = 3 [4], and such that the \fp(k)\ 's are prime or equal to one whenever 

0 ^ / : ^ \yfd-\, 

we get the three values d = 21, 77 and 437 that can write J = m2 — 4, as well 
as the fourteen values of the following chart (when ko is such that the \fp(k)\'s 
are prime or equal to one whenever 0 ^ k ^ £0 — 1, and |^,(^o)| is neither 
prime, nor equal to one; i.e., &o ~ 1 is the optimal upper bound of our set of 
consecutive integers). We can notice that these 17 fields are the known principal 
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fields of Richaud-Degert type with d — pq. 

d = p2s2 + 4ep P s e A 0 d-= 4p2s2 + ep p s e &o 

69 3 3 -1 4 141 3 2 -1 3 

93 3 3 +1 6 573 3 4 -1 7 

213 3 5 -1 9 1293 3 6 -1 11 

237 3 5 +1 11 1757 7 3 -1 16 

413 7 3 -1 12 

453 3 7 +1 16 

717 3 9 -1 19 

1077 3 11 -1 24 

1133 11 3 + 1 22 

1253 7 5 +1 27 

One can check that 

ko — Inf I x ,x — 
p(2k - l)2 -

4 
q_ 

*, x ̂ 0, £^oj 

&o defined in such terms is equal to 

(2/7 - \){s - 1) 
+ e 

whenever d — pls2 + 4ep (with e = ±1) and is equal to 

(p - l)s - ^ 

whenever d — 4p2s2 + ep (even though it seems that there exists no such field 
with d = 4p2s2 +p). 

We are thus entitled to emphasize the two following conjectures, the first one 
being introduced by Mollin-Williams [10]. 

CONJECTURE 1. Let d = pq = 5 [8] and p = q = 3 [4]. 77z£ two following 
assertions are equivalent: 

1) \fp(k)\ — \pk2 + pk + (p — q)/4\ is prime or equal to one whenever 0 ^ 

2) d = p2s2 ±4p or d = 4p2s2 ±p and h(d) = 1. 

CONJECTURE 2. d — pq = 5 [8], /? < ^. Lef W5 consider the polynomial 

fp(k)=pk2+pk + ' q 

https://doi.org/10.4153/CJM-1990-018-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-018-3


330 STEPHANE LOUBOUTIN 

We have, with s > 1 in the last two lines: 

d h(d) upper bound known values 

4p2s2 +p 1 
p + 3 

none 

4p2s2 — p 1 
77 + 5 

141,513,1293 and 1757 

p2s2 + 4/7 1 
(lp - 1)(5 - 1) 

2 
93,237,453, 1133 W 1253 

p2s2 - 4/7 1 
( 2 p - l ) ( s - l ) 

1 
69,213,413,717 W 1077 

77z/s c/zarr: reads like that of Theorem 8. 

Remark. These upper bounds would be optimal since we have the two non-
trivial factorizations: 

/p(*b)=(*o + ^ ) ( p ( * o - ^ 

whenever d = p2s2 + 4ep. 

fp(ko) — (ko + s)(p(ko — 5 + 1) — 1) whenever J = 4p2s2 + e/7. 

Theorem 9 below is our first step in the study of these conjectures. Together 
with Theorem 10, it shows the effect of the choice of the upper bound (of our 
set of consecutive integers on which fp(X) is prime valued) on the wideness of 
the family of fields characterized in such terms. 

THEOREM 9. d — pq = 5 [8], p < q. If 

I/P(*)i = p?+pk + p=i 

is prime or equal to one whenever 0 S k ^ \\fd — ^, then h(d) = 1 and 
d = p2s2 ± 4/?. Hence p = q = 3 [4]. The only known such values are: d — 21, 
69, 77, 93, 213, 237, 413, 437, 453, 717, 1077, 1133 and 1253. 

This result is our first step towards Mollin-Williams' conjecture following 
their Theorem 6 in [8]. 

Proof. We first show a better statement: let d = 5 [8] and 6 dividing d with 
1 < 6 < d. If \fè(k)\ is prime or equal to one whenever 0 ^ k ^ |y/d — | , then 
d = S2s2±46. 

Let 
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If there exists k such that 

and such that 

\fè(k)\ ^ \yfd, 

then 

(2k+\f^y2+y^(y + \)2. 

