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IMPROVING STRONG NEGATION

SATORU NIKI

Department of Philosophy I, Ruhr University Bochum

Abstract. Strong negation is a well-known alternative to the standard negation in
intuitionistic logic. It is defined virtually by giving falsity conditions to each of the connectives.
Among these, the falsity condition for implication appears to unnecessarily deviate from the
standard negation. In this paper, we introduce a slight modification to strong negation, and
observe its comparative advantages over the original notion. In addition, we consider the
paraconsistent variants of our modification, and study their relationship with non-constructive
principles and connexivity.

§1. Introduction. The notion of strong negation, originally known as constructible
falsity, was introduced by David Nelson [20] and Andrei Andreevich Markov [15]. The
basic idea of strong negation is to constructivize the notion of falsity or refutation. To
illustrate, in intuitionistic logic the proof of a disjunction warrants the proof of either
of the disjuncts, i.e.,

� A ∨ B =⇒� A or � B
holds (disjunction property). On the other hand, the proof of the falsity of a conjunction,
that is,

� ¬(A ∧ B)

does not in general allow us to derive that at least one of the conjuncts is false: i.e., it
does not always warrant

� ¬A nor � ¬B.
The insight of Nelson and Markov was to define another kind of negation (∼A), which
satisfies

� ∼(A ∧ B) ↔ (∼A ∨ ∼B),

so that the above property for falsity is satisfied with respect to this strong negation
∼A. The name ‘strong negation’ comes from the fact that in the system N3 of Nelson–
Markov, it is assumed that ∼A implies the intuitionistic negation ¬A. However this
assumption can be dropped, in which case we obtain the system N4 of Almukdad &
Nelson [1]. For more information on strong negation, cf. for instance [10, 13, 21, 22,
29, 31].
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In N3 and N4, the condition for (constructive) falsity is in effect defined for each
connective, rather than a general condition for falsity being given. Therefore in addition
to the condition above for conjunction, we have the equivalences

∼(A ∨ B) ↔ (∼A ∧ ∼B),

∼(A→ B) ↔ (A ∧ ∼B).

Now we may ask how these conditions compare to the theorems for intuitionistic
negation. Because strong negation is motivated in constructive reasoning, it does not
seem too controversial to claim that it ought to resemble intuitionistic negation as much
as possible. This would mean that except for conjunction, the intuitionistic formulas
corresponding to the falsity conditions should be theorems of intuitionistic logic.1

Indeed for disjunction, it holds that

� ¬(A ∨ B) ↔ (¬A ∧ ¬B)

in intuitionistic logic. On the contrary, for implication, in general

� ¬(A→ B) ↔ (A ∧ ¬B)

for we cannot derive A from ¬(A→ B). This appears to suggest the falsity condition
for implication is perhaps not ideal. To remedy this situation, we note the following
equivalence that holds in intuitionistic logic:

� ¬(A→ B) ↔ (¬¬A ∧ ¬B).

We would like to interpret this equivalence in terms of ∼. Here, a double negation for
∼ cannot meaningfully capture a double negation for ¬, because it holds in N3 and N4
that ∼∼A↔ A. Consequently we must leave ¬¬A as it is. Then we arrive at the next
falsity condition for implication.

� ∼(A→ B) ↔ (¬¬A ∧ ∼B).

Informally, this condition says that an implication is falsified, if its premise is eventually
true and the conclusion is falsified. (This interpretation will be made rigorous using
Kripke semantics.) Hence the new condition does not require a conflict at present
between the premise and the conclusion in order to refute an implication. This should
not be too controversial from the intuitionistic point of view, because it in general
allows taking future situations into account.

The idea of altering the falsity condition for implication has been pursued by a
number of authors. One such direction is taken by H. Wansing [32] toward connexive
logic, which supports contra-classical theorems (cf. [16]). Adopting a modal language
is also considered by H. Omori [23] in this relation. Another direction is to use co-
implication of C. Rauszer [26] in the falsity condition, as can be seen in Wansing [33].
N. Kamide [12] formulates a variant of N4 perhaps most similar to ours, in which
¬∼A instead of ¬¬A is used, following the ideas of De & Omori [7].

In this paper, we shall look at the effects of this falsity condition in N3 and N4. In
particular we observe that the new condition makes explicit the relationship between
the two negations for the variant of N3, while it depends on the precise formulation in

1 We refer to [25, 30] for the details of intuitionistic logic.

https://doi.org/10.1017/S1755020321000290 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000290


IMPROVING STRONG NEGATION 953

case of the variants for N4. In relation to this, we shall show the completeness of the
variants with respect to Kripke semantics.

We then look at some of the properties of the variants. We begin with looking at the
conditions under which the two negations become equivalent. Then we shall observe
how our variants refute more intuitionistic propositions than N3 and N4. Furthermore,
we show that taking the variants does not affect the set of provable formulas of the form
¬A. Finally, we see how the new conditions allow us to obtain the contraposability of
strong negation with less restrictions.

This is followed by the study of the interaction between the new condition and the law
of excluded middle for strong negation. We shall find that different non-constructive
principles are justified, depending on which of the variants of N4 is used as the basis.

Lastly, we shall attempt to give an analysis of the variant of our conditions, obtained
by following the paradigm of Wansing [32]. We shall observe that the resulting
system fails to satisfy the formulas characterizing connexive logics. We then discuss an
alternative approach which enables to partially regain connexivity.

§2. Variants for N3 and N4. In this section, we introduce the formalizations for the
variants of N3 and N4 with an alternative falsity condition for implication, which we
shall call DN3 and DN4. Here we shall argue in the following language L:

A ::= p | ⊥ | A ∧ A | A ∨ A | A→ A | ∼A.

We shall use ¬A and A↔ B as abbreviations for A→ ⊥ and (A→ B) ∧ (B → A),
respectively. The set of formulas in L will be denoted by Fm, and ≡ will be used for
graphical equality.

2.1. Proof theory. We start with introducing the axiomatization of N3 in L.

Definition 2.1 (N3).

⊥ → A (EFQ)

A→ (B → A) (K)

(A→(B→C ))→((A→B)→(A→C )) (S)

A→ (B → (A ∧ B)) (CI)

(A1 ∧ A2) → Ai (CE)

Ai → (A1 ∨ A2) (DI)

(A→C )→((B→C )→(A∨B→C )) (DE)

∼⊥ (BF)

∼(A ∧ B) ↔ (∼A ∨ ∼B) (CF)

∼(A ∨ B) ↔ (∼A ∧ ∼B) (DF)

∼(A→ B) ↔ (A ∧ ∼B) (IF)

∼∼A↔ A (FF)

∼A→ ¬A (SN)

A A→ B
B

(MP)
where i ∈ {1, 2}.

We shall write Γ � A if there is a finite sequence of formulas B1, ... , Bn ≡ A such
that each Bi is either an element of Γ, an instance of one of the axioms, or obtained by
(MP) from Bj and Bk where j, k < i . We shall sometimes denote the proof system
explicitly, e.g., N3 � A. Similar remarks will apply to the other systems we shall
introduce.
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The system N42 is now defined by removing (SN) from the above axiomatization. If
we further restrict the formulas of the form ∼A to ∼⊥ 3, and remove the axioms (BF),
(CF), (DF), (IF) and (FF), then we obtain the intuitionistic propositional calculus
IPC.

Now, as explained in the introduction, our intent is to replace (IF) in N3 and N4
with the following equivalence:

∼(A→ B) ↔ (¬¬A ∧ ∼B). (IF2)

Henceforth we shall designate the resulting systems by DN3 and DN4.
Before moving on, we have something to observe in DN3. In the system, the

relationship between ¬(A→ B) and ∼(A→ B) can be made explicit by the following
equivalence.

Proposition 2.2. DN3 � ∼(A→ B) ↔ (¬(A→ B) ∧ ∼B).

