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Abstract

We give an upper bound for the minimum s with the property that every sufficiently large integer can be
represented as the sum of s positive kth powers of integers, each of which is represented as the sum of
three positive cubes for the cases 2 ≤ k ≤ 4.
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1. Introduction

Additive problems involving small powers of positive integershave led to a vast
development of new ideas and techniques in the application of the Hardy–Littlewood
method, which often cannot be extended to the setting of general kth powers. Finding
the least number s such that for every sufficiently large integer n,

n = xk
1 + · · · + xk

s , (1-1)

where xi ∈ N, might be among the most studied examples. We denote such a number
s by G(k). Let C be the set of integers represented as a sum of three positive integral
cubes. In this work we shall be concerned with the function G3(k), which we define as
the minimum s such that (1-1) is soluble with xi ∈ C for the cases 2 ≤ k ≤ 4.

Providing the precise value of G(k) is still an open question for most k, the cases
k = 2, 4 being precisely the only ones solved. Lagrange showed in 1770 that G(2) = 4,
and Davenport [2] proved in 1939 the identity G(4) = 16. Although it is believed that
G(3) = 4, the best current upper bound is G(3) ≤ 7 due to Linnik [8].
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[2] Waring’s problem in sums of three cubes 379

Not very much is known about C . In fact, it is not even known whether it has
positive density, the best current lower bound on the cardinality of the set, due to
Wooley [22], being

N(X) = |C ∩ [1, X]| � Xβ,

where β = 0.917 094 77. We note that under some unproved assumptions on the zeros
of some Hasse–Weil L-functions, Hooley [5, 6] and Heath-Brown [4] showed using
different procedures that ∑

n≤X

r3(n)2 � X1+ε,

where r3(n) is the number of representations of n as sums of three positive integral
cubes. This implies by applying a standard Cauchy–Schwarz argument that N(X) �
X1−ε. This lack of understanding of the cardinality of the set also prevents us
from understanding its distribution over arithmetic progressions, which often comes
into play in the major arc analysis. Therefore, even if the exponents k = 2, 4 are
well understood for the original problem, it turns out to be much harder when we
restrict the variables to lie on C . In this paper we establish the following bounds
for G3(k).

THEOREM 1.1. One has G3(2) ≤ 8, G3(3) ≤ 17 and G3(4) ≤ 57.

We are far from knowing whether these estimates are good or bad, since the
only lower bounds that we have for the above quantities are 4 ≤ G(3) ≤ G3(3) and
16 = G(4) ≤ G3(4). For the case k = 2, though, we can actually do better. We take, for
convenience, an integer j ≥ 0, and observe that the only solution to

x2
1 + x2

2 + x2
3 + x2

4 = 26+12j (1-2)

with xi ∈ N is x1 = x2 = x3 = x4 = 22+6j. This can be seen by taking Equation (1-2)
modulo 8, realising that one must have 2 | xi for every i and iterating the process.
However, one has 22+6j ≡ 4 (mod 9), and no number congruent to 4 (mod 9) can be
written as the sum of three cubes. Therefore, there are infinitely many numbers for
which (1-2) does not have any solution with xi ∈ C . The preceding remark then implies
the bound 5 ≤ G3(2).

Our proof of Theorem 1.1 is based on the application of the Hardy–Littlewood
method. In the setting of this paper, the constraint that prevents us from taking fewer
variables is the treatment of the minor arcs discussed in Section 2. In order to analyse
them, we use an argument of Vaughan [15, Lemma 3.4] to bound certain families of
exponential sums over the minor arcs, together with nonoptimal estimates of sums of
the shape∑

x≤X

a2
x where ax = card{x ∈ N3 : x = x3

1 + x3
2 + x3

3, x2, x3 ∈ A(P, Pη)}
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with η > 0 being a small enough parameter and

A(Y , R) = {n ∈ [1, Y] ∩ N : p | n and p prime⇒ p ≤ R}.

