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Abstract

We give a lattice theoretical interpretation of generalized deep holes of the Leech lattice VOA V. We show that
a generalized deep hole defines a ‘true’ automorphism invariant deep hole of the Leech lattice. We also show
that there is a correspondence between the set of isomorphism classes of holomorphic VOA V of central charge
24 having non-abelian V; and the set of equivalence classes of pairs (7, 3) satisfying certain conditions, where
7 € Co.0 and § is a T-invariant deep hole of squared length 2. It provides a new combinatorial approach towards the
classification of holomorphic VOAs of central charge 24. In particular, we give an explanation for an observation of
G. Hohn, which relates the weight one Lie algebras of holomorphic VOAs of central charge 24 to certain codewords
associated with the glue codes of Niemeier lattices.
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1. Introduction

The classification of strongly regular holomorphic vertex operator algebras (abbreviated as VOA) of
central charge 24 with nontrivial weight one space is basically completed. It has been shown that there
are exactly 70 strongly regular holomorphic VOAs of CFT-type with central charge 24 and nonzero
weight one space and their VOA structures are uniquely determined by the Lie algebra structures of
their weight one spaces. Moreover, the possible Lie algebra structures for their weight one subspaces
have been given in Schellekens’ list [45]. The main tool is the so-called orbifold construction [6; 10;
17; 19; 36; 37; 38]. Nevertheless, their constructions and the uniqueness proofs were done by case
by case analysis [9; 10; 13; 17; 18; 19; 22; 24; 26; 27; 28; 29; 30; 31; 32; 33; 37; 42]. A simplified
and uniform construction and proof of uniqueness is somehow expected. Recently, it is proved in [16]
(see also [7]) that for any holomorphic VOA of central charge 24 with a semisimple weight one Lie
algebra, the VOA obtained by the orbifold construction by an inner automorphism g defined by a
W-element is always isomorphic to the Leech lattice VOA V, (see Definition 2.1 for the definition of
a W-element). By taking its reverse automorphism g of V,, there is a direct orbifold construction from
the Leech lattice VOA V), to V. As a consequence, a relatively simpler proof for the Schellekens’ list is
obtained [16].

Moller and Scheithauer [39] considered a special class of automorphisms in Aut(V}), called gener-
alized deep holes. They established a bijection between the algebraic conjugacy classes of generalized
deep holes g € Aut(V,) with rank(Vf)l > 0 and the isomorphism classes of strongly regular, holomor-
phic VOA V of central charge 24 with V| # 0 [39, Theorem 6.6]. They also obtained a classification
of generalized deep holes of the Leech lattice VOA, which provides a new proof for the classification
of holomorphic VOA of central charge 24 with nontrivial weight one spaces. Next, let us recall the
notion of generalized deep holes from [39]. Let V be a strongly regular holomorphic VOA of central
charge 24. Let g be an automorphism of V of finite order n > 1. If the conformal weight of the unique
irreducible g-twisted module is in %Z, then g is said to be of type 0. In this case, one can construct a
holomorphic VOA V2] using the orbifold construction by g and V. It is proved in [39, Theorem 5.3]
that the dimension of the weight one subspace of V12 is given by the formula

dim(V1#h) =24+ " ¢, (d) dim(VE); - R(g),
din

where ¢, (d) € Q are defined by >4, cn(d) - GCD(t,d) = n/t for all t|n. The rest term R(g) is

non-negative and can be described explicitly by the dimensions of the weight spaces of the irreducible
V&-modules of weight less than one.
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Moller and Scheithauer [39] called an automorphism g € Aut(V) a generalized deep hole of V if g
is of type 0 and

1. the upper bound in the dimension formula is attained (i.e., R(g) = 0 or dim(VI8l), = 24 +
. d
Zdln Cn(d) dim(VET);),
2. rank(VI&l); = rank(V#),.

If V = V, is the Leech lattice VOA, the rank condition (2) is equivalent to the fact that (Vf)l is a
Cartan subalgebra of (V[&1),. It turns out that the reverse automorphism § € Aut(V,) associated with
the inner automorphism defined by a W-element is a generalized deep hole. Moreover, it is proved that
any generalized deep hole g of the Leech lattice VOA with rank(Vf)l > 0 is conjugate to the reverse

automorphism of an inner automorphism defined by a W-element of V = V/£g ] (see the proof of [39,
Theorem 6.6]). Therefore, without loss of generality, we may assume that a generalized deep hole g of
the Leech lattice VOA with rank(Vf )1 > Ois areverse automorphism of an inner automorphism defined
by a W-element of a holomorphic VOA V with V| # 0.

As it is well-known, a deep hole of a lattice L is an element v of RL such that a distance min{|a —v| |
a € L} from L is the largest (covering radius) among elements v in RL and so it has a geometrical
meaning. Furthermore, deep holes of the Leech lattice A have many interesting geometrical and algebraic
meanings. Therefore, it is natural to expect some geometrical properties for generalized deep holes.

Recall that any automorphism g € Aut(V,) can be written as

g = Texp(27iB(0)),

where 7 € Co.0 = O(A), B € RAT and T denotes a standard lift of 7 in O(K) [2; 14]. In this paper,
we will show that a holomorphic VOA of central charge 24 with non-abelian weight one Lie algebra
naturally defines a pair (7, 3), where T € Co.0 is the same isometry as defined by a reverse automorphism
& € Aut(V,) and s a (t-invariant) deep hole of the Leech lattice related to 8. In particular, a generalized
deep hole of the Leech lattice VOA defines a ‘true’ deep hole of the Leech lattice. It provides a new
combinatorial approach towards the classification of holomorphic VOAs of central charge 24.

Let L be an even lattice. We use O(L) to denote the isometry group of L. The dual lattice of L is
denoted by L* (i.e., L* = {x € Q®z L | {(x,L) c Z}). The discriminant group D(L) is the quotient
group L*/L. For T € O(L), we denote the fixed point sublattice by L”. We also define the coinvariant
lattice L = {x € L | {(x, L™) = 0}. The key observation is that there is a ‘duality’ associated with the
fixed point sublattice A which changes the level; we call it {-duality.

Main Theorem 1 (see Theorem 4.2). If § = Texp(27iB3(0)) is a generalized deep hole, then there is an
isometry:

e VE(AT)" — AT,
where ¢ = |7].

Using this £-duality ¢ (extended to CAT), it is easy to show that (¢ (VEB), o (VEB)) € 2Z and its
neighbor lattice N = A%(\/gm + Zp-(VEB) define a Niemeier lattice with N 2 A, where A%(\/{T'B) =

{re Al (x.o:(VIP) € Z}.

Let V = (V,)!8] be the VOA obtained by the orbifold construction from V by g. Let H be a Cartan
subalgebra of V| and let M (H) be the Heisenberg subVOA of V generated by H. Then there is an even
lattice L such that the double commutant Comm(Comm(M (#), V), V) of M(#H) in V is isomorphic to
the lattice VOA V. The lattice L (or L*) encoded the information of the root system of V.

Main Theorem 2 (see Theorem 4.9). Via ¢-duality, we have N7 = Ve, (L*).

In addition, we prove the following theorem.
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Main Theorem 3 (see Theorem 5.1 and Proposition 6.1). Let ¢ be the isometry defined in the Main
Theorem 1. Then we can choose 3 € CA” such that § = Texp(27iB(0)) and 3 = Ve@(B) is a deep hole
of A of squared length 2.

The classification of generalized deep holes is thus equivalent to the classification of the pairs (7, /)
with 7 € O(A) and § a 7-invariant deep hole of squared length 2 satisfying certain conditions and up
to some equivalence.

Let 7 be the set of pairs (7, ,[?) satisfying certain conditions (see Section 7, (C1)—(C3)). We define a
relation ~ on 7T as follows: (7, ) ~ (7', ) if and only if

(1) B and B’ are equivalent deep holes of the Leech lattice A (i.e., there are o € O(A) and A € A such
that 8’ = o (B - 2),
(2) 7 is conjugate to o~ '7’c in O(N).

The following is another main theorem of this article.

Main Theorem 4 (see Theorem 7.1). There is a one-to-one correspondence between the set of isomor-
phism classes of holomorphic VOA V of central charge 24 having non-abelian V; and the set 7/~ of
equivalence classes of pairs (7, 8) by ~.

Since a deep hole of the Leech lattice determines a unique Niemeier lattice, up to isometry and
there are only 23 Niemeier lattices with nontrivial root system, it is straightforward to list all possible
choices for (7, 3) and to determine the corresponding Lie algebra structures for V;. Therefore, one can
complete the classification of holomorphic VOAs of central charge 24 with non-abelian V| by a purely
combinatorial method. Indeed, we will provide an explanation for an observation of Hohn, which relates
the weight one Lie algebras of holomorphic VOAs of central charge 24 to certain codewords associated
with the glue codes of Niemeier lattices [21, Theorem 3.1 and Table 3] (see Section 8 for details).

2. Some previous results

We first recall several results from [7]. Let V be a holomorphic VOA of central charge 24 with V| # 0.
Suppose V| = EB;ZIQ j.k; is a semisimple Lie algebra. We use & (resp. hjv and r;) to denote the level
(resp. the dual Coxeter number and the lace number) of G;, j = 1,...,t. Let H be a Cartan subalgebra
of Vi and let M () be the Heisenberg subVOA generated by . For a subVOA U c V, the commutant
subalgebra of U in V is defined by

Comm(U,V)={x eV |ux=0foralln € Zsg,u € U}.

It is easy to see that the double commutant Comm(Comm(M (H), V), V) is isomorphic to a lattice VOA
V. for an even lattice L C H.

Definition 2.1. Let p; be a Weyl vector of G; , and set a = 23:1 pj/h}, which we call a W-element.

Next, we recall some standard notations for lattice VOAs from [19]. Let L be a positive-definite even
lattice and ) = C®z L. Let M () be the Heisenberg VOA associated withh andlet C{L} = P ,.; Ce® be
the twisted group algebra such that e®ef = (=1)${®P)ePe® for o, B € L. The lattice VOA V7 is given by
Vi =M (h)®C{L}.Forany cosetA+L € D(L) = L*/L,denote Vy,;, = M(h) ®Spanc{e® | @ € 1+L}.
Then V1 has an irreducible V; -module structure [19]. Moreover, {V ,r, | A+ L € D(L)} is a set of
all inequivalent irreducible modules for V, [9].

Let U = U(0) = Comm(M (H),V). Then U ® V;, C V is a subVOA of the same central charge. From
the property of lattice VOA, we have a decomposition

V =@serU(S) @ M(H)e?,

where U(6) are U(0)-modules and M (H)e? are M (H)-modules. Since V is holomorphic, all irreducible
modules of V, appear in V [23]; thus, U(5) # 0 for every § € L*.
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Set g = exp(2mia(0)), where a = Z;’:l pj/hjv.. In [7] (see also [16]), it is proved the VOA V&!
obtained by the orbifold construction from V by g is isomorphic to the Leech lattice VOA (i.e.,
Vgl = v, ). Namely, the integer weights submodule T} of the simple g-twisted V-module 7" is nonzero
and V8 @ TZ1 & (T%)E(‘gH) = Vj.

In this case, there is an automorphism g of V, acting on (Tzl)gm as e2mim/n

, n = |g|. Moreover, the

orbifold construction from V, by the automorphism g gives V (i.e., Vig s V). That § € Aut(VI8) is
called the reverse automorphism of g.

Since g € Aut(Vy), we have § = Texp(27iB(0)) for some 7 € O(A) = Co.0 and B € CA [2; 14].
By choosing a suitable (standard) lift 7 of 7, we may choose 8 € CA™ [17; 27]. Recall that a lift T of
7 € O(A) is called a standard lift if T(e®) = e® for any @ € A7 (see for example [17]).

Remark 2.2. By the definition of W-element, it is clear that the order of g on V| = @;zlg j.k; 18
LCM({r;h; | i}; indeed, one can show that |g| = LCM({r;h | i} on V [16, Proposition 5.1].

Set n = |g| = |g| and let Ko, Ng € Z with GCD(Ky, Ny) = 1 such that (@, a) = ZTKOO As we have
shown in [7], n = |7| Ny and Nolh}’; thus, |7| = LCM({r,-h]V./Ng [ D).

It is also proved in [7, Proposition 4.2] that k; / hlV = K"N;;V“; therefore, we have

2 Ny 2
rihy Ko —No (Ko — No)rih¥ [Ny

2
and
LCM({rik; | i}) = (Ko — No)LCM({r;h" /Ny | i}) = (Ko — No)|7|.

As a consequence, we have the following result.
Lemma 2.3. LCM({r;k; | i}) = (Ko — No)|7|.
Next we recall an important result from [7].

Proposition 2.4 [7, Propositions 3.25 and 4.3]. We have Noa € L*. Moreover,

Comm (M (H),V!¢)) = @7 U(jNoe)

and H + Comm(M (), V), is a Cartan subalgebra of the weight one Lie algebra of V18! = V.

Since U(jNoa) ® e/No@ € V, U(jNoar) appears in g~/ No-twisted V-module and so we may choose
B and T so that (8, &) = 1/Ny|r|(mod Z) and T acts on U(jNy«) as a multiple by e~274//171,

As we discussed, a W-element of a holomorphic VOA of central charge 24 with a semisimple weight
one Lie algebra defines an automorphism § = Texp(27iB(0)) for some 7 € Aut(A) = Co.0 and
B € CAT such that V = V/Eg I One main question is to determine the isometry T € Co.0 arising in this
manner.

Denote

P = {TGC0.0

3B € QAT s.t. Texp(27iB(0)) can be realized as the reverse
automorphism of an orbifold construction given by a W-element |

In Section 6, we will show that P c Py = {14,2A,2C,3B,4C,5B,6E,6G,7B,8E, 10F}. The main
idea is to analyze the conformal weights of the irreducible T-twisted modules and g-twisted modules.

