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Abstract

We show that a quantum Verma-type module for a quantum group associated to an affine Kac-Moody
algebra is characterized by its subspace of finite-dimensional weight spaces. In order to do this we prove
an explicit equivalence of categories between a certain category containing the quantum Verma modules
and a category of modules for a subalgebra of the quantum group for which the finite part of the Verma
module is itself a module.

2000 Mathematics subject classification: primary 17B37,17B67, 81R50.

1. Introduction

In this paper, we determine an equivalence of categories between certain representa-
tions of the quantum group and some representations of a particular subalgebra. The
main purpose of constructing this category equivalence is to establish an equivalence
between quantum Verma-type modules and modules that are essentially their finite
parts. In the classical case, that is representations of affine Kac-Moody algebras, anal-
ogous results were obtained in [CFM]. However, in the quantum case, the techniques
required and, indeed, the precise statements of the results differ somewhat from those
in the classical case.

Verma-type modules for affine Kac-Moody algebras are constructed in a similar
fashion to ordinary Verma modules except that they are induced from non-standard
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[2] Categories of modules 163

Borel subalgebras (that is, those not Weyl-equivalent to standard Borel subalgebras).
Verma-type modules were originally introduced and classified by Jakobsen and Kac
[JK1, JK2] and independently in [Ful, Fu2]. They are in many ways similar to
ordinary Verma modules, but they typically have both finite and infinite-dimensional
weight spaces. However, as long as the central element in the affine algebra acts by a
non-zero charge, the structure of these Verma-type modules is essentially determined
by the subspace of finite-dimensional weight spaces. This subspace is, of course, not
a submodule for the whole affine algebra, but one can construct a suitable subalgebra
for which the finite part of the Verma-type module is a module. One of the main
results of [CFM] was establishing the equivalence of these representations.

The construction and analysis of quantum Verma-type modules is hampered some-
what by the lack of a general PBW theorem for quantum groups. This means one has to
be very cautious about subalgebras constructed in terms of generators and relations—
the commutation relations for arbitrary elements of a quantum group are not well
understood. The case of quantum Verma-type modules for Uq(A\l)) was considered
in [CFKM], where it was shown that these modules were true quantum deformations
of Verma-type modules for the underlying affine algebra. The techniques used in
[CFKM] do not easily generalize to other affine algebras but, by utilizing a rather
different approach, the same quantum deformation results were obtained in [FGM].
That paper also contains several structural results on imaginary Verma modules (a
subclass of Verma-type modules).

Here we build upon, and make many references to, the results of [FGM]. The
most important insight in [FGM] was that, while one may be unsure about a basis
for a subalgebra of f/,(g) determined by certain generators, one may still be able
to determine a basis for representations generated by that subalgebra. This result
[FGM, Theorem 3.5] is quoted below, used repeatedly, and the proof of our crucial
Proposition 6.1 below uses similar arguments to the proof of [FGM, Theorem 3.5].
The construction of a basis for our representations depends in turn on having detailed
information about an explicit basis for the quantum group and for this we draw heavily
on the work of Beck and Kac on PBW bases of quantum groups [BK]. We quote the
necessary machinery below.

Although our principal concern here is with quantum modules, in order to establish
certain results, we do at times need to refer to previously obtained classical results.
The connection between the quantum and classical cases is via the A-form approach to
quantum deformations originally due to Lusztig. We do not provide complete details
of this technique here, but refer the reader to [FGM], where this process is given in
full.

In Section 2, we establish notation and recall results and constructions from [BK]
and [FGM]. Section 3 constructs representations of the subalgebra gJ of Uq(g).
Section 4 discusses representations of quantum Heisenberg algebras and refers to
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structural results obtained in [Fu3] in the non-quantum case. In Section 5 we introduce
the category 0J(k) of py-modules that contains the finite parts of the Verma-type
modules. Finally, Section 6 establishes the equivalence between the category G1 (A.)
and a category &j(k) of I/,(g)-modules containing the Verma-type modules.

Much of the research reported in this paper was conducted while the authors were
visiting the University of Wisconsin, Madison in January 1999. We would like to
thank the University of Wisconsin, and Georgia Benkart in particular, for their very
gracious hospitality during this visit.

