Torsion Packets on Curves

MATTHEW BAKER¹ and BJORN POONEN²*

¹Department of Mathematics, Harvard University, Cambridge, MA 02138, U.S.A. e-mail: mbaker@math.harvard.edu

(Received: 12 January 2000; accepted: 8 May 2000)

Abstract. Let X be a curve of genus $g \ge 2$ over a field of characteristic zero. Then X has at most finitely many torsion packets of size greater than 2. Moreover, X has infinitely many torsion packets of size 2 if and only if either g = 2, or g = 3 and X is both hyperelliptic and bielliptic.

Mathematics Subject Classifications (2000). Primary 14H40.

Key words. torsion point, torsion packet, Manin-Mumford conjecture, Abelian variety, curve, Jacobian

1. Raynaud's Theorem

Let X be an algebraic curve defined over an algebraically closed field K of characteristic zero. When we say that X is a curve, we require it to be smooth, proper, and irreducible over K. We will denote by J the Jacobian variety of X, and by g the genus of X.

We define an equivalence relation on X(K) by defining $P \sim Q$ if and only if the divisor m(P) - m(Q) on X is principal for some positive integer m. We call an equivalence class under \sim a torsion packet on X. Clearly the torsion packet containing $P \in X(K)$ is the set of points of X(K) which map to torsion points of X(K) via the Albanese map from X to X(K) sending X(K) to the class of the divisor X(K) = X(K) to the class of X(K) = X(K) to the class of X(K) = X(

Recall that the Manin–Mumford conjecture (proved by M. Raynaud in [10]) states that if $g \ge 2$, then every torsion packet on X is finite. In fact, Raynaud [11] proved the following more general result about torsion points on subvarieties of Abelian varieties:

THEOREM 1. Suppose A is an Abelian variety over the algebraically closed field K of characteristic zero, and that V is an irreducible closed subvariety of A. If the torsion

²Department of Mathematics, University of California, Berkeley, CA 94720-3840, U.S.A. e-mail: poonen@math.berkeley.edu

^{*}The first author was supported by a Sloan Dissertation Fellowship and an NSF Postdoctoral Research Fellowship. The second author was supported by NSF grant DMS-9801104, a Sloan Fellowship, and a Packard Fellowship.

points of A contained in V are Zariski-dense in V, then V is the translate of an Abelian subvariety of A by a torsion point.

Remark. Raynaud's theorem is equivalent to the following assertion: Let A and K be as in Theorem 1, and let V be an irreducible closed subvariety of A. Then the set of torsion points of A lying in V is contained in a finite union $\cup Z_j$, where each Z_j is contained in V and is a translate of a (possibly zero-dimensional) Abelian subvariety of A by a torsion point.

Our main result, Theorem 2, is concerned with the number and size of torsion packets on a curve X. In Section 2 we state the theorem, and in Section 3 we use Theorem 1 to prove it. In the final section, we show that the bounds must depend on the genus of X, and we describe a generalization along the lines of the Mordell-Lang and Bogomolov conjectures.

2. Bounds for Torsion Packets

We keep the notation of the previous section: in particular, X is an algebraic curve of genus g defined over the algebraically closed field K of characteristic zero.

If g = 2, then X has infinitely many nontrivial torsion packets, since the Riemann-Roch theorem implies that the subtraction map $\alpha_2: X \times X \to J$ given by $(P, Q) \mapsto [(P) - (Q)]$ is surjective.

In [4, Example (iv)], one finds the statement that if $g \ge 3$, then there are only finitely many nontrivial torsion packets on X. This statement is false, however: we will show later that if X has genus 3 and is both hyperelliptic and bielliptic, then there are infinitely many nontrivial torsion packets on X. The smooth projective model of $y^2 = x^8 + 1$ is an example of such a curve. (Recall that X is *hyperelliptic* if it admits a degree 2 map to an elliptic curve.)

Motivated by these examples, we will use Theorem 1 to prove the following result:

THEOREM 2. Suppose $g \ge 2$.

