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Abstract

This paper extends results on product varieties of groups to inverse semigroups. We show that
if  is a variety of groups and ¥ any inverse semigroup variety, then ¢ o ¥"is a variety. We
give a characterization of the identities of 4 o 7 in terms of the identities of ¥ and of ¥
We show that if ¥ does not contain the variety of all groups then it has uncountably many
supervarieties. Finally we show that if > is another variety of groups then

(GoX)o¥ =Fo(Ho¥).

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 M 05.

1. Introduction

An inverse semigroup may be defined as an algebra of type (2,1 with binary
operation (x,y)—>x-y (multiplication) and unary operation x—>x~1 (taking
inverses), satisfying the following set of identities:

L. x(p-2)=(xy)z

2. x:x b x=x

3oxtxext=x"1,

4. x—l.x.y.y—l = y.y—l.x—l.x‘

It is not difficult to see that the class of all such algebras is in fact the class of all
inverse semigroups. This class is a variety and will be denoted by £&. The lattice
of all subvarieties of #& is denoted by £ (F &) and if  and ¥~ are subvarieties
of £ & with % < ¥ then L (%,¥") denotes the lattice of all varieties #” such that
U<W <YV . We will denote the set of identities of a variety ¥~ by Id (¥").
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The class of all semilattices 4,,, forms a subvariety of .#% and within £ & has
the basis x = x2. Also any variety of groups is a subvariety of #&. The variety
of all groups ¥4 has as basis the identity xx—1 = yy~2.

Following from the theorem of Petrich (1975) we have that for a variety of groups
Y, v By, is the variety of semilattices of groups whose groups are in 4. A
basis for the variety of all semilattices of groups, ¥4 v 4, , is given, within £.&, by

xx1=x"1x,
or by

xx 1y = yxx-1,

The free inverse semigroup on a countable set of generators in a variety ¥ is
denoted by Fx(¥") and we put Fyx = Fx(#%) where X = {x,X,,...}. Further
notation follows Clifford and Preston (1961, 1967) and Griitzer (1968) unless
otherwise stated.

In her book Hanna Neumann (1967) defines the product of two varieties of
groups % and ¥ as the class of all groups that are extensions of a group in # by
a group in ¥". This class is a variety. Maltsev (1967) extended this to arbitrary
classes of algebras.

DerINtTION 1.1, If % and ¥~ are subclasses of a class 2" then the product
U oy ¥ is defined as consisting of the algebras 4 from X~ such that for some
congruence & on 4, A/@€¥" and each O-class which is a subalgebra of A is in %.

If % and ¥~ are subvarieties of a variety ¢ then % o, ¥ is not necessarily a
variety (see Maltsev (1967)). For inverse semigroup varieties we see this from the
following example.

ExampLE 1.2. The maximal group congruence o on Fx, X = {x;,x,,...}, has
kernel E(Fx), the semilattice of idempotents of Fx, and Fx/o~Fx(%9/). (This
follows from the characterizations of Fx by Scheiblich (1973) and Munn (1974).)
Thus Fx € %,,0,, % /. But every countable inverse semigroup is a homomorphic
image of Fx but certainly not all are extensions of a group by a semilattice.

However, Maltsev proves the following theorem for quasivarieties.

THEOREM 1.3. (Maltsev (1967), Theorem 5.) For a quasivariety 2" of finite type
the product of two subquasivarieties is a quasivariety.

In the product of two inverse semigroup varieties % o,, ¥~ we will from now on
drop the subscript # &,
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2. On congruences

In this section we develop a theory of fully invariant congruences needed for the
proof of the later theorems. First we summarize some results from Clifford and
Preston (1967), Chapter 7.

DErFINITION 2.1. A kernel normal system & = {A;: i€ I} of an inverse semigroup
S is a set of disjoint inverse subsemigroups A4; of S such that
(i) for each e€ E(S), ec A4;, for some A;e;
(ii) a A;a 1< A, for each a€ S, 4,4, for some jel.
(iii) If a,ab,bb—1€ A, then be A;, for every a,be S and A,e /.
A kernel normal system ¢ on an inverse semigroup defines a congruence
denoted by p,,. This is given by

P =1{(a,b)eSx S|aat,bb~1,ab~1 € 4;, for some i€l}.

Differing from Clifford and Preston, we define the kernel of p,, to be the union
of the A,. That is,

Kerp, = U{4;: iel}

= Ulep,: ecES)}

If p is an idempotent separating congruence then Ker p is a semilattice of groups.