2. Preliminaries

We introduce some required notation and terminology. For more details of the
basic constructions, the reader is referred to [FGM]. We work with a particular basis
of the quantum group, and a parametrization of the closed partition of the root system,
so we introduce these topics first.

Let 9 be an (untwisted) affine Kac-Moody algebra with root system A and set of
simple roots FT. Then

A = [a + nS | a e A, n e 1} U {kS | k e 1, k ^ 0),

where A is the root system for the underlying finite-dimensional simple algebra g and
S is the minimal positive imaginary root of g. We let A± denote the sets of positive
and negative roots, Q the root lattice and Q± the monoids generated by A±.

Following Beck and Kac ([BK], see also [KT]), we introduce a total ordering of
positive roots of g

A, > 0_i > P-2 > • • • > 5 > 28 > • • • > ft > /J,,

where {fik \ k < 0} = {a + nS \ a e A+, n > 0} and {& | k > 1} = {-a + nS \ a e
A+, n > 0}. Clearly, by declaring —a < —ft if and only if 0 > a for the positive
roots a, p we obtain a corresponding ordering on the negative roots. All negative
roots are considered smaller than positive roots.

Let / = {0, 1 , . . . , Af} be a set indexing the simple roots of g so that n = {a, |
/ € / } . We let A = (fly )O<,J<N be the Cartan matrix of g. Let f) denote the Cartan
subalgebra of g with h, € h defined by at(hj) = ay for i, j € / . We also let c denote
the canonical central element of g and d the degree derivation. The weight lattice of
g is P - {k e h* | k(h{) el, i e /, X(d) e 1}. For more details see [FGM].

The quantum group, i/,(g), of g is an associative algebra with 1 over C(^) with
generators £,, F,, Kfl (i e I) and D±l. We do not list the well-known relations (see
[FGM, Section 1.5] for full details in the notation we use here). Let £/+(g) (U~(Q))
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be the subalgebra of f/,(g) generated by £, (F;), i e I, and let f^(g) denote the
subalgebra generated by Kf (i e / ) and D*.

Beck and Kac [BK] have constructed a PBW basis on {Efi \ fi e A}, where we
count with multiplicity for the root vectors corresponding to imaginary roots, labeling
them E^'g, when we need to distinguish particular root vectors. This basis has several
useful properties. The total ordering of the root system induces a total ordering on the
basis and the basis is convex, meaning that if or, ff are positive roots and Ep > Ea,
that is, fi > a, then

F»F —n
(

a<yi<-<Yr<P

for some integers a{,... ,ar and scalars cY € C[q,q'1], y = (yu ••• >Yr) [BK,
Proposition 1.7c], and similarly for the negative roots. Furthermore, Beck and Kac
introduced a notion of total degree of basis elements which provides a filtration
of Uq(Q) such that the commutation relations for the associated graded algebra are
particularly simple. We state their result here as we need to use the commutation
relations later.

PROPOSITION 2.1 ([BK, Proposition 1.8]). The associated graded algebra GrUq(g)
of Uq(g) is the algebra over C(q) generated by Ea, a e A, counting multiplicities,
Kf1 (j € /) and D* subject to the relations

KiK'1 = K~lKi = DD'1 =D-lD = l,

KtEa = qMa)EaKh DEa = q"EaD, fora = y + nS,y e A.

EaE_0 = E_pEa ifa,peA+,

EaE0 = qW)EfiEa, E-aE-P = qM0)E^E_a, if a, 0 6 A+ and 0 < a.

Let S be a nonempty subset of A. Set—5 = {—or | a € 5}. A partition A = SU—S
of the root system is called closed if whenever a and ft are in 5 and a + /3 is a root,
then a + /J e 5. Affine Kac-Moody algebras have a finite number (more than one) of
inequivalent Weyl-orbits of closed partitions of the root system. These non-standard
closed partitions were first studied and classified by Jakobsen and Kac [JK1, JK2] and
independently in [Ful, Fu2].

