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Abstract. Let X be a curve of genus gX 2 over a ¢eld of characteristic zero.Then X has at most
¢nitely many torsion packets of size greater than 2. Moreover, X has in¢nitely many torsion
packets of size 2 if and only if either g � 2, or g � 3 and X is both hyperelliptic and bielliptic.
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1. Raynaud's Theorem

Let X be an algebraic curve de¢ned over an algebraically closed ¢eld K of charac-
teristic zero. When we say that X is a curve, we require it to be smooth, proper,
and irreducible over K . We will denote by J the Jacobian variety of X , and by
g the genus of X .

We de¢ne an equivalence relation on X �K� by de¢ning P � Q if and only if the
divisor m�P� ÿm�Q� on X is principal for some positive integer m. We call an
equivalence class under � a torsion packet on X . Clearly the torsion packet
containing P 2 X �K� is the set of points of X �K� which map to torsion points of
J via the Albanese map from X to J sending Q 2 X �K� to the class of the divisor
�Q� ÿ �P�. A torsion packet is said to be trivial if it has only one element.

Recall that theManin^Mumford conjecture (proved byM. Raynaud in [10]) states
that if gX 2, then every torsion packet on X is ¢nite. In fact, Raynaud [11] proved
the following more general result about torsion points on subvarieties of Abelian
varieties:

THEOREM 1.Suppose A is an Abelian variety over the algebraically closed ¢eld K of
characteristic zero, and that V is an irreducible closed subvariety of A. If the torsion
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points of A contained in V are Zariski-dense in V, then V is the translate of an Abelian
subvariety of A by a torsion point.

Remark.Raynaud's theorem is equivalent to the following assertion: Let A and K
be as in Theorem 1, and letV be an irreducible closed subvariety ofA. Then the set of
torsion points of A lying in V is contained in a ¢nite union [Zj, where each Zj is
contained in V and is a translate of a (possibly zero-dimensional) Abelian subvariety
of A by a torsion point.

Our main result, Theorem 2, is concerned with the number and size of torsion
packets on a curve X . In Section 2 we state the theorem, and in Section 3 we
use Theorem 1 to prove it. In the ¢nal section, we show that the bounds must depend
on the genus of X , and we describe a generalization along the lines of the
Mordell^Lang and Bogomolov conjectures.

2. Bounds for Torsion Packets

We keep the notation of the previous section: in particular,X is an algebraic curve of
genus g de¢ned over the algebraically closed ¢eld K of characteristic zero.

If g � 2, then X has in¢nitely many nontrivial torsion packets, since the
Riemann^Roch theorem implies that the subtraction map a2:X � X ! J given
by �P;Q� 7! ��P� ÿ �Q�� is surjective.

In [4, Example (iv)], one ¢nds the statement that if gX 3, then there are only
¢nitely many nontrivial torsion packets on X . This statement is false, however:
we will show later that if X has genus 3 and is both hyperelliptic and bielliptic, then
there are in¢nitely many nontrivial torsion packets on X . The smooth projective
model of y2 � x8 � 1 is an example of such a curve. (Recall that X is hyperelliptic
if it admits a degree 2 map to P1, and is bielliptic if it admits a degree 2 map to
an elliptic curve.)

Motivated by these examples, we will use Theorem 1 to prove the following result:

THEOREM 2. Suppose gX 2.

(1) There are at most ¢nitely many torsion packets of size greater than 2 on X.
(2) There are in¢nitely many nontrivial torsion packets on X if and only if either g � 2,

or g � 3 and X is both hyperelliptic and bielliptic.

Together with the Manin^Mumford conjecture, Theorem 2 implies:

COROLLARY 3. There is a constant M (depending on X) such that every torsion
packet on X has size at most M.