TaeoremM 2.2. (Clifford and Preston (1967), Theorem 7.54.) Let E be the set of
idempotents of an inverse semigroup S. For each ecE denote by H, the maximal
subgroup of S with identity element e and take any subgroup N, of H, Pul
N ={N,: ecE} and N = |J{N,: ecE}. Then N is a kernel normal system of S
if and only if (i) N is a subsemigroup of S and (i) a_ Na< N for all a€SS.

Clearly p , is idempotent-separating. The collection 4" is called a group kernel
normal system. To each group kernel normal system there corresponds a unique
idempotent separating congruence. The maximum idempotent separating con-
gruence p=pg on an inverse semigroup S is given by Howie (1964) as
p={(x,))eSxS: xLex =y leyforall ee E}.

DEFINITION 2.3. Let S be an inverse semigroup.

(i) A congruence p is fully invariant on S if and only if for each endomorphism
@ of S, and for all x, y€ S, if xpy then (xp) p(yp).

(ii) An inverse subsemigroup A4 of S is fully invariant in S if and only if for each
endomorphism ¢ of S, Ap<S 4.
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For groups these definitions are ‘equivalent’ as there is a one-to-one corre-
spondence between normal subgroups and the congruences. This is not so,
however, even for semilattices in general, as shown by the following example.

EXAMPLE 2.4. Take the unique three element semilattice S = {x, y,0} with zero
0 and with xy =0, and let p be the congruence given by xp = 0p = {0,x} and
yp = {y}. Then Ker p = S and so it is fully invariant in S. But p is not fully invariant
on S; take ¢ an endomorphism of S given by xp =y, yp = x and Op = 0. Then
we have Opx, but Op = 0, xp = y and 0 is not p-equivalent to y.

In the general case we have the following result.

LeEMMA 2.5. If p is a fully invariant congruence on an inverse semigroup S then
Ker p is fully invariant in S.

ProoF. Let aeKer p = K and g €end(S). Then ape, for some e€ E(S) and so
(ap) plep) as p is fully invariant. But ep € E(S) and so ape K. Thus K< K and
K is fully invariant in S.

THEOREM 2.6. Let p be an idempotent separating congruence on an inverse semi-
group S. Then p is fully invariant if and only if Ker p is fully invariant.

ProoOF. Necessity follows from the above lemma. To show sufficiency let
K = Ker p be fully invariant in S and ¢ €end (S). Then Kp< K. Take any x,yeS
such that xpy. Then from Theorem 2.2, K = |J{K,|e€ E(S)} where each X, is a
group.

Now we have xx1pyy~pxy~1 and so xx71, yy~!, xy~1eK. So xx~1=yy?
and yy~15#xy! as p is idempotent generating. Thus

xp(xp)t = (xx o=y Ne=0p0p™
and
Cy N ey D)t = (xyyx e =(xxV)g,
Gy M)y Ne=0xxy D=0y Ne=0xDe.
Thus (xy™) @ € Hzp-1), N Kp< Hizp-1, N K. So
) (x0)Y, () ()™, (xp) ¥9) 1€ Kpp-1y, and  (xg) p(yp)
by the definition (2.1) of p.

LEMMA 2.7. If A is fully invariant in S and B is fully invariant in A then B is fully
invariant in S.
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PrOOF. For p cend (S) we have Ap< 4 and ¢|, €end (4) and so Byp|,< B. For
any be BS A, bp = bp|, € Bp|,< B. Thus Bp< B.

LeMMA 2.8. If p is an idempotent separating congruence on S and N is any fully
invariant full inverse subsemigroup of Ker p then N is the kernel of a group kernel
normal system on S.

PRrROOF. As N is a full inverse subsemigroup of Ker p and Ker p is a semilattice
of groups, it suffices to show that s~ Nsc N for all s€ S, by Theorem 2.2. Let s€ S
and K = Ker p. Define ¢: K— K by k¢ = s~1ks. Then ¢ is a homomorphism since

(s tks) =5k ls=klp forall keKk,

and (s ks)(s~tls) = s kis = (kl) ¢ for all k,I€ K, as K is a semilattice of groups.
Now N is fully invariant and so s~ Ns = Np< N, completing the proof.

We now define verbal inverse subsemigroups, parallel to the case for groups
(Neumann (1967), Chapter 1).