Let J c / = ( 1 , . . . , #} . Let UJ = {aj € n | j e J). Set QJ = ®jejZaj 0 IS,
and QJ

± = QJ C\Q±. We define a partial order on Q by setting fx <j kifX — /x e QJ
+.

Let AJ be the finite root system generated by the simple roots in TlJ. Set

Ay = {a + nS e A | a 6 AJ, n € 1} U [kS | it e 1 \ {0}},
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and let AJ
± = AJ (1 A± and A~ = A \ AJ. Now we let

+A~ = {a + nS e A | a e A+ \ AJ, n € 2}.

Finally, let Sj = AJ
+ U + Af. Then the sets Sj parametrize the closed partitions of A

[Fu4, Theorem 2.4]. Note that, if J = / , then Sj = A+, the usual partition.
Next we construct quantum Verma-type modules. Let / C / and set 5 = Sj. Let

n±J be the subalgebra of Uq(g) generated by [Ep \ f) € ±5}, and let bJ denote the
subalgebra of Uq(g) generated by {Ep | /3 e S] U tf.

A £7,(0)-module V is called a quantum weight module if V = ©Me/> VM, where

V^ = [v € V | Kf'u = g f ^ i / , D±!u = 9o±M<<"«}

and we set qt = ^<a'a'»/2, for i = 0 , . . . , AT. Any submodule of a quantum weight
module is a weight module. A f/,(g)-module V is called a ./-highest weight module
with highest weight X e P if there is a non-zero vector u e V such that

(i) uv = 0 for all M e ny \ €(<?)*;
(ii) for each i e l , K?lv = qfMhi)v, D±lv = <70

±M<V,
(iii) V = Uq(s)v.

In the absence of a general quantum PBW theorem for non-standard partitions, we
cannot immediately claim that a /-highest weight module V is generated by n~y.

Let C(q)v be a 1-dimensional vector space. Let k € P, set E$v = 0 for all ^ e 5,
Kflv = q^vii € Z)andD±1u = # (<V Now define MJ (A.) = Uqte)®vZ{q)v.
Then MV(X) is a /-highest weight f/,(0)-module called the quantum Verma-type
module with highest weight X. Quantum Verma-type modules have many similar
properties to ordinary quantum Verma modules except that they typically have both
finite- and infinite-dimensional weight spaces.

Basic properties of quantum Verma-type modules were studied in [FGM], where it
was also shown that the quantum Verma-type modules are true quantum deformations
of Verma-type modules for the underlying affine algebra. In order to prove the
equivalence of categories, we need a number of results from [FGM], which we collect
here for the convenience of the reader. The most important of these results are the
following, which give an explicit description of a basis for the quantum Verma-type
modules, and a determination of their finite and infinite-dimensional weight spaces.

PROPOSITION 2.2 ([FGM, Theorem 3.5]). As a vector space over C(q), MJ(k) is
isomorphic to the space spanned by the ordered monomials

E-p-n& ' - • E-p+kS • • • E-a-nS ' ' • E-M • ' * Ea_k&,

fora € A+ PI AJ, 0 € A+ n A~, n > 0, k > 0.
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PROPOSITION 2.3 ([FGM, Proposition 5.5]). Let k e P, J c /, and let M] (k) be
the quantum Verma-type module with highest weight k. Then dim MJ(k))1 # 0 i/
and only if k — fx is in the monoid generated by Sj, dim MJ(k)k = 1, and 0 <
dimM-/(A.)M < oo if and only if/x <j k.

Consider the following subsets of A:

A, = {a + nS | a e A+, n > 0}, B, = {-a - nS | a e A+, n > 0),

A2 = {kS | k > 0}, B2 = {-kS \k>0],

A3 = {-a + kS | a € A+, k > 0), B3 = {a - kS | a € A+, k > 0}.

Then A+ = A, U A2 U A3 and A_ = Bx U B2 U B3. Further, in the total ordering of
the root system, we have

B\ < B2 < B3 < A3 < A2 < A].