Here, the reader may find it useful to observe that it is a consequence of Montgomery
and Vaughan [9, Theorem 7.2] that

card(A(P, Pη)) = cηP + O(P/ log P)

for some constant cη > 0 which only depends on η. In order to briefly discuss the
outcome that follows after applying the argument of Vaughan we introduce the
exponential sum

W(α) =
∑

M/2≤p≤M

∑
H/2≤h≤H

bhe(αp3khk), (1-3)

where M, H > 0 and bh are weights which the reader should think of being the previ-
ously defined ah, and p runs over prime numbers. In order to make the argument work,
the parameters M and H must be subjected to the constraint max(M5−1/k, M2k−1

) ≤ H.
The saving over the natural bound HM for W(α) obtained with the method is roughly
speaking of size M1/2H−1/24, which makes the estimate obtained worse than trivial for
k ≥ 5.

A naive approach to bounding G3(k) would be to replace each sum of three cubes by
the specialisation 3x3, and this suggests a bound of the shape G3(k) ≤ G(3k). With this
idea in mind, the bounds G(6) ≤ 24 (due to Vaughan and Wooley [17]), G(9) ≤ 47 and
G(12) ≤ 72 (due to Wooley [23]) reveal that our methods improve the trivial approach
and confirm that we are actually using the three integral cubes nontrivially in our
argument. For the cases k = 2, 3, we combine the pointwise bound obtained for W(α)
over the minor arcs with some restriction estimates involving the coefficients am. When
k = 4, we instead use a bound for a mean value of smooth Weyl sums of exponent 12.
The estimate for W(α) obtained here is then robust enough to enable us to gain 15
variables from the trivial approach over the minor arcs and allows us to prune back to
a narrower set of major arcs.

The purpose of the present work is to derive upper bounds for the minimum number
of variables that guarantee the existence of solutions to Equation (1-1) for smaller
values of k. For the alternative problem of establishing the validity of an asymptotic
formula for the number of such representations for all k ≥ 2, the interested reader is
referred to [11]. As experts may expect, the minor arc arguments in the analysis of that
paper, as opposed to those employed in the present work, rely on estimates stemming
from Vinogradov’s mean value theorem [24]. Moreover, the major arc discussion
follows a standard approach, and the author incorporates the three cubes in the analysis
of the singular series. By contrast, the major arc manoeuvres herein entail fixing the
two smooth cubes in order to provide robust approximations of the corresponding
exponential sums on a wider set of major arcs, and the pruning operations deployed
in the discussion involve both these approximations and minor arc type estimates.
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Moreover, the absence of two of the cubes in the corresponding singular series makes
the local solubility analysis more tedious and somewhat different from that of [11].

In [10], the author employs the minor arc bound for the case k = 2 obtained in
the present work to derive an almost-all result for the analogue of Lagrange’s four
square theorem when the variables are restricted to the set of sums of three positive
cubes. Moreover, he makes use of the approximations of the exponential sums obtained
in the pruning process herein, and applies several major-arc-type lemmas deduced in
this work. Nevertheless, the author incorporates the three cubes in the analysis of the
singular series involving four squares, which in turn entails a rather delicate discussion
of a different nature regarding the behaviour of such series. This strategy requires the
use of thinner major arcs and pruning operations that have little resemblance to the
manoeuvres deployed in this work.

In a recent preprint [12] discussing an analogous problem in which the variables
are instead restricted to sums of l th powers, the author focuses on obtaining some uni-
formity with respect to l in the number of variables needed to attain a representation.
The novelty of that paper is a pointwise minor arc estimate for a certain exponential
sum which is obtained via an application of the large sieve inequality. The major arc
analysis is standard and does not present any difficulty. The reader may find it useful
to note that the methods employed in the aforementioned paper and the ones recorded
herein barely have any similarities, and the nature of the results discussed are totally
different.

This paper is organized as follows. In Section 2 we use Vaughan’s methods to
estimate W(α) and provide bounds for the contribution of the minor arcs which are
good enough for our purposes when k = 2, 3. We approximate the generating functions
of the problem on a narrower set of major arcs in Section 3. In Sections 4, 5 and 6 we
only consider the exponents k = 2, 3, whereas in Section 7 we prove a theorem for
k = 4. Sections 4 and 5 are devoted to the study of the singular series and the singular
integral, respectively. We then prune back to the narrower set of arcs to exhibit a lower
bound for the major arc contribution in Section 6.

