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Slow motion of a sphere near a sinusoidal surface
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Particle motion near non-plane surfaces can exhibit intricate hydrodynamics, making it
an attractive tool for manipulating particles in microfluidic devices. To understand the
underlying physics, this work investigates the Stokesian dynamics of a sphere near a
sinusoidal surface, using a combination of perturbation analysis and boundary element
simulation. The Lorentz reciprocal theorem is employed to solve the particle mobility near
a small-amplitude surface. Compared with a plane wall, the curved topography induces
additional translation and rotation velocity components, with the direction depending on
the location of the sphere and the wavelength of the surface. At a fixed distance from
the surface, the longitudinal and vertical mobilities of the sphere are strongly affected
by the wavelength and amplitude of the surface, whereas its transverse mobility is only
mildly influenced. When a sphere settles perpendicular to a sinusoidal surface, the far-field
hydrodynamic effect drives the particle towards the local hill, while the near-field effect
attracts the particle to the valley. These results provide valuable insights into the particle
motion near surfaces with complex geometry.
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1. Introduction

Manipulation of particles and cells in microfluidic devices has long been of interest in
chemical and biomedical applications, such as particle sorting (Sajeesh & Sen 2014), cell
separation (Bhagat et al. 2010), chemical analysis (Jokerst, Emory & Henry 2012) and cell
cultivation (Mehling & Tay 2014). Traditional approaches for particle manipulation often
involve multiple physics (Cha et al. 2022), such as an inertial lift force (Zhang et al. 2016),
electro-magnetic forces (Nam-Trung 2012; Zhang et al. 2014) and viscoelastic effects (Li,
McKinley & Ardekani 2015; Yuan et al. 2017). Recent studies have demonstrated that
the Stokesian hydrodynamics along in a confined flow also provides an effective way to
passively separate and sort particles (Uspal, Eral & Doyle 2013; Georgiev et al. 2020).
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The trajectory of a particle in a viscous fluid is strongly influenced by its shape, position
and orientation, as well as the geometry of container boundaries. To achieve more effective
control over particles and cells, it is critical to develop a fundamental understanding of the
hydrodynamics of particle motion near a surface.

The slow motion of particles in a viscous fluid, as commonly encountered in
sedimentation and colloid suspensions, has long been studied as a fundamental problem
in fluid dynamics. Since the pioneering work of Stokes (Stokes 1901), who analysed the
flow past a sphere in an unbounded fluid, the hydrodynamics of particle movement under
different flow conditions has been widely studied in the literature. For a sphere in an
arbitrary background fluid flow, Faxén (1922) derived the general formulation for the
hydrodynamic force and torque exerted on the sphere using Lamb’s harmonic solution
in a spherical coordinate system. Due to the linearity of the Stokes equation, the particle
velocity and the applied force connected by linear relations (U, 2)T = M - (F, T)T and
(F, H'=R. (U, 2)T, where U and 2 are the particle’s translational and rotational
velocities, F and T are the external force and torque applied on the particle, and M

and R = M~! are the mobility and resistance matrices. Determining the mobility and
resistance matrices in various flow scenarios is the key task in the study of particle motion
in the Stokes regime.

The Stokesian dynamics of a particle near a plane wall has been extensively studied
for its close connection to industrial applications. Theoretical analyses often simplify
the problem by focusing on either far-field or near-contact hydrodynamic interactions.
When the particle is many times its radius from the wall, far-field analyses are commonly
employed, using either singularity solutions (Blake & Chwang 1974; Chwang & Wu 1975)
or the method of reflections (Smoluchowski 1911; Kynch 1959) to capture the far-field
hydrodynamic interaction between the particle and the wall. In this regime, the particle
translation can be approximated as a Stokeslet and is influenced by the induced image
singularities due to the presence of the wall, while the higher-order singularities are less
important. For a spherical particle, the drag force is F = 6mtuUa(l + 9a/8h) when its
motion is perpendicular to the wall, and F = 6mtuUa(l + 9a/16h) for a parallel motion,
where a is the sphere radius, 4 is the distance between the sphere centre and the wall,
U is sphere velocity and p is the dynamic viscosity. If the particle is free to rotate, its
angular velocity is in the same direction as if it were rolling on the wall. Far-field analyses
have been widely used to evaluate the motion of small particles or microswimmers near a
boundary. More discussion on this topic can be found in the textbooks (Happel & Brenner
2012; Kim & Karrila 2013). In the near-contact regime, lubrication theory is utilized to
analyse the flow within the thin fluid film between the particle and the wall (O’Neill &
Stewartson 1967; Jeffrey 1982). The drag force on a sphere moving perpendicular to the
wall increases as the gap distance decreases, following F ~ a/(h — a). If the sphere is
moving parallel to the wall, the force increases as F ~ In(h/a — 1).

At arbitrary separation distances, numerical simulations are conducted to study
the hydrodynamics of particle motion. For axisymmetric problems, such as a sphere
translating or rotating perpendicular to a planar or a spherical wall in a quiescent viscous
fluid, exact solutions represented by bipolar coordinate variables have been calculated
by Jeffery (1915), Stimson & Jeffery (1926) and Brenner (1961). For non-axisymmetric
cases, solutions for a sphere’s translation and rotation parallel to a plane wall were
derived by Dean & O’Neill (1963), O’Neill (1964) and Goldman, Cox & Brenner
(1967). Ganatos, Weinbaum & Pfeffer (1980b) and Ganatos, Pfeffer & Weinbaum (1980a)
studied the motion of a sphere between two parallel plane walls using the boundary
collocation method. Their results demonstrated reasonable agreement between the far-field
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approximation and the exact results when the sphere is located a few radii away from
both walls. However, the far-field analysis becomes inaccurate as the separation distance
decreases, and it may incorrectly predict the direction of the torque.