Next, we split these subsets into those associated with finite and infinite-dimensional
subspaces. For i = 1, 2, 3, let A1/" = A, n AJ, A°° = A, n Af, B{in = Bt n AJ and
B°° = Bi (1 A™. Now, let X, denote an ordered monomial in elements Ep, f$ € A,,
and y, denote an ordered monomial of elements Ep, ft e B,. Further, let x{'n (X°°)
denote an ordered monomial in Ep, P e Af'" (0 e A°°), and let Yf" (Y°°) denote an
ordered monomial in Ep, P € B{'" ()3 € B°°). We note that the sets A~ and B2°° are
actually empty.

We now define a number of subalgebras of the quantum group. Let pJ be the
subalgebra of Uq(g) generated by monomials of the form X™, Y£°, x{'n, YJ'" for
i = 1,2, 3 and t^(g). Let gy be the subalgebra generated by monomials of the form
X[in and Yfin (i = 1,2, 3) and C^(g) and let gf denote the algebra generated by
monomials of the form x { ' \ x{in, Y{in and y/"1 together with l£(g). We note that
QJ and ĝ  are subalgebras of pJ. As we will next be considering gy-modules, we now
define bj = gy n by.

3. Representations of QJ

Let (7y be the C(g) -linear subspace of f/,(g) spanned by ordered monomials of the
form Y£° and Xf, and U~J be the C(g)-linear subspace spanned by monomials of the
form y,00 and X?.

Consider the subspace of the Verma-type module MJ(k) given by Q =
span{£_a_na • • • E-u • • • E«-ksVk \ a e A+ n Ay, n > 0, k > 0}.

PROPOSITION 3.1. 77ie subspace Q is a gJ-submodule ofMJ(k).
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PROOF. Note that all the root vectors in the monomials spanning £2 are from finite-
dimensional root spaces. Similarly, the generators of the subalgebra QJ are also
monomials in root vectors from finite-dimensional root spaces. Let one of these
generators act on a vector in Q. By Proposition 2.2, we may reorder the resulting
vector. But by the root grading, there cannot be any monomials from the infinite-
dimensional root spaces in the final result. Hence, £2 is stabilized by gy. •

Denote by Mf (A.) the space £2 when viewed as a gJ -module. Then Mf (k) can
be considered as a Verma module for jjy with respect to bj with highest weight A..
For any submodule N of MJ(k), let Nf := N n Mf(k). Then Nf is a QJ-module
and also a py-module with trivial action of monomials of the form Xf and K3°°
(this follows from the root grading of MJ(k) [FGM, Theorem 3.5]). It follows that
MJ(X) = Uq(g) <S)pj Mf (A.) from the universality of the tensor product.

PROPOSITION 3.2 ([FGM, Theorem 6.4]). Let N be a non-trivial submodule of
MJ{k). Then

(i) Nf ± 0, and
(ii) ifk(c) ^ 0, then as vector spaces, N = U~J <g> Nf.

We also note that, with the notation above, MJ(k)/N = U~J <g> (Mf(k)/Nf) as
vector spaces.

4. Representations of quantum Heisenberg algebras

Let Gq be the subalgebra of Uq(o) generated by monomials of the form X2 and Y2.
Since [E$, E$] = 0 if k ^ - / and [£$ , E^] e Z for some space Z generated by
certain elements z±, central in f/,(g) (see [Be, Lemma 4.5], or [KT, Proposition 3.2]
for precise description of the elements z*), the algebra Gq is a quantum Heisenberg
algebra [FO]. We set G* = Gq D f/*(g). The Heisenberg algebra Gq has a natural
Z-grading with degz* = 0 and deg E$ = k for all Jt € 2 \ {0}, j e I. A Gq-
module V is called Z-graded if V = ©ieZ V̂ , where z± Vt C V; and E$ V; c Vk+i

for all k e Z \ {0}, j e / and i € Z. Let û  be a generating vector for the quantum
Verma-type module MJ(k) with 7-highest weight k € P. Then the G,-module
MG(k) := Gqvk is a Verma-module for Gq.

