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Torsion Packets on Curves
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Abstract. Let X be a curve of genus g > 2 over a field of characteristic zero. Then X has at most
finitely many torsion packets of size greater than 2. Moreover, X has infinitely many torsion
packets of size 2 if and only if either g = 2, or g = 3 and X is both hyperelliptic and bielliptic.
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1. Raynaud’s Theorem

Let X be an algebraic curve defined over an algebraically closed field K of charac-
teristic zero. When we say that X is a curve, we require it to be smooth, proper,
and irreducible over K. We will denote by J the Jacobian variety of X, and by
g the genus of X.

We define an equivalence relation on X (K) by defining P ~ Q if and only if the
divisor m(P) — m(Q) on X is principal for some positive integer m. We call an
equivalence class under ~ a torsion packet on X. Clearly the torsion packet
containing P € X(K) is the set of points of X(K) which map to torsion points of
J via the Albanese map from X to J sending Q € X (K) to the class of the divisor
(Q) — (P). A torsion packet is said to be trivial if it has only one element.

Recall that the Manin—Mumford conjecture (proved by M. Raynaud in [10]) states
that if g > 2, then every torsion packet on X is finite. In fact, Raynaud [11] proved
the following more general result about torsion points on subvarieties of Abelian
varieties:

THEOREM 1. Suppose A is an Abelian variety over the algebraically closed field K of
characteristic zero, and that V is an irreducible closed subvariety of A. If the torsion
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points of A containedin V are Zariski-dense in V', then V' is the translate of an Abelian
subvariety of A by a torsion point.

Remark. Raynaud’s theorem is equivalent to the following assertion: Let 4 and K
be asin Theorem 1, and let ' be an irreducible closed subvariety of 4. Then the set of
torsion points of 4 lying in V' is contained in a finite union UZ;, where each Z; is
contained in ¥ and is a translate of a (possibly zero-dimensional) Abelian subvariety
of 4 by a torsion point.

Our main result, Theorem 2, is concerned with the number and size of torsion
packets on a curve X. In Section 2 we state the theorem, and in Section 3 we
use Theorem 1 to prove it. In the final section, we show that the bounds must depend
on the genus of X, and we describe a generalization along the lines of the
Mordell-Lang and Bogomolov conjectures.

2. Bounds for Torsion Packets

We keep the notation of the previous section: in particular, X is an algebraic curve of
genus g defined over the algebraically closed field K of characteristic zero.

If g =2, then X has infinitely many nontrivial torsion packets, since the
Riemann—Roch theorem implies that the subtraction map oy: X x X — J given
by (P, Q)i— [(P) — (Q)] is surjective.

In [4, Example (iv)], one finds the statement that if g > 3, then there are only
finitely many nontrivial torsion packets on X. This statement is false, however:
we will show later that if X has genus 3 and is both hyperelliptic and bielliptic, then
there are infinitely many nontrivial torsion packets on X. The smooth projective
model of y> = x® + 1 is an example of such a curve. (Recall that X is hyperelliptic
if it admits a degree 2 map to P!, and is bielliptic if it admits a degree 2 map to
an elliptic curve.)

Motivated by these examples, we will use Theorem 1 to prove the following result:

THEOREM 2. Suppose g > 2.

(1) There are at most finitely many torsion packets of size greater than 2 on X.
(2) There are infinitely many nontrivial torsion packets on X if and only if either g = 2,
or g =3 and X is both hyperelliptic and bielliptic.

Together with the Manin—-Mumford conjecture, Theorem 2 implies:

COROLLARY 3. There is a constant M (depending on X ) such that every torsion
packet on X has size at most M.

Remark. The result of Corollary 3 is known to the experts, but we could not find in
the literature an explicit statement with proof. It is stated without proof in [12], and
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Raynaud[11, Proposition 9.1] gave a proof for g > 2. It follows from [3, Theorem 1],
if one generalizes that theorem according the note ‘added in proof’ [3, p. 782] about
the work on the Bogomolov conjecture by Szpiro, Ullmo, and Zhang [13-15].

Open question: Does the constant M in the statement of Corollary 3 depend only
on the genus g of X? Mazur [7, p. 234] has asked the following more general question:
can #(X(K) N T') be bounded in terms of g and r only, when X ranges over curves of
genus g each embedded in its Jacobian J, and I' ranges over subgroups of J(K) with
dimop(I' ® Q) < r?

Another open question: Fix g > 2and s > 3. Does there exist M, ; > 0 such that for
all curves X of genus g, the number of torsion packets on X of size at least s is
bounded by M, ,? There is not a single pair (g, s) for which we know the answer.