3. Irreducible twisted modules for lattice VOAs

First, we review some basic properties of the irreducible twisted modules for lattice VOAs. Let P be
an even unimodular lattice. Let 7 € O(P) be of order n and T € O(P) a standard lift of 7. We use
m=mn;: P — (P7)*to denote the natural projection. More precisely,
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n-1
n(x)=n.(x) = % Z 7 (x). 3.1

i=0

By [12], Vp has a unique irreducible T-twisted Vp-module, up to isomorphism. Such a module Vp[7]
was constructed in [1 1] explicitly; as a vector space,

Ve[t = M(D[r] @C[x(P)] & T,

where M (1)[7] is the ‘rT-twisted’ free bosonic space, C[x(P)] is the group algebra of 7 (P) and T is an
irreducible module for a certain “r-twisted” central extension of P (see [35, Propositions 6.1 and 6.2]
and [11, Remark 4.2] for detail). Recall that

dim7 = |P./(1 - 7)P|'/?

and that the conformal weight ¢(7) of T is given by
1 n-1
0(1) 1= 15 ) J(n=j)dimb). (3.2)
j=1

where h(;) = {x € h | 7(x) = exp((j/n)2nV—1)x}. Note that M (1) [7] is spanned by vectors of the form
xi(=mp)...x5(=my)1,

where m; € (1/n)Zo and x; € H(m,) for 1 <i <s.
In addition, the conformal weight of x;(—m) ... xs(—ms) ® e® ® t € Vp[T] is given by

;mi + (0‘;‘”) + (1),

where x;(-m) ...xs(—mg) € M(1)[1], e € C[n(P)] and ¢t € T. Note that m; € (1/n)Zs¢ and that
the conformal weight of Vp[7] is ¢(7).
Since Z;.';ll j(n—j)=n(n*-1)/6, we have

1S - dai_l 1 &g
¢(T)—ﬁ;ai . —ﬁ{zaini—Z;}— T34 L,

L

if T € O(P) has the frame shape 1—1;1:1 n]a’ by (3.2).

Remark 3.1. Let v € Q®z PT C bg). Then exp(27iv(0)) has finite order on Vp and commutes with 7.
Set g = Texp(27iv(0)). Then the unique irreducible g-twisted module for Vp is given by

Velgl = M(D)[7] @ C[-v+n(P)]®T

as a vector space [4]. In this case, the conformal weight of Vp[g] is given by
1.
5 min{(BIB) | B € —v+7(P)} + (7).

4. Leech lattice and /-duality

Letg = Texp(27iB(0)) € Aut(V,) be the reverse automorphism associated with an orbifold construction
defined by a W-element of a holomorphic VOA V of central charge 24. In this section, we will consider
and study several lattices associated with g and try to study their relations to the root system of the weight

https://doi.org/10.1017/fms.2023.86 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.86

Forum of Mathematics, Sigma 7

one Lie algebra V. We first observe that the fixed point sublattice A” satisfies some duality property,
which we call ¢-duality. Using ¢-duality, we will associate a Niemeier lattice N with g. We will study the
relationships between N and the root system of V|. We will also relate the Coxeter number of N to the
order of |g|. For simplicity, we assume that 7 € Py = {14,2A,2C,3B,4C,5B,6E,6G,7B,8E, 10F}
in this section. In Section 6, we will show that 7 is indeed contained in Py.

4.1. (-duality

In this subsection, we study the properties of the lattice AT for
TePy={1A,24,2C,3B,4C,5B,6E,6G, 7B, 8E, 10F }.

Lemma 4.1. For € Py, we have det(AT) = {ank(A7)/2,

Proof. Fort € Py,itiseasy tocheck that (1-7)(A%) = A;.Itfollows thatdet(AT) = det(A;) = [[ m“m,
where [] m“n is the frame shape of 7. The result then follows by a direct calculation (cf. Table 1 in
Section 6). m]

Below is one of our key observations. This fact is probably well-known to the experts and it also
holds for some other isometries in Co.0 (e.g., 14B).

Theorem 4.2. If T € Py, then there is an isometry
p=¢r: N/Z(AT)* — AT,
where { = |7|.

Remark 4.3. It is known that € = |7| or 2|7| and £ = 2|7| if and only if < 7 > contains a 2C-element,
see [2].

In [20], Harada and Lang have determined the structure of A for 7 € Co.0. In particular, the Gram
matrix for the lattice AT has been given explicitly. It is straightforward to check that Theorem 4.2
holds for

7€ Py={14,24A,2C,3B,4C,5B,6E,6G, 7B, 8E, 10F}.

Note that the Gram matrix of the dual lattice L* is equal to the inverse of the Gram matrix of L.
Therefore, it suffices to check that the Gram matrix of A7 is equal to ¢ times the Gram matrix of (A7)*
for any 7 € Py.

Remark 4.4. Let T be a standard 1ift of 7 in Aut(V,) and let ¢(7) be the conformal weight of the
irreducible T-twisted module of V. By direct calculations, it is straightforward to verify that for any
T € Py, we have

1
p(7")=1- ﬁ for all m||7|.
m

In other words, 77 is of type O for any 7 € Py and m € Z as defined in [17].

4.2. Reverse automorphisms and associated Niemeier lattices

From now on, we assume that § = Texp(27iB3(0)) € Aut(Vy) is the reverse automorphism associated
with an orbifold construction defined by a W-element and assume that 7 € Py and 7(8) = B.

First, we discuss some relations between the lattice L discussed in Section 2 and the fixed point
sublattice A™ of the Leech lattice.
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Table 1. Conjugacy classes of T € Co0.0 with dim AT > 4.

Class Frame shape dim Ho ¢(7) Power AT Check for Py
2A 1828 16 1-1/2 ePo

—2A 216/18 8 1-0 Lemma 6.8
2C 212 12 1-1/4 €Py

3B 1636 12 1-1/3 ePo

3C 39/13 6 1-0 3E;! Lemma 6.8
3D 38 8 1-1/9 3Eg Lemma 6.3
—4A 134828 8 1-1/4 —2A Lemma 6.8
4C 142244 10 1-1/4 €Po

-4C 2044 /14 6 1-0 2A Lemma 6.8
4D 2444 8 1-1/8 2A 2D4+2D;  Lemma6.13
4F 40 6 1-1/16 2C 41 Lemma 6.13
5B 1454 8 1-1/5 € Py

5C 55/1! 4 1-0 Lemma 6.8
6C 1216 /3% 6 1-1/6 —-2A,3B Lemma 6.8
-6C 2534 /14 6 1-0 2A,3B 6E;" Lemma 6.11
-6D 1’3164 /24 6 1-1/6 2A,3C 3E! Lemma 6.8
6E 12223262 8 1-1/6 € Py

—6E 2464 /1232 4 1-0 -2A Lemma 6.8
6F 3363 /112! 4 1-0 3Dy Lemma 6.2
6G 236 6 1-1/12 €Py

61 6* 4 1-1/36 2C,3D 614 Lemma 6.2
7B 1373 6 1-1/7 €Py

8E 12214182 6 1-1/8 €Py

10D 122'103/52 4 1-1/10 -2A Lemma 6.8
-10D 235210'/12 4 1-0 Lemma 6.2
-10E 1351102 /22 4 1-1/10 5C Lemma 6.8
10F 22107 4 1-1/20 € Py

-12E 123242122 /2262 4 1-1/12 —-2A,-6E Lemma 6.8
-12H 112231122 /47 4 1-1/12 3C Lemma 6.2
121 12416%12' /32 4 1-1/12 —-4C Lemma 6.2
—-121 223241121 /12 4 1-0 Lemma 6.2
12J 214161 12! 4 1-1/24 2A,3B, 6E Lemma 6.2
14B 112171141 4 1-1/14 2A,7B Lemma 6.2
15D 11315115! 4 1-1/15 Lemma 6.2

Notation 4.5. Let X be an even lattice and let 8 € Q ®z X. Denote

Xg={xeX|(xp)cZ}.

Suppose that (8, 8) = 2k/n for some positive integers k and n with GCD(k,n) = 1. Let X=1{xe
X | (x,nB) € Z}. For x € X, we define xg) = x — mf if (x,nB) = mkmod n,0 < m < n -1 and

Xip) = {xp) | x € X}. Then X|) is also an even lattice and det(X) = det(Xg)).

Recall that (@, @) = 2Ky/Ny and Noa € L* for a W-element « (cf. Proposition 2.4). Thus, we have

L = L. Since VI8 =V, we have V& = (V))&

Vi, = Com(Com(M(H),V?),V¥)

and

It implies L, = AE. Moreover, AT = L{4] + ZNypa.
Now consider the irreducible g-twisted module

Valgl = C[-B+(AT) e M(D[r] ®T.
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Since (VA[g])z # 0 and ¢(7) = 1 — 1/|7] for T € Py, there exists 8/ € —B + (AT)* such that
(B’,B)/2 = 1/|rImod Z. Without loss of generality, we may assume 8 = —f’. In this case, 8 € L*. By
a general result (cf. [21; 25]), we also have

(1) (D(L),q) = (Irr(V/fT), —q’) as quadratic spaces;

(2) det(L) = det(A7) x |7/

The quadratic space structure of (Irr(V[fT), q’) has also been determined in [25]. In particular, it has
proved that the exponent of L*/L is £ = |7] and g(L*) C %Z. Thus, we have the following lemma.

Lemma 4.6. We have (8 € L and L = A,g + ZLB. Moreover, VCL* is an even lattice.

By Theorem 4.2, there is an isometry ¢ = ¢, : VE(AT)* — AT with £ = |7] and it induces an
isometry from CA™ — CAT".
Definition 4.7. Set § = V() and N = A] .= Az + Zf.

By our assumption, (3, 5) € 2Z and N is an even unimodular lattice.

Theorem 4.8. Let n = |g| = |3|. Suppose mp(VEB) € A. Then we have n|m. Moreover, [A[B] tAgl =n

Proof. I me(VEB) € A, then mp(VEB) € AT = o(VE(AT)*), which is equivalent to mVEB € VE(AT)*
(or equivalently, mB8 € (A7)).
Since [AT : A;] =n(= [(AZ;; *:(AT)*]) and (/\Z3 *= (AT)*+2ZB,mB € (A7)* implies n divides m.
For the second statement, it suffices to show nVfe(B) € AT. Let k = |7|. Then T% = exp(27i6(0))
for some 6 € CA". Since n = |7|Ny = kNy and g" = 7" exp(27i3(0))" = 1, we have n8 — Nyd € A".
As T is a standard lift, 7(e?) = e” for any y € A7. Thus, (§, A7) C Z and § € (A7)*. By using the
isometry ¢, we have nVeo(B) — NoVEp(5) € VEp(AT) < VEo((AT)*) = AT. Since § € (A7)*, we
have VEp(8) € AT and nVEp(B) € AT as desired. O

Theorem 4.9. Let N = AP = Ag+ Zf. Then ¢ induces an isometry from VEL* to N*. In particular,
we have N© = \(L*.

Proof. Since 7 fixes 8 = ¢(V(f), we may assume that T acts on N = Al and N7 = A[g +7Z3. Note

also that (B, B) € (2/0)Z.
By Lemma 4.6, we have L = Al’; + Z{p. Thus,

L' ={xe (A))" | (.)€ 2}
={xe (A")" +ZB| (x,tB) € Z}
=<{xe (AN | (x,tB) €Z},B > .

Then
VEp(L*) =< {Vlp(x) € VEp(AT)* | (Veg(x), Vlp(B)) € Z}, V() >
=<{yeA" | (y,B)eZ}B>
=AG+ZB=N"
as desired. ]

Lemma 4.10. Under the above conditions, we have Ale(Vep)] z A,

Proof. Since T fixes B = ¢(V€B), we may assume that T acts on N = AB1, Then 7 induces an isometry
v of N = AlAL

Suppose N = A. Since all elements in O(A) are determined by its frame shape up to conjugate,
we may assume 7’ is conjugate to 7. In particular, N7 is isometric to A7 and so VE(N7')* = N7 By
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Theorem 4.9, N = V{L* and so (N7)* = \/%L. Then A7 = VE(AT)* = VE(NT)* = L. It is not

possible since det(L) = det(A7).|7|*. O
As a consequence of the above lemma and Theorem 4.8, we have the following lemma.

Lemma 4.11. Let h be the Coxeter number of N = AlWVEBT apd n = |g| = |g|- Then we have n > h.

4.3. Roots of V,

Next we study the structure of the root lattice of V;. Let V| = EB;.:IQ k- If u € L* is aroot of G, then

if u is a long root,

IS

(u,uy = ’ e
if u is a short root.
rjkj

As a corollary of ¢-duality, we have the following:

Lemma 4.12. |T|(K() - N()) divides €.

Proof. Lete" ®1 € Gj x; be a short root vector. Then (u, u) = % and we have
2 2 hi 2 N
<l/l, [,t) = k = v X _J = v X 0 .
r]- j I‘jhj kj rjhj K(] - N()

Since (u,u) € % and LCM({rjh}’/No : j} = ||, we have that Ky — Ny divides £/|7]|. O

1
rih;

and e” ®  belongs to g% -twisted modules, where s ;7 h}( = n. More precisely, it belongs to s ;-power of

Remark 4.13. Let e ®1 € G; x,; be aroot vector associated with a simple short root. Then (@, u) =

g-twisted module 7' by fusion products.

Lemma 4.14. Suppose there is j such that r h}’ =n = |71|No. Then there is a root u € L* of G; such that
(u,uy =2/¢.

Proof. Let u be a simple short root of G;. Since rjhjv. = n = |t|Ny, we have (u,u) = m and

et € Tll. It implies {(u,u)/2 € 1/€ + Z. Note also that £/|r| = 1 or 2 and |7|(Ky — Np) divides £.
Therefore, £ = |7|(Ko — No) and (u, u) = 2/¢. O

Definition 4.15. We call a root § of V| satisfying (d, §) = % a shortest root and call a simple component
G; of V| containing a shortest root a full component. Note that a shortest root exists if r jhjv. = n for
some j.

