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Abstract

Some top-down problem specifications, if executed, may compute sub-problems repeatedly. Instead,
we may want a bottom-up algorithm that stores solutions of sub-problems in a table to be reused.
How the table can be represented and efficiently maintained, however, can be tricky. We study
a special case: computing a function h taking lists as inputs such that h xs is defined in terms of
all immediate sublists of xs. Richard Bird studied this problem in 2008 and presented a concise
but cryptic algorithm without much explanation. We give this algorithm a proper derivation and
discovered a key property that allows it to work. The algorithm builds trees that have certain shapes—
the sizes along the left spine is a prefix of a diagonal in Pascal’s triangle. The crucial function we
derive transforms one diagonal to the next.

1 Introduction

A list ys is said to be an immediate sublist of xs if ys can be obtained by removing exactly
one element from xs. For example, the four immediate sublists of "abcd" are "abc",
"abd", "acd", and "bcd". Consider computing a function h that takes a list as input, with
the property that the value of h xs depends on values of h at all the immediate sublists of xs.
For example, as seen in Figure 1, h "abcd" depends on h "abc", h "abd", h "acd", and
h "bcd". In this top-down manner, to compute h "abc", we make calls to h "ab", h "ac",
and h "bc"; to compute h "abd", we make a call to h "ab" as well—many values end
up being re-computed. One would like to instead proceed in a bottom-up manner, storing
computed values so that they can be reused. For this problem, one might want to build a
lattice-like structure, like that in Figure 2, from bottom to top, such that each level reuses
values computed in the level below it.

Bird (2008) presented a study of the relationship between top-down and bottom-up algo-
rithms. It was shown that if an algorithm can be written in a specific top-down style, with
ingredients that satisfy certain properties, there is an equivalent bottom-up algorithm that
stores intermediate results in a table. The “all immediate sublists” instance was the last
example of the paper. To tackle the problem, however, Bird had to introduce, out of the
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2 S.-C. Mu

Fig. 1. Computing h "abcd" top-down. String constants are shown using monospace font but
without quotes, to save space.

Fig. 2. Computing h "abcde" bottom-up. The numbers on the left denote the levels.

blue, a binary tree and a concise but cryptic four-line function. The tree appears to obey
some shape constraints, but that was not explicitly stated. Regarding the four-line function,
which lies at the core of the bottom-up algorithm, we know from its type that it turns a tree
into a tree of lists, and that is probably all one can say with confidence. Not only is it hard
to see what the function exactly does, it is even not easy to see why the function, involving
use of partial operations such as zipping trees of the same shape, always succeeds. Given
limited space, Bird did not offer much rationale or explanation, nor did he prove that the
function satisfies the said properties that should be met by a bottom-up algorithm.

The author finds this algorithm fascinating and struggled to understand it. As Bird would
agree, a good way to understand an algorithm is to calculate it; thus, this pearl came into
being. In this pearl, we review this problem, reveal a connection between “n choose k” and
“n choose 1 + k” that was not explicit in Bird (2008), motivate the introduction of the tree,
and finally construct a formal specification of the four-line function (which we call up in
this pearl). Once we have a specification, up can be calculated—not without some tricky
eureka that made the calculation fun. It then turns out that there is a formula describing the
role of up in the bottom-up algorithm that is different and simpler than that in Bird (2008).

One might ask: are there actually such problems, whose solution of input xs depends
on solutions of immediate sublists of xs? It turns out that it is well known in the algo-
rithm community that, while problems such as minimum edit distance or longest common
subsequence are defined on two lists, with clever encoding, they can be rephrased as prob-
lems defined on one list whose solution depends on immediate sublists. Many problems in
additive combinatorics (Tao & Vu, 2012) can also be cast into this form.
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Bottom-up computation using trees of sublists 3

But those are just bonuses. The application of a puzzle is being solved, a good puzzle
is one that is fun to solve, and a functional pearl is a story about solving a puzzle. One
sees a problem, wonders whether there is an elegant solution, finds the right specification,
tries to calculate it, encounters some head-scratching moments and surprising twists alone
the way, but eventually overcomes the obstacle and comes up with a concise and beautiful
algorithm. One then writes about the adventure, to share the fun.