3. Proof of Theorem 2
Consider the family of proper maps o,: X" — J"~!, n > 2, given by

(Pl,Pz,...,Pn)l—> (P1 —P2,P2 —P3, ~-~aPn71 —Pn).

These maps also played a prominent role in the proof of the generalized Bogomolov
conjecture [15]. Let V,, = a,(X™), which is a closed subvariety of J”~!. Let A, denote
the ‘big diagonal’ in X", i.e., the closed subscheme whose closed points are the
n-tuples (Py, P, ...,P,) with P;=P; for some i#j. Let A, =u,(A,)C
V, € J""1. We could also characterize the closed points of A/, as the closed points
(O1,...,0p-1) €V, such that Qi+ Qi1 +...+0;=0 for some i<j, so
WA = A,.
The following proposition concerns the geometry of the maps a,:

PROPOSITION 4. Suppose g = 2.

(1) Suppose that either n =3 or that n =2 and X is not hyperelliptic. Then the
restriction of o, to X" — A, is an isomorphism onto its image.

(2) Ifn=2and X is hyperelliptic, then the restriction ay: X> — Ay — V5 — A is finite
of degree 2.

Proof. We begin with the proof of part (1). By the ‘inverse function theorem for
varieties’ (see Lemma 14.8 and Theorem 14.9 of [5]), it suffices to show that the
restriction of «, to U:= X" — A, is injective on closed points and gives rise to
an injection of tangent spaces at all closed points in the domain.

To see that the restriction of «, is injective, let P =(Py,...,P,) and
P =(P,,...,P) be distinct points of U, and note that if o,(P) = o,(P') in J"71,
then (P;) — (Piy1) ~ (P) — (P;yy) for all 1 <i<n-—1, where ~ denotes linear
equivalence of divisors on X.
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It follows that (P;) — (P) ~ (Pj) — (P}) for all I <i,j < n. Since P is notin A, and
no two distinct points of X are linearly equivalent as divisors, we conclude that
X is hyperelliptic, and that P; = hP; for all 1 <i # j < n, where /1 is the hyperelliptic
involution on X. Since we are assuming that P’ is not in A, this forces n to equal 2,
for otherwise we have P; = hP, = P}, a contradiction.

It remains to show that (do,)p is injective for all points P € U(K). It is enough to
show that the map (da,)p: Tp(X") — To(J""!) (by which we mean the natural
map Tp(X") — T,,p)(J" ") followed by a translation t,: T, ) (J""!) — To(J" 1))
is injective.

Given a point P = (Py, ..., P,) in U(K), let v= (v, ..., v,) be a nonzero tangent
vector to X" at P, where each v; is a tangent vector to X at P;. Also, let #; denote
the image of v; in Ty(J) under (d1)p followed by a translation, where 11 X — J is
the Albanese map associated to an arbitrary base point Py € X(K). Then it is
not hard to check that the image in Ty(J""') of the tangent vector v is
(l] — 1, ..., 1 — l,,).

The map (day,)p fails to be injective if and only if (da,)p(v) = 0 for some nonzero
tangent vector v to X" at P, which happens if and only if there is some choice
of tangent vectors v; to X at P;, not all zero, such that t;, =6, =--- =1, In
particular, if (do,)p(v) =0 for some nonzero v, then the corresponding ¢; are
all nonzero and have the same image in the projectivization PW of
To(J) =~ H(X, Q})V. According to [6, Proposition 11.1.4], the map y: X — PW
which sends a point Q in X(K) to the projectivized image under (d1),, of a nonzero
tangent vector v at Q is just the canonical map  from X to PW. It follows that
(doy)p(v) = 0if and only if Y(P1) = Y(P2) = - - - = Y(P,). Since we are assuming that
the P; are pairwise distinct, this can happen only if X is hyperelliptic and » = 2, which
proves part (1).

To prove part (2) of the proposition, suppose that n = 2 and X is hyperelliptic, and
let 4 be the hyperelliptic involution on X. The above calculations show that the map
U X2 — Ay > Vy — A is quasifinite. It is also proper, since it is the base extension of
w: X> — Vaby Vy — Ay V7, so it is finite. Moreover, the tangent space calculation
shows that if A~2 denotes the subvariety of X2 whose closed points are pairs (P, hP),
and if A} is its image under oy, then o: X? — (A U ANZ) — V5, — (A5 UA)) is finite
étale of degree 2. So the degree of the finite map op: X> — Ay — V, — A, must
be 2. O

The following lemmas will be used in the proof of Proposition 7.