5. Deep holes

Let V be a holomorphic VOA of central charge 24 and @ a W-element of V|. Let g = exp(2nia(0)) €
Aut(V) and let § = Texp(27i3(0)) € Aut(V,) be the reverse automorphism of g, where 8 € CA”.

In this section, we assume that T € Py and try to relate the automorphism g = Texp(27iB(0) €
Aut(V)) to a deep hole of the Leech lattice. In Section 6, we will prove that T € P,. i

Since T € Py, there is an isometry ¢ : VE(AT)* — A7. Set B = Vlp(B) and N = AlBl = Ag +7ZB.
Note that (8, 8) € 2Z/¢ and (B, ) € 2Z. Moreover, the root sublattice R of N is nonzero by Lemma 4.10.

One of the main aims in this paper is to prove the following theorem.

Theorem 5.1. The vector B = ¢(VEB) is a deep hole of A.
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5.1. Coinvariant sublattices A, and N,

In this subsection, we will discuss another main observation of this article, which is related to the
structure of the coinvariant sublattice N, = {x € N | {(x, N7) = 0}.

Since 7 fixes 3 = <p(\/2ﬁ), we have (A[;)T = A; and N, > A,. Moreover, [N, : A;] = || because
det(N;) = det(N7) = det(AT)/|7|> = det(A;)/|7|*. For T € Py, we note that A, = Lp(c) as defined
in Appendix A.

Lemma 5.2. For 1 € Py \ {2C}, we have N = L,(C), where C = {c) is defined as in Table 2 in
Appendix A.

Proof. 1t follows from the fact that A; = Lg(C) and D(A;) has only one nonzero singular element of
order |7|, up to isometry if T € Py \ {2C} (see Appendix A). O

Next, we consider the case when T = 2C. In this case, A, = \/QDE. We use the standard model for
root lattices of type D — that is,

12
Dy, = {(xl,--- ,X12) ez? | le- =0 mod 2}

i=1
and D}, = Span;{D12, %(1, -+, 1)}. Note that D7, is an odd lattice.
Lemma 5.3. For v € 2C, there are two classes of nonzero singular elements, up to isometry; they
correspond to vectors of the form V2(1,0,--- ,0) and ¥(1408), respectively. There are two index 2
overlattices of A+. They are isometric to L, (1'?) = \/ED’fz or the overlattice SpanZ{\/ED+ \/TE (140%)},

12
which has the root sublattice A‘l‘.

Let X = Spanz{\/EDTZ, %(1408)}. Then

X ={ac ?sz | (e, ?(1408» €7}
= ?Spanz{m + Dy, %(1408)} = ?(Z“ + Dg).

Therefore, 2X* = A‘ll + \/ng. Then the quadratic form of 2X* is not isometric to L, which is not
possible, and hence, we have the following lemma.

Lemma 5.4. For t € 2C, N = Ls(1'%) = V2D,

As a consequence, for any 7 € Py, N = La(c) as described in Appendix A. We also note that 7
acts on L4 (c) as ga . defined in (A.4). In particular, 7 is contained in the Weyl group of R.

Remark 5.5. If the frame shape of 7 is [] "%, then N, contains @AZ’_kI and 7 acts on GBAT_kI as a product

of the Coxeter elements. In particular, 7 preserves any irreducible component of the root system of N.
Corollary 5.6. If Ny = 1, then the Coxeter number of N is greater than or equal to |t|.

Proof. For 1 € Py, it is easy to check that the frame shape of T contains a positive power of |7|.
Therefore, N contains a root system A|;|_; whose Coxeter number is |7]. O

5.2. Affine root system and shortest roots
One important fact that we will prove is the following:

Lemma 5.7. Let € CA. Set S={Ale A| (A -B,A=-B)=2}.IfS = {1 —-B | A € S} contains an
affine fundamental root system, then B is a deep hole.
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Proof. Ford € A,letA* = (4,1, @—1) € A+I1; 1, whichis called a Leech root. Setﬁ =(B,1, @) €
Q(A +11; ;). Note that 3 is an isotropic vector. Then 1* — 8 = (13,0, @ -1- @) and we have

(A=B,A=B) = (A" =B, 2" = By = (X", %) + (B, B) — 2", B) =2 — 2(2", B).

Thus, (1 — 3,4 — B) = 2 if and only if (1%, 8) = 0.

Suppose that g is not a deep hole. Then there is a § € A such that (6 — 8,6 — B8) < 2. In this case,
(6%, B) > 0. Since 6* ¢ {A* | 1 € S} and the minimal squared norm of A is 4, (6*,1*) < Oforall 1 € S.
However, since S contains an affine fundamental root system, there exists a subset S’ C S and positive
real numbers n, € Ry¢ such that 3’ ;g nad = mfB, where m = ) ;.5 1. By direct calculations, we have

Z m((/t/l) _ 1) _ Z m(/l,/D —=-B.1-p)

AeS’ 2 AeS’ 2
_ _(B.BY\ _ m(B.B)
—;/nﬂ(u,m 5 )— o

Thus, we also have

Z nad* = (Z nad, Z na, Z n/l(m’z/l> - 1)) =m}p,

AeS’ AeS’ AeS’ AeS’

but it implies (6*, 8) < 0, which is a contradiction. m]

Therefore, in order to prove Theorem 5.1, it is enough to show that the Coxeter number 4 of N is
greater than or equal to n = [g|, since Ry = {1 - | (1 - B,4 - B) = 2,4 € Az} will contain an affine
fundamental root system in this case.

5.3. Existence of shortest roots

The purpose of this subsection is to show the following proposition.
Proposition 5.8. There is a root 6 of V| such that {5, 8) = %

Proof. By Lemma 4.14, it suffices to show that there is j such that r; h}’ =n.

Recall that LCM(r jhjv. | j) = n. If |7] is a prime power or V; is simple, then there is j such that
rjh}’ = n. Therefore, we may assume that |7| is not a prime power and rank(V)) > 4; that is, 7 is
6E = 172?3°6” or 6G = 2°6° and rank(V;) = 8 or 6. We have already shown No|/} for all j. By
Corollary 5.6, we may also assume No # 1. Suppose there is no j such that r jh}’ = n = 6Np. Then
there exist k and / such that th}g = 3Ny and rlh;’ = 2Nj. If one of G; is of type G», then Ny = 4 and
there is also a component G; such that rih;’ = 8; that is, G; = A7, or C3. Another possible component is
Ajz. Therefore, possible choices for 7 and V| are 7 = 6E and V| = G2C32, or G,C3A3. However, since
dimV; =120 # 14 +2 x 21 nor 14 +21 + 15, we have a contradiction. Therefore, there is no component
of type G». In order to get ri hZ =3Ny, rr =1, h)(’ = 3Ny and V| contains a component of type A3n,-1-
Since Ng # 1, rank(V}) < 8 and V| has a component with rih;’ = 2Ny, we have No =2 and V| = A3+ As
(i.e., rank(V}) = 8 and 7 = 6E). However, dim V| = 72 # 15 + 35, which is a contradiction. This
completes the proof of Proposition 5.8. O

As a corollary, (Ag - B)> # 0 and so we may choose 3 so that (8, 8) = %. In particular, 3 has squared
length 2.
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5.4. Proof of Theorem 5.1 (part 2)

Notation 5.9. For an even lattice K, we use R(K) to denote the sublattice generated by K» = {a € K |
{a,a) = 2}. A component lattice of R(K) means a sublattice generated by an irreducible component of
the roots in Kj.

Lemma 5.10. Let X € R(NT) be a component lattice and let X € R(N) be a component lattice
containing X. If X # X, then rank(X) > rank(X) +2 or t acts on X trivially.

Proof. If X # X and 7 does not act on X trivially, then there are u; € X and u» € X — X7 such that
{u1, u2) = —1. Since uy ¢ N™ and rank(R(N.)) = rank(N;) (see Remark 5.5), there is a u3 € R(N;)
such that (i, u3) = —1. Since u3 € X, rank(X) > rank(X) + 2, as we desired. O

Now let’s start the proof of Theorem 5.1. As we explained, it is enough to show that the Coxeter
number of N is greater than or equal to 7.

Suppose Theorem 5.1 is false and let V be a counterexample. By Proposition 5.8, there is a simple
component G; of V; such that r;hY = n and we may choose {f, 5) = 2, or equivalently, (3, 8) = %.
Suppose there is a full component G; which is simply laced and let L; be its root lattice. Then
\/Z(b(Lj) C R™ and so h > n, which is a contradiction.

Therefore, there are no simply laced full components in V; and GCD(6, |7|) # 1 since the lacing
number divides |7|. We also have Ny # 1 by Corollary 5.6. Furthermore, if rank(V;) = 4, then we have
shown Ny = 1 in [7] and we have a contradiction. Therefore, we may assume |7| = 2, 3,4, 6, 8. We will
need a few lemmas.

Lemma 5.11. If |t| = 2, then Ny is odd.

Proof. Suppose Ny is even. Then K| is odd since GCD(Kj, Ny) = 1. Since Ko—Ng = 1 or2, Ky = No+1.
Since |7| = 2, there are no components of type G,. Moreover, Ny is even and n/Ny = 2; thus, 4|n and
there are no full components of type B and F. Therefore, the only full components of V; are of type
Cny-1,1- Since Ny divides the dual Coxeter numbers, the other components are of the type Ap,-1 or
D nyj24+1. Recall that rank(AT) = 12 or 16 and Ny is even. By a direct calculation, it is easy to verify
that the possible cases are only V| = C;’IA?,I (No = 4) witha + b = 4 and C7D5 (Ng = 8). Since
dim V| = 24(Ny + 1), none of them is possible. Note that dim C3 = 21, dim A3 = 15, dim C; = 105 and
dim D5 = 45. m|

Lemma 5.12. Let V be a counterexample of Theorem 5.1. Then T and (Vi, Ng) will be one of the
following:

(1) 7=2A4=1%2% and (V1, No) = (C{.5), (C}B4,7), (CsF},9), (C10Bs, 11);

(2) 7=2C=2"and (Vi,No) = (BS,5), (C4A3,5), (B3, 5), (B3, 7), (FaAs,9), (Bg, 11), (Bi2,23);
(3) T =4F =1*224% and (V1, No) = (C743,4);

(4) 7 =6E = 12223262 and (Vi, Ny) = (C5G2A1,2);

(5) 7 =6G =236 and (Vi, Ny) = (F44>,,3).

Proof. Without loss of generality, we may assume that G is a full component.

Case 1: If G| = Fy, then dim F4 = 52 and n = 18 and so the possible choices for (7, rankA7™, dim V)
are (24, 16, 240), (2C, 12, 132), (6G, 6,60), (6E, 8,72), and the possible choices for (G;,dim§;) are
(F4,52), (Cg, 136), (Ag, 80) and (A, 8). Hence the possible cases are 7 = 2A and V| = Fng; T=2C
and V| = F4Ag; and 7 = 6G and V| = F4A».
From now on, we may assume that there are no full components of type Fjy.
Case 2: If G} = Gy, then n = 12 and |7] = 3(Ng = 4,dimV; = 120) or |7| = 6 (Ng = 2,dimV; = 72
or 60). If |7| = 3, then 7 = 3B, 4|h/, h} < 12 and rank(A7) = 12. Then V| = G§ + Aé’ and 2a + 3b =
12,dim Vy = 14a+15b = 120, which has no solution. If |[7| = 6, then V| = G;‘ +C§7 +Ai' +A§’+A§. Since
dim(Vy) = 60 or 72 and rank(V}) (= 2a + 5b + ¢ + 3d + 5¢) = 6 or 8, the only solution is V| = CsG,A;.
From now on, we may assume that all full components are of type C,, or of type B,,.
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Case 3: If G; = Cg,thenn = 18 and |7| =2 or 6.

(3.1) If |7| = 2, then Ny = 9, and so possible components are Cg, Bs, Ag; thus, V| = Cé or CgAg but
dim(V}) = 24K, = 240. Neither one is possible.

(3.2) If |[t| = 6, then Ny = 3 and V; = Cg, but dim V| = 96 # dim Cg, a contradiction.

Case 4: If G; = Cy, and 0 < m # 4, then n = 2(2m + 1). First, we show that m < 7. Suppose
m > 7. Then rank(V}) > rank(C,,,) > 14 and so v = 2A and No =2m + 1 and m = 7 or 8. In
this case, dimV; = 24(2m + 2) and dim Cy,,, = 2m(4m + 1). If m = 7, then there are no components
G, of rank 2 (or less than 2) with hJV divisible by N9 = 15. So, m = 8 and V| = Cj¢; however,
dimV; =24(No+1) =24 x 18 # dimCjg = 16 x 33.

For m < 7 and m # 4, we have 2m + 1,3) = 1, Np = 2m + 1 and |7]| = 2. So, the possible
components of Vi are Cay, Az, Bms1. Since Kg — Ng = 1 for 7 = 2A and Ky — Ng = 2 for 7 = 2C,
dimV| = 24(2m + 2) for T = 2A and dim V| = 12(2m + 3) for v = 2C. If T = 2A, then by solving the
relation 2ma +2mb+ (m+1)c = 16 and 2m(dm + 1)a+2m(2m+2)b+ (m+1)(2m+3)c = 24(2m +2)
and a > 0 and b, ¢ > 0, we have V| = C19Bg, C§B4, CZ‘.

If 7 = 2C, then by solving the relation 2ma + 2mb + (m + 1)c = 12 and 2m(4m + 1)a + 2m(2m +
2)b + (m +1)2m +3) = 12(2m + 3), we have V| = C4A] or C3.

We next assume Gy = Cy,,41. Then since 2m + 2 is even, | 1| # 2.

Case 5: If Gy = C3,thenn = 8 and |t| = 4 and Ny = 2 and G is a direct sum of C3 or Ay, or A3. Since
dim C3 = 21, dim A3 = 15, dim A| = 3 and rank(V) = 10, it is impossible to have dim V| = 72, and we
have a contradiction.