Thus, 

* = 2-y 2 = 6Va 2 ' 

Let s = \fs(k)\. If s j£ 1, s is prime and 

fs(k + J ) = /*(*) + J •//(*) + y //'(*), 

i.e., 

/*(# + s) = dty + &y(.s + 2* + 1) (*)• 

Since 

and since s divides f$(k + s) because of (*), we have \f$(k + s)| = s. But it is in 
contradiction with (*). Hence, 

\fs(k)\ = 1 and d = 52(2k + l)2 db 45. 

Let us now suppose that 

\fs(k)\>lVd, 

whenever 

O^k^ \yfd-\. 

Since |^(*) | ^\\fd\f and only if j 2 - 2j ^ (2£+ l)2 ^ j 2 + 2y, there exists k 
such that 
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and such that 

{y/d<\fà(k)\û±Vd. 

In fact, whenever y ^ 1 + y/ï we can take k = 0, and whenever y > 1 + 1/2, 
we can take k such that 0 < x\ è k ^ x2, when 

vV - 2y - 1 vV + 2^-1 
JCI = and x2 — 

since x2 — x\ > 1. Since 

X2 è \y£ \Jd, 

we have 

O^A:^ \yfd. 

Now, 

k£ \y/d<s£ \\fd, 

with s — \fs(k)\ a prime integer. Hence k' = s — k — 1 is such that 

O^k'^ \Jd-\ 

and thus, |/$(£') I is prime or equal to one. Since 

/«(*') =fs(s -k-l) =fs(k - s) =fs(k) - s •//(*) + S- / / (*) , 

we have 

/*(*') = ± S + & ( s - (2*+1)) (**). 

Hence 5 divides |/$(£')I and j = \f6(k% Now (**) implies s = 2k + 1. Thus 

45 = & 2 - T 

Now, 

A 
3 5 - 1 

and d — 82s2 + 4es<5 with e = ± 1. 

- s(26s - c) 
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is not prime, while 

2 - 2VU 2 

if e = +1, or if e = — 1 and 6 > 3. Whenever e = — 1 and S = 3, we have 

2 ~ 2VU 2 

and 

h 
3s - 5 

6s2 - lis + 12 = (25 - 3)(3s - 4) 

is not prime, this case cannot occur. 
Whenever 6 — /?, we thus get d — p2s2 ± 4p. Since (ps + y/d)/2 is with norm 

±/7, the ramified ideal Ip above (/?) is principal. By Theorem 4, h(d) — 1. Hence 
/? = q = 3 [4]. 

We now want to settle such a result with an upper bound lower than | \fd — \ 
in order to get the 17 known real quadratic fields of Richaud-Degert type with 
d = pq and h(d) = 1. On the other hand, we do not want this upper bound to 
be too small thus running the risk of obtaining more than those fields. Hence, 
we take this upper bound as great as Conjecture 2 enables us to choose it. 

Whenever d = 4p2s2 —p with p = 3, the greatest integer less than or equal to 
\yfd — \ is equal to 2s — 1, while \fp(2s — 1)| is neither prime nor equal to one 
(remark following Conjecture 2). So, \fp(k)\ is prime or equal to one whenever 
0 ^ k Û | \fd — \ cannot hold. However, the greatest integer less than or equal 
to ^y/d — 1 is equal to 2s — 2. That is why we will take \\fd — 1 as upper 
bound in Theorem 10 below. 

THEOREM 10. d — pq = 5 [8], p < q and p = q = 3 [4], If 

i/,(*)i = pk +pk + p-q 

is prime or equal to one whenever 0 ^ k ^ \\[d — 1, then h(d) — 1 and 
2,2 . d — p s zb 4/7, or d — 4p s ± /?, or 

d — p 
p(3b + 4)2 + 4 

WJY/Z/? = —1 [12]. 