LEMMA 5. Let X be a curve of genus at least 2, and let B be an Abelian variety. Then
there are no dominant rational maps from B to X.

Proof. Let f be a dominant rational map from B to X. Choose an embedding
1: X—J of X into its Jacobian, and let 4 be the composite rational map from B
to J. According to [8, Theorem 3.1], the rational map /4 extends to a morphism from
Bto J. Since f is dominant, it follows that f extends to a surjective morphism (which
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we still denote by f) from B to X. Now let Py = f(0), and let " be the Albanese map
from X to J corresponding to the base point Py. Let /' be the composite morphism
from B to J. Then //(0) = 0, so [8, Corollary 2.2] shows that /' is a homomorphism
with image X. This forces X to be a subgroup of J, which is absurd, since X generates
J (which has dimension at least 2) as a group. O

Remark. One can give also a complex-analytic proof of Lemma 5 using the
hyperbolicity of curves of genus g = 2.

LEMMA 6. If f: X — Y is a surjective map of curves with no nontrivial unramified
subcover of 'Y, then the induced map f*:J(Y) — J(X) on Jacobians is a closed
immersion.

Proof. If not, then since K is algebraically closed of characteristic zero, there exists
a point [D] € ker f*, where D is a nonprincipal divisor on Y. We have f*D = (g)
for some g € K(X), and pushing the divisors forward to Y yields nD = (h) where
n=deg f and h =gx)/k(y) (g)- Since h (viewed as function on X by composing
with f) and g" both have divisor n(f*D) on X, their ratio is constant. Hence,
K(X) contains an nth root of h. The subextension K(Y)(h'/") of K(X)/K(Y)
corresponds to a subcover of X — Y. It is unramified over Y since the divisor
(h) on Y is divisible by n. It is nontrivial since D is nonprincipal. This contradicts
the hypothesis. OJ

We define a subvariety Y of an Abelian variety A to be a torsion subvariety if it
is a translate of an Abelian subvariety of 4 by a torsion point.

PROPOSITION 7. Let n>2 be an integer, and let V, = a,(X") S J""\. Let
A = o,(A,), where A, is the big diagonal. Then the following are equivalent:

(1)  V, contains a translate of an Abelian subvariety of J"~" of positive dimension which
is not contained in A},

(2) V, contains a torsion subvariety of J"~" of positive dimension which is not contained
in A,

(3) n=2; and either g =2 or g = 3 and X is both hyperelliptic and bielliptic.

Remark. An induction argument combined with Proposition 7 could be used to
classify completely the translates of Abelian subvarieties contained in V/,.

Proof. Clearly (2) = (1). We show next that (3) = (2).

Ifn =2 and g = 2 then V, = J? is an Abelian surface. Now suppose n = 2 and X is
both hyperelliptic and bielliptic. Let i be the elliptic involution, let 4 be the
hyperelliptic involution, and let f: X — E be the degree 2 map corresponding to
the quotient of X by i. We claim that V, contains the genus 1 curve E as a torsion
subvariety.
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To see this, let S be a Weierstrass point of X; then i maps S to a Weierstrass point
S’, since the set of Weierstrass points is preserved by automorphisms. Without loss of
generality, S maps to 0 in E. Then /*(0) = (S) + (S'). Furthermore, i has fixed points
by the Riemann-Hurwitz formula, so the Picard map : £ — J, which on closed
points is the homomorphism given by Y/(P) = [f*(P) — (S) — (S")], is a closed immer-
sion by Lemma 6. Let 1 be the map i followed with translation by the 2-torsion point
[(S") — (S)], which on closed points satisfies #(P) = [f*(P) — 2(S)]. This map from E
to J is also a closed immersion. It suffices to show, therefore, that the image of
n is contained in ¥V,. To do this, choose a closed point P € E, and write
f*P)=(Q)+(Q). Then n(P)=I[*(P)—2S]=[(Q)+(Q)—(Q)— Q)=
[(Q) — (hQ)], so n(E) C aa(X x X) as claimed.

We now prove that (1) = (3). Suppose that V), contains a translate B of an Abelian
subvariety of J"~!, and B is not contained in A). Then U:= B — (BN A)) is a dense
open subscheme of B. If >3 or n=2 and X is not hyperelliptic, then by
Proposition 4, «, is a birational map, and moreover the restriction of ¢, to
X" — A, is an isomorphism onto its image ¥, — A,. The composition

ot
B:UV,— A, & X" — A,

has infinite image, so some projection f;; U — X also has infinite image. In other
words, f; is a dominant rational map from B to X. But Lemma 5 shows there
are no such maps.

