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Abstract

This paper extends results on product varieties of groups to inverse semigroups. We show that
if 2? is a variety of groups and '/'"any inverse semigroup variety, then 'S oi^"is a variety. We
give a characterization of the identities of 3? o f in terms of the identities of 9 and of "K
We show that if '/'"does not contain the variety of all groups then it has uncountably many
supervarieties. Finally we show that if J^is another variety of groups then

Subject classification (Amer. Math. Soc. {MOS) 1970): 20 M 05.

1. Introduction

An inverse semigroup may be defined as an algebra of type (2,1 > with binary
operation (x,y)->x-y (multiplication) and unary operation x^-x-1 (taking
inverses), satisfying the following set of identities:

1. x-(y-z) = {x-y)-z.

2. x-x^-x = x.

3. x-1-x-x-1 = x~1.

4. x^-x-yy1 = yy~1-x~1-x.

It is not difficult to see that the class of all such algebras is in fact the class of all
inverse semigroups. This class is a variety and will be denoted by JSf. The lattice
of all subvarieties of JSf is denoted by y(JSf) and if °U and V are subvarieties
of JSf with W^-r then ^'(%,ir) denotes the lattice of all varieties W such that

We will denote the set of identities of a variety T^ by Id (JT).

This work was partially supported by a Monash Graduate Scholarship and forms part of
the author's M.Sc. thesis.
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108 J. L. Bales [2]

The class of all semilattices 3&x, x forms a subvariety of Jf7 and within J¥ has
the basis x = x2. Also any variety of groups is a subvariety of J91. The variety
of all groups 'Sfi has as basis the identity xx~x = yy~x.

Following from the theorem of Petrich (1975) we have that for a variety of groups
^, (8\/3ft-y;L is the variety of semilattices of groups whose groups are in *&. A
basis for the variety of all semilattices of groups, <&£ v ^ ^ is given, within J£f, by

or by

xx~l = x~* x,

xx~ry = yxx~x.

The free inverse semigroup on a countable set of generators in a variety "f is
denoted by Fx{f^ and we put FX = FX(JF&7) where X = {xl,x2,...}. Further
notation follows Clifford and Preston (1961, 1967) and Gratzer (1968) unless
otherwise stated.

In her book Hanna Neumann (1967) defines the product of two varieties of
groups % and "f as the class of all groups that are extensions of a group in % by
a group in "T. This class is a variety. Maltsev (1967) extended this to arbitrary
classes of algebras.

DEFINITION 1.1. If <̂  and "T are subclasses of a class JT then the product
fflojf.'f is defined as consisting of the algebras A from J f such that for some
congruence 6 on A, Ajde^ and each 0-class which is a subalgebra of A is in Ql.

If °U and "V are subvarieties of a variety Jf" then fyo^y is not necessarily a
variety (see Maltsev (1967)). For inverse semigroup varieties we see this from the
following example.

EXAMPLE 1.2. The maximal group congruence a on Fx, X = {xv x2,...}, has
kernel E(FX), the semilattice of idempotents of Fx, and Fx\o%Fx{^Sf). (This
follows from the characterizations of Fx by Scheiblich (1973) and Munn (1974).)
Thus Fxe&ltl ojy @ft. But every countable inverse semigroup is a homomorphic
image of Fx but certainly not all are extensions of a group by a semilattice.

However, Maltsev proves the following theorem for quasivarieties.

THEOREM 1.3. (Maltsev (1967), Theorem 5.) For a quasivariety X of finite type
the product of two subquasivarieties is a quasivariety.

In the product of two inverse semigroup varieties ci(of9,'f
r we will from now on

drop the subscript
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[3] On product varieties of inverse semigroups 109

2. On congruences

In this section we develop a theory of fully invariant congruences needed for the
proof of the later theorems. First we summarize some results from Clifford and
Preston (1967), Chapter 7.

DEFINITION 2.1. A kernel normal system s# = {At: iel} of an inverse semigroup
S is a set of disjoint inverse subsemigroups At of S such that

(i) for each eeE(S), eeAt, for some Ateji/;
(ii) a Aiarl-<^.Ai, for each aeS, A^stf, for some ye 7.
(iii) If a, ab, bb~xe At then b e At, for every a,beS and At esi.
A kernel normal system s/ on an inverse semigroup defines a congruence

denoted by p^. This is given by

P* = {{a,b)eSxS\aa-1,bb'1,ab-1 eAt, for some ieI}.