2 Specification

We use a Haskell-like notation throughout the paper. Like in Haskell, if a function is
defined by multiple clauses, the patterns and guards are matched in the order they appear.
Differences from Haskell include that we allow n + k pattern, and that we denote the type
of list by L, equipped with its map function map :: (a → b) → L a → L b.

The immediate sublists of a list can be specified in many ways. We use the definition
below because it allows the proofs of this pearl to proceed in terms of cons-lists, which is
familiar to most readers, while it also generates sublists in an order that is more intuitive:

subs :: L a → L (L a)
subs [ ] = [ ]
subs (x : xs) = map (x:) (subs xs) ++ [xs] .

For example, subs "abcde" yields ["abcd", "abce", "abde", "acde", "bcde"].
Denote the function we wish to compute by h :: L X → Y for some types X and Y. We

assume that it is a partial function defined on non-empty lists and can be computed top-
down as below:

h :: L X → Y
h [x] = f x
h xs = (g map h subs) xs ,

where f :: X → Y is used in the base case when the input is a singleton list, and g :: L Y → Y
is for the inductive case.

For this pearl, it is convenient to use an equivalent definition. Let td (referring to “top-
down”) be a family of functions indexed by natural numbers (denoted by Nat):

td :: Nat → L X → Y
td 0 = f ex
td (1 + n) = g map (td n) subs ,

Here, the function ex :: L a → a takes a singleton list and extracts the only component. The
intention is that td n is a function defined on lists of length exactly 1 + n. The call td n in
the body of td (1 + n) is defined because subs, given an input of length 1 + n, returns lists
of length n. Given input xs, the value we aim to compute is h xs = td (length xs − 1) xs.

The function repeat k composes a function with itself k times:

repeat :: Nat → (a → a) → a → a
repeat 0 f = id
repeat (1 + k) f = repeat k f f .
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4 S.-C. Mu

For brevity, we will write repeat k f as f k for the rest of this pearl. We aim to construct a
bottom-up algorithm having the following form:

bu n = post stepn pre ,

where pre preprocesses the input and builds the lowest level in Figure 2, and each step
builds a level from the one below. For input of length 1 + n, we repeat n times and, by
then, we can extract the singleton value by post.

Our aim is to construct pre, step, and post such that td = bu.

3 Building a new level

To find out what step might be, we need to figure out how to specify a level, and what
happens when a level is built from the one below it. We use Figure 2 as our motivat-
ing example. As one can see, level 2 in Figure 2 consists of sublists of "abcde" that
have length 2, and level 3 consists of sublists having length 3, etc. Let choose k xs denote
choosing k elements from the list xs:

choose :: Nat → L a → L (L a)
choose 0 = [[ ]]
choose k xs | k = = length xs = [xs]
choose (1 + k) (x : xs) = map (x:) (choose k xs) ++ choose (1 + k) xs .

Its definition follows basic combinatorics: the only way to choose 0 elements
from a list is [ ]; if length xs = k, the only way to choose k elements is xs.
Otherwise, to choose 1 + k elements from x : xs, one can either keep x and choose
k from xs, or choose 1 + k elements from xs. For example, choose 3 "abcde" yields
["abc", "abd", "abe", "acd", "ace", "ade", "bcd", "bce", "bde", "cde"]. Note that
choose k xs is defined only when k � length xs.

If the levels in Figure 2 were to be represented as lists, each level k is given by
map h (choose k xs). For example, level 2 in Figure 2 is (string literals are shown in
typewriter font; double quotes are omitted to reduce noise in the presentation):

map h (choose 2 abcde) = [h ab, h ac, h ad, h ae, h bc, h bd, h be, h cd, h ce, h de] .

To build level 3 from level 2, we wish to have a function upgrade :: L Y → L (L Y) that is
able to somehow bring together the relevant entries from level 2:

upgrade (map h (choose 2 abcde)) =
[[h ab, h ac, h bc], [h ab, h ad, h bd], [h ab, h ae, h be]...] .