When the wall is non-planar, the particle motion may differ significantly from that near
a plane wall. The surface roughness can eliminate the singularity in the lubrication force
and enables the sphere to collide with the wall under pure hydrodynamic effects. Lecoq
et al. (2004) measured the velocity of a sphere settling towards a corrugated wall which
consists of parallel periodic wedges with small amplitude and wavelength compared with
the particle size. Their results show that, at a large gap distance, the sphere motion is
similar to that near a plane surface levelled in the middle between the peak and valley
of the roughness. At a small distance, the sphere velocity is higher near a rough surface
compared with its velocity near the virtual plane. Similar results are also found for spheres
settling near surfaces of random arrays of pillars (Kunert, Harting & Vinogradova 2010;
Chastel & Mongruel 2016). These studies have focused on the effects of small surface
roughness on particle motion, while the influence of a curved wall with large amplitude
has not been investigated. One significant effect is that a curved wall can cause additional
cross-coupling terms in the mobility matrix. Consequently, a sphere may translate and
rotate in the direction perpendicular to the applied force or torque. This mechanism
presents a promising approach for particle separation based on their size or shape using
micro-rough surfaces (Belyaev 2017) and serpentine microchannels (Di Carlo et al. 2007).
However, a more comprehensive understanding of the underlying hydrodynamics is still
required.

A curved wall also generates heterogeneous resistance to fluid flows along different
directions. The surface corrugation is found to significantly modify the flow inside the
viscous sublayer of streaming flows parallel or perpendicular to the wave direction,
thereby reducing the flow drag at higher Reynolds numbers (Bechert & Bartenwerfer 1989;
Luchini, Manzo & Pozzi 1991). At a certain distance away from the wall, the flows in both
directions can essentially be viewed as uniform shear flows bounded by two virtual planes.
The virtual plane for the flow perpendicular to the wave is located deeper into the fluid
than the one for the parallel flow, therefore leading to larger resistance and changing the
near-wall flow structures (Luchini ef al. 1991). Pozrikidis (1987) studied the shear- and
pressure-driven flow in channels of sinusoidal walls and found that surfaces with large
wave amplitude can reverse the flow direction in the trough region, leading to the formation
of Moffatt vortices (Moffatt 1964). The critical wave amplitude for vortex formation, as
well as the dependence of eddy size on the wave amplitude, were also characterized. We
expect that the particle motion near a curved surface will exhibit similar effects.

So far, studies on particle motion near non-planar walls are limited and they all rely
on the assumption of small-amplitude surface corrugation. Based on a far-field analysis,
Rad & Najafi (2010) analysed the influence of a small-amplitude sinusoidal surface on
the sphere’s translation mobility and the hydrodynamic interactions between two spheres.
Their analysis shows that the sphere mobility decreases near a local hump and increases
near a valley. However, their results are quantitatively inaccurate as they fail to correctly
reproduce the solutions for a sphere moving near a plane surface in the limit of infinitely
large wavelengths. Assoudi et al. (2018) studied the influence of wall roughness on the
sphere motion in a shear flow and showed that the asymmetry of the roughness generates
a lift force on the sphere and modifies its trajectory. Kurzthaler et al. (2020) showed that,
when close to a randomly rough surface, the sphere moving parallel to the wall undergoes
a translation perpendicular to the applied force. The random roughness, which causes a
non-monotonic dependence of the variance of the sphere’s mobility coefficients on the
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Figure 1. Schematic of the sphere moving near a sinusoidal surface. In the numerical simulation, half of the
region is considered and the surface area is 200a x 100a with a locally refined mesh in the gap between the
surface and sphere.

surface characteristic wavelength, results in a complex spatial dependence of the particle
diffusion rate under Brownian effects. The fluctuation of velocity along the force direction
saturates at large wavelengths, while the transverse velocity and the velocity component
perpendicular to the wall reach their maximum at a wavelength comparable to the sphere
radius. All of these studies are based on the far-field approximation, the effects of the
near-field hydrodynamic effects have not been considered yet.

Analysing the particle motion near a curved wall is also helpful in understanding the
behaviour of microorganisms or active particles near complex surfaces. The first-order
hydrodynamic effects of a sinusoidal surface on the swimming motion of a microswimmer
was recently studied by Kurzthaler & Stone (2021) using point singularities to model the
swimmer. Their study showed that, when the distance between the microswimmer and the
surface is comparable to the surface wavelength, the reflection of flow fields at the edge
of the valleys generates a repulsive force to decrease the wall attraction of the swimmer.
Using a boundary element method, Ishimoto, Gaffney & Smith (2021) numerically studied
the motion of a puller squirmer near small-amplitude sinusoidal surfaces. The squirmer
is found to be stably attracted to the surface following an oscillating trajectory. The
equilibrium height of the squirmer above the wall is largely influenced by the surface
wavelength and the orientation of the swimmer. A local attraction of the squirmer towards
the surface troughs is also observed. These results demonstrate the potential of utilizing
surface topographies to provide directional guidance for self-swimming particles.

To understand the underlying Stokesian hydrodynamics, this work investigates the
sphere motion near a sinusoidal surface and characterizes the effects of wavelength,
amplitude and particle-wall distance on the sphere mobility. The rest of this paper is
organized as follows. Section 2 presents the mathematical model of this problem. In § 3,
sphere motions in the far-field and near-contact limits are analysed using the domain
perturbation method and Lorentz reciprocal theorem. Section 4 discusses the results of
a boundary element simulation of particle motion with arbitrary distance from a wall of
large amplitude. Finally, the concluding remarks are presented in § 5.

2. Mathematical model

Figure 1 illustrates a spherical particle with radius @ moving near a sinusoidal surface
Z = Apax cos kx, where k = 21t /A is the wavenumber, and A is the wavelength. The sphere
is positioned at rp = (xp, 0, #) and is subjected to a constant force F without any torque.
The primary task of this work is to determine the dependence of sphere mobility on xg
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and h. The hydrodynamic interaction between the sphere and the wall is described by the
incompressible Stokes equation

—V-.-0=0, V.-u=0, 2.1a)

where 0 = pl + uV(u+ u") is the fluid stress tensor, p is the pressure, u is the fluid
velocity, I is the identity matrix and p is the fluid viscosity. The boundary conditions for
the fluid flow are

u=U+rx$£2, onS,, (2.2a)
u=0, onS,and Sy, (2.2b)

where U and £ are the translational and rotational velocities of the sphere, S, S,, and
Seo represent the sphere’s surface, the curved wall and the bounding surface at infinity,
respectively. The sphere velocity is determined by satisfying the force and torque balancing
condition,

/n-odS+F:0, /rx(n-or)dS:O, (2.3a,b)
Sp S,

where n denotes the unit normal vector pointing into the fluid on the sphere’s surface. In
the following sections, we will solve the above equations using theoretical and numerical
methods for curved surfaces with small and arbitrary amplitudes, respectively.