Differing from Clifford and Preston, we define the kernel of p^ to be the union
of the At. That is,

= \J{ePj,:eeE(S)}.

If p is an idempotent separating congruence then Ker p is a semilattice of groups.

THEOREM 2.2. (Clifford and Preston (1967), Theorem 7.54.) Let E be the set of
idempotents of an inverse semigroup S. For each eeE denote by He the maximal
subgroup of S with identity element e and take any subgroup Ne of He. Put
jr = {Ne: eeE} and N = \J {Ne: eeE}. Then JV is a kernel normal system of S
if and only if(i) N is a subsemigroup of S and (ii) a*1 Na<^ N for all aeS.

Clearly p^ is idempotent-separating. The collection JV is called a group kernel
normal system. To each group kernel normal system there corresponds a unique
idempotent separating congruence. The maximum idempotent separating con-
gruence /x = fis on an inverse semigroup 5 is given by Howie (1964) as
fi. = {(x,y)eSxS: x~xex = y-1 ey for all eeE}.

DEFINITION 2.3. Let S be an inverse semigroup.
(i) A congruence p is fully invariant on S if and only if for each endomorphism

<p of S, and for all x, y e S, if xpy then {x<p) p(y<p).
(ii) An inverse subsemigroup A of S is fully invariant in S if and only if for each

endomorphism <p of S, A<p^A.
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For groups these definitions are 'equivalent' as there is a one-to-one corre-
spondence between normal subgroups and the congruences. This is not so,
however, even for semilattices in general, as shown by the following example.

EXAMPLE 2.4. Take the unique three element semilattice 5 = {x, y, 0} with zero
0 and with xy = 0, and let p be the congruence given by xp = 0p = {0, x} and
yp = {y}. Then Ker p = S and so it is fully invariant in S. But p is not fully invariant
on S; take <p an endomorphism of S given by x<p = y, y<p = x and 0<p = 0. Then
we have Opx, but 0<p = 0, x<p = y and 0 is not p-equivalent to y.

In the general case we have the following result.

LEMMA 2.5. If p is a fully invariant congruence on an inverse semigroup S then
Kerp is fully invariant in S.

PROOF. Let aeKerp = K and 9?eend(S). Then ape, for some eeE{S) and so
(a<p) p(e<p) as p is fully invariant. But e<peE(S) and so acpeK. Thus A p S ^ a n d
K is fully invariant in S.

THEOREM 2.6. Let p be an idempotent separating congruence on an inverse semi-
group S. Then p is fully invariant if and only if Ker p is fully invariant.

PROOF. Necessity follows from the above lemma. To show sufficiency let
K= Kerp be fully invariant in S and yeend(S). Then Kp^K. Take any x,yeS
such that xpy. Then from Theorem 2.2, K= \J{Ke\eeE(S)} where each Ke is a
group.

Now we have xx~x pyy~x pxy~x and so xx~x, yy~x, xy~xeK. So xx~1 = yy~1

and yy~x^Cxy~x as p is idempotent generating. Thus

xpixp)-1 = (xx-1) <p = (yy-1) <p = (y<p) ( jp)"1

and

) 9)-1 = (xy1 yx-1) <p = (xx~l) y,

- 1 (xy-1) <p = (yx-1 xy1) y = (yy-1) <p = (xx-1) <p.

Thus (xy-1)?eH(xx-i)v f)K<psH(xx-1)v f] K. So

(xy)(xy)-\ (yy)(yy)-1, (x^fy^eK^-i^ and (xy)p(yy)

by the definition (2.1) of p.

LEMMA 2.7. If A is fully invariant in S and B is fully invariant in A then B is fully
invariant in S.
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PROOF. For <psend(5) we have A<pzA and (p\Aeend(A) and so B<p\A^B. For
any beB^A,b<p = b<p\AeB<p\A<=,B. Thus B<p^B.

LEMMA 2.8. If p is an idempotent separating congruence on S and N is any fully
invariant full inverse subsemigroup of Ker p then N is the kernel of a group kernel
normal system on S.