DEFINITION 2.9. Let W be a set of inverse semigroup identities on an alphabet X
say and let S be an inverse semigroup. The verbal inverse subsemigroup W(S) of
S is the inverse subsemigroup generated by

w(S) = {(ab~Y) a|a = b is an identity in W and aeHom (Fx, S)},

where Fy denotes the free inverse semigroup on X.

LEMMA 2.10. For any inverse semigroups S and S' and any homomorphism
@: S—> S’ we have W(S)p< W(S'). In particular, W(S) is a fully invariant inverse
subsemigroup of S.

Proor. Take any xew(S). Then x = (ab~!) « for some identity a = b from W
and for some e Hom (Fx, S). Butape Hom (Fx, S")and so xp = (@b~ apew(S")
giving that w(S) p< w(S’). Therefore W(S)p< W(S') as required.

In particular, if S=.S' then W(S)p< W(S) and so W(S) is a fully invariant
inverse subsemigroup of S.

A set of identities is said to be closed if it contains all its consequences, that is,
if it is the set of identities of some variety.

Lemma 2.11. If W is a closed set of identities and S is an inverse semigroup then

W(S) = w(S).
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Proor. We will show that w(S) is an inverse subsemigroup of S. Let (ab™1)«,
(cd)Bew(S), where a=a(xy,....,x,), b=05b(xy,....,x,), c=clxy,...,%,),
d=d(x,...,x,) and a = b and ¢ = d are laws in W, and o, §€ Hom (Fx, S), where
X = {x;,x,...}. Let pe Hom (Fyx,S) be the unique extension of

x; 0 i=1,..,n,
fixg>(x; B, i=n+l,..,n4+m,

Xy 0 otherwise.

Also let ¢ = c(Xp11s s Xpim) a0d d = d(Xy 445 - Xpym). Then ¢ = d is an identity
in W,

Also, ab=1 = bb—1and é¢—1 = déLarein Wand so ab~1éc1 = bb1¢clisin W.
But bb1¢61 = éé1bb—! and ¢é-1bb1 = dc-1bb~! are in W. Thus

0)) ab™1¢¢1 = de1bbis in W.

Hence
(ab~10)(cd ™2 B) = (ab~1p)-(¢d1¢)

= (ab~1-bb1-éc1-éd Vg
= (ab-réc1-bb1ed )
= [(@b=1éc)-(dc 1 b)) g,

and this is an element of w(S) by (1).
Finally, (@b o)™l = (ba ) aew(S) as b =a is in W. Thus w(S) is an inverse
subsemigroup and so w(S) = W(S).

3. Products of varieties

First we simplify Definition 1.1 for inverse semigroups.

LemMA 3.1. For any varieties U,V  of inverse semigroups, the product U ¥~
contains precisely those inverse semigroups S such that for some congruence 0 on S,
S/0e¥” and e e, for each idempotent e of S.

ProOF. By Lemma 7.34 of Clifford and Preston (1967), for any congruence 8
on any inverse semigroup S, a f-class is an inverse subsemigroup of S if and only

if it contains an idempotent.

THEOREM 3.2. If V' K S and G <G f then G oV is a variety.
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PrOOF. By Theorem 1.3, %o  is a quasivariety and so it suffices to show that
it is closed under the taking of homomorphic images. Let S€e%o¥ andlet fbea
congruence on S such that S/6€¥” and efe ¥, for all ec E(S). The kernel of 8,
denoted by K, is the semilattice of the groups, K= |J{e0: ec E(S)}, and 8 is
idempotent- separating. Let i be a homomorphism of Sand 7= Si. Then 4 =Ky
is an inverse subsemigroup of 7. Since ¥ v 4, is the variety of similattices of
groups in ¥ we have Ae % v %, and so A is a semilattice of groups of ¥. Let 4,
be the subgroup of 4 with identity f€ E(T), and let &/ = {4,: fe E(T)}. Then for
any teT, ac A,

tlat = s~Yksy  (for some s€ S, ke K)
= (slks)peKp =4,

as K is the kernel of 8. Thus, by Theorem 2.2, .«¢ is the kernel normal system of a
congruence p on 7. Now define the map ¢: S/0—T/p by (s8)J = (sb) p for all
s€S. We show that ¢ is well-defined. If s0 = s, 6 for s, 5, €S then

10 = 55710 =5, 51
55710 =ss71 0 = 5,572 0.