- (1) There are at most finitely many torsion packets of size greater than 2 on X.
- (2) There are infinitely many nontrivial torsion packets on X if and only if either g = 2, or g = 3 and X is both hyperelliptic and bielliptic.

Together with the Manin-Mumford conjecture, Theorem 2 implies:

COROLLARY 3. There is a constant M (depending on X) such that every torsion packet on X has size at most M.

Remark. The result of Corollary 3 is known to the experts, but we could not find in the literature an explicit statement with proof. It is stated without proof in [12], and

Raynaud [11, Proposition 9.1] gave a proof for g > 2. It follows from [3, Theorem 1], if one generalizes that theorem according the note 'added in proof' [3, p. 782] about the work on the Bogomolov conjecture by Szpiro, Ullmo, and Zhang [13–15].

Open question: Does the constant M in the statement of Corollary 3 depend only on the genus g of X? Mazur [7, p. 234] has asked the following more general question: can $\#(X(K) \cap \Gamma)$ be bounded in terms of g and r only, when X ranges over curves of genus g each embedded in its Jacobian J, and Γ ranges over subgroups of J(K) with $\dim_{\mathbb{Q}}(\Gamma \otimes \mathbb{Q}) \leq r$?

Another open question: Fix $g \ge 2$ and $s \ge 3$. Does there exist $M_{g,s} > 0$ such that for all curves X of genus g, the number of torsion packets on X of size at least s is bounded by $M_{g,s}$? There is not a single pair (g,s) for which we know the answer.

3. Proof of Theorem 2

Consider the family of proper maps $\alpha_n: X^n \to J^{n-1}$, $n \ge 2$, given by

$$(P_1, P_2, \ldots, P_n) \mapsto (P_1 - P_2, P_2 - P_3, \ldots, P_{n-1} - P_n).$$

These maps also played a prominent role in the proof of the generalized Bogomolov conjecture [15]. Let $V_n = \alpha_n(X^n)$, which is a closed subvariety of J^{n-1} . Let Δ_n denote the 'big diagonal' in X^n , i.e., the closed subscheme whose closed points are the n-tuples (P_1, P_2, \ldots, P_n) with $P_i = P_j$ for some $i \neq j$. Let $\Delta'_n = \alpha_n(\Delta_n) \subseteq V_n \subseteq J^{n-1}$. We could also characterize the closed points of Δ'_n as the closed points $(Q_1, \ldots, Q_{n-1}) \in V_n$ such that $Q_i + Q_{i+1} + \ldots + Q_j = 0$ for some $i \leq j$, so $\alpha_n^{-1}(\Delta'_n) = \Delta_n$.

The following proposition concerns the geometry of the maps α_n :

PROPOSITION 4. Suppose $g \ge 2$.

- (1) Suppose that either $n \ge 3$ or that n = 2 and X is not hyperelliptic. Then the restriction of α_n to $X^n \Delta_n$ is an isomorphism onto its image.
- (2) If n = 2 and X is hyperelliptic, then the restriction α_2 : $X^2 \Delta_2 \rightarrow V_2 \Delta_2'$ is finite of degree 2.

Proof. We begin with the proof of part (1). By the 'inverse function theorem for varieties' (see Lemma 14.8 and Theorem 14.9 of [5]), it suffices to show that the restriction of α_n to $U:=X^n-\Delta_n$ is injective on closed points and gives rise to an injection of tangent spaces at all closed points in the domain.

To see that the restriction of α_n is injective, let $P = (P_1, \ldots, P_n)$ and $P' = (P'_1, \ldots, P'_n)$ be distinct points of U, and note that if $\alpha_n(P) = \alpha_n(P')$ in J^{n-1} , then $(P_i) - (P_{i+1}) \sim (P'_i) - (P'_{i+1})$ for all $1 \le i \le n-1$, where \sim denotes linear equivalence of divisors on X.