With [h ab, h ac, h bc] one can compute h abc, and with [h ab, h ad, h bd] one can
compute h abd, etc. That is, if we apply map g to the result of upgrade above, we get

[h abc, h abd, h abe, h acd...] ,

which is level 3, or map h (choose 3 abcde). The function upgrade need not inspect the val-
ues of each element, but rearrange them by position—it is a natural transformation L a →
L (L a). As far as upgrade is concerned, it does not matter whether h is applied or not.
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Bottom-up computation using trees of sublists 5

Letting h = id, observe that upgrade (choose 2 abcde) = [[ab, ac, bc], [ab, ad, bd]...]
and choose 3 abcde= [abc, abd, abe, acd...] are related by map subs. Each step we
perform in the bottom-up algorithm could be map g upgrade.

Formalizing the observations above, we want upgrade :: L a → L (L a) to satisfy:

(∀xs, k : 2 � 1 + k � length xs:

upgrade (choose k xs) = map subs (choose (1 + k) xs)) .
(3.1)

Given (3.1), we may let each step in the bottom-up algorithm be map g upgrade.
Equation (3.1) is a specification of upgrade, constructed by observation and general-

ization. We want it to serve two purposes: 1. we wish to calculate from it a definition
of upgrade, and 2. it plays a central role in proving that the bottom-up algorithm, also
to be constructed, equals the top-down algorithm. That (3.1) (in fact, a stronger version
of it) does meet the purposes above will be formally justified later. For now, we try to
gain some intuition by demonstrating below that, with (3.1) satisfied, map g upgrade
builds level k + 1 from level k. Let the input be xs. If xs is a singleton list, the bottom-up
algorithm has finished, so we consider xs having length at least 2. Recall that level k is
map h (choose k xs). Applying map g upgrade to level k:

map g (upgrade (map h (choose k xs)))
= { upgrade natural }

map g (map (map h) (upgrade (choose k xs)))
= { by (3.1), map-fusion }

map (g map h subs) (choose (1 + k) xs)
= { definition of h }

map h (choose (1 + k) xs) .

We get level 1 + k.
The constraints on k in (3.1) may need some explanation. For choose (1 + k) xs on

the RHS to be defined, we need 1 + k � length xs. Meanwhile, no upgrade could sat-
isfy (3.1) when k = 0: on the LHS, upgrade cannot distinguish between choose 0 ab and
choose 0 abc, both evaluating to [[ ]], while on the RHS choose 1 ab and choose 1 abc
have different shapes. Therefore, we only demand (3.1) to hold when 1 � k, which is suf-
ficient because we only apply upgrade to level 1 and above. Together, the constraint is
2 � 1 + k � length xs — xs should have at least 2 elements.

Can we construct such an upgrade?

4 Building levels represented by trees

We may proceed with (3.1) and construct upgrade. We will soon meet a small obstacle:
in an inductive case upgrade will receive a list computed by choose (1 + k) (x : xs), that
is, map (x:) (choose k xs) and choose (1 + k) xs concatenated by (++), and split it back to
the two lists. This can be done, but it is rather tedious. This is a hint that some useful
information has been lost when we represent levels by lists. To make the job of upgrade
easier, we switch to a more informative data structure.
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(a) (b)

Fig. 3. Results of ch.

4.1 Binomial trees

Instead of lists, we define the following tip-valued binary tree:

data B a = T a | N (B a) (B a) .

We assume that B is equipped with two functions derivable from its definition:

mapB :: (a → b) → B a → B b ,
zipBW :: (a → b → c) → B a → B b → B c .

The function mapB f applies f to every tip of the given tree. Given two trees t and u
having the same shape, zipBW f t u “zips” the trees together, applying f to values on the
tips—the name stands for “zip B-trees with”. If t and u have different shapes, zipBW f t u
is undefined. Furthermore, for the purpose of specification we assume a function flatten ::
B a → L a that “flattens” a tree to a list by collecting all the values on the tips left-to-right.

Having B allows us to define an alternative to choose:

ch :: Nat → L a → B (L a)
ch 0 = T [ ]
ch k xs | k = = length xs = T xs
ch (1 + k) (x : xs) = N (mapB (x:) (ch k xs)) (ch (1 + k) xs) .