Remark. The result of Corollary 3 is known to the experts, but we could not ¢nd in
the literature an explicit statement with proof. It is stated without proof in [12], and
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Raynaud [11, Proposition 9.1] gave a proof for g > 2. It follows from [3, Theorem 1],
if one generalizes that theorem according the note `added in proof' [3, p. 782] about
the work on the Bogomolov conjecture by Szpiro, Ullmo, and Zhang [13^15].

Open question: Does the constant M in the statement of Corollary 3 depend only
on the genus g ofX? Mazur [7, p. 234] has asked the following more general question:
can #�X �K� \ G� be bounded in terms of g and r only, when X ranges over curves of
genus g each embedded in its Jacobian J, and G ranges over subgroups of J�K� with
dimQ�G
Q�W r?

Another open question: Fix gX 2 and sX 3. Does there existMg;s > 0 such that for
all curves X of genus g, the number of torsion packets on X of size at least s is
bounded by Mg;s? There is not a single pair �g; s� for which we know the answer.

3. Proof of Theorem 2

Consider the family of proper maps an:Xn! Jnÿ1, nX 2, given by

�P1;P2; . . . ;Pn� 7! �P1 ÿ P2;P2 ÿ P3; . . . ;Pnÿ1 ÿ Pn�:

These maps also played a prominent role in the proof of the generalized Bogomolov
conjecture [15]. Let Vn � an�Xn�, which is a closed subvariety of Jnÿ1. Let Dn denote
the `big diagonal' in Xn, i.e., the closed subscheme whose closed points are the
n-tuples �P1;P2; . . . ;Pn� with Pi � Pj for some i 6� j. Let D0n � an�Dn� �
Vn � Jnÿ1. We could also characterize the closed points of D0n as the closed points
�Q1; . . . ;Qnÿ1� 2 Vn such that Qi �Qi�1 � . . .�Qj � 0 for some iW j, so
aÿ1n �D0n� � Dn.

The following proposition concerns the geometry of the maps an:

PROPOSITION 4. Suppose gX 2.

(1) Suppose that either nX 3 or that n � 2 and X is not hyperelliptic. Then the
restriction of an to Xn ÿ Dn is an isomorphism onto its image.

(2) If n � 2 and X is hyperelliptic, then the restriction a2:X 2 ÿ D2 ! V2 ÿ D02 is ¢nite
of degree 2.

Proof. We begin with the proof of part (1). By the `inverse function theorem for
varieties' (see Lemma 14.8 and Theorem 14.9 of [5]), it suf¢ces to show that the
restriction of an to U :� Xn ÿ Dn is injective on closed points and gives rise to
an injection of tangent spaces at all closed points in the domain.

To see that the restriction of an is injective, let P � �P1; . . . ;Pn� and
P0 � �P01; . . . ;P0n� be distinct points of U , and note that if an�P� � an�P0� in Jnÿ1,
then �Pi� ÿ �Pi�1� � �P0i� ÿ �P0i�1� for all 1W iW nÿ 1, where � denotes linear
equivalence of divisors on X .
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It follows that �Pi� ÿ �P0i� � �Pj� ÿ �P0j� for all 1W i; jW n. Since P is not in Dn and
no two distinct points of X are linearly equivalent as divisors, we conclude that
X is hyperelliptic, and that P0i � hPj for all 1W i 6� jW n, where h is the hyperelliptic
involution on X . Since we are assuming that P0 is not in Dn, this forces n to equal 2,
for otherwise we have P03 � hP2 � P01, a contradiction.

It remains to show that �dan�P is injective for all points P 2 U�K�. It is enough to
show that the map �dan�P:TP�Xn� ! T0�Jnÿ1� (by which we mean the natural
map TP�Xn� ! Tan�P��Jnÿ1� followed by a translation t�:Tan�P��Jnÿ1� ! T0�Jnÿ1�)
is injective.