It follows that $(P_i) - (P'_i) \sim (P_j) - (P'_j)$ for all $1 \le i, j \le n$. Since P is not in Δ_n and no two distinct points of X are linearly equivalent as divisors, we conclude that X is hyperelliptic, and that $P'_i = hP_j$ for all $1 \le i \ne j \le n$, where h is the hyperelliptic involution on X. Since we are assuming that P' is not in Δ_n , this forces n to equal 2, for otherwise we have $P'_3 = hP_2 = P'_1$, a contradiction.

It remains to show that $(d\alpha_n)_P$ is injective for all points $P \in U(K)$. It is enough to show that the map $(d\alpha_n)_P : T_P(X^n) \to T_0(J^{n-1})$ (by which we mean the natural map $T_P(X^n) \to T_{\alpha_n(P)}(J^{n-1})$ followed by a translation $\tau_* : T_{\alpha_n(P)}(J^{n-1}) \to T_0(J^{n-1})$) is injective.

Given a point $P = (P_1, \ldots, P_n)$ in U(K), let $v = (v_1, \ldots, v_n)$ be a nonzero tangent vector to X^n at P, where each v_i is a tangent vector to X at P_i . Also, let t_i denote the image of v_i in $T_0(J)$ under $(di)_P$ followed by a translation, where $i: X \to J$ is the Albanese map associated to an arbitrary base point $P_0 \in X(K)$. Then it is not hard to check that the image in $T_0(J^{n-1})$ of the tangent vector v is $(t_1 - t_2, \ldots, t_{n-1} - t_n)$.

The map $(d\alpha_n)_P$ fails to be injective if and only if $(d\alpha_n)_P(v) = 0$ for some nonzero tangent vector v to X^n at P, which happens if and only if there is some choice of tangent vectors v_i to X at P_i , not all zero, such that $t_1 = t_2 = \cdots = t_n$. In particular, if $(d\alpha_n)_P(v) = 0$ for some nonzero v, then the corresponding t_i are all nonzero and have the same image in the projectivization PW of $T_0(J) \cong H^0(X, \Omega_X^1)^\vee$. According to [6, Proposition 11.1.4], the map $\psi: X \to PW$ which sends a point Q in X(K) to the projectivized image under $(d\iota)_Q$ of a nonzero tangent vector v at Q is just the canonical map ψ from X to PW. It follows that $(d\alpha_n)_P(v) = 0$ if and only if $\psi(P_1) = \psi(P_2) = \cdots = \psi(P_n)$. Since we are assuming that the P_i are pairwise distinct, this can happen only if X is hyperelliptic and n = 2, which proves part (1).

To prove part (2) of the proposition, suppose that n=2 and X is hyperelliptic, and let h be the hyperelliptic involution on X. The above calculations show that the map $\alpha_2 \colon X^2 - \Delta_2 \to V_2 - \Delta_2'$ is quasifinite. It is also proper, since it is the base extension of $\alpha_2 \colon X^2 \to V_2$ by $V_2 - \Delta_2' \hookrightarrow V_2$, so it is finite. Moreover, the tangent space calculation shows that if $\widetilde{\Delta}_2'$ denotes the subvariety of X^2 whose closed points are pairs (P, hP), and if $\widetilde{\Delta}_2'$ is its image under α_2 , then $\alpha_2 \colon X^2 - (\Delta_2 \cup \widetilde{\Delta}_2) \to V_2 - (\Delta_2' \cup \widetilde{\Delta}_2')$ is finite étale of degree 2. So the degree of the finite map $\alpha_2 \colon X^2 - \Delta_2 \to V_2 - \Delta_2'$ must be 2.

The following lemmas will be used in the proof of Proposition 7.

LEMMA 5. Let X be a curve of genus at least 2, and let B be an Abelian variety. Then there are no dominant rational maps from B to X.