PROOF. AS N is a full inverse subsemigroup of Ker p and Ker p is a semilattice
of groups, it suffices to show that s~xNsc.N for all se S, by Theorem 2.2. Let seS
and K= Ker p. Define <p: K~>K by k<p = s^ks. Then <p is a homomorphism since

(s-1 ks)-1 = s-1 k'1 s = k~1<p for all k e K,

and (s-1fcs)(.s-1/j) = s^kls = (kl)<p for all fc, / e A", as T̂ is a semilattice of groups.
Now N is fully invariant and so s~*Ns = N<p^N, completing the proof.

We now define verbal inverse subsemigroups, parallel to the case for groups
(Neumann (1967), Chapter 1).

DEFINITION 2.9. Let W be a set of inverse semigroup identities on an alphabet X
say and let 5 be an inverse semigroup. The verbal inverse subsemigroup W(S) of
S is the inverse subsemigroup generated by

w(S) = {(ab-^ala = b is an identity in Wand aeHorn(Fx.S)},

where Fx denotes the free inverse semigroup on X.

LEMMA 2.10. For any inverse semigroups S and S" and any homomorphism
<p: S^-S' we have W(S)<p<Z W(S'). In particular, W(S) is a fully invariant inverse
subsemigroup of S.

PROOF. Take any xew(S). Then x = (ab-^a for some identity a = b from W
and for some a e Horn (Fx, S). But ay £ Horn (Fx, S') and so x<p = (ab-1) <xf e w(S')
giving that w{S)<p^ w(S'). Therefore W(S)<p^ W(S') as required.

In particular, if S = S' then W(S)<p^ W(S) and so W(S) is a fully invariant
inverse subsemigroup of S.

A set of identities is said to be closed if it contains all its consequences, that is,
if it is the set of identities of some variety.

LEMMA 2.11. If W is a closed set of identities and S is an inverse semigroup then
W(S) = w(S).
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PROOF. We will show that w(S) is an inverse subsemigroup of S. Let (ab'1) a,
(cd-x)Pew(S), where a = a(x1,...,xn), b = b(x1,...,xn), c = c(xv ...,xm),
d = d(xx,...,xm) and a = b and c = dare laws in W, and a,/?eHorn(Fy,5), where
X = {xj, x2, . . .}. Let <p 6 Horn (Fx, S) be the unique extension of

Xi-nP> i = n+l,...,

xx a, otherwise.

Also let c = c(xn+x, ...,xn+m) and d = d(xn+1, ...,xn+rn). Then c = J i s an identity
in W.

Also, ab'1 = Z^"1 and cc - 1 = dc~x are in IF and so ab~x cc~x = ife"1 cc~x is in W.
But bb^cc'1 = cc^bb'1 and cc^bb'1 = dc~xbb-x are in JF. Thus

(1) oft-1 cc-1 = dc-1 bb-1 is in W.

Hence

(a*-1 a) • (cd-1 p) = (ab-1 f) • (cd-1 <p)

= (ab-1 • bb-1 • cc-1 • cd-1) <p

= (ab-1 cc-1 • bb-1 cd~x) <p

and this is an element of w(S) by (1).
Finally, (ab^a)'1 = (ba-1)<xew(S) as b = a is in W. Thus w(S) is an inverse

subsemigroup and so w(S) = W(S).

3. Products of varieties

First we simplify Definition 1.1 for inverse semigroups.

LEMMA 3.1. For any varieties <%,ir of inverse semigroups, the product ^oY"
contains precisely those inverse semigroups S such that for some congruence d on S,
S/Oe-f" and e0e<%,for each idempotent e of S.

PROOF. By Lemma 7.34 of Clifford and Preston (1967), for any congruence 8
on any inverse semigroup S, a #-class is an inverse subsemigroup of 5 if and only
if it contains an idempotent.