Proof. In IPC, we can show

IPC � (¬¬A ∧ ¬B) ↔ (¬(A→ B) ∧ ¬B),

which consequently holds in DN3 as well. Thus by (SN),

DN3 � (¬¬A ∧ ∼B) → ¬(A→ B), (¬(A→ B) ∧ ∼B) → ¬¬A.
Hence it follows that DN3 � (¬¬A ∧ ∼B) ↔ (¬(A→ B) ∧ ∼B). Now use (IF2) to
obtain the desired equivalence.

We may indeed take

∼(A→ B) ↔ (¬(A→ B) ∧ ∼B) (IF3)

to be the falsity condition for implication, as the resulting system is identical to DN3.
However, if (SN) is absent, then the resulting system (let us name it DN4’) will turn
out to be non-identical to DN4, as we shall see later.

2.2. Semantics. We next look at the semantical side of the systems. The systems
DN3, DN4 and DN4’ can be characterized with Kripke semantics which are slight
variants of the semantics for N3 and N4 in [10, 13, 29]. The following completeness
proof is also based on their methodology, and is similar to those of N3 and N4.

Definition 2.3 (Kripke semantics for DN3). A Kripke frame F of DN3 is an inhabited
pre-ordered set (W,≤). A Kripke model M of DN3 is a pair (F ,V) where V = {V+,V–}.
EachV∗ (∗ ∈ {+, –}) is a mapping assigning a subsetV∗(p) to each propositional variable
p. Here each V∗(p) is required to be upward closed, i.e.,

w ∈ V∗(p) and w′ ≥ w implies w′ ∈ V∗(p).

We further assume V+(p) ∩ V–(p) = ∅. Then the forcings �+ and �– of formulas are
uniquely extended from V+ and V– by the following clauses.

2 This formulation with ⊥ in the language is also commonly called N4⊥ [22].
3 That is to say, ∼⊥ is still a well-formed formula in IPC, but other negated formulas

like ∼p, ∼(A→ B) are not. This in effect means we treat ∼⊥ as a true proposition �,
when it comes to IPC. We choose this formulation in order to make some arguments
simpler.
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w �∗ p ⇔ w ∈ V∗(p).

w �+ ⊥ for no w ∈W.
w �– ⊥ for all w ∈W.

w �+ A ∧ B ⇔ w �+ A and w �+ B.

w �– A ∧ B ⇔ w �– A or w �– B.

w �+ A ∨ B ⇔ w �+ A or w �+ B.

w �– A ∨ B ⇔ w �– A and w �– B.

w �+ A→ B ⇔ ∀w′ ≥ w(w′ �+ A implies w′ �+ B).

w �– A→ B ⇔ ∀w′ ≥ w∃w′′ ≥ w′(w′′ �+ A) and w �– B.

w �+ ∼A⇔ w �– A.

w �– ∼A⇔ w �+ A.

Occasionally we denote the model explicitly, as M, w �∗ A. We shall write M � A if
M, w �+ A for all w. We shall write Γ � A if for all M:

∀B ∈ Γ(M � B) implies M � A.

In particular, when Γ = ∅ we write � A. When necessary, we shall denote the system
explicitly, e.g., DN3 � A.

We note that w �– A→ B iff w �+ ¬¬A and w �– B with the above condition.
This is because, as in intuitionistic logic, we have:

w �+ ¬¬A⇔ ∀w′ ≥ w∃w′′ ≥ w′(w′′ �+ A).

In particular, if w �+ ¬¬A then w′
�

+ ¬A for any w′ ≥ w, which forces the existence
of w′′ ≥ w such that w′′ �+ A. This forcing condition formalizes the informal
interpretation of the falsity condition for implication discussed in the introduction.

The semantics for N3 can be obtained by making the next change to the clauses.

w �– A→ B ⇔ (w �+ A and w �– B).

The semantics for N4 and DN4 are then obtained by removing the condition V+(p) ∩
V–(p) = ∅ from the respective semantics. In addition, the semantics of DN4’ is obtained
by altering the falsity condition of implication to:

w �– A→ B ⇔ ∀w′ ≥ w∃w′′ ≥ w′(w′′ �+ A and w′′
�

+ B) and w �– B.

That is to say, w �+ ¬(A→ B) and w �– B . Finally, the semantics for IPC can be
obtained if we restrict the language and our attention to �+ alone, with the additional
condition that w �+ ∼⊥ always holds. In what follows, we shall omit the superscript
+ from V+ and �+ when we talk about IPC.

Theorem 2.4 (Completeness of IPC). Γ � A in IPC if and only if Γ � A in the Kripke
semantics for IPC.

Proof. See [30].

It is routine to establish for the semantics of DN3, DN4 and DN4’ that the forcing
of a formula is closed upward, i.e.:

Proposition 2.5. For ∗ ∈ {+, –}, if w �∗ A and w′ ≥ w then w′ �∗ A.
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Proof. By induction on the complexity of A.

Moreover, we readily observe that the condition V+(p) ∩ V–(p) = ∅ in the semantics
of DN3 is extended to all formulas.

Proposition 2.6. In the semantics for DN3, for no w it holds that w �+ A and
w �– A.

Proof. Again by induction on the complexity of A.

We shall establish the completeness of DN3 with respect to the Kripke semantics
via the completeness of IPC. For this purpose, we need some preparations. To begin
with, we assign to each formula A its negation normal form r(A).

Definition 2.7 (Negation normal form). We define a mapping r : Fm → Fm inductively
by the following clauses.

r(p) = p,

r(⊥) = ⊥,
r(A ◦ B) = r(A) ◦ r(B),

r(∼p) = ∼p,
r(∼⊥) = ∼⊥,

r(∼(A ∧ B)) = r(∼A) ∨ r(∼B),

r(∼(A ∨ B)) = r(∼A) ∧ r(∼B),

r(∼(A→ B)) = ¬¬r(A) ∧ r(∼B),

r(∼∼A) = r(A),

where ◦ ∈ {∧,∨,→}. We shall call a formula of the form r(A) a reduced formula.

In the above, if we use the clause

r(∼(A→ B)) = r(A) ∧ r(∼B),

then we obtain the negation normal form for N3 and N4. Let us call a propositional
variable or ⊥ a prime formula. We note that r(A) has all occurrences of ∼ in front of
prime formulas. Moreover, we observe the next lemmas.

Lemma 2.8. DN3 � A↔ r(A).

Proof. By induction on the complexity of A.

Lemma 2.9. If DN3 � A, then DN3 � r(A); moreover, one may assume all the
formulas in the proof are reduced. (That is, it has a reduced proof.)

Proof. By induction on the depth of derivation. That is to say, we have to show that
for each axiom A, its negation normal form r(A) is derivable with all the formulas in
the proof reduced. Then

r(A) r(A) → r(B)
r(B)

is an instance of (MP) and so the statement follows.
For the case for (SN), we have to argue by induction on the complexity of the formula

A. WhenA ≡ B → C , we have to show r(∼(B → C ) → ¬(B → C )) is derivable. This
is syntactically equivalent to

(¬¬r(B) ∧ r(∼C )) → ¬(r(B) → r(C )).

By I.H., there is a reduced proof of r(∼C ) → ¬r(C ). Also

¬r(C ) → (¬¬r(B) → ¬(r(B) → r(C )))
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is an instance of an intuitionistically derivable formula; so the proof can be assumed
to be reduced. Then it is easy to construct a reduced proof of (¬¬r(B) ∧ r(∼C )) →
¬(r(B) → r(C )).

Let A[∼p1, ... ,∼pn] be a reduced formula, with the occurrences of subformulas of
the form ∼p marked by ∼p1, ... ,∼pn. We shall assume that for each pi there is a new
propositional variable qi in the language of IPC. Then we define a formula

E :=
∧

1≤i≤n
(qi → ¬pi).

This allows us to assert the next proposition, which is analogous to the case for N3
originally treated by Vorob’ev [31].4

Proposition 2.10. LetA[∼p1, ... ,∼pn] be a reduced formula. Then the following are
equivalent.

(i) DN3 � A[∼p1, ... ,∼pn].
(ii) IPC � E → A[∼p1, ... ,∼pn/q1, ... , qn].