Proof. Let f be a dominant rational map from B to X. Choose an embedding $\iota: X \hookrightarrow J$ of X into its Jacobian, and let h be the composite rational map from B to J. According to [8, Theorem 3.1], the rational map h extends to a morphism from B to J. Since f is dominant, it follows that f extends to a surjective morphism (which

we still denote by f) from B to X. Now let $P_0 = f(0)$, and let I' be the Albanese map from X to I' corresponding to the base point I' be the composite morphism from I' to be a subgroup of I' to be a subgroup of

Remark. One can give also a complex-analytic proof of Lemma 5 using the hyperbolicity of curves of genus $g \ge 2$.

LEMMA 6. If $f: X \to Y$ is a surjective map of curves with no nontrivial unramified subcover of Y, then the induced map $f^*: J(Y) \to J(X)$ on Jacobians is a closed immersion.

Proof. If not, then since K is algebraically closed of characteristic zero, there exists a point $[D] \in \ker f^*$, where D is a nonprincipal divisor on Y. We have $f^*D = (g)$ for some $g \in K(X)$, and pushing the divisors forward to Y yields nD = (h) where $n = \deg f$ and h = K(X)/K(Y) (g). Since h (viewed as function on X by composing with f) and g^n both have divisor $n(f^*D)$ on X, their ratio is constant. Hence, K(X) contains an nth root of h. The subextension $K(Y)(h^{1/n})$ of K(X)/K(Y) corresponds to a subcover of $X \to Y$. It is unramified over Y since the divisor (h) on Y is divisible by n. It is nontrivial since D is nonprincipal. This contradicts the hypothesis. \square

We define a subvariety Y of an Abelian variety A to be a *torsion subvariety* if it is a translate of an Abelian subvariety of A by a torsion point.

PROPOSITION 7. Let $n \ge 2$ be an integer, and let $V_n = \alpha_n(X^n) \subseteq J^{n-1}$. Let $\Delta'_n = \alpha_n(\Delta_n)$, where Δ_n is the big diagonal. Then the following are equivalent:

- (1) V_n contains a translate of an Abelian subvariety of J^{n-1} of positive dimension which is not contained in Δ'_n .
- (2) V_n contains a torsion subvariety of J^{n-1} of positive dimension which is not contained in Δ'_n .
- (3) n = 2; and either g = 2, or g = 3 and X is both hyperelliptic and bielliptic.

Remark. An induction argument combined with Proposition 7 could be used to classify completely the translates of Abelian subvarieties contained in V_n .

Proof. Clearly $(2) \Rightarrow (1)$. We show next that $(3) \Rightarrow (2)$.

If n=2 and g=2 then $V_2=J^2$ is an Abelian surface. Now suppose n=2 and X is both hyperelliptic and bielliptic. Let i be the elliptic involution, let h be the hyperelliptic involution, and let $f: X \to E$ be the degree 2 map corresponding to the quotient of X by i. We claim that V_2 contains the genus 1 curve E as a torsion subvariety.

To see this, let S be a Weierstrass point of X; then i maps S to a Weierstrass point S', since the set of Weierstrass points is preserved by automorphisms. Without loss of generality, S maps to 0 in E. Then $f^*(0) = (S) + (S')$. Furthermore, i has fixed points by the Riemann–Hurwitz formula, so the Picard map $\psi: E \to J$, which on closed points is the homomorphism given by $\psi(P) = [f^*(P) - (S) - (S')]$, is a closed immersion by Lemma 6. Let η be the map ψ followed with translation by the 2-torsion point [(S') - (S)], which on closed points satisfies $\eta(P) = [f^*(P) - 2(S)]$. This map from E to F is also a closed immersion. It suffices to show, therefore, that the image of F is contained in F in F to do this, choose a closed point F is and write F is a contained in F in F to F in F to F in F to F in F in

We now prove that $(1) \Rightarrow (3)$. Suppose that V_n contains a translate B of an Abelian subvariety of J^{n-1} , and B is not contained in Δ'_n . Then $U := B - (B \cap \Delta'_n)$ is a dense open subscheme of B. If $n \ge 3$ or n = 2 and X is not hyperelliptic, then by Proposition 4, α_n is a birational map, and moreover the restriction of α_n to $X^n - \Delta_n$ is an isomorphism onto its image $V_n - \Delta'_n$. The composition

$$\beta \colon U \hookrightarrow V_n - \Delta_n' \stackrel{\alpha_n^{-1}}{\cong} X^n - \Delta_n$$

has infinite image, so some projection β_i : $U \to X$ also has infinite image. In other words, β_i is a dominant rational map from B to X. But Lemma 5 shows there are no such maps.