The function ch resembles choose. In the first two clauses, T corresponds to a singleton
list. In the last clause, ch is like choose but, instead of appending the results of the two
recursive calls, we store the results in the two branches of the binary tree, thus recording
how the choices were made: if ch (x : xs) = N t u, the subtree t contains all the tips with x
chosen, while u contains all the tips with x discarded. See Figure 3 for some examples.
We have flatten (ch k xs) = choose k xs, that is, choose forgets the information retained
by ch.

The counterpart of upgrade on trees, which we will call up, will be a natural transforma-
tion of type B a → B (L a). Its relationship to upgrade is given by flatten (up (ch k xs)) =
upgrade (choose k xs). The function up should satisfy the following specification:

(∀xs, k : 2 � 1 + k � length xs :

up (ch k xs) = mapB subs (ch (1 + k) xs)) .
(4.1)

It is a stronger version of (3.1)–(4.1) reduces to (3.1) if we apply flatten to both sides.
Now we are ready to derive up.
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Bottom-up computation using trees of sublists 7

4.2 The derivation

The derivation proceeds by trying to construct a proof of (4.1) and, when stuck, pausing
to think about how up should be defined to allow the proof to go through. That is, the
definition of up and a proof that it satisfies (4.1) are developed hand-in-hand.

The proof, if constructed, will be an induction on xs. The case analysis follows the shape
of ch (1 + k) xs (on the RHS of (4.1)). Therefore, there is a base case, a case when xs is
non-empty and 1 + k = length xs, and a case when 1 + k < length xs. However, since the
constraints demand that xs has at least two elements, the base case will be lists of length 2,
and in the inductive cases the length of the list will be at least 3.

Case 1. xs := [y, z].1

The constraints force k to be 1. We simplify the RHS of (4.1):

mapB subs (ch 2 [y, z])
= { def. of ch }

mapB subs (T [y, z])
= { def. of mapB and subs }

T [[y], [z]] .

Now consider the LHS:

up (ch 1 [y, z])
= { def. of ch }

up (N (T [y]) (T [z])) .

The two sides can be made equal if we let up (N (T p) (T q)) = T [p, q].

Case 2. xs := x : xs where length xs � 2, and 1 + k = length (x : xs).
We leave details of this case to the readers as an exercise, since we would prefer giving
more attention to the next case. For this case, we will construct

up (N t (T q)) = T (unT (up t) ++ [q]) .

In this case, up t always returns a T. The function unT (T p) = p removes the constructor
and exposes the list it contains. While the correctness of this case is established by the
constructed proof, a complementary explanation why up t always returns a singleton tree
and thus unT always succeeds is given in Section 4.3.

Case 3. xs := x : xs, k := 1 + k, where length xs � 2, and 1 + (1 + k) < length (x : xs).
The constraints become 2 � 2 + k < length (x : xs). Again we start with the RHS and try to
reach the LHS:

mapB subs (ch (2 + k) (x : xs))
= { def. of ch, since 2 + k < length (x : xs) }

mapB subs (N (mapB (x:) (ch (1 + k) xs)) (ch (2 + k) xs))
= { def. of mapB, mapB-fusion }

1 The (:=) denotes substitution: we mean that the property being proved is (4.1) with [y, z] substituted for xs.
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8 S.-C. Mu

N (mapB (subs (x:)) (ch (1 + k) xs)) (mapB subs (ch (2 + k) xs))
= { induction }

N (mapB (subs (x:)) (ch (1 + k) xs)) (up (ch (1 + k) xs)) . (4.2)

Note that the induction step is valid because we are performing induction on xs, and thus
k in (4.1) is universally quantified. We now look at the LHS:

up (ch (1 + k) (x : xs))
= { def. of ch, since 1 + k < length (x : xs) }

up (N (mapB (x:) (ch k xs)) (ch (1 + k) xs)) . (4.3)

Expressions (4.2) and (4.3) can be unified if we define

up (N t u) = N ??? (up u) .

The missing part ??? shall be an expression that is allowed to use only the two subtrees
t and u that up receives. Given t = mapB (x:) (ch k xs) and u = ch (1 + k) xs (from (4.3)),
this expression shall evaluate to the subexpression in (4.2) (let us call it (4.2.1)):

mapB (subs (x:)) (ch (1 + k) xs) . (4.2.1)

It may appear that, now that up already has u = ch (1 + k) xs, the ??? may simply be
mapB (subs (x:)) u. The problem is that the up does not know what x is—unless k = 0.