So ss71, sy57Y, ss~1€ef, for some e€ E(S). Hence ssply, sy sy, ss~lfe(ed) .
But (e0) )< A, where f=e; so (sh,s,4)€p and ¢ is well-defined. Further, ¢
is a homomorphism as p is a congruence and ¢ a homomorphism. Thus T/pe¥”
and Te%o.¥ .

COROLLARY 3.3. Suppose 9, <% 4 and V"< IS but that ¥ does not contain
all groups. Then G o¥ < oV ifand only if < #. Hence G oV = H o¥ if and
only if ¥ = .

PROOF. If < 5 thenitisclearthat ¥ oY < 3# o ¥". Conversely,if @ o ¥ < H# oV
we have

G oV 0 Gp) = (GG V)G fp = H o (Y "G,

Also ¥" n %4+ 94 and so by Neumann (1967), 21.21 we have ¥ <#.

COROLLARY 3.4. If V"< £ and V" does not contain all groups then L (¥, G o V")
is uncountable,

ProoF. By the preceding corollary, to each variety of groups % there corresponds

a distinct variety % o¥". Thus, as there are uncountably many varieties of groups
(Vaughn-Lee (1970)), Z(¥",%/0¥") is uncountable.
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REMARK 3.5. Using the definition of the wreath product of two inverse semi-
groups given by Houghton (1976), Section 3, it can be shown that & o ¥” is generated
by the wreath product W = W(Fx(9), Fy(¥")) for X = (x1, %y, ...), ¥ = (11, Vs, ...).

We will now give a characterization of a basis of the identities of ¥o¥". The
identities of a variety of groups can be considered as words in the absolutely free
group on a countable set of generators (Neumann (1967), Chapter 1). Any inverse
semigroup identity u(x, ..., x,) = v(x;, ..., x,) is equivalent to a pair of identities

Uy ey X)) VU5 ooy X)) = 0(Xq, ooy X ) 071Xy, o0y Xy)
and

UXgy ooy X ) Uy s X)) = 07Xy, ooy X ) O(Xy, s X )
Thus there is a basis for Id (¥") consisting of identities of the form

U(XYy oaey Xpp) = H(Xq, -0y Xy)

where i(xy, ...,x,) is an idempotent element in the free inverse semigroup Fx on
the set {x;: i=1,2,...}. We will use the notation X to denote a string of elements
Xy .3 Xy, Of X,

THEOREM 3.6. Let ¥< %4 and V" < IS . Then S€ G oY if and only if S satisfies
all the identities of the form
w0 (%) ..y 0 (R)) = 5(%))" ... 1, (%),
where u(x,, ..., x,) €1d(9) and v(%;) = i(%;) is an identity from Id (¥") with i(%;)

an idempotent of Fx.

PrOOF. Let S€% ¥  and take an identity of the form given in the theorem.
Then there is a congruence 8 on S such that S/8e¥” and ef e ¥ for each e E(S).
Now taking strings §; = s}, ..., 57 of arbitrary elements of S we have

u(vl(jl)’ teey v’n(j'n,)) 0 = u(vl(‘s-'l) 0’ seey vn(jn) 0)
= u(v,(s16,...,s7V ), ...,v,(s1 0, ...,s7™ §)),
But each uvys}4,...,s7"0)eS/0e¥” and ¥ satisfies v/(X)) =i(%;). Thus

vi(5;) €i(5;) 6< Ker 0 and so u(vy(5,), ..., v,(5,)) €Ker 6. Now let e = iy(5))" ... - i,,(5,)-
Then

(u(vl(§1)’ sy vn(jn))’ e) € 0

and so
u(0y(3), ..., v,(5,)) €el, a group.

Now Ker 8 is a semilattice of groups and so

u(vl(jl)’ ceey vn(jn)) =e: u(vl(jl)’ oo vn(s'n)) = u(e- 01(51), PREYY - vn(j'n))
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and e-vy(5;) €el. But u(xy, ..., x,)€Id (%) and so

(15D .5 V(5,)) = u(e-vy(5), ..., e v,(5,))

=e

=505 .. i (5,).

This is true for all elements of S and so § satisfies the identity.

For the converse let S be an inverse semigroup satisfying all the identities of the
given form. Let Id(¥") =V and put K= V(S) as defined in Section 2.9. Let
a(x) = b(x) be in V. We now show (a(x) b(¥)1) «eKerp by showing that it is
p-related, in S, to (b(X) b(¥)~) o, an idempotent. Take any idempotent e€ S; then
e = (xx"Ya for some xe X.