The only known such values are: d = 21, 69, 77, 93, 141, 213, 237, 413, 437, 
453, 573, 717, 1077, 1133, 1253, 1293 and 1757. They all write d = p2s2 ±4p, 
ord — 4p2s2±p. 

https://doi.org/10.4153/CJM-1990-018-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-018-3


334 STEPHANE LOUBOUTIN 

Remark. We are now in a position to discuss Mollin-Williams' Conjecture 1. 
Let ko be the infimum introduced just before Conjecture 1. We have: 

d ko 

p(3b + 2)2 + 4 3/?fr+/7 + l _ b+\ 
9 9 2~~ 

pQb + 4)2 + 4 3/7/7 + 5/7-1 b + 3 
9 9 2~~ 

j^(^o) known values with /z(d) = 1 

£o + - y ) [P[k0 2 ~ ) - 1 ) n o n e 

This value ko agrees with the optimal upper bound in the only known case 
h(d) = 1. If this value ko were the optimal upper bound, it would imply that 
Conjecture 1 based on numerical evidences cannot be proved by algebraic means 
only. Though Mollin-Williams' conjecture so happens to hold empirically, we 
must however notice that, algebraically speaking, this conjecture is not satisfac­
tory. Indeed Theorem 10 presents us with a more restrictive hypothesis, yet not 
implying such a narrow conclusion as the field being of Richaud-Degert type. 
There could have existed fields 

the non empty family of fields Q(\/5), 

/7(3fr + 2) 2+4 
d — p and h(d) = 1 

such that the hypothesis of Conjecture 1 would have held 

/ . 3pb +p +1 6 + 1 * r- x\ 
I since — can be greater than \vd— ± I 

whereas its conclusion would not. If such fields do not exist, it is just because, 
under the Riemann's hypothesis, this family is reduced to one field: d — 341 

fr i 3 /7 /7+/7+1 / 7 + 1 , n , \ 
I for which we have — > | y d — ± 1 . 

Hence, if Conjecture 1 holds numerically, it is thanks to nothing but the work 
of chance, and there is no hope to ever settling it by algebraic means. 

In order to settle Theorem 10, we will show that the primality of the fp(kys 
implies that there exists a few primitive integral ideals with small norm. Lemma 
11 below then gives us the field as being essentially a field of Richaud-Degert 
type. 
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LEMMA 11. da square free positive integer such that the fundamental unit of 
the real quadratic field Q(y/d) is with norm +1. Let us suppose that the cycle of 
principal reduced ideals contains at most four non invariant ideals with norm 
less than \\Dy at most two non invariant ideals with norm less than yD/5 
and does not contain any non invariant ideal with norm less than | \/D, then 
the field is of Richaud-Degert type or 

n/fM(3b + 2)2+4 „ M(3fr + 4) 2+4 
D —M or M , M = — 1 [3], 

Proof. Let 

m + \[D 
Ro = R = 1, 

2 / / z 

be the ring of algebraic integers of the field, let 

m + VD 
x0(R) = = [a,nun2,...,nk,b1nkl...,n2lnx] 

be the continued fractional expansion of the real quadratic reduced surd attached 
to R (with even length L = 2k + 2, since the fundamental unit is with norm +1) 
and let R^ be the k-th ideal with norm A^ of the cycle of principal reduced ideals. 
By Louboutin [6], Proposition 7, Ro and R^+i are the only reduced invariant 
principal ideals. Since 

*o(R*) < *o(R*) - *o(R*) = i^-<3i 
Nk 

we have nk ^ 2, for nk is the greatest integer less than or equal to Jto(R*). 
We first show that at most one of the w/'s equals 2. Let us suppose ni — n}• — 2 

and / <j. Since ni+\ — 1 or 2, 

x/(R) = [2 ,2 , a ]> [2 ,2 , l ] = | > > / 5 , 

or 

x,(R) = [ 2 , l 7 a ] > [ 2 , l , l ] = f > v / 5 , 

hence Ni < y/D/5. Moreover, since rij-\ — 1 or 2, Xj(R) = [2, . . . ,2] which 
implies 

xj(R) - xj(R) = [2, a] + [0,2, f3] > [2] + [0,2,1] = \ > >/5, 
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or 

xj(R) = [2^7TT] 

which implies 

Xj(R)-x'j{R) = [2, a ] + [0, l,/3] > [2] + [0, 1, 1] = § > y/5. 

Hence /V, = N(R,-) < y/ÏÏJ5. Since R/ and Ry together with their conjugate 
ideals are four non invariant reduced principal ideals with norm less than y/D/5, 
this contradiction provides us with our assertion. 

Let us first suppose that all the n^s are equal to 1. 
If k ^ 3 and all the /?, are equal to one, let I = R\, J = R2 and K = R3. 