3. Small-amplitude asymptotics

This section presents the theoretical analysis of a sphere’s mobility matrix near a
sinusoidal surface with small-amplitude fluctuations. The analysis follows the approach
from Kurzthaler & Stone (2021), which used small-amplitude asymptotics and the Lorentz
reciprocal theorem to solve for the roughness-induced velocity of a point swimmer.
Considering a curved wall z = A(x, y) with small amplitude compared with its wavelength,
we introduce a small parameter ¢ = A,k < 1, where A, = max(|A(x, y)|) is the
maximum absolute roughness of the surface. Applying the method of domain perturbation,
the fluid velocity is expanded as

u=u? 1+ eV + 0P, (3.1)

where @ and 4! are the O(1) and O(¢) fluid velocities. Substituting the above expansion
into (2.1) and (2.2), the governing equations of each order remain as the Stokes equation,
while the boundary condition on the curved surface S, is expanded as

+ 0(?), (3.2)

z=0

ou®
Ulz=A(x,y) = ”(O)|z:0 + & (u(l) + Z(x, Y)a—z

where Z(x, y) = A(x, y)/(Amark) is the rescaled surface height. The right-hand side of the
above equation corresponds to the O(1) and O(¢) boundary conditions, which respectively
represent a no-slip condition at the plane wall and a slip velocity condition at z = 0 due
to the surface corrugation. One can then solve the governing equation of each order with
the corresponding boundary conditions. The zeroth-order solution #?), which describes
the sphere motion near a plane wall, can be found in the literature using methods of
bipolar harmonics or near-contact/far-field asymptotic analyses (O’Neill 1964; Goldman
et al. 1967; O’Neill & Stewartson 1967; Happel & Brenner 2012). On the other hand, the
first-order velocity ‘", which represents the velocity induced by the surface roughness,
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does not require explicit solution. Instead, we can apply the reciprocal theorem to the

u® field to directly find the sphere mobility. The reciprocal theorem has been widely
used in the studies of the motion of inert and active particles under the influence of
surface confinement, non-Newtonian fluids and external forces (Stone & Samuel 1996;
Elfring 2017; Li & Koch 2020). A comprehensive review of its diverse applications in
fluid dynamics can be found in Masoud & Stone (2019).

To utilize the Lorentz reciprocal theorem, we need to set up an auxiliary problem with
known solutions. For our purpose, the auxiliary problem represents the flow field caused
by an externally driven, translating or rotating sphere with the same distance & away from
a plane wall. Its solution corresponds to the ) velocity field as the original problem. The
sphere velocities U" and 2V are connected to the auxiliary problem as follows:

0)
Z(x.y) ((n .6) - 8”—)

ds, 3.3
0z (3-3)

Feut et |
z=0

z=0

where the symbol " represents the auxiliary problem, F and T are the force and torque
exerted on the particle. Note that the integration is performed on the plane wall at z = 0.
This equation is valid for arbitrary surface topography and particle—wall distance as long
as the surface fluctuation is small.

The translational and rotational velocities of the sphere are related to the force ' and

torque 2 by a symmetric positive—definite mobility matrix M

) (1)

where U = (Uy, Uy, UZ)T, and similarly for £2, F and T'. The mobility matrix of a sphere
near a corrugated wall with a small amplitude is expanded as

M=mM + M. (3.5)

In the following, the mobility matrix of a sphere under both far-field and near-contact
conditions will be analysed separately.

The leading-order mobility matrix M® accounts for the hydrodynamic interaction
between a sphere and a plane wall

0) 0)
o

o _ | - ) MO L al
oMy My

(3.6)

where the dots represent the identically zero terms because of the symmetry of the
sphere-plane configuration.
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When the sphere is far away from the wall, i.e. a/h < 1, its mobility factors are
MO = M2 ~ : 1_9_a MY ~ 1 1_9_a
I 2 7 6npa 16h)° 33 7 6mpa 8h)’
1 5 3 | 1 3
i = > o (156 G ) e~ (=5 G) ) o7
8muad 16 \h 8muad 8 \h

MY =) = L (4) (12
15 2 7 64npa \h 16h )"
When the sphere is in near contact with the wall, i.e. § = (h —a — A(x,y))/a < 1, the
mobility factors are

1 2 44678 1 1
0 _ 10 ~ 0 2
MY = M) ~ ( ) M) ~ (54—53 ln(S),

6mpua \ Ins  (Ins)2 6T pa
1 8  3.7077 11
M =~ s (5 ar) M e | 0D
8tuad \ 3Ins  (Ind) 8mtuad £(3)

1 2 3.3888
0) 0
M3 = -y ~ 2\~ - 7 )
8mua 3Iné  (Ing)

where £ (3) = > 02| n~3 = 1.20205. These results are scattered across numerous previous
studies, which analysed sphere translation (Brenner 1961; Maude 1961) and rotation
(Jeffery 1915; Brenner 1962) perpendicular to the wall at a far distance, sphere motion
parallel to the wall at a far distance (Maude 1963) and the near-contact motion of a sphere
parallel (Goldman et al. 1967; O’Neill & Stewartson 1967) and perpendicular (Cox &
Brenner 1967; Cooley & O’Neill 1969) to the wall. A comprehensive summary of the
resistance matrix for different gap distances between a sphere and a plane can be found
in Falade & Brenner (1988). In (3.8), the convergence of the leading-order terms to zero
is slow due to the logarithmic dependence on 1/ 1n 4§, and to enhance accuracy, next-order
corrections are often included by numerically fitting the coefficients.

From the symmetry of the sphere-wall configuration, it is straightforward to find that
the O(e) mobility matrix should satisfy

1 )] 1)
M M
WD 22 D 24 WD 26
31 Ml) 33 M'(l) 35 M@ ) (3.9
M‘(l) 42 Ml) 44 M‘(l) 46
51 M‘(l) '53 Ml) :55 M‘(])
62 64 66
Each row in the matrix can be calculated by separately applying a force or torque along
the x-, y- or z-directions in (3.3), the coefficient is found to be

m —

1 o
Mlgjl) = M](il) = %/ ml(jl) cos k(x + xg) dx, (3.10)

—00

where
0
oo % (5,07 301
mlj —_ GjZ aZ y7 ( M )
y=— 7=0
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and &;; and au§°’/ dz represent the hydrodynamic stresses and velocity gradients at
z = 0. The subscripts i,j = 1, 2, 3 correspond to the cases where the sphere motion is
driven by a force along the x-, y- and z-directions, respectively. For i,j = 4,5, 6, the
solution represents the sphere motion driven by a torque. The detailed derivation of each
coefficient is provided in Appendix A. Equation (3.10) indicates that the influence of a
small-amplitude curved surface on particle mobility is simply a linear combination of
individual surface areas.