Now let u(, o) = 1 ¥. ¥z 1yt for ye X. Then u(y;, y,) €1d (¥%). Further, since
V is closed it contains a(x) b(X)~! = b(%) b(x)~ and the trivial identity xx~* = xx~1.
Thus by the assumption we have that

u(a(x) b(x)L, xx~1) = b(%) (X)L xx1
is a law satisfied by S. Therefore, in the inverse semigroup S, we have

u(a(®) b(x) L, xx V) a = (B(X) b(x) 2 xx ) o,
that is,

(a(®) b(X) 7! xx~Hxx ) (a(®) b(F) )Y o = (B(X) bF) T xx ) o,

whence

((a(®) B(%)™) @) e((@(®) b(F) ™) o)t = ((B(%) b(X) ™) &) e((b(%) b(X) ™) )72,

giving us that (a(¥) b(X)) « and (b(%) b(X)™) « are p-related, as required. Hence
(a(x) b(x)™") a e Ker p. But as this is an arbitrary one of a set of generators of V(S)
we have V(S)< Ker pu. Further we know that V(S) is fully invariant and full in S
and so by Lemma 2.8, V(S) is the kernel of an idempotent-separating congruence
ponsS.

To complete the proof that S€e%o¥  we now show that S/pe¥” and that
Jpe 9, for each idempotent feS.

Let u(x)(= u(xy, ..., x,)) be in Id(%) and let g,,...,g,€fp for some fe E(S).
As V=1d(¥") is closed, by Lemma 2.11 each g; has the form (a;(%;)b/(%)™) o;
where a,(%;) = b(%;) is in ¥ and o;e Hom (Fy, S), for i = 1,...,n. Without loss of
generality we can assume that the distinct strings X; contain no element in common.

Now a;(%;) b(%)™ = b(%) b(%) ' is in V¥ and so

Uay(%) by(%) 7, ., 8u(R0) b(F) ™) = ba(%) by(F) 1 .. - bp(%) b(Fn)

https://doi.org/10.1017/5144678870001497X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001497X

116 J. L. Bales (10}

is satisfied by S. Now we can define x€ Hom (Fx, S) as an extension of the map ¢

determined as follows: for each y in the ith string ¥; let y¢ = ya,. (This will be

well-defined if we distinguish between each element of each string, as we can.)
Now

u(gl, sy gn) = u(al(-’-c].) bl(‘il)_l S5 URESH) an(in) bn(x;I) o‘n)
= (u(ay(%) by(F) 7, ... (%) by (%) ™)
= (bi(ZD) by(ED) ™V ba(F) by(Xp) D

as this is satisfied in S. But this last expression is an idempotent in S and p is
idempotent separating and so, as each of g,, ..., g, is in fp, we have

u(gl’ ’gn) =f

Thus fpe ¥ for all fe E(S).

Finally, let »(%X) =i(X) be any identity from Id(¥"), where %= (x,,...,x,)
and i(%¥) is idempotent in Fy. Take any elements s, p,...,s, p€S/p and let
Sp=(syp,...,8, p) and § = (s, ..., 5,). Now xx~1 and x~1x are identities of ¥; so

v($p) v(Sp)~1 = i($p) = v(Sp) " v(3p).

Therefore the identities v(¥) (%)~ = i(%¥) and v(X) (%) = i(X) hold in S/p. But
v(5)i(5)eV(S)=Kerp and so uv(Sp)=v(5p)i(5p) =i(5p). Thus S/p satisfies
v(%) = i(%); so S/pe¥ and SeFo¥".

ReMARK 3.7. It follows from this theorem that @ o  is finitely based if both
% and ¥ are.

4. Associativity
In this section we will show that for ¥, # <%/ and ¥ < S &,
(G o)V =Go(H V).

LeMMA 4.1. For 4, <%/ and V" < IS we have Go(H oV )<(GoH)o¥ .

ProOOF. Let S€Z o(S# o¥"). Then there is a congruence p on S and a congruence
o on S/p such that
S/peH oV, epe ¥, for all ecE(S),

(S/p)oe?’, (ep)aes for all e€ E(S).
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Now (p" o) (p% o%)~1 is a congruence on S and S/(p% 6" (p* ") 1~ (S/p)/a € ¥ . Now
let K, = e(p" %) (p%o")~L. Then e(pn(K,xK,))=epc¥ as ep<K,. Further, if
x €K, then xps = epoand so xp" € ep(o® o%~1). Thus K,/(p 0 (K, x K,)) = (ep) o € H#.
Thus Se(Zof)o ¥

LeMMA 4.2. Let S€ £.% and p a congruence on S such that S/p satisfies a set of
identities W. Then W(S)< Ker p.