Case 3.1. k = 0. We can recover x from mapB (x:) (ch 0 xs) if k happens to be 0 because:

mapB (x:) (ch 0 xs)
= mapB (x:) (T [ ])
= T [x] .

That is, the left subtree up receives must have the form T [x], from which we can
retrieve x and apply mapB (subs (x:)) to the other subtree. We can furthermore simplify
mapB (subs (x:)) (ch (1 + 0) xs) a bit:

mapB (subs (x:)) (ch (1 + 0) xs)
= mapB (λq → [[x], q]) (ch 1 xs) .

The equality above holds because every tip in ch 1 xs contains singleton lists and, for a
singleton list [z], we have subs (x : [z]) = [[x], [z]]. In summary, we have established

up (N (T p) u) = N (mapB (λq → [p, q]) u) (up u) .

Case 3.2. 0 < k (and k < length xs − 1). In this case, we have to construct (4.2.1), that is,
mapB (subs (x:)) (ch (1 + k) xs), out of the two subtrees, mapB (x:) (ch k xs) and ch (1 +
k) xs, without knowing what x is.

What follows is perhaps the most tricky part of the derivation. Starting from
mapB (subs (x:)) (ch (1 + k) xs), we expect to use induction somewhere; therefore, a pos-
sible strategy is to move mapB subs rightward, next to ch, in order to apply (4.1). Let us
consider mapB (subs (x:)) u for a general u, and try to move mapB subs next to u.
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• By definition, subs (x : xs) = map (x:) (subs xs) ++ [xs]. That is, subs (x:) = λxs →
snoc (map (x:) (subs xs)) xs—it duplicates the argument xs and applies map (x:)
subs to one of them, before calling snoc.

• mapB (subs (x:)) does the above to each list in the tree u.
• Equivalently, we may also duplicate each values in u to pairs, before applying

λ(xs, xs′) → snoc (map (x:) (subs xs)) xs′ to each pair.
• Values in u can be duplicated by zipping u to itself, that is, zipBW pair u u where

pair xs xs′ = (xs, xs′).

With the idea above in mind, we calculate:

mapB (subs (x:)) u
= { definition of subs }

mapB (λxs → snoc (map (x:) (subs xs)) xs) u
= { discussion above }

mapB (λ(xs, xs′) → snoc (map (x:) (subs xs)) xs′) (zipBW (λxs xs′ → (xs, xs′)) u u)
= { zipBW natural }

zipBW snoc (mapB (map (x:) subs) u) u .

We have shown that

mapB (subs (x:)) u = zipBW snoc (mapB (map (x:) subs) u) u , (4.4)

which brings mapB subs next to u. The naturality of zipBW in the last step is the property
that, provided that h (f x y) = k (g x) (r y), we have:

mapB h (zipBW f t u) = zipBW k (mapB g t) (mapB r u) .

Back to (4.2.1), we may then calculate:

mapB (subs (x:)) (ch (1 + k) xs)
= { by (4.4) }

zipBW snoc (mapB (map (x:) subs) (ch (1 + k) xs)) (ch (1 + k) xs)
= { induction }

zipBW snoc (mapB (map (x:)) (up (ch k xs))) (ch (1 + k) xs)
= { up natural }

zipBW snoc (up (mapB (x:) (ch k xs))) (ch (1 + k) xs) .

Recall that our aim is to find a suitable definition of up such that (4.2) equals (4.3). The
calculation shows that we may let

up (N t u) = N (zipBW snoc (up t) u) (up u) .

In summary, we have constructed:

up :: B a → B (L a)
up (N (T p) (T q)) = T [p, q]
up (N t (T q)) = T (snoc (unT (up t)) q)
up (N (T p) u ) = N (mapB (λq → [p, q]) u) (up u)
up (N t u ) = N (zipBW snoc (up t) u) (up u) ,
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Fig. 4. Applying mapB g ◦ up to mapB h (ch 2 abcde). We abbreviate zipBW snoc to zip.

which is the mysterious four-line function in Bird (2008)! There is only one slight differ-
ence: where we use snoc, Bird used (:), which has an advantage of being more efficient.
Had we specified subs and choose differently, we would have derived the (:) version, but
either the proofs so far would have to proceed in terms of snoc lists, or the sublists in our
examples would come in a less intuitive order. For clarity, we chose to present this version.
For curious readers, code of the (:) version of up is given in Appendix A.