Proof. From (i) to (ii), first note that we can w.l.o.g. assume all the formulas of the
form ∼p occurring in the derivation occurs in A[∼p1, ... ,∼pn]; for otherwise we can
consider the derivation of an equivalent formula

A[∼p1, ... ,∼pn] ∧ (∼p → ∼p),

whose reduced proof requires no more occurrences of formulas of the mentioned form.
With this proviso it is sufficient to observe that a reduced proof in DN3 can be replicated
in IPC with the aid of E. In particular, for the axiom ∼B → ¬B , because the proof is
reduced, B has to be prime. If B ≡ ⊥, then ∼⊥ → ¬⊥ is a theorem of IPC (recall ∼⊥
is in the language of IPC); if B ≡ pi for some 1 ≤ i ≤ n (as we may assume by the
comment above), then

IPC � (qi → ¬pi) → ((∼pi → ¬pi)[∼pi/qi ]),
and so E is sufficient for the replication.

From (ii) to (i), if

IPC � E → A[q1, ... , qn],

then DN3 can replicate the proof except for the unavailable propositional variables
q1, ... , qn. Therefore we replace the occurrences of q1, ... , qn by ∼p1, ... ,∼pn from the
proof in IPC, which allows us to obtain the proof witnessing

DN3 � (E → A)[q1, ... , qn/∼p1, ... ,∼pn].
That is, DN3 � A[∼p1, ... ,∼pn].

Now we are ready to establish the soundness and completeness of DN3 with the
Kripke semantics. Firstly, it is straightforward to check the soundness direction.

Theorem 2.11 (Soundness of DN3). If DN3 � A then DN3 � A.

Proof. By induction on the depth of derivation. In particular, the case for (SN)
follows from Proposition 2.6.

4 We thank one of the anonymous referees for this information.
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For the completeness, we shall use the next lemma.

Lemma 2.12.

(i) w �+ A if and only if w �+ r(A).
(ii) w �– A if and only if w �+ r(∼A).

Proof. By simultaneous induction on the complexity of A. For instance, in (ii), if
A ≡ B → C , w �– B → C iff w �+ ¬¬B and w �– C . By I.H. this is equivalent to
w �+ ¬¬r(B) and w �+ r(∼C ), which is by definition equivalent to w �+ r(∼(B →
C )).

Theorem 2.13 (Completeness of DN3). If DN3 � A then DN3 � A.

Proof. We prove the contrapositive. Suppose DN3 � A. Then by Lemma 2.8,

DN3 � r(A)[∼p1, ... ,∼pn].
Then by Proposition 2.10 and the deduction theorem for IPC,

E � r(A)[∼p1, ... ,∼pn/q1, ... , qn]

in IPC. Hence by the completeness of IPC,

E � r(A)[∼p1, ... ,∼pn/q1, ... , qn]

in the Kripke semantics for IPC. That is, there is a model (F ,V) of IPC and a world
w such that

(F ,V) � E,
but

(F ,V), w � r(A)[∼p1, ... ,∼pn/q1, ... , qn].� .
Then we construct a corresponding model of DN3 (F2,V2) such that

• F2 = F ;
• u ∈ V+

2 (pi ) iff u ∈ V(pi );
• u ∈ V–

2 (pi ) iff u ∈ V(qi ).

Note here if u ∈ V+
2 (pi) ∩ V–

2 (pi) then (F ,V), u � pi ∧ qi , so (F ,V), u � ⊥, a
contradiction. Hence V+

2 (pi) ∩ V–
2 (pi) = ∅, and consequently (F2,V2) is well-defined.

Now it suffices to observe (by an easy induction on the complexity of the formula)
that for any subformula B of r(A),

(F ,V), w � B[∼p1, ... ,∼pn/q1, ... , qn] iff (F2,V2), w �+ B,

because then � implies (F2,V2), w �
+ r(A) and so (F2,V2), w �

+ A by
Lemma 2.12.

The soundness and completeness for DN4 and DN4’ are provable in a similar manner.
For DN4’, the notion of negation normal form is altered to

r(∼(A→ B)) = ¬r(A→ B) ∧ r(∼B).

In addition, for both DN4 and DN4’, E is not assumed in establishing the equivalence
in the analogue of Proposition 2.10. Thence we establish the relationship between the
two systems.
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Proposition 2.14. DN4 and DN4’ are incomparable.

Proof. We claim

DN4 � ∼(p → q) → (¬(p → q) ∧ ∼q)
and

DN4’ � (¬¬p ∧ ∼q) → ∼(p → q).
For this purpose, take the next model (F ,V) of IPC refuting ¬¬p → ¬(p → q).

• W = {w};
• V(p) = V(q) =W .

Then construct a model (F2,V2) of DN4’ by letting

• F2 = F ;
• V+

2 = V and V–
2 (q) =W .

Then (F2,V2), w �+ ¬¬p ∧ ∼q, but (F2,V2), w �
+ ¬(p → q) ∧ ∼q. Hence

(F2,V2) � ∼(p → q) → (¬(p → q) ∧ ∼q).
So by soundness

DN4 � ∼(p → q) → (¬(p → q) ∧ ∼q).
Similarly we can show

DN4’ � (¬¬p ∧ ∼q) → ∼(p → q).

The above in particular implies that while

DN4’ � ∼(A→ B) → ¬(A→ B),

(SN) in full generality is not derivable in DN4’, because then it would be identical to
DN3, which contains DN4.

From this point on, we shall occasionally write DN4(’) to mean both DN4 and
DN4’, to state propositions that hold for both of the systems. Before moving on, we
observe the constructible falsity property for the systems as a special case for disjunction
property, which can be proved by a semantical argument as in IPC.

Theorem 2.15 (Disjunction property).

(i) DN3 � A ∨ B then DN3 � A or DN3 � B .
(ii) DN4(’) � A ∨ B then DN4(’) � A or DN4(’) � B .

Proof. We prove by contradiction. Since IPC is complete with respect to rooted
frames (i.e., frames with the least element), DN3 and DN4(’) are complete with respect
to rooted frames as well. Now suppose DN3 � A1 ∨ A2, but DN3 � A1 and DN3 � A2.
Then by completeness, there are models (Fi ,Vi) and the worlds ri , where i ∈ {1, 2}
and (Fi ,Vi), ri �+ Ai . We may assume ri to be the least element of the setWi of the
respective model. Then define a new model (F3,V3) by takingW3 =W1 ∪W2 ∪ {r3},
where r3 is a new least element ofW3. Set

r3 ∈ V∗
3 (p) iffW1 = V∗

1 (p) andW2 = V∗
2 (p).
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If w �= r3 and w ∈Wi , set

w ∈ V∗
3 (p) iff w ∈ V∗

i (p).

It is easy to check V∗
3 (p) is upward closed, and V+

3 (p) ∩ V–
3 (p) = ∅. Now since DN3 �

A1 ∨ A2, by soundness

(F3,V3), r3 �+ A1 or (F3,V3), r3 �+ A2.

On the other hand, (F3,V3), ri �+ Ai from our choice of V+
3 , a contradiction. The case

for DN4(’) is similar.

Corollary 2.16 (Constructible falsity).

(i) DN3 � ∼(A ∧ B) then DN3 � ∼A or DN3 � ∼B .
(ii) DN4(’) � ∼(A ∧ B) then DN4(’) � ∼A or DN4(’) � ∼B .

Proof. Immediate from the previous theorem and (CF).

§3. Properties of DN3 and DN4(’). In this section, we look at the properties of
DN3 and DN4(’) in order to demonstrate the advantages of the logics compared with
N3 and N4.

We begin with observing how the alternation in the falsity condition for implication
allows the strong negation to retain more similarity with intuitionistic negation. More
precisely, we shall see that the equivalence of strong and intuitionistic negation can be
shown for a wider class of formulas, once we assume the equivalence for the atomic
formulas.5 For this purpose, we consider a limited languageL∗, which does not contain
∧ and ∼ that allow inferences not allowed for intuitionistic negation.