THEOREM 3.2. IfiT^Sy and <g*k<3fr then ISoY is a variety.
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PROOF. By Theorem 1.3, ^ o f is a quasivariety and so it suffices to show that
it is closed under the taking of homomorphic images. Let Se&o'f and let 6 be a
congruence on S such that S/de^T and ede&, for all eeE(S). The kernel of 6,
denoted by K, is the semilattice of the groups, K= \J{ed: eeE{S)}, and 9 is
idempotent- separating. Let ifi be a homomorphism of S and T = Sif>. Then A = Ai/r
is an inverse subsemigroup of T. Since &v&ltl is the variety of similattices of
groups in & we have Ae@v ^§X1 and so A is a semilattice of groups of <&. Let ^
be the subgroup of A with identity feE{T), and let j ^ = {Af: feE(T)}. Then for
any / s J , aeA,

t~lat = s'1 ifiktf/sifi (for some s e S, k e K)

as K is the kernel of 0. Thus, by Theorem 2.2, s/ is the kernel normal system of a
congruence p on T. Now define the map $: S/d^-T/p by (s0)iji = (sifi)p for all

We show that $ is well-defined. If s8 = s16 for s, sxeS then

So jjf1, ^Jf1, ssr^eed, for some ee.E(S). Hence ss^tfi, s^1^, ss-1ifie(e6)tf).
But (eff)tfi^Af where/= ê >; so {s^s^e p and $ is well-defined. Further, $
is a homomorphism as p is a congruence and tft a homomorphism. Thus

COROLLARY 3.3. Suppose @,jr^@/i andy^jy but that "V does not contain
all groups. Then yo-r^tfoV if and only ifS^tf. Hence <So-f = J f o l ^ if and
only if'0 = 3?'.

PROOF. If <& < 3V then it is clear that % o y < j f o "T. Conversely, i
we have

Also -rn<Sfi±<Sfi and so by Neumann (1967), 21.21 we have

COROLLARY 3.4. Tjfif < / y anrfT "̂ rfoej no? contain all groups then &(?", 'Sfio'V)
is uncountable.

PROOF. By the preceding corollary, to each variety of groups IS there corresponds
a distinct variety 0 'of . Thus, as there are uncountably many varieties of groups
(Vaughn-Lee (1970)), &(f,9/to1r) is uncountable.
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REMARK 3.5. Using the definition of the wreath product of two inverse semi-
groups given by Houghton (1976), Section 3, it can be shown that IS <>y is generated
by the wreath product W = W(FX (&), FY(r)) for X = (xlt x2,...),Y= {yv y2,...).

We will now give a characterization of a basis of the identities of 'St,"V. The
identities of a variety of groups can be considered as words in the absolutely free
group on a countable set of generators (Neumann (1967), Chapter 1). Any inverse
semigroup identity u(xlf ...,xn) = v(x1,...,xn) is equivalent to a pair of identities

u(xv ...,xn)v-Hxlf ...,xn) = v(x1,...,xn)v-\xlt ...,xn)
and

u-\Xl,..., xn) ufo,..., xn) = v~\xlt..., xn) vixlf..., xn).

Thus there is a basis for Id (?*) consisting of identities of the form

ufa, ...,xn) = i(xv ...,xn)

where i(xlt ...,*m) is an idempotent element in the free inverse semigroup Fx on
the set {xt: i= 1,2,...}. We will use the notation x to denote a string of elements
xlt ...,xk of X.

THEOREM 3.6. Let <g*k<gfi andVik JSf. Then Se&o-fifandonly if Ssatisfies
all the identities of the form

where u(xlt ...,xn)eld(@) and VJ(XJ) = i/jc )̂ is an identity from IdOO with i
an idempotent ofFx.

PROOF. Let Se'&o'f and take an identity of the form given in the theorem.
Then there is a congruence 0 on S such that S/delT and ede& for each eeE(S).
Now taking strings Sj = sj sf{i) of arbitrary elements of 5 we have

nfoft). • •., vn(sj) e = ufaw e vn(sn) e)
= u(Vl(s\ e,...,s?™ e), ...,vn(s\ e, ...,*«<«> 6)).

But each vj(sj0,...,s^)d)eS/0eir and "T satisfies v£xj) = i£xi). Thus
vfa)eH§}) 0^Kei0 and so u(v^sj,..., vn(sn))eKer 0. Now let e = ^(4)•... • /n(in).
Then

(u(v1(sJ),...,vn(sn)),e)<=0
and so

uivjUsJ,...,vjsj)ee0, a group.