In the far-field approximation, the fluid velocity can be simplified as being generated by
a Stokeslet. The coefficients in the above equation are

45 9
my) = =W EF +IP), mby) = —— (A h) B 4 307,

45 9
mly = ——h*@> +h?), m) = _E(SX4 + 27+ 284,

3T A 44 =
45 45
miy = — 5 8 = 137 4 70, ms) = — e R,

. (3.12)

45 45
) _ ZIxEE + 1), ml) = —— @ 302,

9
msy) = Zh(x2 + )@ — R, mb =0,

45
my = i =30

315

1 3

, = -1,
My X

where A = 512t (x? 4+ h%)%/2. If we further assume that the distance between the sphere
and the wall is small compared with the wavelength, i.e. kh < 1, the mobility factors can

be explicitly solved as

WD _ 3a(=8+ IR C 1y 3a(—8+3h*3)Cy
= 256h2mp 22T 256h2 T
1y 3a(—4+ Wk Cy y  15a(=8 + h?KH)Cy
MgB = ) ML(14 =
64h2m 1024t juh*
_ 272 _ 272
10247t juh* 256muht
3akS, 9ak*C
) = 28 gy 9AEG
32mtuh 2567t h
3ak*C 3aks,
My =S = = e
256mh 1287 uh3
where Cy, = cos kxg and Sy = sin kxg are used for brevity. This result is valid for arbitrary
wavelengths of the wall. The diagonal coefficients Mﬁ), M;lz), e, M&) consist of two

terms in the numerators. The first term is caused by the variation in distance between
the sphere and the wall, while the second term is attributed to wall curvature. This result is
consistent with Falade & Brenner (1988), where the resistance coefficients of a sphere near
a curved wall were derived under the assumption of small wall curvature, i.e. Apachk* < 1
for a sinusoidal surface. For the cross-coupling terms, the ones with k2 cos kxg indicate the
effects caused by the wall curvature, while the terms with k& sin kxg denote the effects due

975 A31-8


https://doi.org/10.1017/jfm.2023.887

https://doi.org/10.1017/jfm.2023.887 Published online by Cambridge University Press

Slow motion of a sphere near a sinusoidal surface

to the surface slope. Falade & Brenner (1988) derived M%) = M‘(‘IG) = 0 and cannot predict
the transverse migration and rotation of a sphere induced by a curved wall.

In the near-contact limit, § = (h —a — A(x, y))/a < 1, solving the motion of a sphere
near a curved wall with arbitrary wavelength is challenging because the sphere may collide
with multiple points on the surface simultaneously. To avoid this situation, we focus on the
cases where the surface has a small curvature A,,,hk* < 1, similar to the work of Falade
& Brenner (1988). The lubrication-theory solutions for a sphere moving close to a flat
plane (Cox & Brenner 1967; Goldman ef al. 1967; O’Neill & Stewartson 1967; Cooley &
O’Neill 1969) can be employed to solve the O(e) mobilities by (3.3). However, to simplify
the calculation, here, we utilize the solution of Falade & Brenner (1988) and calculate the

mobility matrix by directly inverting the resistance matrix, M = R~!. The O(e) mobility
coefficients are
oD ak*Cy (201 3.02001 n_ ak’Ce (99 13.5478
1 50ln8  (Ins)2 )’ 2 50In8  (In&)? )’

6w 61

2 2
1) ak Ck 3/2 1) k Ck 66 17.1254
My = == (5+020015%2) . M) = :

- 8tpa \ 258 (Ins)2
D _ K2y (_ 34 5.66758) H_ 0.124286k>Cy,
3 7 8uua \ 25Ins  (Ing)2 )’ 8nua
y  kKCr 41 5.22177 y  kKCe (59 17.6088
157 8np (_251115 " (Ins)? ) 2%~ 8uu (251115 t o) )

(3.14)

These terms represent the first-order contribution of the wall curvature ~k> cos kxo to the
sphere motion due to the lubrication effects. Detailed information regarding R for a sphere
near a wall with small curvature, as well as the derivation of M, is provided in Appendix B.

Figure 2 shows the effects of the surface wavelength on the particle mobility near a
sinusoidal surface under far-field hydrodynamic interaction. The results are normalized
by the sphere’s mobility My = 1/(6mta) (or Mp/a for the cross-coupling terms) in
an unbounded fluid. The three rows, from top to bottom, represent the translational
and angular velocities of the sphere driven by a force in the x-, y- and z-directions,
respectively. For 1/h < 1, the effects of the surface roughness smear out and all O(e)
velocities reduce to zero. For A/h > 1, the sphere moves near a local flat plane at a new

distance h — € cos kxo, thereby U,(cl) ~ —9q cos kxo/16h2, Uz(l) and Qy(l) approach zero. At
intermediate wavelengths, the surface roughness generates a non-trivial impact on particle
motion, even when considering only the far-field hydrodynamics. In figure 2(a), the local
hill/valley of the wave tends to decrease/increase the horizontal velocity of the particle
for A/h < 0.9352 and A/h > 4.3192, while, at an intermediate wavelength, the surface
wave causes the opposite effects. Similar behaviour is also observed for roughness-induced
particle rotation in figure 2(c). At the leading order, the sphere rotates in a direction as if
it were rolling on the wall. The surface roughness with a large wavelength (1/h > 1.8405)
tends to enhance/impede the particle rotation by decreasing/increasing the effective
distance. While at a small wavelength, the trend is the opposite. This is because the edges
of the surface valley cause a reflection of the flow field and change the flow direction

(Pozrikidis 1987). Figure 2(b) shows the leading-order vertical migration velocity Uz(l)
since UZ(O) =0.At0 <xp/1 <0.5, UZ(I) is always negative for A/h > 1.2082 and positive
for /h < 1.2082, suggesting that the particle trajectory may follow the same or opposite
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Figure 2. Normalized O(e) mobility coefficients of a sphere at different distances away from a sinusoidal
surface; My = 1/(6mpa) is the sphere’s translational mobility in an unbounded fluid. Symbols represent the
results of Falade & Brenner (1988) for xo/1 = 0.

phase of the sinusoidal wave, depending on the surface wavelength. This non-monotonic
dependence of sphere mobility on the surface wavelength, which is not captured by
the solution of Falade & Brenner (1988), has potential applications for separating small
particles and cells using surfaces with designed topography. It is important to note that the
distance & only affects the magnitude of the O(e) mobility, but does not change the critical
value of A/h at which the O(g) mobility changes sign.