A ::= p | ⊥ | A ∨ A | A→ A.
Then we shall see ¬A and ∼A become equivalent if we assume the equivalence between
¬p and ∼p for each p from a certain subset of the set of all propositional variables
occurring in A.

Definition 3.17. Let A be a formula in L∗. We inductively define a class ΓA by the
following clauses:

Γp ≡ {p}, ΓA∨B ≡ ΓA ∪ ΓB,

Γ⊥ ≡ ∅, ΓA→B ≡ ΓB.

Now let

IA := {¬p → ∼p : p ∈ ΓA} and EA := {¬p ↔ ∼p : p ∈ ΓA}.
Then we observe that ¬A and ∼A become equivalent under a suitable class of

assumptions and a restriction on language.

Proposition 3.18. Let A be a formula in L∗. Then

• IA � ¬A→ ∼A in DN3.
• EA � ¬A↔ ∼A in DN4(’).

5 This approach bears a resemblance with the topic of Ishihara [11].
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Proof. Here we prove for DN3; the case for DN4(’) is analogous. We show by
induction on the complexity of A.

When A ≡ p, then Ip = {¬p → ∼p}. Thus the statements hold, as ¬p →
∼p � ¬p → ∼p.

When A ≡ ⊥, then � ¬⊥ → ∼⊥, hence I⊥ = ∅ suffices.
When A ≡ B ∨ C , then IA = IB ∪ IC . By I.H.

IB � ¬B → ∼B and IC � ¬C → ∼C.

Since ¬(B ∨ C ) ↔ (¬B ∧ ¬C ) holds in IPC, it follows that

IA � ¬(B ∨ C ) → ∼(B ∨ C ).

When A ≡ B → C , then IA = IC . Then by I.H.

IC � (¬¬B ∧ ¬C ) → (¬¬B ∧ ∼C ).

Hence in view of the fact that IPC � ¬(B → C ) ↔ (¬¬B ∧ ¬C ), it follows that

IA � ¬(B → C ) → ∼(B → C ).

On the other hand, clearly ¬p ↔ ∼p � ¬¬p → ∼¬p in N3 and N4, since ∼¬p is
equivalent to p in N3 and N4. Hence the difference between the cases for N3 and N4 is
the inclusion of implication, which is significant as a fragment.

We next give an example of formulas provable in DN3 and DN4(’) but not in N3
nor N4.

Proposition 3.19.

(i) DN4(’) � ¬¬A↔ ∼¬A.
(ii) DN4(’) � ∼¬(A ∨ ¬A).

Proof. (i) is immediate from DN4 � ∼¬A↔ (¬¬A ∧ ∼⊥). (ii) then follows from
IPC � ¬¬(A ∨ ¬A).

It is apparent that ∼¬(A ∨ ¬A) is not provable in N3 nor N4, because it is equivalent
toA ∨ ¬A. On the other hand, it is straightforward to check that ∼¬p → p is provable
in N3 and N4 but not in DN3 nor DN4(’). Hence N3 and DN3 are incomparable, and
similarly for N4 and DN4(’).

Nonetheless, we can still establish a certain relationship between the systems, with
the exception of DN4’. For this we first require establishing a Glivenko-like lemma.

Lemma 3.20.

(i) If N3 � A then DN3 � ¬¬A.
(ii) If N4 � A then DN4 � ¬¬A.

Proof. We argue by induction on the depth of deduction. In each case, it suffices to
show the derivability of

¬¬(∼(A→ B) ↔ (A ∧ ∼B))
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in the target system. Since IPC � ¬¬(A↔ B) ↔ (¬¬A↔ ¬¬B), we aim to show

¬¬∼(A→ B) → ¬¬(A ∧ ∼B)

and

¬¬(A ∧ ∼B) → ¬¬∼(A→ B).

Indeed, the latter is an immediate consequence of

(A ∧ ∼B) → ∼(A→ B).

As for the former, note¬¬∼(A→ B) ↔ ¬¬(¬¬A ∧ ∼B) holds in both DN3 and DN4.
Then as IPC � ¬¬(A ∧ B) ↔ (¬¬A ∧ ¬¬B),

¬¬∼(A→ B) → (¬¬A ∧ ¬¬∼B),

and using the above equivalence again, we obtain ¬¬∼(A→ B) → ¬¬(A ∧ ∼B) as
desired.

Now we can infer the next theorem, showing that any formulas in the language of
IPC (i.e., not containing ∼ except for ∼⊥) refutable in N3 and N4 are also refutable
in DN3 and DN4. Given the preceding observation that ∼¬(A ∨ ¬A) is refutable only
in the latter pair, we can conclude that they refute strictly more propositions that are
in the language of IPC than N3 and N4.

Theorem 3.21. Let A be a formula not containing a subformula of the form ∼B except
for ∼⊥. Then:

(i) If N3 � ∼A then DN3 � ∼A.
(ii) If N4 � ∼A then DN4 � ∼A.

Proof. Here we look at the case for N3. The case for N4 is analogous. We prove by
induction on the complexity of A.

When A ≡ p, then ∼p is not a theorem of N3, so the statement vacuously holds.
Similarly when A ≡ ∼⊥.

When A ≡ ⊥, then DN3 � ∼⊥.
When A ≡ B ∧ C , then if N3 � ∼(B ∧ C ), either

N3 � ∼B or N3 � ∼C,
by the constructive falsity property of N3. Thus by I.H.

DN3 � ∼B or DN3 � ∼C,
and so DN3 � ∼(B ∧ C ) in each case.

When A ≡ B ∨ C , then if N3 � ∼(B ∨ C ),

N3 � ∼B and N3 � ∼C,
and so by I.H.

DN3 � ∼B and DN3 � ∼C.
Hence DN3 � ∼(B ∨ C ).

When A ≡ B → C , then if N3 � ∼(B → C ),

N3 � B and N3 � ∼C.
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Then by I.H. and Lemma 3.20

DN3 � ¬¬B and DN3 � ∼C,
and so DN3 � ∼(B → C ).

Note here that the above theorem cannot be extended to the full language, because
when A ≡ ∼B , we would need N3 � B implying DN3 � B .

Before moving on to another topic, let us look back at Lemma 3.20. Unlike
Glivenko’s theorem, in each case we cannot show the converse direction, for
¬¬(A ∨ ¬A) is intuitionistically derivable but not A ∨ ¬A. However, we may still
observe a correspondence for propositions of the form ¬A. In order to state the next
result, we shall use �N4 and �DN4 for the forcings of the respective semantics, and r1
and r2 for the negation normal forms in N4 and DN4, respectively. Also note that a
model of N3 or N4 can be seen as a model of DN3 and DN4 but with a different
forcing condition.

Lemma 3.22. Let M = (F ,V) be a model of N4. Then for any A and any world w in
the model,

M, w �+
N4 ¬r1(A) if and only if M, w �+

DN4 ¬r2(A).

Proof. We prove by induction on the complexity of A.
If A ≡ p, then r1(A) = r2(A) = p. We have M, w �+

N4 ¬p if and only if ∀w′ ≥
w(w′ /∈ V+(p)) if and only if M, w �+

DN4 ¬p.
IfA ≡ ⊥, then r1(A) = r2(A) = ⊥, and M, w �+

N4 ¬⊥ and M, w �+
DN4 ¬⊥ hold for

all w.
If A ≡ B ∧ C , then ri(A) = ri(B) ∧ ri(C ) for i ∈ {1, 2}. By I.H.,

M, w �+
N4 ¬r1(B) if and only if M, w �+

DN4 ¬r2(B),

M, w �+
N4 ¬r1(C ) if and only if M, w �+

DN4 ¬r2(C ).

We need to show

M, w �+
N4 ¬(r1(B) ∧ r1(C )) if and only if M, w �+

DN4 ¬(r2(B) ∧ r2(C )).