We now recall from [FGM] the construction of a certain subalgebra Gq of Gq.
In the affine algebra g underlying Uq(g) is a corresponding Heisenberg algebra G =
©tez\(O)0*a©Cc, with subalgebras G* = ©*>o0±*«- We call a subset C c 7 connected
if the Coxeter-Dynkin diagram associated to the simple roots ah i e C, is connected.
The set J can then be partitioned into a collection V of subsets corresponding to
connected components of the Coxeter-Dynkin diagram associated to J. For C e *if,
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let 2lc be the affine subalgebra of g generated by «,-,/, (i € C), together with
the central element c and degree derivation d from g. Let gc = Hcet ^c- Set
G = C - span{£ € G~ 0 G+ \ [g, gc] = 0}, and set G* = G n G±. Then G* are
subalgebras of G.

An element x € G consists of C-linear combinations of imaginary root vectors ek'l,
where the efi are a (particular) PBW basis of £/(g). Write x = ^21<i<N keZ <?.•,*«*«• For
each k el and i = 1, . . . , AT, by Beck's construction of the PBW basis [Be] there is
a root vector E$ in Uq(g) such that the classical limit of Ekl may be identified with
e(

k'l. Consider the element X = £1</<JViteZ cuEkg in £/9(g). Since the coefficients of
the E$'s are in C, certainly X e UA, the A-formof Uq(g) (see [FGM, Section4] for
details on the ring A = C[g, q~\ l/[n]qi, i € I,n > 0], the A-form construction and
the quantum deformation process) and the classical limit of X may be identified with
x € G. Write X =<f>(x).

Define Gq to be the unital subalgebra of Gq

G, = {/" (q)X \f(q)e C(q), X = (f>(x) for some x € G).

Similarly, we set

G* = (/ (q)X | / (9) € C(^), X = ^(JC) for some x € G*).

We note that [G9, g
7 ] = 0 and gy = G^ ®$f ® Ĝ ", ([FGM, Proposition 6.1]). Further,

the following result is well-known (see, for example [FGM, Proposition 6.2]).

PROPOSITION 4.1. Let k(c) ^ 0. The Gq-Verma module MG(A) is irreducible.

COROLLARY 4.2. The above result also holds with Gq replaced by ~Gq.

5. The category GJ (A)

We now fix A e P such that A(c) ^ 0. Throughout the remainder of this paper we
assume 7 ^ 0 and 7 ^ 7 . If J — / , then Verma-type modules are just the ordinary
Verma modules. But in this case every weight-space is finite-dimensional and there
is nothing to prove. At the other extreme, when 7 = 0, the Verma-type modules are
imaginary Verma modules. The category we define for the Heisenberg algebra is then
the category of ordinary Verma modules, and these are all irreducible for A(c) ^ 0.
Hence, the Verma modules are the only objects in the category and the analysis used
below for the general case is not necessary. The structure of imaginary Verma modules
was considered in [FGM].

As A € P and 7 are fixed, we shall suppress them in the notation below whenever
no confusion will arise.
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Let Gf (A.) denote the full subcategory of the category of weight QJ -modules such
that the objects V have all finite-dimensional weight spaces and, if VM is a weight
space of V, then n <j A.. Next, we define a category GJ(k) to be the category of
those py-modules V such that V e Gf (A.) as a gJ-module and such that X~ and F~
act trivially. We note that the categories 6s (A.) and GJ (A.) may be equivalent, but we
do not have a proof.

As in the classical case, the categories 61 (A.) and Gf (A.) are closed under the
operations of taking submodules, quotients and finite direct sums. Also, the (ordinary)
quantum Verma modules Mf (fj.) of gJ and their irreducible quotients are in fff (A.)
for any fi such that [i <j A,.

Let A be an algebra, B a subalgebra of A and M an A-module. We call a B-module
V a highest weight module with respect to B if there is some A. 6 B* and vector v e V
such that V is generated by v and bv = X(b)v for all b e B. A highest weight series
for M with respect to B is a sequence of submodules

(0) C M, C M2 c M3 C • • •

of M such that M = U/lo ^> a n ^ Mj/Mj-i is a highest-weight module with respect
to B for each i.

LEMMA 5.1. Every pJ-module V in GJ(k) has a highest weight series with respect
tobj.