Case 6: If G| = Cs, then n = 12 and (1, Ny) = (4F,3),(6,2). If T = 4F, then the other possible
components are Aj, D4, As, C; since there is no component of type G,. Since rank(V;) = 10 is even,
it has another component of type Cs or As, but since dimV; = 96, dim Cs = 55, and dim A5 = 35,
we have a contradiction. If |7| = 6, then rank(V}) = 8 or 6 and possible components are A, A3. Since
dimV; =72 or 60 and dim A; = 3, dim A3 = 15, we have a contradiction.

Case 7: If Gy = C7, then n = 16 and (7,Ny) = (4F,4),(8,2). If N9 = 2, then dimV; = 72 and
dim C;7 = 105, a contradiction. If 7 = 4F, then Ny = 4, and the only solution is V| = C7A3.

Case 8: If G| = Cys1 and m > 4, then rank(Vy) > 2m + 1 > 9 and so G; = Cy. However, since
rank(V}) = 10 and Ny = 5, we have a contradiction.

Case 9: We may assume that all full components are of type B. Say, G; = B,,, then n = 2(2m — 1).
Since 2m — 1 is odd, |7]| = 2, 6.

If |[7| = 6, then Ny = 1/3(2m — 1) and m < 8. Since Ny # 1 is odd, the only possible values for
(Ng, m) are (3,5) and (5, 8). If T = 6G, then rankV| = 6 and (Ny, m) = (3,5). The only possible choice
for V| is Bs + Ay, but since the Coxeter number of A; does not divide 3, we have a contradiction. If
T = 6F, then rankV| = 8, and the possible choice of V| is Bg. Since 2C ¢< 6E >, Ko = Ng+ 1 =4 and
dim V) = 24Ky = 96 # dim Bg = 8 X 17, which is a contradiction.

Therefore, we have |7| = 2 and Ny = 2m — 1. Since 2m — 1 is odd, the non-full components are all
of type Az and so Vi = BE4 & Afr’r’l_z. We note dim B,,, = m(2m + 1) and dim Ay,,, » = 4m(m — 1).
If Ko = 2m, then am + b(2m —2) = 16 and dim V| = 48m = am(2m + 1) + 4bm(m — 1). It is easy to
see that there is no solution for a € Z.¢ and b € Zso. Hence, Ko — Ny = 2 and 7 = 2C. In this case,
am+b(2m—2)=12and dimV; = 12(2m + 1) = am(2m + 1) + 4bm(m — 1). The solutions are b = 0
and am = 12; therefore, V| = BS, B3, B3, BZ, or By, as we desired.

This completes the proof of Lemma 5.12. O

We will show that none of the Lie algebras in the list of Lemma 5.12 satisfy the desired condition,
and we will get a contradiction.
First, we note that V; contains a full component of type C,, or F4 unless 7 = 2C.
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5.4.1. The case 7 # 2C

We note the short root lattice of C,, is D ,,. Namely, if C,,, is a full component of V|, then D,,, is a sublattice
of N7. Let X be a component of the root lattice R(N) of N containing the above D,,. For m > 4, alattice
containing D, is of type D or E; that is, X is of type D or E. Recall that n = rjhjv. =2(m+1) for Cy,
and the Coxeter numbers of D, and Ej are 2(m — 1) and 12, 18 and 30. Since V is a counterexample,
the Coxeter number of N is strictly less than n, and the possible choice of X is D,,, or D 4.

Lemma 5.13. If X = Dy, then T acts on X trivially. In particular, if Vi is a direct sum of full
components, then X = D,,.

If 7 = 2A, then the list of lemma 5.12 says that V; is a direct sum of full components. Therefore, if
C,, is a full component, then D,, is a connected component of R(N). Therefore, the possible cases are
as follows:

Vi Cil CGZVIBA,I Cx,lFﬁI C10,1B6,1

R(N) DS D} D] DyEZ?
R(NT)contains Dj  D2ZAY  DgD?  DyAS

It contradicts the fact that N, = LA(1%).

If T = 4F, then R(N) contains D7A3A?. The possible choice of R(N) is D7E¢A1; or D3, but neither
of them contains D7A3A7, which is a contradiction.

If T = 6E, then R(N) contains D5A2A§A§A%. The possible choice of R(N) is DgA% or Dg or DéAg,
but none of them contains DsA2A3 A7, which is a contradiction.

If 7 = 6G = 2°6°, then n = 18 and V| = Fy6As,. Hence, X contains D4A3A;. Since h < 18,
the possible choice of R(N) is DS, D2A2, D¢ A3, D¢, E¢, A11D7Eg, D3, DoAys. However, none of them
contains D4A§A?, which is a contradiction.

5.4.2. The case 7 = 2C
By the previous lemma, Vi = BS, C4A3, B3, B, F4Ag, BZ, or By,. Since T = 2C, we have £ = 4. Since
v+vT e AT and {2 | v € A} = 1(A) = (AT)* and VES((AT)*) = A7, we have 2(AT)" = A7; that
is, we can take ¢ = 1 and 8 = 2.

By the reverse construction, there is a Niemeier lattice P such that

yNoal (VA)[(?eXP(Zﬂiﬁ(O)))z] = Vp.

Since Ny # 1, P # A. Set 72 = exp(27i5(0)), which has order 2. Therefore,

Vp = (V)81 = () [ewp2mi(6(0)428(0))]

Since Ny is odd, (Texp(27i3(0)))>No = exp(& + 2Nof3) = 1, there is a u € AT such that 6 = 2Nof + p
and so Vp = (V) [exp@ri(No+DB(O)] Note also that V = V}DgJ and g acts on Vp with order 2.

12/m

CaseV|; =B,
We first note that all components have level 2 and yexp(2riNo@) — (Vp)g ; thus, Vp contains the Lie
subalgebras generated by the long roots. Since the long roots of By, are of the type D,,, (Vp); contains
a Lie subalgebra of type DEU2™ and the fixed point sublattice P* 2 V2D 3212/ ™. Then P must contain

m,2
szz?/ " as a sublattice. Since No = 2m — 1 and |g?| = No, the Coxeter number of P is less than or equal

to 2m — 1 and thus the root system of P is D;?,ZM ™. Since 2m — 1 is odd and 26 € A, there is u € A
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such that § = 2(2m — 1)+ and 4(2m — 1) € A. Thus, we have Vp = (V,)[*F]; that is, every element
1 € Pis written u = py +4sB with (u1,48) € Z (ie., u1 € A4pg). Since (48,28) € Z, u1 € Aog if
(1, 2pB) € Z (that is, u € Ayp).

Since Vp = V18] can be constructed by a Z,-orbifold construction, we have

L*"={xe (P)" | x,2B) € Z} +ZB

by the same argument as in Theorem 4.9.

For each B,, € Vi, we have a fundamental root system dj, ..., dp_1, d,, With long roots d;(j =
L,....,m=1) (e (dj,a) = 5 for j = 1,...,m - 1 and (dp, @) = m>. Without loss of

generality, we may assume d,, = 3, which is a short root. Note also that dy = dpi +2d,, is also a
long root and {dy, ..., dp-1,dy} forms a fundamental root system for the long roots. Therefore, in P,

we have a root sublattice of type D2, with the fundamental system {aj, ..., a,,} and {by,..., by},
ay == am-2 —am-1, by == by —bm-1
|
am bm

such that 7 permutes a; and b; and %bi =d;fori=1,..,m—1and % =2B+dpy-1 = 2ﬁ+%”m“.
Therefore, 28 = %bm_h’"“ and (2B,a;) € Z,{2B,b;) € Zforall i = 1, ...,m; that is, R(P) C
N = A2 Since 2B € N and has norm 2, N contains D»,, and so the Coxeter number of N is greater
than or equal to 2(2m — 1), which contradicts the choice of V.

Case V| = C4,2A§’2:

Since V| = C4’2A3«,2 and det(L) = 2'942, [ = \/§(D4 + Eg) and NT = D4 + V2Ej in this case. In
particular, N7 contains a root sublattice of type D4. Therefore, the possible types for N are DS, D4A‘5‘
and D2A2. However, the lattices orthogonal to a sublattice of the type D4+ V2Eg do not contain L 4(1'?).

Case V| = F40Ag2:

In this case, n = 18 and Ny = 9.

Let a1, as, b3, by be the fundamental roots for F4 such that a;, a, are short roots. We may assume
B = aj. Since |t| = 2, there is a Niemeier lattice P such that Vp = (VA)[gZ], which is also equal to
vI%el Sets = g = exp(27i9(0)). Then (Fy,Ag2)<*> contains B4 Ag > and the Coxeter number of
P is less than or equal to Ny = 9. Therefore, the root system of P is Ag. Since V = Vl[,g ], T acts on one
Ag as a diagram automorphism and permutes the other two Ag’s.

Since Ng = 9 is odd, we have P = Ayg +Z4 and /3 = 28 by the similar argument as in the case V| =
Bl,%/m. By the choice of S, the two Ag’s permuted by 7 is orthogonal to 5; hence, N = AlBY = Nop+Z2p
contains Ag.

Since Fy is a full component, N also contains D4 as a root sublattice, which is orthogonal to the
above Ag. Therefore, N D D4 + Ag + Ag. Moreover, the Coxeter number of N is strictly less than n = 18
by our assumption. Then N has the type A§D6. In this case, N, the sublattice orthogonal to D4 + V2As,
does not contain a root sublattice of the type A}z, and we have a contradiction.

This completes the proof of Theorem 5.1. O

Remark 5.14. Since ,3 is a deep hole, it follows that [N : AB] = h, the Coxeter number of N. Moreover,
we have [N : Ag] = |g| = |g] by Theorem 4.8. Thus, h = |g| = [g|. Note that || divides ||, and hence,
|7| divides A, also.
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6. Classification of 7

In this section, we will show that 7 € Co.0 defined by W-elements of holomorphic VOAs of central
charge 24 are contained in

Po=1AU2AU2CU3BU4CUSBUGE U6G UTBUSE U 10F.

Combining the results in Sections 35, one can associated a pair of 7 € Py and a T-invariant deep hole
B with any holomorphic VOA V of central charge 24 with non-abelian weight one Lie algebra V;. Set

3B € QAT s.t. Texp(27iB(0)) can be realized as the reverse
P=41t€Co.0 .

automorphism of some orbifold construction given by a W-element

The main result of this section is the following.
Proposition 6.1. P C Py

Since dim((Vx)!81); > 24, it is easy to see that rank(A7) > 4 and || < 15. Therefore, 7 is in one of
the conjugacy classes in Table | (cf. [7]).
First, we treat the cases when rank(V}) = 4, which will eliminate many cases with dim A7 = 4.

Lemma 6.2. Ifrank(V)) =4, then T € P,.

Proof. Suppose rank(V)) = 4. By [13], we know that dimV; > 24 and h}’/kj = (dimV, — 24)/24

for any component G;; thus, V| must be of the type By, 14, C4,10, D4 36 Or G;BZM and || = 14, 10,6, 12,

respectively. In these cases, No = 1. If || = 14, we have 7 = 14B. Then £ = 14 and det(A7) = 14°. In
this case, det(L) = 14* and det(V14L*) = 1, which is not possible since VI14L* is even (see Section
4.2). If |7| = 10, then V] = C4,19 and Ny = 1 and so there are u € L* such that (@, u) = 1/10 and 1/5
(mod Z). Therefore, since we may choose 3 from L*, both of 7 and 72 are of type zero and ¢(7) < 1
and ¢(7%) < 1, which implies 7 = 10F and 7 € Py. If || = 6, V| = D4 3¢ and so there is u € L* such
that (t, u) = 1/6(mod Z) and ¢(7) < 1. Therefore, T = 61 and Ny = 1. Since 68 € AT which has the
Gram matrix 614, {8, B) € 2Z/12. However, ¢(61) = 1/36; thus, § = Texp(27iB(0)) is not type zero,
and we have a contradiction. m

From now on, we may assume dim Vi) > 4,
Lemma 6.3. 7 ¢ 3D.

Proof. Recall that AP = V3Eg (cf. [20]). If GCD(Ny,3) = 1, then 3NyB8 € AP and so (B,8) €
6Z/9N§ = 27Z/3N?, which contradicts ¢(3D) + @ el-1/9+ % C Z. Therefore, 3|Ny. Since

0
dim CA3P =8, No|} for all j and |g| = Nolr| = LCM({r /] }), the only possible case is N = 3 and
Vi = Ag. Since Ky/Ny = {(a,a)/2 = dimV;/(dim V; — 24), we have Ky/3 = 80/56 = 10/7, which is
not possible. O

Suppose Proposition 6.1 is false and let V be a counterexample such that k = rank(V;) is maximal
among all counterexamples. We also choose V so that Comm(M (H), V) is largest among all counterex-
amples with rank (V) = k.

Let @ be a W-element of V| and set g = exp(2ni(0)). As we discussed, the orbifold construction
from V by g gives V. Let § = Texp(27i3(0)) be the reverse automorphism of g corresponding to the
above orbifold construction. Since V is a counterexample, 7 ¢ Py.

If m divides |7| and m # 1, then we have

rank(Vl[gm]) >rankV, or Comm(M(H),V!&") > Comm(M(H),V)
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by Proposition 2.4. Therefore, V18”1 is not a counterexample for any 1 # m | |7|. Let L be an even lattice
such that Comm(Comm(M (#), V), V) = Vi, where # is a Cartan subalgebra of V| = gy , ®- - -6, «, -

Leta = }i_, pi/h bea W-element of V. Suppose (a, @) = ZTKO" with Ky, Ny € Zand GCD(Kjy, Ny) = 1.

Now consider the VOA V™1 obtained by the orbifold construction from V by gMo =

exp(27iNo(0)). Then V18" Jl.ilo_lU(jNoa/)l of rank

24. By viewing it as a Cartan subalgebra of (V[gNO])l, there is an even unimodular lattice P of rank
24 such that V(8™ =~ Vp. Furthermore, there is u € CAT such that (V) lexp@rin(O)] = vy, since
(V[gNO])[g I = V. In particular, 7 fixes u, and we may view 7 as an isometry of P.