For the left-to-right direction, assume M, w �+
N4 ¬(r1(B) ∧ r1(C )). Suppose that

M, w′ �+
DN4 r2(B) ∧ r2(C ) for w′ ≥ w. Then if M, w′′ �+

N4 ¬r1(B) for w′′ ≥ w′,
by I.H. M, w′′ �+

DN4 ¬r2(B), a contradiction. Hence M, w′ �+
N4 ¬¬r1(B). Similarly

M, w′ �+
N4 ¬¬r1(C ). Consequently M, w′ �+

N4 ¬¬(r1(B) ∧ r1(C )), another contra-
diction. Therefore M, w �+

DN4 ¬(r2(B) ∧ r2(C )). The converse direction is analogous.
If A ≡ B ∨ C , then ri(A) = ri(B) ∨ ri(C ) for i ∈ {1, 2}. We have the same I.H. as

the previous case. We need to show

M, w �+
N4 ¬(r1(B) ∨ r1(C )) if and only if M, w �+

DN4 ¬(r2(B) ∨ r2(C )).

For the left-to-right direction, assume M, w �+
N4 ¬(r1(B) ∨ r1(C )). Then M, w �+

N4
¬r1(B) and M, w �+

N4 ¬r1(C ). Hence by I.H. M, w �+
DN4 ¬r2(B) and M, w �+

DN4
¬r2(C ). Therefore M, w �+

DN4 ¬(r2(B) ∨ r2(C )). The converse direction is analogous.
If A ≡ B → C , then ri(A) = ri(B) → ri(C ) for i ∈ {1, 2}. We have the same I.H.

as the previous case. We need to show

M, w �+
N4 ¬(r1(B) → r1(C )) if and only if M, w �+

DN4 ¬(r2(B) → r2(C )).
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For the left-to-right direction, assume M, w �+
N4 ¬(r1(B) → r1(C )). Suppose

M, w′ �+
DN4 r2(B) → r2(C ) for w′ ≥ w. Then if M, w′′ �+

N4 ¬r1(C ) for w′′ ≥ w′,
by I.H. M, w′′ �+

DN4 ¬r2(C ). Hence by our supposition M, w′′ �+
DN4 ¬r2(B). By

I.H. again, M, w′′ �+
N4 ¬r1(B). Thus M, w′ �+

N4 ¬r1(C ) → ¬r1(B). So M, w′ �+
N4

¬¬(r1(B) → r1(C )), which contradicts with our assumption. Therefore M, w �+
DN4

¬(r2(B) → r2(C )). The converse direction is analogous.
If A ≡ ∼B , we argue by induction on the complexity of B.
If B ≡ p, then ri(A) = ∼p for i ∈ {1, 2}. We have M, w �+

N4 ¬∼p if and only if
∀w′ ≥ w(w′ /∈ V–(p)) if and only if M, w �+

DN4 ¬∼p.
If B ≡ ⊥, then r1(A) = r2(A) = ∼⊥, and M, w �+

N4 ¬∼⊥ and M, w �+
DN4 ¬∼⊥

never hold for any w.
If B ≡ C ∧D, then ri(A) = ri(∼C ) ∨ ri(∼D) for i ∈ {1, 2}. By I.H.

M, w �+
N4 ¬r1(∼C ) if and only if M, w �+

DN4 ¬r2(∼C ),

M, w �+
N4 ¬r1(∼D) if and only if M, w �+

DN4 ¬r2(∼D).

We need to show

M, w �+
N4 ¬(r1(∼C ) ∨ r1(∼D)) if and only if M, w �+

DN4 ¬(r2(∼C ) ∨ r2(∼D)).

The case is thus similar to the case A ≡ B ∨ C .
If B ≡ C ∨D, then ri(A) = ri(∼C ) ∧ ri(∼D) for i ∈ {1, 2}. We have the same I.H.

as the previous case. We need to show

M, w �+
N4 ¬(r1(∼C ) ∧ r1(∼D)) if and only if M, w �+

DN4 ¬(r2(∼C ) ∧ r2(∼D)).

The case is thus similar to the case A ≡ B ∧ C .
If B ≡ C → D, then r1(A) = r1(C ) ∧ r1(∼D) and r2(A) = ¬¬r2(C ) ∧ r2(∼D). By

I.H.,

M, w �+
N4 ¬r1(C ) if and only if M, w �+

DN4 ¬r2(C ),

M, w �+
N4 ¬r1(∼D) if and only if M, w �+

DN4 ¬r2(∼D).

We need to show

M, w �+
N4 ¬(r1(C ) ∧ r1(∼D)) if and only if M, w �+

DN4 ¬(¬¬r2(C ) ∧ r2(∼D)).

We first note that (because both formulas equal r2(∼D) → ¬r2(∼C ))

M, w �+
DN4 ¬(¬¬r2(C ) ∧ r2(∼D)) if and only if M, w �+

DN4 ¬(r2(C ) ∧ r2(∼D)).

Hence it suffices to show

M, w �+
N4 ¬(r1(C ) ∧ r1(∼D)) if and only if M, w �+

DN4 ¬(r2(C ) ∧ r2(∼D)).

Thus the case is similar to the case A ≡ B ∧ C .
If B ≡ ∼C , then ri(A) = ri(C ) for i ∈ {1, 2}. We need to show

M, w �+
N4 ¬r1(C ) if and only if M, w �+

DN4 ¬r2(C ),

which already holds by I.H.

In particular, the statement holds between N3 and DN3, since a model of N3 is a
model of N4. Then we can demonstrate the next theorem.
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Theorem 3.23.

(i) N3 � ¬A if and only if DN3 � ¬A.
(ii) N4 � ¬A if and only if DN4 � ¬A.

Proof. We look at the case for (ii). For the right-to-left direction, if DN4 � ¬A
then DN4 � ¬r1(A) by the analogue of Lemma 2.8 for DN4. Then DN4 � ¬r1(A)
by the soundness of DN4. Hence by the previous lemma, N4 � ¬r2(A). So by the
completeness of N4, N4 � ¬r2(A). Again by the analogue of Lemma 2.8, this time for
N4, we conclude N4 � ¬A. The converse direction holds analogously. The case for (i)
is similarly demonstrated.

Moving on to the next topic, a notable feature of N3 and N4 is that they do not
allow the contraposition of an implication.6 For DN3 and DN4(’), they are still not
provable. However it is provable in partial forms.

Proposition 3.24.

(i) DN3 � (¬A→ B) → (∼B → ∼¬A).
(ii) DN4(’) � (¬A→ ¬B) → (∼¬B → ∼¬A).

Proof. For (i), by a theorem of IPC,

DN3 � (¬A→ B) → (¬B → ¬¬A).

Then by (SN) and Proposition 3.19 we obtain the stated formula. For (ii), similarly we
have

DN4(’) � (¬A→ ¬B) → (¬¬B → ¬¬A).

Then use Proposition 3.19 for both ¬¬B and ¬¬A.

In comparison, N3 and N4 do not prove (¬A→ ¬B) → (B → A), so we can see
that the same restrictions do not work. On the other hand, we can derive (A→
B) → (∼B → ∼¬¬A) and (A→ B) → (∼¬¬B → ∼¬¬A) in N3 and N4, respectively.
However it is easy to check that each of the formulas is also derivable respectively in
DN3 and DN4. Hence DN3 and DN4(’) seem to fare better in this regard.

§4. Law of excluded middle for strong negation in DN4(’). As is well-known, the
addition of the law of excluded middle over intuitionistic logic defines classical logic.
Similarly, the addition of the law of excluded middle for strong negation, i.e.,

A ∨ ∼A
to N3 will result in classical logic, as the strong negation becomes identical to the
classical negation. The situation does not change when we move from N3 to DN3;
from A ∨ ∼A and ∼A→ ¬A, all the same we can derive both A ∨ ¬A and ∼A↔ ¬A.