Therefore we may assume that n = 2 and X is hyperelliptic with hyperelliptic involution h. Embed X in J using a Weierstrass point S as basepoint. Then -1 on J restricts to h on X, so $\alpha_2(X^2) = W_2(X)$, the image of the symmetric square map $X^2 \to J$. If dim $B \ge 2$, then $B \subseteq \alpha_2(X) = W_2(X)$ forces $B = W_2(X)$, but $W_2(X)$ generates J, and the translate B of an Abelian subvariety can generate J only if B = J, so $W_2(X) = J$ and g = 2. On the other hand, if dim B = 1, then $W_2(X)$ contains a genus 1 curve B, so X is bielliptic by [1, Theorem 3], and a bielliptic hyperelliptic curve has genus at most 3, by the inequality of Castelnuovo and Severi (see [2, Exer. VIII.C-1]).

Proof of Theorem 2. Let $n \ge 2$ be an integer, and as before let $V_n \subseteq J^{n-1}$ be the image of α_n . Given a closed point $P:=(P_1,P_2,\ldots,P_n)$ in $X^n-\Delta_n$, $\alpha_n(P)$ is a torsion point of J^{n-1} if and only if the points P_1,P_2,\ldots,P_n all lie in a common torsion packet on X. According to Proposition 4, the restriction of α_n to $X^n-\Delta_n$ is an isomorphism onto its image $V_n-\Delta'_n$, unless n=2 and X is hyperelliptic, in which case the fibers of this map all have degree 2. Since each torsion packet on X is finite, it follows in all cases that there are infinitely many torsion packets of size at least n on X if and only if $V_n-\Delta'_n$ contains infinitely many torsion points of J^{n-1} . By Theorem 1, this occurs if and only if V_n contains a torsion subvariety of positive dimension not contained in Δ'_n . Parts (1) and (2) of Theorem 2 now follow by taking n=3 and n=2, respectively, in the statement of Proposition 7.

4. Generalizations and Nongeneralizations

Can one uniformly bound the number or size of torsion packets on a curve if the genus is unrestricted? Certainly not! Instead we have the following:

PROPOSITION 8. For every $n \ge 1$, there exists a curve X of some genus $g \ge 2$ such that X has at least n torsion packets each of size at least n.

Proof. Let E be an elliptic curve over K. Since K is algebraically closed of characteristic zero, E has infinitely many torsion packets, each of which is infinite. Let S_1 , ..., S_n denote subsets of size n contained in distinct torsion packets. Choose a divisor D on E of degree n^2 with support disjoint from $S_1 \cup ... \cup S_n$ such that $S_1 + ... + S_n - D$ is the divisor of a function f on E, i.e., sums to zero in the group law on E. Let $\pi: X \to E$ denote the double branched cover corresponding to the function field extension $K(X) = K(E)(\sqrt{f})$. For $1 \le i \le n$, let $T_i = \pi^{-1}(S_i)$, which is of size n since π ramifies above S_i .

If $t, t' \in T_i$, then for some $m \ge 1$, $m(\pi(t) - \pi(t'))$ equals the divisor of a function f on E, and 2m(t-t') is the divisor of $f \circ \pi$ on X. Hence T_i is contained in a torsion packet. On the other hand, if $t \in T_i$ and $t' \in T_j$ for $i \ne j$, and if m(t-t') were the divisor of $g \in K(X)^*$ for some $m \ge 1$, then $m(\pi(t) - \pi(t'))$ would be the divisor of $K(X)/K(E)(g) \in K(E)^*$, contradicting the fact that S_i and S_j are contained in distinct torsion packets. Thus T_1, \ldots, T_n are contained in distinct torsion packets each of size at least n.