An Example. To demonstrate how up works, shown at the bottom of Figure 4 is the
tree built by mapB h (ch 2 abcde). If we apply up to this tree, the fourth clause of up is
matched, and we traverse along its right spine until reaching t0, which matches the second
clause of up, and a singleton tree containing [h cd, h ce, h de] is generated.

Traversing backward, up t1 generates u0, which shall have the same shape as t0 and
can be zipped together to form u1. Similarly, up t3 generates u2, which shall have the same
shape as t2. Zipping them together, we get u3. They constitute mapB h (ch 3 abcde), shown
at the top of Figure 4.

4.3 Interlude: Shape constraints with dependent types

While the derivation guarantees that the function up, as defined above, satisfies (4.1), the
partiality of up still makes one uneasy. Why is it that up t in the second clause always
returns a T? What guarantees that up t and u in the last clause always have the same shape
and can be zipped together? In this section, we try to gain more understanding of the tree
construction with the help of dependent types.

Certainly, ch does not generate all trees of type B, but only those trees having certain
shapes. We can talk about the shapes formally by annotating B with indices, as in the
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following Agda datatype:

data B (a : Set) : N→N→ Set where
T0 : a → B a 0 n
Tn : a → B a (1 + n) (1 + n)
N : B a k n → B a (1 + k) n → B a (1 + k) (1 + n) .

The intention is that B a k n is the tree representing choosing k elements from a list of
length n. Notice that the changes of indices in B follow the definition of ch. We now
have two base cases, T0 and Tn, corresponding to choosing 0 elements and all elements
from a list. A tree N t u : B a (1 + k) (1 + n) represents choosing 1 + k elements from a
list of length 1 + n, and the two ways to do so are t : B a k n (choosing k from n) and
u : B a (1 + k) n (choosing 1 + k from n). With the definition, ch may have type

ch : (k : N) → {n : N} → k � n → Vec a n → B (Vec a k) k n ,

where Vec a n denotes a list (vector) of length n.
One can see that a pair of (k, n) uniquely determines the shape of the tree. Furthermore,

one can also prove that B a k n → k � n, that is, if a tree B a k n can be built at all, it must
be the case that k � n.

The Agda implementation of up has the following type:

up : 0 < k → k < n → B a k n → B (Vec a (1 + k)) (1 + k) n .

The type states that it is defined only for 0 < k < n; the shape of its input tree is determined
by (k, n); the output tree has shape determined by (1 + k, n), and the values in the tree are
lists of length 1 + k. One can also see from the types of its components that, for exam-
ple, the two trees given to zipBW always have the same shape. More details are given in
Appendix B.

In Case 2 of Section 4.2, we saw a function unT . Its dependently typed version has type
B a (1 + n) (1 + n) → a. It always succeeds because a tree having type B a (1 + n) (1 + n)
must be constructed by Tn—for N t u to have type B a (1 + n) (1 + n), u would have type
B a (1 + n) n, an empty type.

Dependent types help us rest assured that the “partial” functions we use are actually
safe. The current notations, however, are designed for interactive theorem proving, not
program derivation. The author derives program on paper by equational reasoning in a
more concise notation and double-checks the details by theorem prover afterward. All the
proofs in this pearl have been translated to Agda. For the rest of the pearl, we switch back
to non-dependently typed equational reasoning.