PROOF. A similar argument to that of Lemma 5.1 of [RW] shows that all g/-modules
in O! (A.) have highest weight series. Hence the same is true for all modules V in
GJ {X) when viewed as gy -modules. Since the action of Xf and Y£° is trivial, as a
py-module, V has a highest weight series with respect to by. •

For any non-trivial QJ-module M € ^(A.) we define the subspace MG* = [v e
M | fv — 0 for a l l / e Gq \ C(^)}. Then MG« is a non-trivial g'-module as
[g ' ,G+]=0 .

PROPOSITION 5.2. Letk(c) ^ 0. IfV e G1, then Vis completely reducible as a Gq-
odule with irred

as vector spaces.
module with irreducible components isomorphic to Mc{k). Moreover, V = G ® VG

PROOF. Let V e GJ. Consider V+ := V0^. It follows from [FO, Theorem 2.4] that
V is completely reducible as a Gq -module with irreducible components isomorphic to
MG{\), up to a shift in gradation. This also implies V = GqV

+. Using Proposition 4.1
we conclude that V = G~ <g> V+. •
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6. An equivalence of categories

In this section, we define an equivalence of certain categories of weight Uq(g)-
modules. First, we define Gj (k) to be the full subcategory of the category of weight
t/,(fl)-modules with objects those weight modules V such that, if VM is a weight space
of V, then A.—/n is in the monoid generated by Sj, and V is generated by the Q J -module
Vf =J2 VM, ii <j k. By [FGM, Proposition 5.5], for any k € P, the Verma-type
modules Afy(/x) are in Gj{k) for all n <j k. We will show that the categories Gj{k)
and GJ (A.) are equivalent.

If V € Gj(k), then the gJ -module Vs e GJ{k). Define a functor F : Gj(k) ->
GJ (X) by F(V) = Vf and F(f) = / | vt for any V € Gj(k) and any/ 6 Hom( V, V)
in Gj(k). Note that monomials of the form Xf and Y™ act trivially on Vf since all
weight spaces V* of V-̂  have fi <j k. Since V is generated by Vf, the functor F is
exact.

Let N € GJ{k). Then N is a p7-module, such that monomials of the form X™ and
r~ act trivially. We define a functor Y : GJ(k) -*• Gj(k) by Y(N) = Uq(g) ®p. N
and y( / ) = 1 <g>/ for any/ € Hom(iV, AT) and any objects iV, iV' € ^y(X).

PROPOSITION 6.1. Le (V6 GJ(k). Then Y(V) = U~J ®C(q) V as vector spaces.
In particular, Y is an exact functor.

PROOF. The argument here is similar to that used in proving Theorem 3.5 in [FGM]
and we summarize some technical details here where they are substantially identical
to those used in that proof.

Let V be a pv-module such that UJ acts trivially. Then V is a g7-module and
Y{ V) = Uq(g) ®PJ V, where monomials of the form X~ and y3°° in pJ act trivially
on V.

Using Beck's PBW basis, any element u e Uq(g) may be written in the form

where Z € U%(g). Consider a typical subspace W of Y( V) of the form

W= YlY2Y3ZX3X2Xl ®pJ V.

First, we note that all monomials X{ and X2 are in pJ and Z commutes with any
monomial X3 up to a scalar in C(g). Hence, we may write

W=Y1Y2Y3X3®PJ V.

To proceed, we rearrange the monomials in steps, arguing by induction on the Beck-
Kac total degree. The base of the induction is trivial as in that case there is only one
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simple root involved and nothing to do. We suppose the theorem is true for monomials
up to total degree d and consider monomials of next highest degree.

As monomials of the form x{'n are all in pJ, we need to show we can move any
such terms to the right of any terms from Xf . As argued in [FGM, Theorem 3.5],
if we attempt to replace factors of the form E-a+kSE-p+iS (with —a + kS e A{'n

and - /? + IS G Af ) in a monomial X3 with the better ordered factors E-p+iSE-a+ks,
a consideration of the convexity properties of the basis shows that any additional
monomials generated will either have lower total degree (and so be rearrangeable
by inductive hypothesis) or have the same total degree, but fewer terms in X{ln.
Repeating the process as necessary, we are reduced to considering spaces of the form
YxY2Y3X?®pl V.