Now Ker 0 is a semilattice of groups and so

"(e-Vjisj) e-vn(sn))
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and e-Vj(Sj)eed. But u(xv ...,xn)eld(&) and so

u(vi(A), • • •, vn(sn)) = u(e• v^Sj), ...,e-vn(sn))

= e

This is true for all elements of S and so S satisfies the identity.

For the converse let 5 be an inverse semigroup satisfying all the identities of the
given form. Let Id ("*0 = V and put K = V(S) as defined in Section 2.9. Let
a(x) = b(x) be in V. We now show ( a ^ Z ^ - ^ a e K e r j n by showing that it is
/x-related, in S, to (b(x) bix)-1) a, an idempotent. Take any idempotent e e S; then
e = (xx*1) a. for some x e X.

Now let uiy^y^ = J i J ^ J^ j r 1 for j e Z . Then u(yx, j 2 )e ld(^) . Further, since
Fis closed it contains affibix)-1 = ^(^(jc)-1 and the trivial identity xx~* = xx"1.
Thus by the assumption we have that

is a law satisfied by S. Therefore, in the inverse semigroup S, we have

u(a(x) b(x)-\ xx-1) a = {b(x) b^x)'1 xx'1) a,
that is,

(a(Jc) ̂ (Jc)-1 xx-Kxx-1)-1 (a(jc) ̂ (Jc)-1)-1) a = (6(Jc) bix)-1 xx-1) a,

whence

giving us that (a(x) b^x)-1) a and (6(x) 6(x)-1) a are /tt-related, as required. Hence
(affibffl^aLeKeTfi. But as this is an arbitrary one of a set of generators of V(S)
we have F(S)sKer/i. Further we know that V(S) is fully invariant and full in S
and so by Lemma 2.8, V(S) is the kernel of an idempotent-separating congruence
p on S.

To complete the proof that Se&o-f" we now show that S/pe^ and that
fpe'S, for each idempotent feS.

Let w(x)(= u(xv...,xn)) be in Id(^) and let gx,..;gn
efp f°r some/e£(S).

As F = Id(TO is closed, by Lemma 2.11 each gt has the form {a^x^b^xiy1)o^
where a^x^ = b^x^ is in Kand c^eHorn(FX,S), for / = 1,...,«. Without loss of
generality we can assume that the distinct strings xt contain no element in common.

Now a^Xf) b^)-1 = b^x{) b^xj)-1 is in V and so
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is satisfied by S. Now we can define aeHom(Fx, S) as an extension of the map t
determined as follows: for each y in the ith string xt let yt = ya{. (This will be
well-defined if we distinguish between each element of each string, as we can.)

Now

-1«!,..., an(xn) bjx?) «„)

-\ ...,an(xn)bn(xn)-*))«

as this is satisfied in S. But this last expression is an idempotent in S and p is
idempotent separating and so, as each of gl9 ...,£n is in/p, we have

u(ii,-;gn)=f-
Thus /pe0 for all/e£(S).

Finally, let v(x) = i(x) be any identity from Id(T^). where x = (xu...,xn)
and i(x) is idempotent in Fx. Take any elements stp,...,snpeS/p and let
sp = (s1p, ...,snp) and s = (slf ...,sn). Now xx'1 and x~*x are identities of IS; so

v(sp)v(sp)-1 = /(yp) = visp^tKSp).

Therefore the identities ^(x)tj(jc)-1 = i(x) and ^(jc)-1 t;(jc) = i(x) hold in 5/p. But
v(S)i(3)eV(S) = KeTp and so v(sp) = v(sp)i(sp) = i(sp). Thus S/p satisfies
P(JC) = j(jc); so SI per and

REMARK 3.7. It follows from this theorem that $o"f is finitely based if both
and -V are.

4. Associativity

In this section we will show that for ^ , J f < 0 / and

LEMMA 4.1. For ^ , ^ < ^ / anrf y^JSf we have

PROOF. Let S e ^ o ( j f oT^). Then there is a congruence p on Sand a congruence
a on 5/p such that

, ep e <&, for all e e E(S),

(S/P)/a e -T, (eP) aejf for all e e £(5).
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Now (p" a") (p* CT")-1 is a congruence on S and S/(p" a") (p* a * ) - ^ (5/P)/CT e y \ Now
let ^ e = e(pl'(7l')(pl|<T1")-1. Then e(pn(KexKe)) = ePe<& as ep=/i:e. Further, if
xeKe then xpa = epw and so xp* e ep(a" a"-1). Thus Ay(p n (#e x Ke)) = (ep) a
Thus Se(&o

LEMMA 4.2. Let S&JSf and p a congruence on S such that S/p satisfies a set of
identities W. Then W(S) <Ker p.