I also contains an abelian Lie subalgebra H + &

Remark 6.4. Let ¢’ € Aut(Vp) be the reverse automorphism of g™ € Aut(V). By our choice, H +
eaj'.j)_lU (jNpa); is a Cartan subalgebra of Vp, and thus, there is a § € CP” and a standard lift 7" of 7
such that g’ = 7 exp(27i5(0)) and (Noa,5) = 1/|r|(mod Z). Then V = (Vp)[7 exp27id (O] and the
actions of 7 and 7’ on U(jNga) are the same; namely, they both act on U(jNoa) as a multiple by a
scalar e~ 27ii/171

§ince Noa € L7, v<¢"*> contains Vi and L € H = CA”. We may also view V[, as a subspace of
V; T exp(27rl(5(0))>. As a conclusion, we have the following.

Theorem 6.5. The VOA V<™ "1 is isomorphic to a lattice VOA Vp for an even unimodular lattice

P of rank 24. Furthermore, PT = L + ZNoa and |g™°| = |1|.

As we have shown in Theorem 6.5, VIexP27iNoa (O] g 4 Niemeier lattice VOA Vp and there is
& € CP” such that Texp(27i5(0)) is the reverse automorphism of exp(27i Noa/(0)).

Lemma 6.6. By taking a suitable standard lift T of T, we may assume & € L*.

Proof. By the definition of W-element, there is u € L* such that (@, u) = 1/Ny|7r|(mod Z). Therefore,
6 —p € (PT)" and there is & € P such that 7(§) = & — p. Set & = &'+ n(¢) with £ € H*. Since
exp(2mi&(0)) = 1 and 7 acts on (H)* fixed point freely, there is & € H* such that

exp(27ih(0)) "1 (Texp(27i5(0)) exp(27ih(0) = exp(27ih(0))~'Texp(27ih(0)) exp(27i5(0))
=Texp(2ni&’ (0)) exp(27i5(0)) = Texp(2mi&(0)) exp(—2xin(£)(0)) exp(27i5(0))
=Texp(2nip(0)).

Therefore, Texp(27i5(0)) = Texp(u(0)) exp(n£(0)) is conjugate to Texp(27iu(0). Replacing T by
exp(27ih(0))~ 1 (Texp(27i5(0)) exp(27ih(0)), we may assume & € L*. O

By Theorem 6.5, we have P* = L + ZNopa and rNoa € L if and only if |7| divides r and
(6, Noa) = 1/|r|(mod Z). Therefore, mé ¢ n(P) if |7| jm. Hence, if |7| fm, then the lowest weight of
Texp(2mi5(0))-twisted module is greater than ¢ (7). Therefore, we have the following:

Lemma 6.7. If ¢(7™) > 1, then 7" exp(2nimé(0))-twisted module does not contain a weight one
element.

Lemma 6.8. < 7 > does not contain —2A, 3C, 5C.

Proof. Let m be a divisor of |7|. Suppose || = p is a prime and ¢(7™) > 1.

Let V := V18”1 From the property of orbifold construction and the choice of 7 and &, we have
V= (VP)[(-?')mexp(zmm&(O))]_ From Corollary 4.9 in [7], T # —2A,3C,5C and som # 1 and V is not a
counterexample.

Let & be a W-element of V; and & exp(27iu(0)) the reverse automorphism of exp(27i@(0)). Then
o € Py, and we can use the results in Sections 3 ~ 5.

Next, we will show that CP” = CP™". As we explained in Section 2, H + EB;.":BIU(ijoa) is a
Cartan subalgebra of V;. Since (8, @) = 1/|t|(mod Z), 7/ acts on U(jNoe) as a multiple by a scalar
e 27iil1Tl for all j € Z. In particular, CP™" = H + 69‘;30_] U(jpNoa); and so CP” = CP™".
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We next show that if the order p of 7™ is an odd prime, we have |o| = p, and if the order of 7" is 2,
we have |[o7| =2 or 4.

Since ¢(7) > 1, " exp(27imd(0))-twisted module contains no weight one element and so we
have

(V )<‘r’ exp(2mm6(0))>

Since |t""| = p is a prime, the root vectors of (Vp)fT' exp(2mim6(0))>

(1) e* with yu € PT or
(2) eH+- - -+(17 exp(27im5(0))) P~ (eH) with € P.In this case, it corresponds to the root associated
with 7(u) € (P7)* and (m(u), 7(n)) = 2/7;k ;. Note also that

are given by

“s

p-1

() 7 () = (e () = S Ty = m}) ™y € Z/p.
=0

"B|>—a
I
[=)

J J

Therefore, if p is an odd prime, then Fjlzj =1orp, and if p = 2, then Fjlgj =1,2,4.

However, since o € Py, we have shown || = LCM({rNjIEj | 7D If Fjlzj = 1 for all j, then we can
easily get a contradiction since rank(vl) = 8§, 6, 4, respectively.

Hence, if the order p of 7™ is an odd prime, we have || = p, and if the order of 7™ is 2,
we have |o7| = 2 or 4. From the choice of o, we have rank(CA?) = rank(CA™"). Therefore, if
" = —2A, thendim A=24 = 8, but there is no o= € P, of order 2 or 4 such that A% = 8. If v = 3C,
then rankA3C = 6, but there is no o € Py of order 3 with rankA” = 6. If T = 5C, then rankA€ = 4,
but there is no o € Py of order 5 with rankA“ = 4. ]

Lemma 6.9. 7 ¢ —4C.

Proof. Suppose T € —4C. We note V = (Vp)[TxpQ27i6(O)] Since ¢(7) > 1, Texp(27is(0))-twisted
module does not contain elements of weight one. Recall that 7 exp(27i6(0)) is the reverse automorphism
of exp(27iNya (0)); the above statement means that there is no root u € V; such that |7|{u, Noa) = 1.
Since || = 4, LCM({rjth./No | j}) divides 2, which contradicts LCM({rjth./NO | D =7l m

Therefore, the remaining possibilities of 7 ¢ Py are 4D, 4F,—6C. Then since 4D? = 2A,4F? =
2C, (-6C)* = 3B, (—6C)* = 24, nontrivial powers of T are in P,.

Furthermore, ¢(4D) = 1 — 1/8, ¢(4F) = 1/16, ¢(—6C) = 1. Namely, T is not of type zero or
o(t) =1.

We note that since V =V = VI8"] is a holomorphic VOA for any m||r|. Assume
m# 1. Unfortunately, is not necessary to be a reverse automorphism for an automorphism defined
by W-element in V. Let & be a W-element of V; and & exp(27iu(0)) be a reverse automorphism of
exp(2mia(0)).

?cxp(Zﬂi,B(O))]

Lemma 6.10. Let 1 # m||7|. If T = 2A,2C, 3B, then o is conjugate to ™.

Proof If ™ = 2A,2C,3B, then V := V[?m exprim3O)] s not a counterexample. Let @ be a W-element
of V} and & exp(27iu(0)) a reverse automorphlsm for exp(27ri@(0)). In particular, o € Po.

As we have shown, rank(CA)™" = rankV; = rank(CA)‘T Let 7 be a Cartan subalgebra of V and set
Comm(Comm(H, V), V) = V; with an even lattice L.

Since o € Py, \/ﬁ (L)* is an even lattice by Lemma 5.1. However, since 7" € P, and
V = (vp) 7" exp@maio (] we have (1) = 1 — ﬁ and ¢™® ® t € V with wt(e?%) = ﬁ(mod 7).
Therefore, |7"| has to divide |7|.

If 7 = 2A, then rank(CA)™" = 16 and o = 2A. If ™" = 2C, then rank(CA)? = 12 and so o = 2C
or 3B. If o = 3B, then |&| = 3 is not a multiple of |77| = 2. If 7 = 3B, then rank(CA“) = 12 and so
o =2C or 3B. Since |7""| = 3 does not divide || = 4 if o = 2C. Hence, o = 3B. O
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As a corollary, for u € L*, if (u,Noa) € Z, then S(u) ® e# € VUTIg/ml and so we have

-_m m’
[T (s ) € 22Z.
Lemma 6.11. 7 # —6C.

Proof. Since ¢(—6C) = 1, Texp(2xi§(0))-twisted module does not contain weight one elements.
Therefore, rjh]V. /Ny = 2 or 3 and both have to appear. Recall that (—-6G)> = 2A and (-6G)?> = 3B.

It rjh}’ /Ny = 2, then exp(27iNy(0))? fixes all elements in G 7 and so \/ng is an even lattice since
2A € Py, where Lj. is the co-root lattice of G;. If r; th./No = 3, then exp(27iNoa (0))? fixes all elements

in G; and so \/EL;‘ is an even lattice. Therefore, V6L* is an even lattice and Ko — Ny = 1 and hJV = k;Ny.
If No = 1, thenr; h}’ =2and 3 and so G; = Aj or Ay, which contradicts to dim V; > 24 since rankV; = 6.
If No =2, rjh]V. =4 and 6 and so G| = A3 and G, = As, which contradicts rankV; = 6. If Ny = 3, then
one of rzhg = 9 and so G, = Ag, which contradicts rankV; = 6. If Ny = 4, then one of r]hlv = 8 and
G>» = Ga. So, G1 = A7,C3, Ds. Since rankV; = 6 and G; # A, we have a contradiction. If No > 4,
rihy > 10 and rphy > 15, which contradicts rankV; = 6. m]

So the remaining cases are 7 = 4D or 4F. Recall that a short root in G; is called a shortest
root if rjh}.’ = LCM(r;h}]i) = |t|No (or equivalently, rjk; = LCM(r;k;|i)). Since |r| = 4 and
LCM(r;h; [No | i) = |t| = 4, there is a shortest root. Say, G contains a shortest root.

Lemma 6.12. Ift = 4D or 4F, then exp(2Nomia/(0))? fixes a root vector associated with a shortest root.

Proof. Since LCM({r; h}’/No | i} = |7| and h\]’ is divisible by Ny, r; divides |r|. Therefore, G; # G».
If G 2 B,,, then there is a shortest root which is a sum of two shortest roots in the fundamental
root system, and thus exp(2Nomia/(0))? fixes a root vector associated with a shortest root in G;. So we
may assume G| = B,,; however, r h}/ = 2(2m — 1) in this case, which contradicts that |7| = 4 divides
I hi/ O

Lemma 6.13. 7 # 4D nor 4F.

Proof. Suppose false. Set V = VIep@Nomia(O)] We may view that + is an automorphism of
V of order 2. Let 7 be a Cartan subalgebra of V;. Then there is an even lattice L such that
Comm(Comm(M (H),V), V) = V;. Let @ be a W-element of V; and & exp(27i&(0)) the reverse auto-
morphism of exp(27i@(0)). Since 4D? = 2A and 4F? = 2C, we have o = 2A and 2C, respectively, by
the same argument as in the proof of Lemma 6.10.

Since VIexp2ria(0)] - V, there is no root orthogonal to « in V. Therefore, we can define positive
roots by the condition {(u, @) > 0. Note that « is fixed by 7. Therefore, if u is a positive root, then so is
i () for any i. By Lemma 6.12, there is a shortest root i € L* such that s ® e# € V<exp(27iNoa(0)?> ¢
‘N/ — V[exp(47riNoa(0))].

Since 7 has positive frame shape, we may choose ¢ in L*. Note that ¢(7) = 1 — % for 7 € 4C
or 4D. If (6,6)/2 € %Z, then the irreducible Texp(27is(0))-twisted module has no subspaces with
integral weights, which is not possible. Therefore, it suffices to show that VZL* is an even lattice,
or equivalently, €{u, u) € 2Z since u is a shortest root. Without loss of generality, we may assume
(u, @) > 0. Then we have one of the following two cases: (1) u is still a root in V = VIexp(4Nomia(0)]
or (2) s®e! =5 @ et +1(s") ® e ™) with a positive root u’ € CA<""> and U= %(”) In
particular, u” + 7(u’) is not a root. Note that u” and 7(u’) are both positive roots of the same length,

and hence, W = 0,—1 or 2, but —1 is not possible since u’ + 7(u’) is not a root. We have
¢ (;t(’ﬁ(/t’)) cZ
N

H)
By Lemma 6.10, 72 s conjugate to o, and thus, |T] = 2||. Since V is not a counterexample, o € P
and so |o|{u, u) € 2Zforthe case (1) and [o-|{u’, ') € 27Z for the case (2). For the case (1), £{u, u) € 4Z.
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For the case (2), [F( (1), #) = 1[G\’ ) € 2Z. Then we have €(u, ) = 2la|(HATl) HT)y -
lo|{(u" +7(u’), 1’y € 2Z as desired. )

This completes the proof of P C Py.

7. Reverse construction

As we have already shown, one can define a pair of 7 € P, and a 7-invariant deep hole 3 for any
holomorphic VOA V of central charge 24 with non-abelian V| by choosing a W-element « of V| and
considering the reverse automorphism g € Aut(V,) of g = exp(27ia(0)) € Aut(V). The pair (7, 5)
satisfies the following conditions:

(Cl) T € Py (Proposition 6.1) and f is a r-invariant deep hole of Leech lattice A with (3,8) = 2
(Theorem 5.1);

(C2) the Coxeter number /i of N = Az + Z is divisible by |7| (Remark 5.14);

(C3) N = La(c;) with ¢ as defined in Appendix (Lemmas 5.2 and 5.4),

where Ag = {1 €A | (A, B) € Z} and N denotes an orthogonal complement of N7 in N. We also use
the same notation 7 to denote the isometry of N induced from 7 on A.

Let 7 be the set of pairs satisfying the conditions (C1) to (C3). In this section, we will study the reverse
construction. Take a pair (7, 3) € 7. Assume that 7 has the frame shape [ m“~. Then N; > @, Aran'j 10
and the conformal weight of the T-twisted module of V, is given by ¢(7) = 1 — %, where ¢ = |7].