The arguments for commuting monomials of the form y3 and Y2 with Xf, writing
monomials Y{ in the form Y?° Y{'" and commuting Y{'" with Xf, now proceed exactly
as in the proof of [FGM, Theorem 3.5]. The monomials Y3, Y2 and jf'" are all in pJ,
and so we have shown that Uq(g) <8>p; V can be viewed as a subspace of Yf°X™ ®PJ V.

Now, suppose some monomial of the form X f appears in pJ. Then, due to the
root grading on pJ, there must also be a counterbalancing monomial of the form Y™.
Commuting if necessary, such terms must disappear as Y™ € pJ and acts as 0 on V.
A similar argument applies to monomials of the form Yf°. Hence, by the universality
of l/,(fl), we have Y( V) = U~J <g>C(9) V. •

COROLLARY 6.2. Let N be a submodule of a Verma-type module. Then N =

Uq(8) ®P-» Nf as Uq(g)-module.

PROOF. Let AT be a submodule of a Verma-type module MJ(k). It follows from
Proposition 3.2 that N = U~J <g> Nf. Now Nf e 0J{\) and so, by Proposition 6.1,
Y(Nf) = U~J <S> Nf as vector spaces. Hence, N = Y(Nf) as vector spaces. But N
is a homomorphic image of Y(Nf) by the universality of the tensor product. Hence,
N = Y(Nf) = Uq(Q) <gy Nf as f/,(g)-modules. •

PROPOSITION 6.3. Let V e Oj. Then V has a highest weight series {M,} such that
for each i, Mi/M^ = MJ(iXi)/Y(Ni) for some \x{ e P and Nt € OJ.

PROOF. Let V e 0j(k). Then F(V) = V/ € 0J(k) and, by Lemma 5.1, V has
a highest weight series {AT,} with respect to by. Set M, = Uq(Q)Kj for each i. Each
Ki is a submodule of Vf and V is generated by Vf since V e &j(X), so each M, is a
submodule of V.

Consider K(AT,) = Uq($) ®PJ Kt. By the universality of £7,(0), there is a surjective
homomorphism $, : Y{Ki) -> M,.

Since {AT,} is a highest weight series for Vf, each Ki/Kt-i is a ./-highest weight
module with respect to by with some highest weight /zf. Then YiKj/Kj-i) is a highest-
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weight Uq (g)-module with highest weight /x, with respect to bJ, and by the universality
of Verma-type modules, there is a surjective homomorphism My(/i,) -> Y(Ki/K^i).
By Proposition 6.1, the functor Y is exact, so Y(Ki/K^i) = Y{Ki)/Y{K^i), and
hence we have a surjective homomorphism ^, : Af •/(/x,) -> Y(Ki)/ Y(K^i).

The homomorphism t̂ , induces a surjective homomorphism *£, : MJ\ixt) —*•
MilM;_x. Consider ker*,. If ker*, = (0) then it is trivially in 0j(k). If ker*, is
a non-trivial submodule of M J ( /A,) , then by [FGM, Theorem 6.4] it is generated by
(ker * , / and so in tfjik) (the other conditions of membership are clearly satisfied).
By Corollary 6.2, Y o F(ker*,) = ker*,. Set N, = F(ker*,). Then we have

Now each M, is a submodule of V and (0) C Mi C M2 C • • •. Further,

OO 00 OO

(J M,, = U £7,(0)/̂  = f/,(0) |J /̂ , = I/,(g) V/ = V,
i=0 i=0 1=0

since [Kj] is a highest weight series for Vf and V̂  generates V. It is clear that
each Mi/M^x is a highest weight module with respect to bJ, and so {Af,} is a highest
weight series for V. •

PROPOSITION 6.4. 77ie category Gj (A.) w closed under the operations of taking
submodules, quotients and finite direct sums.

PROOF. That Gj(X) is closed under taking finite direct sums is clear.
We next prove that any submodule of a module in Gj(X) is itself in &j(\). Let

M € &j(k) and let Af be a submodule of M. Then certainly A7 is a weight Uq(g)-
module such that if fj, is a weight of N, then X — fi is in the monoid generated by
Sj and if fi <j X, then dim AfM < oo. It remains to show that N is generated by

By Proposition 6.3, the C/9(g)-module M has a highest weight series {Af,} such that
each M,/Af(_i is a homomorphic image of some quantum Verma-type module MJ(fit).