More interesting are the cases for the systems DN4 and DN4’. What kind of systems
are obtained when we add A ∨ ∼A to these logics? For N4, the resulting system will
be the system CLuNs of Batens & De Clercq [2], as mentioned in [24]. CLuNs may be
seen as a three-valued logic, with the truth-tables (Table 1) given in terms of values

6 For some approaches to regain contraposition, cf. [14, 21].
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Table 1. Truth tables for CLuNs

A ∼ A
T F
I I
F T

A ∧ B T I F
T T I F
I I I F
F F F F

A ∨ B T I F
T T T T
I T I I
F T I F

A→B T I F
T T I F
I T I F
F T T T

{T, I,F}. The value of ⊥ is set to be F and the designated values for this semantics are
taken to be T and I.

That the above truth table works as a semantics for CLuNs means that A ∨ ¬A is
derivable in it, i.e., the fragment without ∼ is classical. Indeed, it is easily seen that
(A→ ¬A) ∨ ∼(A→ ¬A) derives the excluded middle with respect to the intuitionistic
negation. Here it is important that ∼(A→ ¬A) is equivalent to A.

Going back to DN4, the same formula ∼(A→ ¬A) is equivalent only to ¬¬A,
and as a result (A→ ¬A) ∨ ∼(A→ ¬A) derives only the weak law of excluded middle
¬A ∨ ¬¬A. This suggests the following axiomatization of the system DN4 + (A ∨ ∼A),
which we shall call DN4+.

Definition 4.25 (DN4+). The system DN4+ is defined by the following addition of
axioms to DN4.

¬A ∨ ¬¬A (WLEM)

A ∨ ∼A (SLEM)

We first note that as a proof system, DN4+ has a redundancy: it follows from our
discussion above that (WLEM) is provable from (SLEM). Our decision to include
(WLEM) in the list of axioms is motivated solely by the convenience it offers in
proving the completeness.

The semantics for DN4+ is obtained from that of DN4 by slight modifications.

Definition 4.26 (Kripke semantics for DN4+). The Kripke semantics for DN4+ is
defined from the one for DN4 by:

• the frames satisfy the condition

∀u, v, w(u ≥ w and v ≥ w implies ∃w ′(w ′ ≥ u and w ′ ≥ v)),

• the models satisfy the condition V+(p) ∪ V–(p) =W .

It is well-known (cf. [4, 9]) that the system defined by the addition of (WLEM) to
intuitionistic logic (to be denoted IPC + (WLEM)7) is sound and complete with the

7 In the literature, this famous intermediate logic is also known by the name KC.
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class of Kripke frames satisfying the above frame conditions. We shall utilize this fact
in order to prove the completeness for DN4+.

We begin with observing the soundness of DN4+.

Proposition 4.27. If DN4+ � A then DN4+ � A.

Proof. We argue by induction on the depth of deduction. It suffices to show that
w �+ A ∨ ∼A for all w and A. We show this by induction on the complexity of A.

When A ≡ p, then since V+(p) ∪ V–(p) =W , either

w �+ p or w �– p

for each w. Hence w �+ p ∨ ∼p for all w.
When A ≡ ⊥, since w �– ⊥, it follows that w �+ ⊥ ∨∼⊥ for all w.
When A ≡ A1 ∧ A2, by I.H.

w �+ A1 ∨ ∼A1 and w �+ A2 ∨ ∼A2.

If w �+ A1 and w �+ A2, then w �+ A1 ∧ A2. Otherwise, w �– A1 or w �– A2,
so w �– A1 ∧ A2. Hence w �+ ∼(A1 ∧ A2). Therefore either way, w �+ (A1 ∧ A2) ∨
∼(A1 ∧ A2).

When A ≡ A1 ∨ A2, we have the same I.H. as above. If w �+ A1 or w �+ A2,
then w �+ A1 ∨ A2. Otherwise, w �– A1 and w �– A2. So w �– A1 ∨ A2. Thus w �+

∼(A1 ∨ A2). Therefore w �+ (A1 ∨ A2) ∨ ∼(A1 ∨ A2).
When A ≡ A1 → A2, we wish to show

w �+ (A1 → A2) ∨ ∼(A1 → A2).

Assume otherwise. Then

w �
+ (A1 → A2) and w �

+ ∼(A1 → A2).

From the former, there is w′ ≥ w such that

w′ �+ A1 and w′
�

+ A2.

It follows then that w �
+ A2. From the latter, either

w �
+ ¬¬A1 or w �

– A2.

Now, by I.H.w �+ A2 ∨ ∼A2; but asw �
+ A2, we need to infer thatw �+ ∼A2. Thus

w �– A2, and so it cannot be the case that w �
– A2. Therefore w �

+ ¬¬A1. Hence
there is w′′ ≥ w such that for all w′′′ ≥ w′′, it holds that w′′′

�
+ A1. Then by the

frame property, there is u ≥ w′, w′′ such that u �+ A1 and u �+ A1, a contradiction.
Therefore w �+ (A1 → A2) ∨ ∼(A1 → A2).

When A ≡ ∼A1, by I.H. we have w �+ A1 ∨ ∼A1. Hence w �+ ∼A1 ∨ ∼∼A1.

Corollary 4.28 (Conservative extension). Let A be a formula in the language of
IPC. Then DN4+ � A implies IPC + (WLEM) � A.

Proof. By soundness, if DN4+ � A then DN4+ � A. Let M be a model of IPC
+ (WLEM). Then we can define a model M′ of DN4+ from M by stipulating
V–(p) =W . Then since the forcing of A does not rely on V–, M′ � A implies M � A.
Thus IPC + (WLEM) � A; so IPC + (WLEM) � A by the completeness of IPC +
(WLEM).

Next we move on to prove the completeness. The argument is similar to that of DN3.
First, we look at the analogue of Lemma 2.9.
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Lemma 4.29. If DN4+ � A, then DN4+ � r(A); moreover, one may assume all the
formulas in the proof are reduced. (That is, it has a reduced proof.)

Proof. We argue by induction on the depth of derivation. It suffices to check the
case for the axiom (SLEM). This we show by induction on the complexity of A.

When A ≡ p, then r(p ∨ ∼p) is p ∨ ∼p, which is an instance of (SLEM). Similarly
when A ≡ ⊥.

When A ≡ A1 ∧ A2, then r(A ∨ ∼A) is

(r(A1) ∧ r(A2)) ∨ (r(∼A1) ∨ r(∼A2)).

By I.H., there are reduced proofs of

r(A1) ∨ r(∼A1) and r(A2) ∨ r(∼A2),

and so we can also obtain a reduced proof of r(A ∨ ∼A).
When A ≡ A1 ∨ A2, the argument is similar to the previous case.
When A ≡ A1 → A2, r(A ∨ ∼A) is

(r(A1) → r(A2)) ∨ (¬¬r(A1) ∧ r(∼A2)).

By I.H. there is a reduced proof of r(A2) ∨ r(∼A2). In addition, ¬r(A1) ∨ ¬¬r(A1) is
an instance of (WLEM). Thus there is a reduced proof of r(A ∨ ∼A).

When A ≡ ∼A1, then r(A ∨ ∼A) is r(∼A1) ∨ r(A1), which has a reduced proof by
I.H.

We shall next show the analogue of Proposition 2.10. For this purpose, given a
reduced formula A[∼p1, ... ,∼pn], we define a formula

F :=
∧

1≤i≤n
(pi ∨ qi).

Proposition 4.30. LetA[∼p1, ... ,∼pn] be a reduced formula. Then the following are
equivalent.

(i) DN4+ � A[∼p1, ... ,∼pn].
(ii) IPC + (WLEM) � F → A[∼p1, ... ,∼pn/q1, ... , qn].

Proof. From (i) to (ii), we argue by induction on the depth of derivation in DN4+.
It suffices to show the case for (SLEM). Then A has to be prime.

When A ≡ pi , we have DN4+ � pi ∨ ∼pi . Correspondingly, IPC + (WLEM) �
(pi ∨ qi) → (p ∨ (∼pi [∼pi/qi ])).

When A ≡ ⊥ We have DN4+ � ⊥ ∨ ∼⊥. Correspondingly, IPC + (WLEM) � ⊥ ∨
∼⊥.