Given a point P � �P1; . . . ;Pn� in U�K�, let v � �v1; . . . ; vn� be a nonzero tangent
vector to Xn at P, where each vi is a tangent vector to X at Pi. Also, let ti denote
the image of vi in T0�J� under �di�P followed by a translation, where i:X ! J is
the Albanese map associated to an arbitrary base point P0 2 X �K�. Then it is
not hard to check that the image in T0�Jnÿ1� of the tangent vector v is
�t1 ÿ t2; . . . ; tnÿ1 ÿ tn�.

The map �dan�P fails to be injective if and only if �dan�P�v� � 0 for some nonzero
tangent vector v to Xn at P, which happens if and only if there is some choice
of tangent vectors vi to X at Pi, not all zero, such that t1 � t2 � � � � � tn. In
particular, if �dan�P�v� � 0 for some nonzero v, then the corresponding ti are
all nonzero and have the same image in the projectivization PW of
T0�J� � H0�X ;O1

X �_. According to [6, Proposition 11.1.4], the map c:X ! PW
which sends a point Q in X �K� to the projectivized image under �di�Q of a nonzero
tangent vector v at Q is just the canonical map c from X to PW . It follows that
�dan�P�v� � 0 if and only if c�P1� � c�P2� � � � � � c�Pn�. Since we are assuming that
the Pi are pairwise distinct, this can happen only ifX is hyperelliptic and n � 2, which
proves part (1).

To prove part (2) of the proposition, suppose that n � 2 andX is hyperelliptic, and
let h be the hyperelliptic involution on X . The above calculations show that the map
a2:X 2 ÿ D2! V2 ÿ D02 is quasi¢nite. It is also proper, since it is the base extension of
a2:X 2! V2 by V2 ÿ D02,!V2, so it is ¢nite. Moreover, the tangent space calculation
shows that if eD2 denotes the subvariety of X2 whose closed points are pairs �P; hP�,
and if eD02 is its image under a2, then a2:X2 ÿ �D2 [ eD2� ! V2 ÿ �D02 [ eD02� is ¢nite
ëtale of degree 2. So the degree of the ¢nite map a2:X 2 ÿ D2! V2 ÿ D02 must
be 2. &

The following lemmas will be used in the proof of Proposition 7.

LEMMA 5. Let X be a curve of genus at least 2, and let B be an Abelian variety. Then
there are no dominant rational maps from B to X.

Proof. Let f be a dominant rational map from B to X . Choose an embedding
i:X ,!J of X into its Jacobian, and let h be the composite rational map from B
to J. According to [8, Theorem 3.1], the rational map h extends to a morphism from
B to J. Since f is dominant, it follows that f extends to a surjective morphism (which
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we still denote by f ) from B to X . Now let P0 � f �0�, and let i0 be the Albanese map
from X to J corresponding to the base point P0. Let h0 be the composite morphism
from B to J. Then h0�0� � 0, so [8, Corollary 2.2] shows that h0 is a homomorphism
with imageX . This forcesX to be a subgroup of J, which is absurd, sinceX generates
J (which has dimension at least 2) as a group. &

Remark. One can give also a complex-analytic proof of Lemma 5 using the
hyperbolicity of curves of genus gX 2.

LEMMA 6. If f :X ! Y is a surjective map of curves with no nontrivial unrami¢ed
subcover of Y, then the induced map f �: J�Y � ! J�X � on Jacobians is a closed
immersion.

Proof. If not, then sinceK is algebraically closed of characteristic zero, there exists
a point �D� 2 ker f �, where D is a nonprincipal divisor on Y . We have f �D � �g�
for some g 2 K�X �, and pushing the divisors forward to Y yields nD � �h� where
n � deg f and h �K�X �=K�Y � �g�. Since h (viewed as function on X by composing
with f ) and gn both have divisor n�f �D� on X , their ratio is constant. Hence,
K�X � contains an nth root of h. The subextension K�Y ��h1=n� of K�X �=K�Y �
corresponds to a subcover of X ! Y . It is unrami¢ed over Y since the divisor
�h� on Y is divisible by n. It is nontrivial since D is nonprincipal. This contradicts
the hypothesis. &

We de¢ne a subvariety Y of an Abelian variety A to be a torsion subvariety if it
is a translate of an Abelian subvariety of A by a torsion point.