Unless otherwise specified, any lower case letter x written in bold denotes a triple
of integers (x1, x2, x3). We write a ≤ V ≤ b when a ≤ vi ≤ b for 1 ≤ i ≤ n. As usual
in analytic number theory, for each x ∈ R we denote exp(2πix) by e(x), and for each
natural number q, e(x/q) is written as eq(x). We use� and� to denote Vinogradov’s
notation, and write A 
 B whenever A � B � A. When ε appears in any bound, it
will mean that the bound holds for every ε > 0, though the implicit constant may then
depend on ε. We adopt the convention that whenever we write δ in our computations
we mean that there exists a positive constant δ for which the bound holds. We write
pr ||n to denote that pr |n but pr+1 � n.

2. Minor arc estimates

As mentioned in the Introduction, we provide an estimate for the exponential sum
W(α) by using methods of Vaughan. We use a Hardy–Littlewood dissection and
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combine both the bound for W(α) and a restriction estimate of a certain mean value to
bound the minor arc contribution for the cases k = 2, 3. Our estimate for W(α) is also
used in Sections 6 and 7 to prune the major arcs back to a narrower set of arcs. Before
going into the proof of the main lemma, it is convenient to write

Sk(q, a) =
q∑

r=1

eq(ark). (2-1)

We also introduce the multiplicative function τk(q) by defining τ2(q) = q−1/2, and

τk(puk+v) = p−u−1 when u ≥ 0 and 2 ≤ v ≤ k

and

τk(puk+1) = kp−u−1/2 when u ≥ 0

for k ≥ 3. Observe that with this definition one has the bound

τk(q) � q−1/k, (2-2)

and the proof of Theorem 4.2 of [16] yields

q−1Sk(q, a) � τk(q). (2-3)

LEMMA 2.1. Let 2 ≤ k ≤ 4. Take H, M > 0 such that max(M5−1/k, M2k−1
) ≤ H. Let α ∈

[0, 1). Suppose that α = a/q + β, where a ∈ Z and q ∈ N with (a, q) = 1, such that q ≤
Y , and |β| ≤ q−1Y−1, where Y is a parameter in the range Mk ≤ Y ≤ HkM2k. Then the
exponential sum W(α), defined in (1-3), satisfies

W(α) � Hε
(
HM +

τk(q)HM2

1 +M3kHk |α − a/q|

)1/2( ∑
H/2≤h≤H

|bh|2
)1/2

. (2-4)

PROOF. For the sake of simplicity we do not write the limits of summation for p and
h throughout the rest of this section. We apply Cauchy–Schwarz to obtain

W(α) �
(∑

h

|bh|2
)1/2(∑

h

∑
p1,p2

e(α(p3k
1 − p3k

2 )hk)
)1/2

�
(∑

h

|bh|2
)1/2

(HM + E(α))1/2, (2-5)

where the term HM comes from the diagonal contribution and

E(α) =
∑

h

∑
p2<p1

e(α(p3k
1 − p3k

2 )hk).

In order to estimate E(α) we follow closely the argument of Vaughan [15, Lemma
3.4]. For a given pair of primes (p1, p2) we choose b, r ∈ N with (b, r) = 1, such that
r ≤ 2kHk−1 and |α(p3k

1 − p3k
2 ) − b/r| ≤ (2k)−1r−1H1−k. Then, if r > H, an application of
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Weyl’s inequality [16, Lemma 2.4] yields the bound
∑

h

e(α(p3k
1 − p3k

2 )hk) � H1−21−k+ε � H1+εM−1,

where we use the restriction on M at the beginning of the lemma. If, on the other hand,
r ≤ H we combine Lemmas 6.1 and 6.2 of [16] with (2-3) to obtain

∑
h

e(α(p3k
1 − p3k

2 )hk) � τk(r)H
1 + Hk |α(p3k

1 − p3k
2 ) − b/r|

+ r1/2+ε.