PROOF. Let a = b be any identity from W and take any a€ Hom (Fx, S). Then
apieHom (Fx,S/p) and a(xp®) = b(apf). Thus (@b ap? = (bb~)ap? and so
(ab~Y)acKer p. Hence W(S)<Ker p.

LEMMA 4.3. Let ¥< %4,V <SISL and V =1d(¥). If S€ G oV then V(S) is the
kernel of an idempotent separating congruence p on S for which S[pe¥” and epe 9.

PROOF. Since S€ %o there is a congruence 6 on S such that S/8e ¥ and
efe @ for each idempotent ec S. By Lemma 4.2, V(S)<Ker 6. Thus by Lemma
2.8, V(S) gives a group kernel normal system with congruence p, say. Further p
is idempotent separating and epe % as V(S)<Ker & implies ep=ef for each
e€ E(S). To show S/pe¥” we let u(x) = v(X) be any identity in V. Then S/0
satisfies this identity so for any a€ Hom (Fx,S) we have (u(¥) o) 6% = (v(X) «) 6.
As @ is idempotent separating we have

@® u(@) M) a = F) (X)) o

and

(U@ u(®)) o = (V(X) 7 o(X)) o
Also
UE) u(x)1 o) 0% = (u(x) (%) o) 65,

and as f< 5 we have
(u(®) u(2) ™) adte(u(X) (X)) o
Thus
@@ acKS)nH,
where e = (u(%) u(x)™)) «, and so ((u(%) (%)) &) p((u(X) u(x)~1) ). Thus
(%) o = () o(X) 7 v(%)) & = ((F) (X)) - (v(%)) &
= ((u(®) (%)) o0(X)) &) p((u(X) (X)) (&%) )
= (u(%)) o(w(X) 7 (X)) o = (u(%)) - (u(X) ™ u(X))

= u(xX) o,
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and so
(%) ap® = u(x) aph.

But any Be Hom(Fyx, S/p) is of the form «p® for some aeHom(Fyx,S) and so
S/p satisfies u(X) = v(x).
We have that S/pe?¥” as required.

THEOREM 4.4. Let G, <% and V"< IS . Then (G o) oV = Go(H V).

ProofF. By Lemma 4.1 it suffices to show that Fo(3F 0¥ )2 (Fo#)o¥ . Let
Se(Zo#)o¥ . Then by Lemma 4.3, V(S) determines a congruence p on S with
S/pe¥” and epe F o7, for all ee E(S). Now if H = Id (5#) then by Lemmas 2.7
and 2.10, we have that H(¥V(S)) is fully invariant in S. Now taking the maximal
idempotent separating congruence p on S, we have that H(V(S))) < V(S)<Kerp.
Further, as both ¥ and H are closed sets of laws we have that H(V(S)) is full in S.
Thus by Lemma 2.8 there is a congruence o on S with H(¥V(S)) as its kernel.

Now since epe ¥ o, for all e E(S), we have by Lemma 4.3 that H(ep) is the
kernel of an idempotent separating congruence on ep. This is clearly just o|ep.
Now eo = e(o|ep) and so ec€ ¥ for all ec E(S).

Finally we show that S/o€4# o¥". Define a mapping 7% from S/o onto S/p by
(s0) 7% = sp. This is clearly a homomorphism and is well-defined since if 5,0 = 530
then sy 571, 5,571, 5,551 €G, a subgroup of H(V(S)); but H(V(S)) < ¥V (S), a semi-
lattice of groups and so s; p = s, p. Now

Ker 7 = {so: sor! = ear! for some ec E(S)}
= {so: sp = ep for some e E(S)}
= {so: se V(S)}
= V($)/(o]| V(S)).

So for each e€ E(S), (eo) 7€ V(S)/(a| ¥(S)) and this is a semilattice of groups from
H# as Ker(o| V(S)) = Kero = H(V(S)). Thus S/oe# o¥ and S€Go(H# o¥).
This we can express diagrammatically as follows.

eceCG HV(S))

LN

epEGost V() —> S —> S/peV

[HECIEEAN] S

(ep) (c|V(SNEH V(S)/(o|V(S)) —> SloeHoV
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