From (ii) to (i), the argument is as in Proposition 2.10.

Now we are ready to conclude the completeness proof.

Theorem 4.31. If DN4+ � A then DN4+ � A.

Proof. Our argument is mostly identical to Theorem 2.13. Instead of Lemma 2.9
and Proposition 2.10, we use Lemma 4.29 and Proposition 4.27. In addition, we appeal
to the completeness of IPC + (WLEM). Finally, to see that the constructed model of
DN4+ satisfies the condition that V+(p) ∪ V–(p) =W . it suffices to observe that the
original model of IPC + (WLEM) validates pi ∨ qi .
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Comparing DN4+ to CLuNs, it may be taken as advantageous that (SLEM) does
not necessitate the full law of excluded middle in the former. For instance, one may
wish to introduce a decidable notion of negation while keeping the constructive setting
as much as possible.8

We next look at the case for DN4’. For this purpose we define a new system DN4’+.

Definition 4.32 (DN4’+). The system DN4’+ is defined by the addition of (SLEM) and
the next axiom to DN4’.

A ∨ ¬A (LEM)

This time, as was the case for N4, we require (LEM) to be derivable in the system,
thus committing to a less constructive principle than DN4+. It does not mean, however,
that DN4’+ becomes identical to CLuNs, as we shall see below.

The Kripke semantics for DN4’+ is quite similar to the semantics for classical logic.

Definition 4.33 (Kripke semantics for DN4’+). The Kripke semantics for DN4’+ is
defined from the one for DN4’ by:

• the frames satisfy the condition

W = {w},
• the models satisfy the condition V+(p) ∪ V–(p) =W .

Then we start with the soundness of the semantics with respect to DN4’+.

Proposition 4.34. If DN4’+ � A then DN4’+ � A.

Proof. We show by induction on the depth of derivation. We concentrate on the case
for (SLEM), with A ≡ A1 → A2. In this case, by I.H.

w �+ A1 ∨ ∼A1 and w �+ A2 ∨ ∼A2.

Now if w �
+ A1 → A2 and w �

+ ∼(A1 → A2), then w �+ A1 and w �
+ A2 from

the former. Also, w �
– A1 → A2 from the latter; so w �

+ ¬(A1 → A2) or w �
– A2.

But the former means w �+ A1 → A2, a contradiction. On the other hand, the latter
meansw �

+ A2 ∨ ∼A2, another contradiction. Thereforew �+ (A1 → A2) ∨ ∼(A1 →
A2).

Next we shall treat the completeness direction. The outline is identical to that of
DN4+.

Lemma 4.35. If DN4’+ � A, then DN4’+ � r(A); moreover, one may assume all the
formulas in the proof are reduced.

Proof. Again, it suffices to check the case for (SLEM), and we concentrate on the
case A ≡ A1 → A2. Then

r((A1 → A2) ∨ ∼(A1 → A2)) = (r(A1) → r(A2)) ∨ (¬(r(A1) → r(A2)) ∧ r(∼A2)).

By I.H., there is a reduced proof of r(A2) ∨ r(∼A2), and thus of (r(A1) → r(A2)) ∨
r(∼A2). Moreover, (r(A1) → r(A2)) ∨ ¬(r(A1) → r(A2)) is an instance of (LEM).
Hence there is a reduced proof of

(r(A1) → r(A2)) ∨ (¬(r(A1) → r(A2)) ∧ r(∼A2)).

8 An example of this type of attitude can be found in [6].
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Table 2. Truth table of implication for DN4’+

A→B T I F
T T T F
I T T F
F T T T

Let CPC to be the formalization of classical logic, defined as IPC + (LEM).

Proposition 4.36. LetA[∼p1, ... ,∼pn] be a reduced formula. Then the following are
equivalent.

(i) DN4’+ � A[∼p1, ... ,∼pn].
(ii) CPC � F → A[∼p1, ... ,∼pn/q1, ... , qn].

Proof. Analogous to Proposition 4.30.

Theorem 4.37. If DN4’+ � A then DN4’+ � A.

Proof. Analogous to Theorem 4.31.

Having established the completeness, we shall see how the semantics for DN4’+
compares to that of CLuNs in terms of truth tables.

We shall define an assignment A to be a mapping from the set of prime formulas to
the set of truth values {T, I,F}. We in particular set A(⊥) := F.

The truth value for a general formula is determined by the truth tables for each of
the connectives. The truth tables for conjunction, disjunction and strong negation are
identical to those of CLuNs. Table 2 gives the table of implication for DN4’+.

The only changes from the truth table of implication for CLuNs are when the
antecedent of an implication has the value T or I, and the succedent the value I. As a
consequence, an implication always has the value T or F9.

We define the validity with respect to the truth tables, to be denoted with �3, by the
next clause.

�3 A iff for all assignment A,A(A) ∈ {T, I }.
We shall now establish the correspondence of the truth tables with the Kripke

semantics.

Lemma 4.38. Let M be a model of DN4’+. Define an assignment AM by:

AM :=

⎧⎪⎨
⎪⎩

T if M, w �+ p and M, w �
– p,

I if M, w �+ p and M, w �– p,

F if M, w �
+ p and M, w �– p.

Then the following statements hold.

(i) AM(A) = T iff M, w �+ A and M, w �
– A.

(ii) AM(A) = I iff M, w �+ A and M, w �– A.
(iii) AM(A) = F iff M, w �

+ A and M, w �– A.

9 We note that an identical table is used in [27].
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Proof. By induction on the complexity of A.

For the converse direction, we have the following lemma.

Lemma 4.39. Let A be an assignment. Define a DN4’+ model MA by:

w ∈ V+(p) if A(p) = T or I,
w ∈ V–(p) if A(p) = F or I.

Then the following statements hold.

(i) MA, w �+ A if and only if A(A) = T or I.
(ii) MA, w �– A if and only if A(A) = F or I.

Proof. By induction on the complexity of A. We look at the case whenA ≡ A1 → A2.
For (i) and (ii), we observe the following equivalences.

(i) MA, w �+ A1 → A2 ⇔ MA, w �
+ A1 or MA, w �+ A2.

⇔ A(A1) = F or A(A2) �= F.
⇔ A(A1 → A2) = T (or I).

In the last equivalence, note it is impossible that A(A1 → A2) = I.

(ii) MA, w �– A1 → A2 ⇔ MA, w �+ ¬(A1 → A2) and MA, w �– A2.

⇔ (A(A1) = T or I) and A(A2) = F.
⇔ A(A1 → A2) = F (or I).

Therefore we can establish the desired correspondence.

Theorem 4.40. DN4’+ � A⇔�3 A.

Proof. For the left-to-right direction, if A is an assignment, then by assumption,
MA, w �+ A. Thus by Lemma 4.39, A(A) = T or I. Therefore �3 A.

For the right-to-left direction, if M is a model of DN4’+, then by assumption
AM(A) = T or I. Thus by Lemma 4.38, M � A. Therefore DN4’+ � A.

Having obtained the completeness of DN4’+ with the three-valued truth-tables, a
natural question now would be to ask what may be the sense of the tables. In this
respect, it is helpful to note that the same tables are used in [5] as a semantics for the
logic LPT, which is defined by (K), (S), (CI), (CE), (DI), (DE), (FF), (SLEM) and
the following axioms, with the rule (MP).

• A ∨ (A→ B),
• ◦A→ (A→ (∼A→ B)),
• ∼ ◦A→ (A ∧ ∼A),
• ◦(A→ B),
• ◦A ∧ ◦B → ◦(A ∧ B),
• (A ∧ ∼A ∧ B) → ∼(A ∧ B) ∧ ∼(B ∧ A),

where ◦ := ¬(A ∧ ∼A) is what is known as the consistency operator.
LPT is designed to capture the notion of quasi-truth, which was originally introduced

in [17]. Its setting differs from ours only in that they take ⊥ and ∨ as defined by
the clauses ⊥ := ∼(A→ A) and A ∨ B := ∼(∼A ∧ ∼B). We shall see the precise
correspondence of the two systems.
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Lemma 4.41.