Therefore we may assume that » =2 and X is hyperelliptic with hyperelliptic
involution 4. Embed X in J using a Weierstrass point S as basepoint. Then —1
on J restricts to 4 on X, so ax(X?) = W>(X), the image of the symmetric square
map X> — J. If dimB >2, then B C oy(X) = Ws(X) forces B = W,(X), but
W>(X) generates J, and the translate B of an Abelian subvariety can generate J
only if B=J, so W(X)=J and g = 2. On the other hand, if dim B =1, then
W>,(X) contains a genus 1 curve B, so X is bielliptic by [1, Theorem 3], and a bielliptic
hyperelliptic curve has genus at most 3, by the inequality of Castelnuovo and Severi
(see [2, Exer. VIII.C-1]). O

Proof of Theorem 2. Let n > 2 be an integer, and as before let ¥, € J"~! be the
image of o,,. Given a closed point P: = (Py, P3, ..., P,)in X" — A, o,(P) is a torsion
point of J 1 if and only if the points Py, P,,..., P, all lic in a common torsion
packet on X. According to Proposition 4, the restriction of o, to X" — A, is an
isomorphism onto its image ¥, — A/, unless n =2 and X is hyperelliptic, in which
case the fibers of this map all have degree 2. Since each torsion packet on X is finite,
it follows in all cases that there are infinitely many torsion packets of size at least
n on X if and only if ¥, — A}, contains infinitely many torsion points of J"~!. By
Theorem 1, this occurs if and only if V), contains a torsion subvariety of positive
dimension not contained in A),. Parts (1) and (2) of Theorem 2 now follow by taking
n =3 and n = 2, respectively, in the statement of Proposition 7. O
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4. Generalizations and Nongeneralizations

Can one uniformly bound the number or size of torsion packets on a curve if the
genus is unrestricted? Certainly not! Instead we have the following:

PROPOSITION 8. For every n = 1, there exists a curve X of some genus g = 2 such
that X has at least n torsion packets each of size at least n.

Proof. Let E be an elliptic curve over K. Since K is algebraically closed of charac-
teristic zero, E has infinitely many torsion packets, each of which is infinite. Let S,
..., S, denote subsets of size n contained in distinct torsion packets. Choose a divisor
D on E of degree n’> with support disjoint from S;U...US, such that
S1+ ...+ S, — D is the divisor of a function f on E, i.e., sums to zero in the group
law on E. Let n: X — E denote the double branched cover corresponding to the
function field extension K(X) = K(E)(\/f). For 1 <i<n, let T; =n~!(S;), which
is of size n since m ramifies above S;.

If ¢, ¢ € T;, then for some m > 1, m(n(¢) — n(¢')) equals the divisor of a function f
on E, and 2m(t — ¢) is the divisor of f o on X. Hence T; is contained in a torsion
packet. On the other hand, if € T; and ¢ € T; for i #j, and if m(r — t') were
the divisor of g € K(X)* for some m > 1, then m(n(f) — n(¢')) would be the divisor
of xxy/ke)(g) € K(E)*, contradicting the fact that S; and S; are contained in distinct
torsion packets. Thus 77, . .., T, are contained in distinct torsion packets each of size
at least n. O

If we repeat the proof of Theorem 2 but replace Raynaud’s Theorem by a known
generalization such as the ‘Mordell-Lang conjecture,” the ‘generalized Bogomolov
conjecture,” or the combined theorem of [9], we immediately obtain a generalization
of Theorem 2:

THEOREM 9. Let X be a curve of genus g = 2 over Q. Embed X in its Jacobian J
using some basepoint. Let T be a finite rank subgroup ofJ(Q) (e.g., the division group
of some finitely generated subgroup). Let h: J(Q) — R be the canonical height
function associated to the theta divisor Wy_1(X) CJ, and for ¢ >0, define
B.:.={ae J(Q): h(a) < e}. For each x € X(Q), let

T, = Tx,F,s::X(Q)m(x+r+Bs)

be the set of points on X which are ‘near x modI'.” Then there exists ¢ > 0 (depending
on X and T') such that

() There are only finitely many x € X(Q) with #T, > 2.
(2) Thereareinfinitely many x € X(Q)with#T, > lifandonly ifeitherg =2 org =3
and X is both hyperelliptic and bielliptic.
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