Figures 2(d) and 2(e) show the particle mobility under a force transverse to the wave
direction. Because of the symmetry of the sphere-surface configuration, the particle
motion along the grooves of the sinusoidal wall cannot produce a velocity perpendicular
to the wall. For A/h <« 1 or 4/h >> 1, the sinusoidal surface approaches a flat plane and
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the sphere velocity is isotropic inside the plane parallel to the wall. The particle velocity
decreases/increases near the hill/valley of the surface for A/h > 1.2082, and this effect
is reversed for A/h < 1.2082 with a much weaker influence. This result is different from

U)(Cl), highlighting the anisotropy of the in-plane mobility of a sphere near a sinusoidal

surface with an intermediate wavelength. For .Q)gl) , its direction is independent of the
wavelength. The angular velocity is always enhanced/reduced as the surface roughness

decreases/increases the gap distance, which differs from the Q}(l) in figure 2(c). In the

far-field analysis, Qz(l) is predicted to be zero. However, as we will see later, this is not
true when the higher-order hydrodynamic effects are considered.

The third row shows the sphere mobility driven by a force perpendicular to the wall.
Figure 2(f) is identical to figure 2(b) due to the symmetry of the mobility matrix. For
A/h > 1.2082, the particle is horizontally attracted to the hill of the wave, while for
A/h < 1.2082, it is attracted to the valley. In figure 2(g), the vertical motion of the
particle is enhanced/impeded when the gap distance is increased/decreased by the surface

roughness of 4/h > 1.7416. The particle velocity approaches Ugl) ~ —9cos kxo/8h> as
the wavelength increases. For A1/h < 1.7416, the direction of Uz(l) is reversed. Figure 2(h)

shows that the angular velocity [2)(,1) is always positive, meaning that the far-field effect
drives the particle to rotate in the opposite direction compared with the rolling-type
rotation of a sphere settling in parallel to a vertical wall. This effect is not predicted by
the small-curvature analysis (Falade & Brenner 1988).

To further explain the non-monotonic dependence of particle mobility on the
wavelength, figure 3 compares the O(¢) mobility contribution of different segments of
the sinusoidal surface. Here, we focus on the translational movement. The mobility
contribution of each surface segment is determined by integrating (3.10) over the
corresponding range of x. The sphere is positioned at xo = 34/8 and & = 5a, and the
surface is divided into a series of inclined surfaces by half of the wavelength. At a
small corrugation amplitude, each surface segment independently affects the particle
motion. As expected, the surface segments closest to the sphere have the largest impact on
particle mobility. The O(¢) mobility due to the entire sinusoidal surface can be effectively
approximated by considering only the first three segments closest to the sphere. This
approximation becomes less accurate at 4 ~ h. At a large wavelength, the inclined surface
S1 directly below the sphere dominates the corrugation-induced mobility. It enhances the
diagonal translation mobility by increasing the sphere-surface distance. At intermediate

wavelengths, it generates a negative Mgll) and reduces the sphere mobility in the x-direction.
It indicates that the sphere mobility is influenced by both the sphere—wall gap distance
and the angle of the inclined surface, which determines the relative importance of the
anisotropic mobilities perpendicular and parallel to the surface. In comparison, the surface
S1 induces a positive—definite Mélz) at all wavelengths, showing that the transverse motion is
primarily influenced by the increased gap distance. The surface S further increases Mélz)
due to the increase of the equivalent gap distance from the sphere. For the off-diagonal
component, the surface S induces a negative—definite M(113) At intermediate wavelengths,
M%) becomes positive mainly due to the influences of S».

The above results are in qualitative agreement with the previous analysis of the far-field
interaction of a microswimmer with a corrugated surface (Kurzthaler et al. 2020).
Their study provides the corrugation-induced velocities for higher-order singularities,
including force dipole, source dipole, force quadrupole and rotlet dipole, which also show
non-monotonic variation with the wavelength. However, limited by the small-amplitude
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Figure 3. The contribution of different surface segments on the sphere’s O(¢) translational mobility
coefficients, xo = 34/8 and & = Sa.

approximation, surface corrugation has weak effects on particle mobility. In the next
section, numerical simulations will be performed to study the sphere motion near a
large-amplitude surface and stronger effects from the surface corrugation will be observed.

4. Numerical simulation

In this section, the Stokes equation is numerically solved for a sphere moving near a
sinusoidal surface using an in-house developed boundary element code. The approach
is based on the previous work by Pozrikidis (2002) and Zhu, Lauga & Brandt (2013). Both
the sphere and the sinusoidal wall are modelled as rigid solid bodies. The fluid velocity
around rigid bodies in an unbounded fluid domain can be represented in the following
integral form:

1
u(r)y = — Gir—7r)-f(@)ds, 4.1)
8 Js,+s,
where G = I/r + rr/r? is the Green’s function for the Stokes flow, / is the Kronecker delta
tensor, r = /r - r is the distance and f is the unknown force acting on the fluid by the
975 A31-12
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discretized surface element. Due to the symmetry of the problem, the current simulation
considers only half of the domain (y < 0). The halves of the sphere and surface are
discretized using Ny and N,, quadrilateral elements, respectively. On each surface element
Si, the unknown element force f’; is assumed to be constant and contributes to the velocity
of the solid body by

Ng+N,y

1
Y= S > fi / (G(rj —r) dS, (4.2)

i=1 Si

and leads to 3(Ns + N,,) independent linear equations. For the elements on the wall
surface, the velocity u; is fixed to zero, and for the sphere elements, the velocity is
determined by the rigid body motion

ui=U+ 2 x (r; — ry), 4.3)

where U and £2 are the unknown translational and rotational velocities, and r( is the centre
of the sphere. The linear system is then closed by 6 extra linear equations satisfying the
force and torque balance of the sphere

Ny Ny
Y fi=F. Y (ri—r)xfi=T. (4.4a.b)
i=1 i=1

where F and T are the external force and torque applied on the sphere. As the sphere
is free of torque, T is set to zero in this study. The (3Ns + 3N,, + 6) x (3N + 3N,, + 6)
matrix problem is solved for f;, U and 2 using the DGESV function in LAPACK linear
algebra library.