Pascal’s Triangle. With so much discussion about choosing, it is perhaps not surprising
that the sizes of subtrees along the right spine of a B tree correspond to prefixes of diagonals
in Pascal’s Triangle. After all, the k-th diagonal (counting from zero) in Pascal’s Triangle
denotes binomial coefficients—the numbers of ways to choose k elements from k, k + 1,
k + 2... elements. This is probably why Bird (2008) calls the data structure a binomial tree,
hence the name B.2 See Figure 5 for example. The sizes along the right spine of ch 2 abcde,
that is, 10, 6, 3, 1, is the second diagonal (in orange), while the right spine of ch 3 abcde is

2 It is not directly related to the tree, having the same name, used in binomial heaps.
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Fig. 5. Sizes of B alone the right spine correspond to prefixes of diagonals in Pascal’s Triangle.

the fourth diagonal (in blue). Applying up to a tree moves it rightward and downward. In
a sense, a B tree represents a prefix of a diagonal in Pascal’s Triangle with a proof of how
it is constructed.

5 The bottom-up algorithm

Now that we have constructed an up that satisfies (4.1), it is time to derive the main
algorithm. Recall that we have defined, in Section 2, h xs = td (length xs − 1) xs, where

td :: N→ L X → Y
td 0 = f ex
td (1 + n) = g map (td n) subs .

The intention is that td n is a function defined for inputs of length exactly 1 + n. We also
define a variation:

td′ :: N→ L Y → Y
td′ 0 = ex
td′ (1 + n) = g map (td′ n) subs .

The difference is that td′ calls only ex in the base case. It takes only a routine induction to
show that td n = td′ n map f . All the calls to f are thus factored to the beginning of the
algorithm. We may then focus on transforming td′.

Note that for ch n xs where n = length xs always results in T xs. That is, we have

unT (ch n xs) = xs, where n = length xs. (5.1)

Our main theorem is that

Theorem 1. For all n :: N we have td n = bu n, where

bu n = unT (mapB g up)n mapB ex ch 1 map f .
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That is, the top-down algorithm td n is equivalent to a bottom-up algorithm bu n, where
the input is preprocessed by mapB ex ch 1 map f , followed by n steps of mapB g up.
By then we will have a singleton tree, whose content can be extracted by unT .

Proof Let length xs = 1 + n. We reason:

td n xs
= { since td n = td′ n map f }

(td′ n map f ) xs
= { by (5.1) }

(td′ n unT ch (1 + n) map f ) xs
= { naturality of unT }

(unT mapB (td′ n) ch (1 + n) map f ) xs
= { Lemma 1 }

(unT (mapB g up)n mapB ex ch 1 map f ) xs
= { definition of bu }

bu n xs .

�

The real work is done in Lemma 1 below. It shows that mapB (td′ n) ch (1 + n) can be
performed by processing the input by mapB ex ch 1, before n steps of mapB g up. This
is the key lemma that relates (4.1) to the main algorithm.

Lemma 1. For inputs of length 1 + n (n > 1), we have

mapB (td′ n) ch (1 + n) = (mapB g up)n mapB ex ch 1 .

Proof For n := 0 both sides simplify to mapB ex ch 1. For n := 1 + n, we start from the
LHS, assuming an input of length 2 + n:

mapB (td′ (1 + n)) ch (2 + n)
= { def. of td′ }

mapB (g map (td′ n) subs) ch (2 + n)
= { by (4.1) }

mapB (g map (td′ n)) up ch (1 + n)
= { up natural }

mapB g up mapB (td′ n) ch (1 + n)
= { induction }

mapB g up (mapB g up)n mapB ex ch 1
= { ( ) associative, def. of f n }

(mapB g up)1+n mapB ex ch 1 .

�

6 Conclusion and discussions

We have derived the mysterious four-line function of Bird (2008) and built upon it a
bottom-up algorithm that solves the sublists problem. The specifications (3.1) and (4.1)
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may look trivial in retrospect, but it did took the author a lot of efforts to discover them. In
typical program calculation, one starts with a specification of the form up t = rhs, where t,
the argument to the function to be derived, is a variable. One then tries to pattern match
on t, simplifies rhs, and finds an inductive definition of up. The author has tried to find such
a specification with no avail, before settling down on (3.1) and (4.1), where up is applied
to a function call. Once (4.1) is found, the rest of the development is tricky at times, but
possible. The real difficulty is that when we get stuck in the calculation, we may hardly
know which is the major source of the failure—the insufficiency of the specification, or
the lack of a clever trick to bridge the gap. Techniques for performing such calculations to
find a solution for up is one of the lessons the author learned from this experience.