LetB = \/L?ga‘l(ﬁ) and define g = Texp(27iB3(0)) € Aut(V,). Note that (8, B) = %. SetN = Ag +Z3
and let /1 be the Coxeter number of N. Since —£ is a deep hole of A, N(!) contains an affine fundamental
root system of rank 24 and N = @Z;&N(k), where N = Ag - kp.

We may assume that 717! = exp(27i6(0)) for some ¢ fixed by 7 and take § = 0if 717/ = 1. Fori = k
mod 2|7|, the irreducible g¥-twisted modules are as follows:

% =] = {C[—k,[i‘+ A leM[rleT:  if0<i<|r,
Cl-kB+6+ (AT @M [t @T if|r] <i<?2|7|
(see [35, Propositions 6.1 and 6.2] and [1 1, Remark 4.2] for detail). In particular, T! contains a weight
one element ef ® with 1 € T, which is the lowest weight element of 7", and so 7.} # 0 and the orbifold
construction gives a holomorphic VOA V := V&l of central charge 24, and V; is non-abelian since V;
contains a root vector ef @ t.

One of the main purposes of this section is to determine an equivalent relation ~ on 7 so that two
pairs (7, ) and (7', ") define isomorphic VOAs if and only if (7,8) ~ (7’,8’). It is clear that 7 and
7/ are conjugates in O(A) and § and 3’ are equivalent deep holes of the Leech lattice A if (7, ) and
(', ") define isomorphic VOAs.

For two equivalent deep holes 3 and ', there are ¢ € O(A) and A € A such that 8’ = o (5 — ).
Since 3’ is t’-invariant, 8 — A is o~ 7’c-invariant. Moreover, (5, 1) € Z since (8, ) = (8, ') =2.In
this case, Ag +h= Ag_a+ (B — ). Therefore, up to the action of O(A), we may identify N = Ag+ 7B
with N = Ag + Zf3’. We define an equivalent relation on 7~ as follows:

(t,B) ~ (1/, B’) if and only if

(1) B and B’ are equivalent deep holes of the Leech lattice A (i.e., there are o € O(A) and A € A such
that 8’ = o(B — 2));
(2) 7 is conjugate to o~ !7’c in O(N).

Note that (o~'7’0-, =) € T and N = Ag+Zf = Ag_, +Z(B — 1). Moreover, 7 and 7’ are conjugate
in O(A) since they have the same frame shape by (2).
We will prove the following main theorem.
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Theorem 7.1. There is a one-to-one correspondence between the set of isomorphism classes of holo-
morphic VOA 'V of central charge 24 having non-abelian V| and the set T [~ of equivalence classes of

pairs (1, §) by ~.

7.1. W-element and the automorphism g

Let (1,8) € T.Set 8 = \/L?go‘l(ﬁ) and define § = Texp(27iB(0)) € Aut(Vy). Let V = V/Eg] be the

holomorphic VOA obtained by the orbifold construction from V, and g. We will show that there is a

W-element a of V| such that g can be viewed as a reverse automorphism of exp(2ria(0)) € Aut(V).
First, we will prove the following theorem.

Theorem 7.2. Let h be the Coxeter number of N = Ag + Zp. Then || = h.
We need several lemmas.
Lemma 7.3. s € n(A) if and only if hls.

Proof. Since VEo((AT)*) = A7, we have sB € m(A) = (A7)* if and only if s@ € A7, if and only if
hls. O

Lemma 7.4. We have g*" = 1. Furthermore, §" = 1 if2C ¢< 1 >.

Proof. By (C3) and T € Py, N, contains a root sublattice S = A|-|_;. For aroot u of S, thereis 1 € A
and m € Z such that u = A + mf3 € Ny € CA,. Then

7|-1 |7]-1

0= Z Ty = Z A+ |t|mB € A7.

i=0 i=0

Since £ is the smallest positive integer satisfying 73 € AT and 7 is fixed point free on § with order
|7|, we have m = h/|t|. Moreover, we also have %ﬁ € n(A) € (AT)" and so (%,AW C Z. Hence,

Z 2 & (Vep(B), VEp((AT))) = ({48, (A7)") and so 15 hB € A, which means (exp(2rB(0)) ¥ = 1.

= Tl

In particular, if 2C ¢< 7 >, then £ = || and exp(27i(0))" = 1. O

From now on, we may assume 7 = 2C, 6G, 10F. In particular, || = 2s for some s = 1,3 or 5. Note
that o = 7% is a 2C-element.

Lemma 7.5. Let T € 2C,6G or 10F. Let 8 be a t-invariant deep hole satisfying (C1)—(C3). Let h be
the Coxeter number of N = Ag +Z3. Then h/|t| is odd.

Proof. By our assumptions, N; = Lx(c¢) as defined in the Appendix; namely,

N: D @ A%

mi—l
mi||T|,m;#1

as a full rank sublattice if the frame shape of 7 is [ ml“’ Moreover,

Ne: P A% _l=Ir| and RN = AL

m;||T],m;#1 mi||T|,m;#1

Since there are only 16 Niemeier lattices whose Coxeter number is even, it is straightforward to determine
all Niemeier lattices N such that L (c;) C N as a direct summand. Indeed, R(N) = A7*, DS, AlD,,
D}, A3Dg, D3, A17E7, D3,, or Doy if T € 2C; R(N) = A2D4 or Ai7E7 if T € 6G; R(N) = AJDg if
7 € 10F.

It turns out that i/|7| is odd for all possible cases. O
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The following lemma can be verified easily using the definition of A,,,_1.
Lemma 7.6. Let m = 2s be an even integer and let T be a Coxeter element in Weyl(A,,—1). Then

the (—1)-eigenlattice of T° on A,y is isometric to A} = Zx| @ -+ @ Zxs. Moreover, the vector
%(x] ++X5) €8y + Aoy, wherey + Ap—y is a generator of Ay | [Apm-1.

Lemma 7.7. For r = 2C,6G, 10F and v,u € A7, (v,u) € 27Z.

Proof. We note AT C A?. Since {(0) = 4, A7 = 2(A“)". Hence, ¥ € (A?)" and (v,u) =
2(%,u) € 2Z. O

Now now on, we set p = h/|7|, which is an odd integer.
Proposition 7.8. For t =2C,6G, 10F and v € (Ag + spPB)7, we have (v,v) = 2(mod 4).

Proof. We first note that (Agz + B), forms an affine fundamental system of roots of N. Choose a

fundamental root system X from Az + Z3 such that 8 € X. Let p be the corresponding Weyl vector and
consider ¢ = exp(27ip(0)/h) € Aut(Vy).

Although 7 does not fix X, 7 preserves (Az + f); and & acts on {e® | @ € (Ag + B} with the
same eigenvalue; hence, the commutator [, &] = 1. Therefore, we can induce 7 to an automorphism of
(Va) €] for any j. As it is well-known, (V) [¢] ~ v,. Now consider the VOA obtained by the orbifold

construction using Vy and &2. Then (Vy )¢ o~ Ve for some Niemeier lattice M and the Coxeter
number of M is 2 (i.e., R(M) = A3). It is clear that

AB+Zspﬁ~=Aﬁ~ v (A’3~+sp,3~) cM.
By Lemma 7.6, it is easy to check that
La(cac) = My < Ag+ZspB=AgU (Ag+spf) C M.

Then (Ag +spB)™ < M™ < M™ = (La(cac))*.

Therefore, it suffices to check for the case 7 € 2C and N = N (A%“). In this case, we may assume
N contains A%“ = eal?lexi and N/ (A?“) is the binary Golay code G4 of length 24 and 7(x;) =
x; fori = 1,...,12 and 7(x;) = —x; for i = 13,...,24. We may also assume 8 = x;. By (C3),
N, =< x13,...,x24,w >. Then {13, ...,24} is a dodecad of G4, and so N* = (N;)* =<

For a Weyl vector p of N, we may choose x; such that exp(27ip(0)/2)(x;) = V—1x;, and so
exp(27ip(0)/2) (2ttxiz) \/_1‘2(Xi+~~2-+m) = (ME0) Namely,

X1+ ...+X12

(Axl)T =< )

JXit+xp|i=1,.,12 >

We note (H=572  MET2X2) 4o (p ME22) = 642 = 0(mod 4) and (x| +x;, X1 +x;) +2(B, x| +x;) =
4 +4 = 0(mod 4). Since (Ay,)7 is spanned by such elements and Ay, is self orthogonal modulo 2,
(v,v) = 2(mod 4) for all v € Ag + B, as we desired. o

We come back to the proof of Theorem 7.2. We still assume 7 = 2C, 6G or 10F and s, p are odd.
The main idea is to study the possibilities of weights in 7! modulo Z. Recall that

T'=Valg] =C[-B+(A)TeM()[7] T,

and the weights of M (1)[7] ® T arein 1 — § + ﬁZ. Therefore, we will focus on the set —8 + (AT)*.
Since Ag + pf3 contains a root u in N, pB € m(A) as we explained and we have |AT/A;|

|(A;)*/(A")*| = p.For A € A, set u = Vep(n(1)) € AT. We assume (u, B) = %; that is, (7 (1), B)
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Aﬁ. Since pu € AIT?’

(pu+B.pu+ By = p*(u, ) +2p{u, f) +2 = (pp, pu) + 2t +2

and (pu, pu) + 2t = Omod 4 by Proposition 7.8. Since p is odd, we have {(u, u) + 2t = 4m for some
m € Z; namely, (r(2), 7()) = %. Hence,

dm — 2t t 2 2mp+t(l-p)+p

() + . 1Y) +f) = ——+ 4sp " s 2sp

and so wt(e = ————%_ Since 2mp + t(1 — p) + p is always odd, the possible weights
d (4B = BPHLPIP Since 2 1 Iways odd, the possible weigh

modulo Z are %; that is, there are 4 = 2sp distinct weights modulo Z at most. That means |g| < A,

and this completes the proof of Proposition 7.2. O

We next show that if we start the orbifold construction from V by using a W-element, we will come
back to the original (7, 3) and N.

LetV = Vlgg | Then we have

g1
V=D #.
j:

(=}

Define L by Comm(Comm(?H), V), V) = V. Since V is holomorphic, as a V -module, V contains a
submodule isomorphic to Vz,, forall u € L*.
Note that g!7! = exp(27i(8 + |t|B)(0)) is an inner automorphism. Then

lgl/I7|-1
L= U J(6+71B) + A% (7.1)
=0

Recall that |g| = & and then (A/|7])(d + |7|B) € A;g'. Since p = h/|r] is odd and 26 € AT, we have
§ = hfimod Ag.

Proposition 7.9. V(L* = AL+ Zf = N7.

Proof. Set p = h/|t| =2k + 1. Then (6 + |7|8) +A’g = (k+ 1)€,8+AE. Since 2hB = 2k + 1){B € A7,

L= U?ioj(k + 1){B + A; = AE + Z(B. By the same argument as in Theorem 4.9, we have VL* =
A[; +ZB=N". O

Lemma 7.10. Commy (H) = Vy .

Proof. Suppose false. Then there exists 0 < j < |g| = & such that VA; appears as a submodule of sz.

It implies jB € (AT)*. It contradicts that % is the smallest integer such that 43 € AT (or equivalently,
hB € m(A) = (AT)*). O

As a corollary, we have the following:
Lemma 7.11. rank(V}) = rank(A7).

Proof. Since H C V;g>, we may assume H C V;. By the lemma above, we have Commy (H) N
V1 =0. O

As we have shown, (Ag + B); is a fundamental affine root system X of R(N). Note that # € X
by our convention. Let p be a Weyl vector of X. Then exp(27ip(0)/h) is an automorphism of N
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of order h and N,;, = Ag. If v is an extended root in Az + 3, then (v, = —(h — 1). Therefore,
o/ B B p
pt c Ag ={x € N | {p,x) € hZ}. Furthermore, for any w € R(N) N N®  (p,w) = k(mod h).
Set @ = Ve (n(p)/h). Then

1 ~ 1 - 1 ~ 1

’ = f - h s T — = = - 5 = - 5 = -,
(@.p) = (Vg™ (). 9™ B) = 3 (00 B) = 30 B) =
More generally, (@, L*) = (¢~ (n(p)/h), ¢""(NT)) = +{p,NT) < . Since H is a Cartan subalgebra
of V| and V| contains a root vector associated with S (i.e., a weight one element P @ T, € T! with

(B,B) = %). As we have shown in the previous sections, the isometry in Co.0 determined by the reverse
automorphism defined by a W-element of V; is 7 itself and S is one of shortest roots of V.

Lemma 7.12. Let y be a root of V. Then {a,y) # 0.

Proof. Since p~ N N® C A7, we have a* N L* C m(A) and we have the desired result. O

In other words, « is a regular element in 7, and we can define a positive root u by (u,a) > 0.
Note that there is a correspondence between L* and N7 through the map V€y-. Since (p,v) € Z for
allv e N, {a,u) € %Z for all u € L*. Since (@, B) = %, we may assume f3 is a simple short root of a

full component. Therefore, there is a W-element @ such that (@, 8) = % In this case, T exp(27iB(0))
is a reverse automorphism of V, for exp(27ia(0)), and we can recover the pair (7, 3) and a Niemeier
lattice N = Aj +Zp.

7.2. The relation ~

Next we will study the relation ~ on 7. Let (7, 3) and (7/, 8’) be two pairs in 7. Suppose (7, ) ~ (77, ).
As we mentioned, up to the action of O(A), one can assume N = N’ and 3’ = 8 — A for some A € Ag.

Lemma 7.13. Suppose ’ = 3 — A is also fixed by 1. Then the VOAs defined by (t, 8) and (t, ') are
isomorphic.