To validate the numerical code, the translation of a sphere near a plane wall is first
simulated. The analytical and numerical solutions for the drag and torque coefficients of
a sphere translating perpendicular or parallel to a plane wall can be found in Goldman
et al. (1967). Quadrilateral elements are used to discretize both the sphere and the surface.
Compared with triangular elements, such a method allows a natural parametrization of
the edge to facilitate the numerical integration using the Gauss—Legendre quadrature. For
singular elements, the simulation is transformed into an integration based on the plane
polar coordinate system (Pozrikidis 2002). In this work, the half-sphere and the half-plane
are discretized by 3100 and 16 022 elements, respectively. The grids are locally refined in
the gap between the sphere and the wall, with the minimum grid ~0.008a. The size of the
wall plane is 40a x 40a following Zhu et al. (2013). The force and torque coefficients for
a sphere moving perpendicular and parallel to the wall are compared against the literature,
as shown in table 1. It is verified that the current simulation can accurately replicate the
reported results.

For a sphere moving near a sinusoidal wall, a larger surface of 200a x 100a is used to
accurately capture the hydrodynamic effects of surface corrugation on the sphere motion.
The sphere is located above the centre of the surface to minimize the error due to the
truncation of the domain. As the sphere approaches the surface, the quadrilateral elements
are successively refined by dividing them evenly into four elements in the gap region,
ensuring an accurate simulation of the particle motion in both the far field and near field
of the sinusoidal wall.

Figure 4 shows the normalized mobilities of the sphere near a sinusoidal surface of
A = 0.1a. Consistent with previous findings by Spagnolie & Lauga (2012), the far-field
approximation agrees reasonably well with the numerical results until & ~ 2a, after
which the far-field analysis results show significant deviation and even show quantitative
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Perpendicular Parallel
h/a Error, F,(%) Error, Fy (%) Error, T(%)
3.7622 0.00731 0.00692 2.55353
2.3523 0.03911 0.01107 0.64911
1.5431 0.01377 0.01050 0.20855
1.1276 0.06249 0.00712 0.11724
1.0453 0.09800 0.01820 0.18547
1.005004 0.39652 0.24873 1.47696
1.003202 1.14405 0.16800 1.66146

Table 1. Comparison between the current simulation and the previous results for a sphere translating near an
infinitely large rigid plane wall.

differences from the simulation. In the near-contact region, all the mobility components
eventually reduce to zero as the gap distance decreases to zero. However, due to the 1/1In§
asymptotes, the sphere still has a relatively large velocity parallel to the wall even when
it is in close proximity to the surface. For clarity, the 1/(In8)? terms in the near-contact
asymptotes are not shown here. The three diagonal components monotonically reduce to
zero with decreasing /i, while the off-diagonal terms initially reach a peak close to the
wall and then decrease to zero. This trend is not captured by the far-field or lubrication
asymptotes and requires extremely fine grid resolution to be fully captured in simulations.

In figures 4(a) and 4(d), the two mobilities My; and M, are close to each other because
the particle motion is mainly influenced by the same virtual plane wall at y = 0. The
sinusoidal wave affects their relative magnitudes at different horizontal locations (see
insets). Figure 4(f) shows that the sphere has a non-zero §2, when it translates parallel
to the grooves of the sinusoidal surface. This effect, which is mainly caused by the
hydrodynamic interaction between the sphere and the locally inclined surface, is not
captured by the far-field analysis at the leading order. In figure 4(h), the velocity U, ~ h
linearly reduces to zero as the particle approaches the wall. The far-field analysis can
predict the same trend, while the quantitative results are not correct. The vertical velocity
U, is significantly different from Uy and Uy. The anisotropic translational mobility of
a particle perpendicular and parallel to the wall is a key factor for the accumulation
of microswimmers near a surface (Berke et al. 2008; Li & Ardekani 2014). Similar
behaviour can also be observed for microswimmers near a corrugated surface (Ishimoto
et al. 2021; Kurzthaler & Stone 2021). Finally, in figure 4(i), the direction of the particle
rotation is reversed when the particle-wall distance & < 2a, showing that the near-field
hydrodynamic interaction causes the sphere to roll on the surface.

With a larger amplitude, the surface has stronger influences on the sphere mobility.
Figure 5 shows the particle motion near a sinusoidal surface with A = 5a and A = 20a,
for which the far-field analysis only qualitatively agrees with the numerical results. Here,
for the far-field results, the sphere—wall distance % has subtracted the local surface height
directly beneath the centre of the sphere. Surprisingly, this adjustment leads to a better
agreement between the far-field and numerical results, especially for Ms; and My,. In
figures 5(c) and 5(e), the translation-induced rotation at a large / is in the same direction
as the sphere rolling on the surface. The result is the same as the sphere movement near
a surface with a small amplitude. While, at an intermediate distance, the sphere will
rotate in the opposite direction for xg > A/4. This effect, which is caused by the strong
hydrodynamic interaction between the sphere and a locally curved trough of the surface,
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Figure 4. Normalized mobility coefficients of a sphere near a sinusoidal surface with 4 = 20a and A = 0.1a;
My = 1/(6mua) is the sphere’s translational mobility in an unbounded fluid. Solid lines: numerical results,
dashed lines: far-field solution, dotted lines: lubrication solution.

can be qualitatively captured by the far-field analysis. Further close to the surface, the
particle returns to the rolling-type motion near the surface. Similar behaviour is also shown
in figure 5(f), where £2, at x = 31/4 becomes negative at 0 < & < Sa. In figure 5(g), the
transverse velocity U, of the sphere is negligible when it is far away from the surface
and changes the direction at 4 >~ 21a. When the sphere is close to the wall, the sinusoidal
surface induces a large transverse velocity U, of comparable magnitude to U,. Since a
sphere moving perpendicular to the wall requires a long time to collide with the wall,
U, can cause significant transverse migration of the particle along the wave direction.
This effect leads to a strong accumulation of particles at the valley when they settle down
towards a corrugated surface.