PROPOSITION 7. Let nX 2 be an integer, and let Vn � an�Xn� � Jnÿ1. Let
D0n � an�Dn�, where Dn is the big diagonal. Then the following are equivalent:

(1) Vn contains a translate of an Abelian subvariety of Jnÿ1 of positive dimension which
is not contained in D0n.

(2) Vn contains a torsion subvariety of Jnÿ1 of positive dimension which is not contained
in D0n.

(3) n � 2; and either g � 2, or g � 3 and X is both hyperelliptic and bielliptic.

Remark. An induction argument combined with Proposition 7 could be used to
classify completely the translates of Abelian subvarieties contained in Vn.

Proof. Clearly �2� ) �1�. We show next that �3� ) �2�.
If n � 2 and g � 2 then V2 � J2 is an Abelian surface. Now suppose n � 2 and X is

both hyperelliptic and bielliptic. Let i be the elliptic involution, let h be the
hyperelliptic involution, and let f :X ! E be the degree 2 map corresponding to
the quotient of X by i. We claim that V2 contains the genus 1 curve E as a torsion
subvariety.
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To see this, let S be a Weierstrass point of X ; then i maps S to a Weierstrass point
S0, since the set ofWeierstrass points is preserved by automorphisms. Without loss of
generality, S maps to 0 in E. Then f ��0� � �S� � �S0�. Furthermore, i has ¢xed points
by the Riemann^Hurwitz formula, so the Picard map c:E ! J, which on closed
points is the homomorphism given by c�P� � � f ��P� ÿ �S� ÿ �S0��, is a closed immer-
sion by Lemma 6. Let Z be the map c followed with translation by the 2-torsion point
��S0� ÿ �S��, which on closed points satis¢es Z�P� � �f ��P� ÿ 2�S��. This map from E
to J is also a closed immersion. It suf¢ces to show, therefore, that the image of
Z is contained in V2. To do this, choose a closed point P 2 E, and write
f ��P� � �Q� � �Q0�. Then Z�P� � �f ��P� ÿ 2�S�� � ��Q� � �Q0� ÿ �Q0� ÿ �hQ0�� �
��Q� ÿ �hQ0��, so Z�E� � a2�X � X � as claimed.

We now prove that �1� ) �3�. Suppose thatVn contains a translate B of an Abelian
subvariety of Jnÿ1, and B is not contained in D0n. Then U :� B ÿ �B \ D0n� is a dense
open subscheme of B. If nX 3 or n � 2 and X is not hyperelliptic, then by
Proposition 4, an is a birational map, and moreover the restriction of an to
Xn ÿ Dn is an isomorphism onto its image Vn ÿ D0n. The composition

b:U ,!Vn ÿ D0n �
aÿ1n

Xn ÿ Dn

has in¢nite image, so some projection bi:U ! X also has in¢nite image. In other
words, bi is a dominant rational map from B to X . But Lemma 5 shows there
are no such maps.

Therefore we may assume that n � 2 and X is hyperelliptic with hyperelliptic
involution h. Embed X in J using a Weierstrass point S as basepoint. Then ÿ1
on J restricts to h on X , so a2�X 2� �W2�X �, the image of the symmetric square
map X 2! J. If dimBX 2, then B � a2�X � �W2�X � forces B �W2�X �, but
W2�X � generates J, and the translate B of an Abelian subvariety can generate J
only if B � J, so W2�X � � J and g � 2. On the other hand, if dimB � 1, then
W2�X � contains a genus 1 curve B, so X is bielliptic by [1, Theorem 3], and a bielliptic
hyperelliptic curve has genus at most 3, by the inequality of Castelnuovo and Severi
(see [2, Exer. VIII.C^1]). &