Proof. By our assumption, A € A7, and thus, 1 = ‘/ngo‘l(/l) € (A™)*. Then Texp(2ni(B — 1)(0)) =

g exp(—2miA(0)) is conjugate to g by [27, Lemma 4.5 [2]]. Therefore, they define isomorphic VOAs by
orbifold constructions. O

In other words, the choice of /3 is somewhat ambiguous, and we can choose any 7-invariant root in
the affine fundamental root system as the starting point.

Proposition 7.14. If (7, 8) ~ (1',3’), then the VOAs obtained by the orbifold constructions from Va
associated with § = Texp(2xiB(0)) and §’ = v/ exp(2niB’(0)) are isomorphic, where 3 = \/ngo‘l(,é)

and p' = ¢~ (B).

Proof. Up to the action of O(A), one may assume N = N’ and 3’ = 3 — A for some A € Ag. Since 7 is
conjugate to 7’ in O(N), there is a u € O(N) such that 7 = ur’u~". Then uf3’ is fixed by 7. Note that
is still the smallest integer such that zuf3’ € A7. Since N = U};;l (Ag+JB), up’ € (Ag + kp) for some
k with (k, i) = 1. Therefore, < §¥ >=< § > and V18] = y1&"],

Recall that N = La(c;) > R = ®Az1i-—1 and 7 acts on N, as a Coxeter element of the root system
R. Therefore, for (k, |7|) = 1, T is conjugate to 7¥ by an element s € Weyl(R). In this case, suf’ = uf3’
and sts~! = 7% Therefore, (r, u’) and (7%, uB’) define isomorphic VOAs. Moreover, by Lemma 7.13,
the VOAs obtained by the orbifold constructions from V), associated with §¥ = 7% exp(27ik3(0)) and
7* exp(2mipB8’(0)) are isomorphic, and we have the desired result. O
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Therefore, there is a one-to-one correspondence between the set of isomorphic classes of holomorphic
VOA V of central charge 24 with non-abelian V; and the set of equivalent classes (~) of pairs (7, 3)
with T € Py and r-invariant deep hole 3 of A satisfying the conditions in Theorem 7.1.

Remark 7.15. Since there is a correspondence between deep holes, up to equivalence, and Niemeier
lattices, each pair in 7 will define a unique pair (N, 7), where N is a Niemeier lattice with R(N) # 0
and 7 € O(N) with a positive frame shape. Therefore, the classification of holomorphic VOAs of central
charge 24 with non-abelian weight one Lie algebras can also be reduced to a classification of the possible
pairs of (N, 7), up to some equivalence.

8. Hohn’s observation and Lie algebra structure of V;

In [21], Hohn observed that there is an interesting bijection between certain equivalence classes of cyclic
subgroups of the glue codes of the Niemeier lattices with roots and the Lie algebra structures of the
weight one subspace of a holomorphic vertex operator algebras of central charge 24 corresponding to
the 69 semisimple cases in Schellekens’ list. In this section, we will provide an explanation for Hohn’s
observation using our main theorem. In particular, we will give a pure combinatorial classification of
holomorphic vertex operator algebras of central charge 24 with nontrivial weight one spaces. Indeed,
the orbit lattice N(Z) described by Hohn is essentially the lattice L = VE(N7)*, and the glue vector v is
the vector A, as we defined in the appendix. The rescaling of the levels of the Lie algebras are handled
uniformly using the ¢-duality map Ve Oz

8.1. Roots of Vi and N™

First, we study the relationship between the root system of V; and the lattice N7 = V¢L*. Recall from
[15] that

Ly, (k;,0) = EB Vikois ® M*Pi, 8.1)

Lﬁj
J€Qi/ki O} A

where Q' and Q; denote the root lattice and the long root lattice of g;, respectively, and g; is a
representative of j € Q/ kiQf .
By (8.1), the roots of the Lie algebra V| = @::1 g; can be represented by elements in L*. Indeed, we

can view them as roots of the lattice VZL*.
First, we recall the definition for the root system of an even lattice K (cf. [43; 44]).

Definition 8.1. A vector v € K is primitive if the sublattice spanned by v is a direct summand of L. A
primitive vector v is called a root if 2(v, K)/{v,v) C Z. The set of roots

R(K) ={v € K | v is primitive, 2{v, K)/{v,v) C Z}

is called the root system of K.

Definition 8.2. Let K be an even lattice. The level ¢ of K is the smallest positive integer ¢ such that
VEK* is still even.

As in [43], we denote the scaled root system as follows.

A, *D,,, °E, roots of length 2«
“B, short roots of length
*C, short roots of length 2«
G, short roots of length 2«
Fy short roots of length 2«
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We also consider the reduced discriminant group of an arbitrary scaled root system R, which is
a subgroup of the discriminant group of the sublattice generated by R (see [43, Definition 2.1]). For
an irreducible root system “X of type A, D or E, the reduced discriminant group of “X is simply the
discriminant group D(X).

For non-simply laced root systems, the corresponding root lattices and reduced discriminant groups
are as follows.

Root system Root lattice Reduced discriminant
ap, Vazr Z>
acn \/EDn ZZ
an \/EAQ = Via ; 1
aF4 \/ED4 = VZ(IDZ 1

For explicit description of the reduced discriminant groups for the root systems of “B,, and °C,,, we
use the following standard model for their root lattices; namely,

n
aBn = @Zei, where (e,-,ej) = aé,-,j,
i=1

roots: e; of norm @ and +e; + e; of norm 2a; and

n

n
aCn = {Z Xi€; | in = 0 mod 2} Where (e,-, @j) = (Y(Si’j,
i=1 i=1

roots: +e; + e; of norm 2« and 2e; of norm 2a.
The reduced discriminant group of *B,, is 0 if « is odd, and the reduced discriminant group of R is
given by (g) = Z, where

g=3(e1+---+e,) ifR="B,,

g=e if R =9C,,.
Remark 8.3 (see [43]). Anelement v € K is a root if and only if v € (v,v)/2 - K* and v is primitive in
K. In particular, (v, v)/2 divides the exponent of D(K) = K*/K.

Lemma 8.4. Let v € K such that v € (v,v)/2 - K*. Assume that v/n € K for some n € Z withn > 1.
Then n = 2. Moreover, % is a root and K = Z(%) L (K N (v)*).

Proof. Sincev/n € K and v € (v,v)/2 - K*, we have

v (v, v)
GV €3

Z, or equivalently, 2/n € Z;
hence, n = 2. Then ¥ is primitive in K and <2v<)’2/ 2v’f2>> = 4<<vv"f‘>> € Z for any x € K; hence, it is a root.
Let py, : K — (Z%)" be the natural projection. For any x € K, p, (x) = r,v for some r, € Q. Then

2((‘)\;,?)) = 2<<Vv”r;‘>v> = 2r, € Z. That means r, € Z and p, (K) = Z(%) as desired. m|

The following results can be found in [43].

Theorem 8.5. Let K be an integral lattice and R a root system contained in K. Let K = K/({(R) L
(Rt N K)) be the glue code of K over R. Then the elements of R are actually roots of K if and only if K
is contained in the reduced discriminant group of R. Furthermore, K contains no elements of the form
e/2, where e is a basis vector of an A|-component.

Recall that ¢ is divisible by |7|(Ko — No) = LCM({r;k;}}_,) by Lemmas 2.3 and 4.12.
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Lemma 8.6. Let 8 be a root of g; x, and M = VEL*. Then

Ve < V>

TR

In particular, v = \/ikf_ﬂ is a root of M if it is primitive in M or Z(v [2) is an orthogonal summand of M.

Proof. Let M = VCL* and v = \/ikﬁ_ﬂ. Then M* = L L and

Ve
vy _
=

NG 5= <v;> \/lzx/k_i(r,-ﬁ) if B is a short root,
Nrae <"év> \/izx/k_lﬂ if B is a long root.

»Lk,» if B is a short root,

~

g [N

if B is a long root.

Therefore,

Since L > \/k_lQ; and r;8 € Q§ (resp. B € Qf) if B is a short root (resp., a long root), v € %M* as
desired. O

Lemma 8.7. Let g; i, be a simple Lie subalgebra of Vi. Suppose there is a root B of @i x, such that
v = x/ikﬁ»’g is not a root of N™. Then f3 is a long root, and the long root lattice of g; is of the type A7,
where r = rank(q;). In particular, g; is of type Ay or C,.

Proof. Without loss of generality, we may assume rank (V) > 1. By Lemma 8.6, Z(v/2) is an orthogonal
summand of N7. Suppose S is a short root. Then for any short root 8, v/ = \/ikfﬂ’ is not a root of N7.

Therefore, %Q ; = \/sA”; however, Z%a is not an orthogonal summand of \/EA{ for any long root

a. Therefore, § is a long root and the long root lattice is of type Af. O

By the lemmas above, the lattice N* = VL* contains the information of the (scaled) root system of g.

8.2. Orbit diagrams and Lie algebra structures of V,

Let V be a holomorphic VOA of central charge 24 and o a W-element of V). Let g = exp(27ia(0)) €
Aut(V) and let ¢ = Texp(27i8(0)) € Aut(V,) be the reverse automorphism of g, where 8 € CA™. Let
©r 1 VE(AT)* — A7 be the isometry described in Theorem 4.2. Recall that the vector § = o(Vep) is
a deep hole of A and N = A8l  A. Moreover, the Coxeter number / of N is equal to n = LCM(r;h})
and N7 = VL*.

Let R be the set of roots in N and set Ry = {u € —kB + Ag | {p,p) = 2}. Then R = UZ;%R;(.
Since the Leech lattice does not contain a root, (i, v) < 0 for u, v € Ry with u # v for each k. Indeed,
{(u,v) =0or -1 forany u,v € Ry with u # v.

One can associate a (simply laced) Dynkin diagram with Ry for each k. Namely, the nodes are labeled
by elements of Ry, and two nodes x and y are connected if and only if (x, y) = —1. By abuse of notations,
we often use Ry to denote both the Dynkin diagram and the subset of roots. Note that T acts on Ry for
each k and acts as a diagram automorphism associated with the diagram defined by Ry.

Since £ is a deep hole of the Leech lattice A, R; is a disjoint union of the affine diagrams associated
with the root system of N. Moreover, T acts on R;. Since N; = La(c) and 7 acts as ga,. on a root
sublattice of N, 7 € Weyl(R) and preserves all irreducible components of R(/N). Note also that ga
induces an isometry in O(A) if and only if 1. € N [5]. Therefore, the vector 1. corresponds to a
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Table 2. Diagram automorphisms of affine diagrams.

Type An Doy Doy Dog Dojeni Es E7
Root subsystem (A ,%l_l)" Ak A? AzAk-l A? A2 A3
Frame Shape (K 2k 12k=422 1712k-14 12k=322 32 1123
Quotient diagram Ak-1 By Cox—2 Cr-1 Cor-1 G, Fy
Fixed sublattice \/@ Agoy Ak Dak—s Ak=1 Dak— Az Dy
Fixed simple roots 0 Al Azk-3 0 Adg—2 Al Ay

codeword of the glue code N/R. In particular, P, (1.) € (Q;)* for every irreducible root sublattice Q;
of N. Note also that 7 has a positive frame when viewing as an isometry of N.

Therefore, for each irreducible component, we can consider the quotient diagram as follows: we
identify an orbit of nodes as one node, and two nodes are connected if the nodes in the corresponding
orbits are connected. By removing the node associated with the extended node, one obtains a usual
Dynkin diagram (see Table 2).

Note that the fixed sublattice is the (scaled) root lattice of the quotient diagram. A fixed node (or
fixed simple root) corresponds to a simple short root of a full component.

Remark 8.8. Let G; be a simple Lie subalgebra of V| with r;h = n = h. Then £ = rik; and k;/h} = €/h.
Therefore, the level k; of the simple Lie subalgebra G; is given by k; = chV./ h for any j. Note also
that the short roots of G; will correspond to an irreducible (connected) component S; of sz . Moreover,
S; N Ry corresponds to the simple short roots of G;. Therefore, S; and S; N R; determines the type of G;
uniquely.

Remark 8.9. In [40], a notion of generalized hole diagrams is introduced. It was shown that a generalized
hole diagram determines a generalized deep hole up to conjugacy and that there are exactly 70 such
diagrams. This notion of generalized hole diagrams essentially corresponds to the diagram associated
with simple short roots of the full components (i.e., elements in Ry N NJ).

8.3. Possible pairs for (N, 1)

Next, we will discuss the possible choices for the pair (N, 7) for each T € P,.

83.1. T €24

Fort € 2A of O(A), we have £ = |7] = |7| = 2. Inthis case, A; = V2Eg.Let N = Al#]. Then the Coxeter
number of N is divisible by 2 and N, = SpanZ{A?, %(a] +---+ag)}, where Zay + - - - + Zag = Aff. The
vector v = %(al + -+ + ag) corresponds to a codeword ¢ € N/R. The possible choices for (N, 1), the
codeword ¢ and the corresponding root systems and Lie algebra structures for V; are listed in Table 3.

8.3.2. 7 €3B

Fort € 3Bof O(A), wehave £ = |7| = |7| = 3. In this case, A; = K> is the Coxeter-Todd lattice of rank
12. Let N = AP, Then the Coxeter number of N is divisible by 3 and N, = Span,{AS, (y1,...,%s)}
where y; + A, is a generator of A3/A; for each i. The vector (yy, ..., ¥s) corresponds to a codeword
¢ € N/R. The possible choices for (N, 7), ¢ and the corresponding root systems and Lie algebra
structures for V; are listed in Table 4.

83.3. 7 €58

For 7 € 5B of O(A), we have £ = |T] = |t| = 5 and the Coxeter number of N = Al#] is divisible by 5.
In this case, N, = SpanZ{Ai, (71> 72,73, 74)}, where y; + A4 is a generator of A} /A4 for each i. Again,
the vector (y1, 2, ¥3,v4) corresponds to a codeword ¢ € N/R. That means 5 = |7| divides |N/R| also.
The possible choices for (N, 1), ¢ and the corresponding root systems and Lie algebra structures are
listed in Table 5.
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Table 3. (N ,7) for the case 2A.