PROOF. Let a = b be any identity from W and take any a. e Horn (F^, 5). Then
ctp"e Horn (Fx,S/p) and a(ap") = 6(ap"). Thus (a*-1) ap" = (66"1) ap" and so
(ab-1) a e Ker p. Hence *F(S) £ Ker p.

LEMMA 4.3. Let &^<gfi, ~T^ JST and V = Id(V) . If Ss^o'T then V(S) is the
kernel of an idempotent separating congruence p on Sfor which Sjpe'V and ep e 18.

PROOF. Since Sego-f there is a congruence 6 on S such that S/deiT and
e6e9 for each idempotent eeS. By Lemma 4.2, V(S)^Ker0. Thus by Lemma
2.8, V(S) gives a group kernel normal system with congruence p, say. Further p
is idempotent separating and ep&'S as F(S)<Ker0 implies epse0 for each
ee£(S). To show Slpe-f we let «(x) = r(x) be any identity in V. Then S/6
satisfies this identity so for any «eHom(Fj, S) we have (u(x)oc) 6* = (v(x)a) 8*.
As 8 is idempotent separating we have

(u(x)u(Xy1)oc = (v(xMx)-i)«
and

(M(*)-iM(*))« = W*)-M*)K
Also

(«(*) M^)-1 a) 0* = («(Jc) KJC)-1 a) 0",

and as 0 £ ^ we have

Thus

where e = (u(x) "(Jc)"1) a, and so ((«(Jc) u(Jc)-1) a) p((u(x) u(x)~x) a). Thus

r(Jc) a = (v(x) vix)-1 v(x)) a = (v(x) vix)-1) a • (v(x)) a

= («(x)) a(Kx)-1 t;(x)) a = (M(X)) a • (

= M(X) a,
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and so

But any B e Horn (Fx, S/p) is of the form ap" for some a e Horn (Fx, S) and so
Sip satisfies u(x) = v(x).

We have that S/ps'V as required.

THEOREM 4.4. Let ^,JJf < ^ / and "T^JST. Then (^

PROOF. By Lemma 4.1 it suffices to show that & offi oi^)z(<go^oi^. Let
Se(@oj>r)oir. Then by Lemma 4.3, V(S) determines a congruence p on S with
S/Pe-r~ and epe&oje, for all ee£(S). Now if / / = I d ( ^ ) then by Lemmas 2.7
and 2.10, we have that H(V(S)) is fully invariant in S. Now taking the maximal
idempotent separating congruence n on S, we have that H(V(S)))^ F(5)<Ker/i.
Further, as both V and H are closed sets of laws we have that H(V(S)) is full in S.
Thus by Lemma 2.8 there is a congruence a on S with H(V(S)) as its kernel.

Now since epe^oJt, for all eeE(S), we have by Lemma 4.3 that H{ep) is the
kernel of an idempotent separating congruence on ep. This is clearly just a\ep.
Now ea = e(o\ep) and s o w e f for all eeE(S).

Finally we show that SJoeJfoir. Define a mapping T1" from S/CT onto 5/p by
(JCT)T'' = jp. This is clearly a homomorphism and is well-defined since if sxa = s2a
then i j j f ^ ^ ^ . ^ ^ e G , a subgroup of H(V(S)); but H(V(S))<i V(S), a semi-
lattice of groups and so st p = s2 p. Now

Kerr = {so: jcrr* = ear* for some eeE(S)}

= {̂ a: sp = ep for some eeE(S)}

= {sa:seV(S)}

So for each ee£(S), ( W ) T 6 V(S)/(O\ V(S)) and this is a semilattice of groups from
Jf as Ker(o\V(S)) = KeTa = H(V(S)). Thus SjaeJ^o'T and T

This we can express diagrammatically as follows.

(ep) (a | V(S)) e H V(S)/(v \ V(S)) • Sja eHoV
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