Proof of Theorem 2. Let nX 2 be an integer, and as before let Vn � Jnÿ1 be the
image of an. Given a closed point P:� �P1;P2; . . . ;Pn� in Xn ÿ Dn, an�P� is a torsion
point of Jnÿ1 if and only if the points P1;P2; . . . ;Pn all lie in a common torsion
packet on X . According to Proposition 4, the restriction of an to Xn ÿ Dn is an
isomorphism onto its image Vn ÿ D0n, unless n � 2 and X is hyperelliptic, in which
case the ¢bers of this map all have degree 2. Since each torsion packet on X is ¢nite,
it follows in all cases that there are in¢nitely many torsion packets of size at least
n on X if and only if Vn ÿ D0n contains in¢nitely many torsion points of Jnÿ1. By
Theorem 1, this occurs if and only if Vn contains a torsion subvariety of positive
dimension not contained in D0n. Parts (1) and (2) of Theorem 2 now follow by taking
n � 3 and n � 2, respectively, in the statement of Proposition 7. &
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4. Generalizations and Nongeneralizations

Can one uniformly bound the number or size of torsion packets on a curve if the
genus is unrestricted? Certainly not! Instead we have the following:

PROPOSITION 8. For every nX 1, there exists a curve X of some genus gX 2 such
that X has at least n torsion packets each of size at least n.

Proof. Let E be an elliptic curve over K . Since K is algebraically closed of charac-
teristic zero, E has in¢nitely many torsion packets, each of which is in¢nite. Let S1,
. . ., Sn denote subsets of size n contained in distinct torsion packets. Choose a divisor
D on E of degree n2 with support disjoint from S1 [ . . . [ Sn such that
S1 � . . .� Sn ÿD is the divisor of a function f on E, i.e., sums to zero in the group
law on E. Let p:X ! E denote the double branched cover corresponding to the
function ¢eld extension K�X � � K�E�� ���

f
p �. For 1W iW n, let Ti � pÿ1�Si�, which

is of size n since p rami¢es above Si.
If t; t0 2 Ti, then for some mX 1, m�p�t� ÿ p�t0�� equals the divisor of a function f

on E, and 2m�tÿ t0� is the divisor of f � p on X . Hence Ti is contained in a torsion
packet. On the other hand, if t 2 Ti and t0 2 Tj for i 6� j, and if m�tÿ t0� were
the divisor of g 2 K�X �� for some mX 1, then m�p�t� ÿ p�t0�� would be the divisor
of K�X �=K�E��g� 2 K�E��, contradicting the fact that Si and Sj are contained in distinct
torsion packets. ThusT1; . . . ;Tn are contained in distinct torsion packets each of size
at least n. &

If we repeat the proof of Theorem 2 but replace Raynaud's Theorem by a known
generalization such as the `Mordell^Lang conjecture,' the `generalized Bogomolov
conjecture,' or the combined theorem of [9], we immediately obtain a generalization
of Theorem 2:

THEOREM 9. Let X be a curve of genus gX 2 over �Q. Embed X in its Jacobian J
using some basepoint. Let G be a ¢nite rank subgroup of J� �Q� (e.g., the division group
of some ¢nitely generated subgroup). Let h: J� �Q� ! RX 0 be the canonical height
function associated to the theta divisor Wgÿ1�X � � J, and for e > 0, de¢ne
Be:� fa 2 J� �Q�: h�a� < eg. For each x 2 X � �Q�, let

Tx � Tx;G;e:� X � �Q� \ �x� G� Be�

be the set of points on X which are `near x mod G.' Then there exists e > 0 (depending
on X and G) such that

(1) There are only ¢nitely many x 2 X � �Q� with #Tx > 2.
(2) There are in¢nitely many x 2 X � �Q�with #Tx > 1 ifand only if either g � 2, or g � 3

and X is both hyperelliptic and bielliptic.
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