If we repeat the proof of Theorem 2 but replace Raynaud's Theorem by a known generalization such as the 'Mordell–Lang conjecture,' the 'generalized Bogomolov conjecture,' or the combined theorem of [9], we immediately obtain a generalization of Theorem 2:

THEOREM 9. Let X be a curve of genus $g \ge 2$ over $\bar{\mathbb{Q}}$. Embed X in its Jacobian J using some basepoint. Let Γ be a finite rank subgroup of $J(\bar{\mathbb{Q}})$ (e.g., the division group of some finitely generated subgroup). Let $h: J(\bar{\mathbb{Q}}) \to \mathbb{R}_{\ge 0}$ be the canonical height function associated to the theta divisor $W_{g-1}(X) \subset J$, and for $\varepsilon > 0$, define $B_{\varepsilon} := \{a \in J(\bar{\mathbb{Q}}): h(a) < \varepsilon\}$. For each $x \in X(\bar{\mathbb{Q}})$, let

$$T_x = T_{x,\Gamma,\varepsilon} := X(\bar{\mathbb{Q}}) \cap (x + \Gamma + B_{\varepsilon})$$

be the set of points on X which are 'near $x \mod \Gamma$.' Then there exists $\varepsilon > 0$ (depending on X and Γ) such that

- (1) There are only finitely many $x \in X(\bar{\mathbb{Q}})$ with $\#T_x > 2$.
- (2) There are infinitely many $x \in X(\bar{\mathbb{Q}})$ with $\#T_x > 1$ if and only if either g = 2, or g = 3 and X is both hyperelliptic and bielliptic.

References

- 1. Abramovich, D. and Harris, J.: Abelian varieties and curves in $W_d(C)$, Compositio Math. 78 (1991), 227–238.
- 2. Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J.: *Geometry of Algebraic Curves*, Grundlehren Math. Wiss. 267, Springer, New York, 1985.
- 3. Bombieri, E. and Zannier, U.: Heights of algebraic points on subvarieties of Abelian varieties, *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* (4) **23**(4) (1996), 779–792 (1997).
- 4. Coleman, R. F.: Torsion points on curves, In: *Galois Representations and Arithmetic Algebraic Geometry*, Adv. Stud. Pure Math. **12**, Kinokuniya, Tokyo, 1987, pp. 235–247.
- 5. Harris, J.: Algebraic Geometry, Grad. Texts in Math. 133, Springer, New York, 1992.
- 6. Lange, H. and Birkenhake, C.: *Complex Abelian Varieties*, Grundlehren Math. Wiss. 302, Springer, New York, 1992.
- 7. Mazur, B.: Arithmetic on curves, Bull. Amer. Math. Soc. (N.S.) 14(2) (1986), 207–259.
- 8. Milne, J. S.: Abelian varieties, In: G. Cornell and J. H. Silverman (eds), *Arithmetic Geometry*, Springer, New York, 1986, pp. 103–150.
- 9. Poonen, B.: Mordell-Lang plus Bogomolov, Invent. Math. 137 (1999), 413-425.
- Raynaud, M.: Courbes sur une variété Abélienne et points de torsion, *Invent. Math.* 71 (1983), 207–233.
- 11. Raynaud, M.: Sous-variétés d'une variété Abélienne et points de torsion, In: *Arithmetic and Geometry*, Vol. I, Progr. Math. 35, Birkhauser, Boston, 1983, pp. 327–352.
- 12. Silverman, J.: Hecke points on modular curves, Duke Math. J. 60 (1990), 401-423.
- 13. Szpiro, L., Ullmo, E. and Zhang, S.: Équirépartition des petits points, *Invent. Math.* 127 (1997), 337–347.
- 14. Ullmo, E.: Positivité et discrétion des points algébriques des courbes, *Ann. of Math. (2)* **147**(1) (1998), 167–179.
- 15. Zhang, S.: Equidistribution of small points on Abelian varieties, *Ann. of Math.* (2) **147**(1) (1998), 159–165.