(i) DN4’+ � ⊥ ↔ ∼(A→ A) and DN4’+ � ∼⊥ ↔ ∼∼(A→ A).
(ii) DN4’+ � (A ∨ B) ↔ ∼(∼A ∧ ∼B) and DN4’+ � ∼(A ∨ B) ↔ ∼∼(∼A ∧

∼B).

Proof. Straightforward.

Then we appeal to the well-known replacement rule for strong negation (cf. for
instance [22, proposition 8.1.3]). Let ∗ be a fixed propositional variable taking a
position in a formula C. (That is, ∗ occurs once in C.)

Lemma 4.42. If DN4’+ � A↔ B and DN4’+ � ∼A↔ ∼B , then DN4’+ �
C [∗/A] ↔ C [∗/B].

Proof. By induction on the complexity of C.

The above lemmas imply that occurrences of ⊥ and disjunctions in a formula can be
replaced with equivalent formulas without the connectives. Then it is straightforward
to observe the following.

Proposition 4.43. DN4’+ � A if and only if LPT � A′, where A′ is a formula in the
language of LPT (i.e., without ⊥,∨) satisfying DN4’+ � A↔ A′.

Proof. If LPT � A′, then DN4’+ � A′ by the completeness of LPT with respect to
the truth-tables [5, theorem 5.12] and Theorem 4.40. On the other hand, if DN4’+ � A,
then by the above lemmas, there is a formula A′ in the language of LPT such that
DN4’+ � A↔ A′. Then again by completeness, LPT � A′.

§5. Connexivizing the variants.. Having looked at the behavior of strong negation in
DN3 and DN4(’), one natural development would be to consider how a similar change
would affect the sibling notion of connexive negation in the system C of Wansing [32].
C may be obtained10 from N4 by changing the falsity condition of implication to

∼(A→ B) ↔ (A→ ∼B).

That is to say, by replacing ∧ with → in the condition. Then the contra-classical
principles called Aristotle’s theses and Boethius’ theses below become valid.

∼(∼A→ A) (AT)

∼(A→ ∼A) (AT’)

(A→ B) → ∼(A→ ∼B) (BT)

(A→ ∼B) → ∼(A→ B) (BT’)

When we consider similar alternations in the falsity condition for implication, we have
a choice between starting from DN4-type or DN4’-type falsity condition. Selecting the
latter would mean employing the axiom

∼(A→ B) ↔ (¬(A→ B) → ∼B).

10 Note however that ⊥ is absent from the language in the original formulation.
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This however does not seem satisfactory, because this would imply the
derivability of

(A→ B) → ∼(A→ B),

that is to say all implication implies its falsity, which is odd and rather strong. DN4-type
condition, on the other hand, gives rise to the next axiom

∼(A→ B) ↔ (¬¬A→ ∼B).

Then one may ask whether Aristotle’s and Boethius’ theses hold as in C. Now in our
setting, these are equivalent to:

• ¬¬∼A→ ∼A,
• ¬¬A→ A,
• (A→ B) → (¬¬A→ B),
• (A→ ∼B) → (¬¬A→ ∼B).

Therefore we observe that the validity of the connexive theses in this formulation is tied
with the validity of non-constructive principles such as double negation elimination.
This is a rather interesting phenomenon in that it ties contra-classical characteristics
for negation with classical characteristics, thus offering a different view of connexivity
from that of C.

If we restrict A to be of the form ¬A, then (AT)–(BT’) indeed hold, but this rests on
the fact that ∼(A→ ⊥) is a theorem for any A. This is an odd feature, and one may
wish not to have ⊥ in the language for this reason, as the original formulation did not.
A possible remedy then is to change the language to a modal language L�

A ::= p | �A | A ∧ A | A ∨ A | A→ A | ∼A,
with the modal axioms for double negation in [3, 28]:

�(A→ B) → (�A→ �B) (M1)

A→ �A (M2)

�(((A→ B) → A) → A) (M3)

�(�A→ A) (M4)

We can set the falsity conditions for implication and modal formulas to be

• ∼(A→ B) ↔ (�A→ ∼B),
• ∼�A↔ �∼A.

Then for formulas of the form �A, (AT)–(BT’) become equivalent to the following:

• �∼�A→ ∼�A,
• ��A→ �A,
• (�A→ �B) → (��A→ �B),
• (�A→ ∼�B) → (��A→ ∼�B),

which all hold. (Note ��A↔ �A because ¬¬¬¬A↔ ¬¬A.) Therefore even when we
adopt the DN4-type condition, one can retain connexivity with respect to the formulas
of form �A, i.e.,
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• ∼(∼�A→ �A),
• ∼(�A→ ∼�A),
• (�A→ �B) → ∼(�A→ ∼�B),
• (�A→ ∼�B) → ∼(�A→ �B).

In the above, one may also take ¬ to be primitive and alter the falsity condition
for ¬A to

∼¬A↔ ¬∼A

in order to obtain a similar result.11 Here one might argue that such a move is
unwarranted, because the falsity condition for ¬A should not be different from that
of A→ ⊥, for semantically their truth conditions are equivalent. We may, however,
associate a different truth condition for intuitionistic negation. For example, Došen
[8] observes that the intuitionistic negation may be seen as a modal operator with a
modal accessibility relation R (with certain conditions imposed), s.t.

w � ¬A⇐⇒ ∀w′(wRw′ ⇒ w′
� A).

From such a point of view, it does not appear as justified that the above falsity condition
for primitive negation should be identical to that of A→ ⊥. Similarly, for � the truth
condition in [3] is given by ∀w′(wRw′ ⇒ w′ � A), which when looked independently
does not seem to support that the corresponding falsity condition should be that of
(A→ ⊥) → ⊥.

§6. Concluding remarks. In this paper, we looked at the strong negation of Nelson–
Markov, and identified the problem that the falsity condition for implication does
not reflect the intuitionistic equivalence between ¬(A→ B) and ¬¬A ∧ ¬B . For this
reason we set up the systems DN3 and DN4(’) by replacing A in the falsity condition
with ¬¬A. We established the soundness and completeness of the systems with respect
to Kripke semantics, and then made comparisons with N3 and N4.

From the results we obtained, it is possible to summarize the advantages of DN3
and DN4(’) over N3 and N4 as follows.

• DN3 and DN4 refute strictly more propositions in the language of intuitionistic
logic.

• More general forms of contraposition are available in DN3 and DN4(’).
• Unlike N4, adding A ∨ ∼A to DN4 does not force A ∨ ¬A to be valid.

For these reasons, we wish to claim that our systems are improvements over N3 and
N4, at least if one believes that strong negation should resemble intuitionistic negation
as much as possible (while retaining the constructive falsity property).

In addition to the above, our observations included that the provability of proposi-
tions of the form ¬A in N3 (N4) corresponds with that of DN3 (DN4); how DN4’ may
be seen as a generalization of a logic of quasi-truth; and how the resulting systems fare
with connexivity when a change is made corresponding to that of DN4 to C.

For the future works, an obvious direction would be to consider the predicate
extension of DN3 and DN4(’). It is expected that not all of the observations we made
in this paper are replicable in the predicate logic, at least because we appealed to a

11 We note that the negation of the system BDi in [12] satisfies this condition.
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Glivenko-like proposition. Therefore it is interesting to study how much of our results
can be elevated to the predicate level. It is also worthwhile to explore whether the
change in the falsity condition for implication creates a difference that is unique to the
predicate language.

Another fruitful direction would be to relate DN4’ with the notion of quasi-truth.
We started from the notion of strong negation and reached DN4’+. It is then a natural
question to ask whether one can start from the theory of quasi-truth and shed light on
DN4’ from that perspective. In particular, it should be of considerable interest if one
could give an interpretation of the difference between DN4 and DN4’ through such a
route.

Finally, it is intriguing to ask how the same change in the falsity condition would
affect the logic of contraposable strong negation explored in [21], which is recently
studied in depth in [18, 19].
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