To better illustrate the sphere motion near a sinusoidal surface, figure 6 displays the
trajectory of a sphere moving near a sinusoidal surface driven by a horizontal and
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Figure 5. Normalized mobility coefficients of a sphere near a sinusoidal surface with 4 = 20a and A = 5a;
My = 1/(6mtua) is the sphere’s translational mobility in an unbounded fluid. Solid lines: numerical results,
dashed lines: far-field solution, dotted lines: lubrication solution.

vertical force. The position of the sphere centre is explicitly updated over time using the
fourth-order Adams—Bashforth scheme

At _ _ _
gt =1+ 241350 () — 59U Y4370 U], 45)
where the subscripts n + 1, n, n — 1, . .. represent different time steps and the step size is
set to At = 0.1. Lower-order schemes are utilized for the initial time steps. To minimize
simulation errors resulting from domain truncation, the sphere is positioned above the
centre of the sinusoidal wall. At the (n + 1)th time step, the discretized wall grids are
updated using 2 = A cos k(x + x)» where x6’+1 is the new assigned x-location of
the sphere centre. In figure 6(a), the sphere exhibits an oscillating trajectory when moving
parallel to the surface. The trajectory is flattened when the sphere is moving above the
valley of the surface, indicating a strong suppression of the vertical motion due to the
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Figure 6. The trajectories of a sphere driven by a force (a) parallel and (b) perpendicular to a sinusoidal surface
with 4 = 20a and A = 5a. The inset in (a) shows the dependence of the minimum height /,,;, of the sphere
on the maximum height /,,,, and the travel time AT from xo = 0 to xo = 4/2, symbols show the numerical
results and lines show the far-field approximate solution.
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Figure 7. The translational mobility of a sphere at xo = 31/8 near a sinusoidal surface with (a) constant
amplitude A = 5a and varying wavelength, and (b) constant wavelength 4 = 20a and varying amplitude;
Mo = 1/(6mpea) is the sphere’s translational mobility in an unbounded fluid. Triangles represent the sphere
has a fixed vertical position & = 2.39627a and h = 0.854141a in (a,b), respectively, and squares represent the
sphere has a fixed minimum distance d = 1.2a from the surface.

inclined walls on both sides. The amplitude of the oscillation increases as the trajectory
is closer to the wall and, after one period, the sphere returns to the original height. In
the inset of figure 6(a), the sphere close to the wall takes a much longer time to travel
from xg = 0 to x9 = A/2. Figure 6(b) shows the trajectories of a sphere released from the
same initial y-location 2 = 10a and three different x-locations, x/1 = 0.25, 0.5, 0.75. The
sphere descends towards the valley of the surface. This effect becomes stronger as the
sphere approaches the surface. Eventually, the sphere is nearly in contact with the wall
and falls along the surface.

Finally, we further compare the effects of surface wavelength and amplitude on
the mobility of a sphere at a constant distance from the wall. Figure 7(a) shows the
translational mobility of a sphere at xo = 31/8 near a surface with a constant amplitude
A = 5a and varying wavelengths. When the sphere is at a fixed height £ (triangle symbols),
all the diagonal mobilities increase monotonically with wavelength, and the off-diagonal
mobility M3 reaches the minimum at A >~ 6a and then slowly increases. The transverse
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mobility Mh; is always larger than the longitudinal and vertical mobilities, and the relative
strength of Mj; and M3 is dependent on the wavelength. For a sphere at constant gap
distance from the surface (square symbols for dy;, = 1.2a), Mpy and M;3 are weakly
influenced by changing the wavelength, while M;; and Ms3 show stronger dependence on
A. Figure 7(b) shows qualitatively similar behaviour when changing the surface amplitude.
These results demonstrate that the sphere’s movement can become complicated by its
near-field hydrodynamic interaction with a surface of large corrugation amplitude.

5. Conclusion

This work investigates the sphere mobility driven by an external force near a sinusoidal
surface in the Stokes regime. For a surface with a small amplitude, solutions of far-field
or near-contact approximation are derived using the Lorentz reciprocal theorem. At a
large amplitude, the sphere mobility is solved using the boundary element method and
shows good agreement with the two asymptotes. Compared with a plane surface, a
corrugated surface induces additional translational and rotation velocity components to
the particle’s movement. The direction of the corrugation-induced velocities is dependent
on the wavelength of the surface. The key finding is that, in the far-field regime, a sphere
settling perpendicular to a sinusoidal surface tends to slowly migrate towards the hill of
the wall while, in the near field, it migrates towards the valley with a large transverse
velocity. As the sphere approaches the surface, the magnitude of the transverse velocity
becomes comparable to the vertical velocity and can significantly affect the sedimentation
process. At an intermediate distance from the wall, the far-field and lubrication theories
fail to accurately calculate the sphere mobility, and numerical simulations are necessary
to fully capture the hydrodynamics.
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Appendix A. Derivation of the far-field mobility coefficients

When the particle is far away from the surface, the fluid flow can be characterized using the
multipole expansion of the fundamental singularities of the Stokes equation. To simplify
the expressions, the centre of the sphere is set to r) = Oe, + Oe, + he_, and the wall surface
is written as z = Apqx €0s k(x + xp). The force acting on the sphere is F = F(cos fey +
sinfe;), where F is the force magnitude, ey = e;cos ¢ + e, sin ¢, 0 is the angle between
the z-axis and the force direction and ¢ is the angle between the x-axis and the force
projection inside the x — y plane. At the leading order, the velocity field is represented by
a combination of a Stokeslet and the image singularities due to the plane wall

) _ F * *
u’(r)=—(Gr—ro,e)+G(r—rye)). (A1)
8t
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The first term represents the Stokeslet

Gir.e) = <e+ e ')') , (A2)

Ld Ir|?

and the second term G* represents the image singularities induced by a plane wall
G*(r— 1}, e) = —G(e) + 2hGp(e*, e;) — 2h*Sp(e"), (A3)

where e* = ejcos® — e, sinf, rj = ro — 2he;, and on the right-hand side we use a
shorthand notation G(e) = G(r — rj;, e). The three terms represent a Stokeslet, a Stokeslet
dipole and a source dipole, respectively. The Stokeslet dipole and the source dipole
are derivatives of a Stokeslet Gp(r — rog,d,e) =d - VoG(r — ro, e) and Sp(r — rg, €) =
—VgG(r — rp, e)/2, where V represents gradient acting on the singularity position rg,
and their expressions are

Gp(r.d.e) = <(d Ne—(e-nd—W-or, e Nl r)r) . (A
|7| |7| |7|
1 3(e-r)r
SD(", e) = W (—e—l— T) . (AS)

The pressure fields induced by a Stokeslet, a Stokeslet dipole and a source dipole are
respectively

2ur-e 2u <3(r-e)(r-d)
PG=—>7> PD=7z|—F— —
|rl? & |r|?

d-e) , psp=0. (Aba—c)
The pressure solution is used to calculate the hydrodynamic stresses for the auxiliary
problem.