Some final notes on the previous works. The sublists problem was one of the examples
of Bird & Hinze (2003), a study of memoization of functions, with a twist: the memo table
is structured according to the call graph of the function, using trees of shared nodes (which
they called nexuses). To solve the sublists problem, Bird & Hinze (2003) introduced a data
structure, also called a “binomial tree”. Whereas the binomial tree in Bird (2008) and in
this pearl models the structure of the function choose, that in Bird & Hinze (2003) can be
said to model the function computing all sublists:

sublists [ ] = [[ ]]
sublists (x : xs) = map (x:) (sublists xs) ++ sublists xs .

Such trees were then extended with up links (and became nexuses). Trees were built in a
top-down manner, creating carefully maintained links going up and down.

Bird then went on to study the relationship between top-down and bottom-up algorithms,
and the sublists problem was one of the examples in Bird (2008) to be solved bottom-up. In
Bird’s formulation, the function used in the top-down algorithm that decomposes problems
into sub-problems (like our subs) is called dc, with type L a → F (L a) for some functor F.
The bottom-up algorithm uses a function cd (like our upgrade), with type L a → L (F a).
One of the properties they should satisfy is dc cd = mapF cd dc, where mapF is the
functorial mapping for F.

For the sublists problem, dc = subs, and F = L. We know parts of the rest of the story:
Bird had to introduce a new datatype B, and a new cd with type B a → B (L a), the four-line
function that inspired this pearl. That was not all, however. Bird also quickly introduced,
on the last page of the paper, a new dc′ :: B a → L (B a), which was as cryptic as cd, and
claimed that dc′ cd = mapF cd dc′. The relationship between dc′ and dc (and the origi-
nal problem) was not clear. In this pearl, we took a shorter route, proving directly that the
bottom-up algorithm works, and the step function is mapB g up.
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A Variation of up That Uses (:)

Show below is the variation of up that uses (:). The function is called cd in Bird (2008).

up :: B a → B (L a)
up (N (T p) (T q)) = T [p, q]
up (N t (T q)) = N (up t) (mapB (:[q]) t)
up (N (T p) u ) = T (p : unT (up u))
up (N t u ) = N (up t) (zipBW (:) t (up u))

B Agda Implementation of up

The following is an Agda implementation of up. The type states that it is defined only
for 0 < k < n; the shape of its input tree is determined by (k, n); the output tree has shape
determined by (1 + k, n), and the values in the tree are lists of length 1 + k.

up : (0 < k) → (k < n) → B a k n→ B (Vec a (1 + k)) (1 + k) n
up 0<0 (T0 x) = -elim (<-irrefl refl 0<0)
up 1+ 1+ (Tn x) = -elim (<-irrefl refl 1+ 1+ )

up 2 n+ 2+ (N (Tn ) ) = -elim (<-irrefl refl 2+ 2+ )

up (N (T0 p) (Tn q) ) = Tn (p :: q :: [ ])
up (N t@(N ) (Tn q) ) = Tn (snoc (unTn (up (s s z n) (s s -refl) t)) q)
up (N (T0 p) u@(N u )) = N (mapB ( q→ p :: q :: [ ]) u)

(up -refl (s s (bounded u )) u)
up 2+ 2+ (N t@(N ) u@(N u )) = N (zipBW snoc (up (s s z n) (s s−1 2+ 2+ ) t) u)

(up (s s z n) (s s (bounded u )) u)

⟂

⟂

⟂

<

<

n n
n n

n n
n

<

<

k< n k< n

The first three clauses of up eliminate impossible cases. The remaining four clauses
are essentially the same as in the non-dependently typed version, modulo the additional
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arguments and proof terms, shown in light brown, that are needed to prove that k and n
are within bounds. In the clause that uses unT , the input tree has the form N t (Tn q). The
right subtree being a Tn forces the other subtree t to have type B a (1 + k) (2 + k)—the two
indices must differ by 1. Therefore, up t has type B a (2 + k) (2 + k) and must be built by
Tn. The last clause receives inputs having type B a (2 + k) (2 + n). Both u and up t have
types B ... (2 + k) (1 + n) and, therefore, have the same shape.
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