DenoteNt = ATlM,. ThenUSo^ = \JZo(.NnM^ = A 7 n U^o M . = NnM = N-
SetW, =#,/#,_!. Then

Jfi = (Nn M,)/(N n A/,-_,) = ((A7 n M,) + M.

= (Af, fl (tf + M1_,))/M,_1 c Af,/Af,-_,.

We need to show that each Af, is generated by its finite part. If A7, = (0), there
is nothing to prove. Hence, we may assume N,•, =£ 0. Recall from Proposition 6.3
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the surjective homomorphism *, : My(/i,) -> Af,/M,_i. Let L, = kerty, and
Ki = ty~l(N t) C MJ(Hi). Since AT, and L, are submodules of a Verma-type module,
by Proposition 3.2, AT, = V'1 ®K[ andL, = U~J<g>L{ and *, restricts to a surjection
</>, : U~J ® Kf

t -*• Ni. Hence, we have

A7,- S (U-J <g> K{)/ker(f>i = (U-J <g> tff )/((£Ty <g> tff) D (

£ (f/"y ® K{)/(U~J ® (K{ n L{)) £ (f/"y ® (ATf /ATf n L{)).

Since f/~y is spanned by monomials of the form X~ and Y%°, the finite-dimensional
weight spaces of Â ; are generated by vectors of the form 1 ® x for * € K.{ /K{ C\L{.
Thus, 77f = K{/K{ n L[ and 77, is generated as f/,(g)-module by ivf. Hence
<?y(X) is closed under taking submodules. It then follows that the category is also
closed under the operation of taking quotients. We also note that, if M, N e ^j(A.)
and iV c M, then {M/N)f = Mf /Nf as vector spaces. In fact, if follows from
Corollary 6.6 that they are isomorphic as gv-modules. •

THEOREM 6.5. The categories &J(X) and (7j(k) are equivalent.

PROOF. Let N e <?J(k). Then Y(N) = £/,(0) <8y Â  = U~J ® N as vector
spaces by Proposition 6.1. As a f/,(g)-module, the finite-dimensional weight spaces
of U~J ® N are generated by vectors of the form 1 <8> x, where x e A7 since f/~y is
generated by monomials of the form K,00 and X™. Hence F(f/"y <g> AO = (U~J ®
A7/ = N. That is, F o Y(N) = N for all N e ^y(A.) and so F o y is naturally
equivalent to /<fj(x>.

Let M e ^y(X). By Proposition 6.3, M has a highest weight series {M,} such
that Mi/Mi-x = MJ(fMj)/ Y(Ni) for some /i, and M € ^y(X). By Proposition 6.4,
each quotient Mj/M,_i is in 0j(X). Hence, by Proposition 6.4 and Proposition 3.2,
M,/M,_i = f/-y ® (Mi/Mi-iY. Then, by Proposition 6.1, K o F(M(-/Af,-_i) =
Mj/Mj-t for all i. In particular y o F(Mi) = Mi. Then induction on i and the
Five Lemma show that Y o F(Mt) = M, for all i. This means that

OO 00 / 00 \

M = ( J Mi, = (J Y o F(M,) = y o F l | j M 1 ) = yo F(M)
i=0 i=0

as tensoring commutes with direct limits ([R, Corollary 2.10]).
Given any M, M' e &j(k), we have a canonical isomorphism,

HomUqiB)(M, M') = Homp,(F(M), F(M')) = Hompj(M
f, (M')f)

as M and M' are generated by their finite parts. Similarly, for any N, N' €
we have a canonical isomorphism

HompJ(N, A") = Hom^KCAO, Y(N')).
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We have shown that the compositions of functors F o Y and Y o F are naturally
equivalent to the identity functors Ie,w a n ^ le'm respectively. Hence the categories

and &J (X) are equivalent. •

For completeness we note the following consequence of Theorem 6.5.

COROLLARY 6.6. Let N e <?,(A). Then N = f/,(g) <gy Nf as Uq(g)-module.
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