Then 

jco(D = [ l , . . . , l , f t , l , . . . , l , a ] , JC0(J) = [ l , . . . , l , f t , l , . . . , l , a , l ] 

and 

A 0 ( K ) = [ 1 , . . . , 1 , / ? , 1 , . . . , l , a , l , l ] . 

Hence, 

jrod) = [1, 1, a ] > [1, 1, 1] = i *o(J) = [1 ,1 , a ] > [1, 1, H = 5 

and 

A-()(K) - 4 ( K ) - [ l , a ] + [0, l,/3] > 1 + [0 ,1 , 1] = \. 

Thus, I, J, K and their conjugate ideals are six reduced non invariant principal 
ideals with norm lower than | y/D. This case cannot occur. 

If k — 0, the field is of Richaud-Degert type. Indeed, since 

m + y/D r —- ab + y/K 
= [a, b] = 

2 ' 2/7 

with A = ab(ab + 4), b divides 4a. If we write 4a = A/?, then 

X2b2
 x 

D = +A 
4 

and the field is of Richaud-Degert type. 
If k = 1 and «1 = 1 the field is also of Richaud-Degert type. Since 

a(b + 2) + y/Â m + y/D 
x0(R) = [a, l ,fc,l] = ov ; , , , J 2(/7 + 2) 
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with 

A = (a + 2){b + 2)(ab + 2a + 2b), 

b + 2 divides 2(a + 2) and if we write 

a=±(b + 2)-2 then D = X^b + 2)2 _ 2\. 

If k — 2 and m = n^ — 1, the field is again of Richaud-Degert type. 
Let us now suppose that one (and exactly one) ni{) equals 2. We first show 

that k ^ 2. Let us suppose k ^ 3. If 

then 

(n/0,/2/0+l,/2/0+2) = ( 2 , 1 , 1 ) , 

^ ( R ) = [ 2 , l , a ] > [ 2 , l , l ] = § > | , 

jci0+1(R) = [ l , l , a ] > [ l , l , l ] = § 

and 

x,0+2(R) - < + 2 ( R ) = [1, a] + [0, l,2,/3] > 1 + [0, 1,2] = § > \. 

This case cannot occur. If 

(rt/0-i,rt/0 ,fli0 +i) = ( 1 , 2 , 1 ) , 

then 

hence 

x70(R) - 4 , ( R ) = [2, 1, a] + [0,1,/?] > [2, 1, 1] + [0,1, 1] - 3, 

M0 < \y/D. 

This case cannot occur. Now, whenever k ^ 3 and exactly one /7,0 of the 
«/'s equals 2, it is easily seen that one of the two sequences (wi, «2, . . . , «*) o r 

(/?£, n*_i,. . . , n\) contains the subsequence (2, 1, 1) or (1, 2, 1). This contradic­
tion provides us with our assertion. Hence, we can suppose that 1 ^ k ^ 2 
holds. 

If k = 1 and wj = 2 the field is also of Richaud-Degert type. Since 

a(b+ 1) + A/A _ m + y/D 
2(/?+l) ~ 2 

JCÔ(R) = [ Û , 2 , 6 , 2 ] = 
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with 

A = (a + 1)(6 + \){ab + a + b), 

b + 1 divides a + 1 and if we write 

0 = A ( ô + l ) - l then D = A2(6 + l)2 - A. 

If A: = 2 and n^ — 2, then 

a(9b + 6) + v ^ m + y/D 
*o(R) = [a, 1,2,6,2,1] = 

and 

with 

X4(R) = [&,2,l,fl,l,2] 

2(96 + 6) 2 

6(9a+12) + ^ m' + y/D 

2(9^+12) 2M 

A = (3a + 4)(96 + 6)(3ab + 2a + 4b + 4) 

and M the norm of the second invariant ideal of the cycle of principal reduced 
ideals. Hence, 

9a +12 M(36 + 2 ) - 4 j ^ , M(36 + 2) 2+4 
M = , a = and D — M . 

96 + 6 ' 3 9 
If 3 divides M, then 9 divides M, which is impossible since M being the norm 
of a primitive invariant ideal is a square free integer. Hence, 3 does not divide 
M and M = — 1 [3]. In the same way, if k — 2 and «i = 2, then 

M(36 + 4) 2 +4 
JC 0 (R)= [a, 2,1,6,1,2] and Z) = M 

with M = - 1 [3]. 