On the plane surface, the velocity gradients are

au§°> __ 3xh(xcos6 cos¢ + ycostsing — hsinb)

9z - 23.[“(;12 X2+ y2)5/2 K
=0 (A7)

8u§,0) __ 3yh(xcos6 cos¢ + ycosbsing — hsin6)

3y 2 + 22+ ) ’

and 8u§0) /0z|;=0 = 0 by the incompressible condition.

To solve (3.3) using the reciprocal relation, two auxiliary problems are introduced to
calculate the influence of the curved surface. The first problem describes a point force
near a plane surface, which solution is shown above. The hydrodynamic stresses on the
plane surface can be directly calculated as

Bu)(co) Bu;O)
Oxzlz=0 = 1 s Oyzlz=0 =1 )
0z 0z
=0 =0 (A8)

—3uh®(xcos 6 cos ¢ + ycosf sing — hsin0)
2 (h? + x% + y2)3/2 '

Equations (A7) and (AS8) are then substituted into (3.3) to derive the mobility coefficients
of a sphere driven by a force near a non-planar surface.

611 |z=0 =

975 A31-19


https://doi.org/10.1017/jfm.2023.887

https://doi.org/10.1017/jfm.2023.887 Published online by Cambridge University Press

G. Li

The second auxiliary problem considers the sphere motion driven by a torque. In the
leading order, the velocity is represented by a point torque near a plane

0) T * *
u’(r)=-—@®Rr—ro,e)+ R (r—rye)), (A9)
8
where the first term represents a rotlet

R(r,e) = (A10)

IPER
and the second term represents the image singularities

R*(r — 1}, €) = —R(e) + cos 0(—Gp(e:, e5) — Gpley. ) + 2hSp(ey)).  (All)
where eqf = e; x ey, Gp and Sp are the Stokeslet dipole and source dipole. The rotlet does

not disturb the pressure field, i.e. pg = 0.
On the plane surface, the velocity gradients are

8u,(co) B 3h(xy cos @ cos ¢ + (h* — x?) cos 0 sin ¢ + hy sin 9)
9z » - 4T[/L(h2 + x2 _|_y2)5/2
o . (A12)
8u§, ) 3h(xy cos 6 sing + (h* — y?) cos @ cos ¢ + hxsin 9)
0z | dmp(h? 4 x> + y2)3/?
=
and au§0) /0z|;=0 = 0 by the incompressible condition.
The hydrodynamic stresses on the plane surface induced by the rotlet is
A w®| 2
Oxzlz=0 = 1 > O'yz|z=0 = ,
0z 0z
z=0 z=0 (A13)

3uhcosf(ycos¢ — xsing)
2m(h? 4 x2 4 y2)5/2

Ozzlz=0 =

For a surface A(x,y) = Apaxcosk(x + xp), the rescaled surface height Z(x,y) =
A(x,y)/(Apmaxk) = cosk(x + xg)/k. Substituting the above equations into (3.3), the
mobility is written as

1o 00 ou”
M = —/ cosk / 5, ——
Y k X=—00 (etx0) y=—00 % 9z

mD
1/

dydx, (Al4)

=

where i,j =1,2,...,6. For i,j = 1,2, 3, solutions (A7) and (A8) are used to describe
the sphere motion driven by a force along the x-, y- and z-directions, respectively. For
i,j=4,5,6, solutions (A12) and (A13) are used to describe the sphere motion driven by
a torque.
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Appendix B. Inversion of the resistance matrix

Falade & Brenner (1988) have derived the Stokes resistance of a sphere moving near
a curved wall of small curvature. Their analysis requires that ax <« 1 and hk < 1,
meaning the sphere radius a and the distance & are small compared with the radius of
curvature of the wall 1/x. We have used their results to calculate the mobility matrix. The
hydrodynamic force and torque on the sphere are linked to the sphere velocity by

F/6mtpa\ U
(T/8Tc,u,a2> =k <Sl> ’ (B1)
where the resistance matrix
_ (A A
R = ( R. R ) (B2)

and R, = R;O) + ax R;l), R, = RﬁO) + akx Rﬁl) and R, = Rﬁ‘” + a/cRgl) are the force
resistance, torque resistance, and the cross-coupling term. Note here the results are
expanded in terms of the normalized curvature ax < 1.

The mobility matrix in (3.4) can be directly calculated from R,

1
! 0 4
67T o . T . —1
m=|" ER R IS
8 —~M,R. - R;' M,
where M; and M, are
M =Rr"'-3R"-R®BRH, M =rR'"-3R"H-RR]. (B4a,b)

The corresponding O(1) and O(ak) resistance matrices are given by (Falade & Brenner
1988)

Ao 0 O Ch 0 O 0 Ey O
R”=[0 A o, RO=|0 ¢ o], RO=|-E 0 o],
0 0 By 0 0 Dy 0 0 0
A 0 0 D 0 O 0 -G 0
RV=10 B 0|, RO=[0 E o, RP"=|H 0 o0].
0 0 C 0 0 F; 0 0 O
(B5)
When the sphere is far away from the surface, a/h < 1, the coefficients are
Mom 1425 o142 o142 pmis O g
T e 0T e 0T e 0T Tew 0T 3
(B6a—e)
81 27 9
=g PTne 9T :m
(B7)
9a 27a
Dy=E =F1=0, 1= 7555 1=
128h 128h
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For a sphere in near-contact with the wall, (h — a)/a < 1, the coefficients are

8 11
Ao = ——Ins +0.9588, By = — — - In8 + 0.97128,
0=z meTt 0=35 - 5met

(B8)
2 1 1
Co=—§ln8+0.3817, Do=§(3)—551n8, Eo=—E1n8—0.1895,
74 26
Al =—=—-In§ - 0.6131, B; =-——-Ind —0.2876,
75 75
C = 3 0.20015 —1.5613Iné, D)= —%lnS —0.6283,
7 ' (B9)
E| = ~30 In§ —0.3951, F; =0.1796 — 2.22324,
19 1
Gy =——1Ind§ —-0.5266, H; =———1Iné+ 1.0374.
100 100

Substituting the above equations into (B3), we can derive the O(1) and O(ax) mobility
coefficients consistent with the current results requiring A,k < 1 and kh < 1.
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