Type Codeword ¢ Embedding R(NT) \%
A (18,0%) A% — A3 AlS A,
A3 (22022000) (A2)* — A} AL (V24 AL LAY
DS (233200) (AY* — D} DICY D?,C3,

4 332, A2 2 20, (V2A5)? 2 a2
A5D4 (3300|1) (Al) + A1 — A5 + Dy ASCQ( 2A2) A5’2C2’1A2Y1
ALD? (4400) (AH? — A2 DX(V243)? D2, A,
A%D! (2033) (A]) + (A})? — A7 + D} A7C2(V243) A72C3 A3
D} (2222) (A)* — D} cy Ci
Dy (1230) (A?) + (A3)* > Dg+ D} DsC4B2 D2C4,1B3
A%Ds (0513) (AY) + (A]) = Ag + Ds Ag(V2A4)B;3 Ag2A41Bs
A D7Es (620) AS +Ajl — Ay +Dy EsCs(V24s) E62Cs,1As )
D] (033) (AH? — D? DgB? Dg 2B |
D] (221) (A?)?2+ A} — D} + Dg C%B,y C2 B,
Ai5Dyg (80) A3 — Ajs Do(V2A7) Doy A7,
E2Dyg (1112 (A3)?+ A2 > EZ+ Dy CsF} Cs, 1 F}
E72D1() (Olll) A31 +AS1 — E7+D1() E7B5F4 E7yzB5ylF4yl
Dlz2 (21) A2| + A? — Dy +Dpp Ci0Bsg C]O,]Bﬁ,]
EsDi6 (01) Al > Dyg BgEg Bs1Es

Table 4. (N, 7) for the case 3B.
Type Codeword ¢ Embedding R(NT) Vi
Al (1%0%) A§ — AS AS AS
AiD, (2220]0) (A2)% — A} AsD4(V3A))? As3Dg3A7 |
A3 (630) (A3)? — Al Ag(V3A)? Ag3A3 |
E} (0111) (A3)? — E} EsG3 Es3Ga®
AnD7Es (401) A} + A3 — Ay Es D7(V343)G D73A3,1G2,1
A7E; (60) A§ > Ay E7(V3As5) E73As,
Table 5. (N, 7) for the case 5B.
Type Codeword ¢ Embedding R(NT) Vi
A§ (123400) AY — A4 A? A3
A2 Dy (240) (A3)? — A} Ds(V54%) Dg5A% |
Table 6. (N, 7) for the case 7B.
Type Codeword ¢ Embedding R(NT) Vi
Af (0124) Al A3 Ag Ag7
834. 1 €7B

For T € 7B of O(A), we have ¢ = |T|

corresponding root systems and Lie algebra structures are listed in Table 6.

8.3.5. t€2C

For 7 € 2C of O(A), we have £ = |T] = 2|7| = 4. Let N = AlB1. Then the Coxeter number of N
is divisible by 2 and N; = Spany{Al%, J(a,...,@)}, where Za = Aj. The vector 3(a,...,a) again
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Table 7. (N, 7) for the case 2C.

Type Codeword ¢ Embedding R(NT) Vi
Azl: (1'20'2) A']; b A‘]26 A‘lj A?
5 o B
DS (111) (ah3 < D} B} B

8 1 8 4 4,2
D}, (11) (A$)? — D2, BS BZ,
Doy (1 A2 Dy Bip B
AiD, (333310) (AH* — At DyV2A} Dy 4AS,
A2Dq (5512) (AD)? + A2 — AL+ Dy CiV2A2 CiaA%,
AnE; 91) A+ A A+ By FiV2Ay Ag2Fs0

Table 8. (N, 7) for the case 4C.

Type Codeword ¢ Embedding R(NT) \%

AS (32001011) Al + AT > AL+ A; A3V24, A3 LA
AiD! (02]13) A3+ (A3A))? > Aq + D! A72A,A3 A7,4A§’]
AID? (22]20) A2+ A2+ A2 — A7+ A7+ Ds DsC32A% D5 4C32A7 |
A11D7E(, (310) A’; + A3A2] — A11 + D7 EﬁBzzAz E6’432,1A2,1
A5D9 (412) A4+ A2 — A5+ Dy C72A3 C72A3,

Table 9. (N, 7) for the case 6E.

Type Codeword ¢ Embedding R(NT) \%
AtDy (0255]1) AT+ A3+ AT — A2+ A5+ Dy AsV3A 1B, As6BasAl
A1 D7Es (222) A2+ AT+ A3 — Ay + D7+ E V6A,Cs5G, Cs3GapA;

corresponds to a codeword ¢ € N/R. The possible choices for (N, 1), ¢ and the corresponding root
systems and Lie algebra structures are listed in Table 7.

8.3.6. T €4C )
For 7 € 4C of O(A), we have £ = |7| = |7| = 4. Let N = Al#l. Then the Coxeter number of N is

divisible by 4 and the coinvariant lattice

1 1
N = Spany{A3A3, (4,4, 4, 4, 7 Ea)},
where A = 1/2(1,1,1,-3) € A} and Za = A;. Note that N7 contains A3A7 as an index 4 sublattice.
The possible choices for (N, ), ¢ and the corresponding root systems and Lie algebra structures are
listed in Table 8.

8.3.7. T € 6E

For 7 € 6E of O(A), we have £ = |[7| = 6. Let N = AB1. Then the Coxeter number of N is divisible by
6 and the coinvariant sublattice

1 1
N, = Span;{AZA3A3, (B,B.7.7- 5% 30,
where 8 = é(ls, -5)e AL y= %(1, 1,-2) € A and (@, @) = 2. Note that N is an index 6 sublattice
of Eg L Eg. The possible choices for (N, 1), ¢ and the corresponding root systems and Lie algebra

structures are listed in Table 9.
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8.3.8. T € 8E i
For 7 € 8E, { = |7] = 8. Let N = Alfl. Then the Coxeter number of N is divisible by 8 and the
coinvariant lattice N, is an index 8 over-lattice of the lattice A$A3A1. More precisely,

N, = Spanz{A2A3A1, (y3, 71, B, @)},

where y3 = £(3%,-5%), y1 = §(17,-7) are in A%, B € 1(1,1,1) € Ajand @ = $(1,1) € AT
The possible choices for (N, ), ¢ and the corresponding root systems and Lie algebra structures are
listed in Table 9.

Type Codeword ¢ Embedding R(NT) Vi

AZD? (37]10) A%+ A3A; — A+ Ds DsA; Ds3A 2

8.3.9. 7 € 6G i

For t € 6G, ¢ = |7] = 12. Let N = Al#l. Then the Coxeter number of N is divisible by 6 and N,
contains AgAf as an index 6 sublattice. The possible choices for (N, 7), ¢ and the corresponding root
systems and Lie algebra structures are listed in the following table.

Type Codeword ¢ Embedding R(NT) Vi
AtD, (31110) A+ AT — AL+ A5 Ds\V2A, Dy 12A26
AnE; (3]1) A+ A > A+ By FiV6A; Fi6A2,

8.3.10. 7 € 10F i

For 7 € 10F, ¢ = |7] = 20. The Coxeter number of N = Al#1 is divisible by 10 and N contains A2A?
as an index 10 sublattice. The possible choices for (N, 7), ¢ and the corresponding root systems and Lie
algebra structures are listed in the following table.

Type Codeword ¢ Embedding R(NT) \%

AlDs (7912) Al + A — Al + Dg Cy Cs,10

Remark 8.10. Since N = L4(c) with ¢ as a codeword of the glue code N/R, we can recover the same
information as in [21, Table 3]. In particular, there are exactly 46 possible Lie algebra structures for V;
if 0 < rank(V}) < 24. This gives an alternative proof for the Schellekens list.

A. Properties of the lattice A, for 7 € Py

In this appendix, we review some properties of the coinvariant sublattice A for 7 € Py. Let A be the
Leech lattice and let

7€ Py ={1A,24,2C,3B,5B,7B,4C,6E,6G, 8E, 10F}.

Let A be the coinvariant lattice of 7. Then 7 is fixed-point free on A ;.
The following can be verified by MAGMA.
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Lemma A.l. Let T € Py. Then

1. (1-7)A% =Ar.
2. The quotient group Coa,)(7)/{t) acts faithfully on D(A-).

For 7 € Py, the coinvariant lattice A, can be constructed by the so-called generalized ‘Construction
B’. First, we review the construction.

Generalized ‘Construction B’.

Let R;(1 < i < t) be a copy of the root lattice of type Ay,_1, where k; € Zy for1 <i <t.LetR=R; L
Ry L -+ L R, Then D(R;) = Zy, and D(R) = (P;_, Z,- Letv: R* — R*/R = D(R) = P!_, Zy, be
the canonical surjective map. For a subgroup C of EB:: | Zi;, let L,(C) denote the lattice defined by

LA(C)=v{(C)={a € R* | v(a) € C}; (A.1)

we call L (C) the lattice constructed by Construction A from C. Note that L4 ({0}) = R, where 0 is the
identity element of (P'_, Zy,.

We now fix a base A; of the root system of R;, which is of type Ag,—;. Then A = U;:l A; is a base
of the root system of R. For x = (x;) € @2:1 Zy,, denote

Ax=(AY,,...,AL)€R; L--- LR} =R", (A.2)

X1

where x; is regarded as an element of {0, ..., k; — 1} and {/l; | 1 < j < k;— 1} is the set of fundamental
weights in R} with respect to A;. The following lemma is immediate from the definition of L4 (C).

Lemma A.2. For a generating set C of C, the set {A. | ¢ € C} and R generate LA(C) as a lattice.

Set

Pa P,
o

xa = ( ) €EQ@®zR, (A.3)

where py, is the Weyl vector of R; with respect to A;.
Define Lg(C) = {@ € L4(C) | (@|xa) € Z}; we call Lg(C) the lattice constructed by Construction
B from C.

Remark A.3. Up to isometry, Lz (C) does not depend on the choice of a base A.
By definitions, it is easy to show the following results (see [34]).

Lemma A4. Let x = (x;) € ', Zx,. Then (Ax|Ax) € 2Z if and only if (Ax|xa) € Z.
Setn = LCM({ky, ..., k:}).

Lemma A.5. |L4(C) : Lg(C)| =nifand only if yp € (1/n)LA(C)*.

Next, we consider some isometry of R. Recall that R; = Ag,_; is a root lattice of type Ay, —1. Let
A; = {a’i, R a;'q_l} be a set of simple roots and let 06 = — Zfz:—ll a;. bo?T the negative of the highest
root. Then the map g, (a;.) = a}.ﬂ if ] <j<k;—2andga (a;(i_l) = q dizﬁnes an isometry on R;,
which is a Coxeter element of the Weyl group of R;. In particular, ga, actson A; = A; U {a,} as a cyclic

permutation of order k;.
For e = (e;) € P, Zx,, set

gr.e = ((ga)",. ... (8a,)") € O(LA(C)). (A4)

Lemma A.6. gr . € O(Lg(C)) ifand only if A, € Ls(C)".
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Table 10. Coinvariant lattices A for T € Py.

Class R c AL /AL O(A;) Co,)(T)

2A A8 (11111111) 28 218.GO;(2) 218.GO¢(2)

2C A‘l12 (12 212 2!1.Sym,, 2'1.Sym,,

3B A% (111111) 30 30 pPSUL(2) 3% PSUL(2)

5B A;%1 (1234) 54 (Froby x GO (5))/2 5% 2.(Alty x Alty).2
7B A} (124) 7 7.3.2.L,(7).2 7Tx2.1,(7).2

4C AA? (1111]11) 2244 21043 Symg 293 Symg

6E AZAZA2 (11]1111) 2434 6.(GO;(2) x GO} (3)).2 6.(GO; (2) x GO} (3))
6G AlAS (111]111) 2633 6.(GO3(3) x PSO;(3)).2  6.(GO3(3) x PSO; (3))
8E AZA3A4 (13]1]1) 2.4.8% 20 (Dihg x Symys) 25.(4 x Symy)
10F ALA? (13]11) 2452 (2x AGL;(5)).Dih} 10.Dih}

Proof. By definition, it is easy to see that

J
ga(4)) == > i, galpa) =pa—kar. (A5)

i=1

Then we have ga o(xa) € ya + (61/1}, ...,e;:A)) + R = ya + A + R. By the definition of Lg(C),
8r.e € O(Lp(C)) ifand only if 1, € La(C)*. O

Lemma A.7. The isometry ga . is fixed-point free and of order n if and only if gcd(e;, ki) = 1 for all
1<i<t

It turns out that the coinvariant lattice A, for 7 € Py can be constructed as Lg(C) with C generated
by a single glue vector c. Moreover, T can be identified with ga . as defined above.

Proposition A.8 [5]. For any T € Py, the coinvariant lattice A, of the Leech lattice can be constructed
as Lg(C) with C generated by a single glue vector c. Moreover, |1, (c) = &, as defined above.

Some properties of A, are summarized in Table 10; the structures of O(Ag) and Co( Ag)(g) are
computed by using MAGMA. The symbol [] a; for A%/A, means the abelian group @ (Z/a;Z)"".
For the notations of groups, see [1].

For 7 € O(A) and k € Z-, set

Lep={A+Ag € D(Ar) | g1+ A7) =0, 0(A+A;) = k}, (A.6)

where o(Ad + A;) is the order of 2 + A; in D(A;). The following lemmas can be verified by using
MAGMA [5].

Lemma A.9. Let T be an isometry of A whose conjugacy class is 2A, 3B, 5B or 71B. Then Co(a,) (1) /{T)
acts transitively on the set of all nonzero singular elements.

Lemma A.10. Let T be an isometry of A whose conjugacy class is 4C, 6E or 8E. Let k be a divisor of
|T|. Then Co(a,)(T)/{T) acts transitively on L+ .

Lemma A.11. Let T be an isometry of A whose conjugacy class is 6G or 10F. Then the group
Coa,) (1) /{7) acts transitively on L. |z /2.
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