LEMMA 12. d = pq = 5 [8]. / / 

!/„(*)! /?& + /?/: + ' 

/s prime or equal to one whenever 0 ^ £ ^ | V" — 1 ^«J */ there exists k such 

that \fp{k)\ < \yfd and 0 ^ k ^ |>/d - 1, f/œw d = p2s2 ± 4p and h(d) = 1. 

Proof. If \fp(k)\ = 1, we argue as in Theorem 9. Let us suppose that \fp(k)\ = 
s is prime. Let r be such that 0 ^ sr ~ k — 1 ^ s — 1. Then, as in Theorem 9, 
with k' — sr — k — 1, we get 

/p(*') = ±r + /?srO - (2k + 1)), sr = 2k + 1 and d = p2s2r2 ± 4ps. 
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Since d = pq, s = 1 and this contradiction provides us with the result. 

End of the proof of Theorem 10. If there exists k such that 

Oûkû \Vd-\ 

and such that 

\fp(k)\ ^ \Vd, 

Lemma 12 provides us with the result. 
Otherwise, we show that we can apply Lemma 11. Since p = q = 3 [4], d 

is not the sum of two squares, the fundamental unit is with norm +1 and the 
2-rank of the ideal class-group is zero. By Theorem 4, h{d) = 1. Let I be a 
primitive ideal with norm N such that 

N ^ \\fd and p\N. 

Then N < \fd < q, hence q \ N. By the remark following Theorem 4, I is 
equivalent to lp and 

Ne {\fp(k)\; 0£k£\y/d-\}. 

Hence Â  > \^fd or N — 1. Let I be a primitive ideal with norm N such that 
N < \fd (this condition is satisfied if I is a reduced ideal, see [5]), and such 
that p divides N. Then p1 does not divide N and I = I^J, with J a primitive 
ideal with norm M such that p does not divide M and such that 

M g - < \Vd. 
P 

Hence, M — 1 and I = lp. 
Thus, if I is a reduced ideal with norm N, then I = R, or I = lp or 

G.C.D.(^,iV) = 1 and N > \yfd. 
Now, 

W)\ £ | v^ 

if and only if 

y2 — ay ^ (2k + l)2 ^ y2 + ay\ with v = - \[d. 
P 

Moreover, 
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is decreasing whenever y ^ a, and the inequalities above admit the only solution 
k — 0 until y ^ yo, when 

y/a2 + 36 — a 
» = 2 

is solution of JQ + ayo — 9. Therefore, whenever a < 4/ \ /5 , the inequalities 
above admit at most one solution (since we can suppose y ^ yo and since 
gijo) < 1 whenever a < 4/y/E). Moreover, with a = | , 

#(j) ^ £ (§) < 2. 

Therefore, whenever a = | , the inequalities above admit at most two solutions. 
Thus, there exist at most one integer k such that 

\fp(k)\ ̂  Vdj5 

and at most two integers k such that 

\fPik)\ ̂  \Vd, 

hence at most two primitive ideals with norm N such that N ^ y/d/5 and p\ N, 
and at most four primitive ideals with norm N such that 

N ^ \\Td and p\N. 

Thus, there exist at most four reduced non invariant principal ideals with norm 
less than \yfd, at most two reduced non invariant principal ideals with norm 
less than y/d/5 and there does not exist any non invariant principal reduced 
ideal with norm N such that N < ~ \fd. We now apply Lemma 11. 

If the field is of Richaud-Degert type, since d — pq, then 

d = p2s2 ±4p1 d = 4p2s2 ± p , d = m2 + 4 or d = 4m2 + \. 

Since d is not the sum of two squares, then 

d ^ 4 m 2 + l, m 2 +4. 

If 

then 

p(3b + 2) 2+4 
d — p 

* = *^ti-*±l^-i 
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while 

l/,(M = (fc + ^)(p(*ô-^)-i) 

is not prime. Numerical computations based on [5], Theorem 3 to settle whether 
h(d) = 1 or not seem to indicate that there does not exist any field with 

Moreover, under Riemann's hypothesis it can be proved by means of the methods 
introduced in [4], [5] that there does not exist any such field, and by means of 
the methods introduced in [11] that there exists at most one such field. 
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