Consequently,

E(α) � E0 + H1+εM +
∑

(p1,p2)

H1/2+ε � E0 + H1+εM,

where

E0 =
∑

(p1,p2)∈A

τk(r)H
1 + Hk |α(p3k

1 − p3k
2 ) − b/r|

and A is the set of pairs (p1, p2) with p2 < p1, for which r < (6k)−1Mk, such that
|α(p3k

1 − p3k
2 ) − b/r| < 2−1r−1/kMH−k. Note that the contribution of the pairs for which

one of the previous two restrictions does not hold is O(HM). For each pair (p1, p2),
define n = p2, l = p1 − p2 and D = ((n + l)3k − n3k)/l. Then, one finds that

E0 �
∑
(n,l)

τk(r)H
1 + Hk |αlD − b/r|

, (2-6)

where (n, l) runs over pairs with 1 ≤ l ≤ M and M/2 ≤ n ≤ M with the property that
(n + l, n) = 1 and satisfying the aforementioned bounds on r and |αlD − b/r|.

We next choose for convenience c, s ∈ N satisfying (c, s) = 1, with the properties
that s ≤ HkM−k and |αl − c/s| ≤ s−1MkH−k. By the constraint imposed on M and H at
the beginning of the lemma we obtain
∣∣∣∣∣cs −

b
rD

∣∣∣∣∣sDr < DrMkH−k +
1
2

sr1−1/kMH−k <
3k
6k

M5k−1H−k +
1
2

sMkH−k ≤ 1.

Therefore, crD = bs and hence the coprimality condition on r and b yields r|s. Let
s0 = s/r. Then s0 | D, whence

E0 �
∑
s0 |s
τk

( s
s0

)∑
(n,l)

H
1 + HkD|αl − c/s|

,

where the sum on (n, l) runs over the same range described after (2-6) with the
conditions (n + l, n) = 1 and ((n + l)3k − n3k)/l ≡ 0 (mod s0). Once we fix l, using
the above constraints one has that the number of such n is bounded above by
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O((M/s0 + 1)sε0). Consequently, we obtain that E(α) � H1+εM + HεME1, where

E1 =
∑
l∈L

τk(s)H
1 + HkM3k−1|αl − c/s|

,

and L is the set of integers l ≤ M for which s < Mk/2 and |αl − c/s| < M2−3kH−k. Now
we choose d, t with (d, t) = 1 satisfying t ≤ Mk+1 and |α − d/t| ≤ t−1M−k−1. One finds
that ∣∣∣∣∣ cls −

d
t

∣∣∣∣∣slt < stM2−3kH−k + slM−k−1 <
1
2

M3−kH−k +
1
2
≤ 1.

Therefore, one has ct = dsl and hence s|t. Let t0 = t/s. Then it follows that t0 | l, and
on defining l0 = l/t0 we obtain

E1 �
∑
t0 |t
τk

( t
t0

) ∑
l0≤M/t0

H
1 + HkM3k−1l0t0|α − d/t|

� τk(t)HM1+ε

1 + HkM3k |α − d/t|
.

If either t ≥ Mk/2 or |α − d/t| ≥ 2−1t−1/kH−kM1−3k, we get E1 � HMε and we are done.
For the remaining cases, one finds that

∣∣∣∣∣aq −
d
t

∣∣∣∣∣qt <
1
2

qH−kM1−3kt1−1/k + tY−1 <
1
2

YH−kM−2k +
1
2

MkY−1 ≤ 1,

which implies that a = d and q = t, and yields the bound

E(α) � H1+εM +
τk(q)H1+εM2

1 + HkM3k|α − a/q|
.

The combination of this estimate and (2-5) proves the lemma. �

Before describing the application of this lemma in the minor arc treatment, it is
convenient to introduce some notation. Let n be a natural number and take P = n1/(3k).
Define the parameters

γ(k) =
3

3 +max(5 − 1/k, 2k−1)
, M = Pγ(k), H = max(M5−1/k, M2k−1

). (2-7)

We observe that

P3 = M3H. (2-8)

Note that these choices for M and H maximize the saving obtained for W(α) over the
trivial bound in the previous lemma. Take

H1 =
( 1

2
)1/3H1/3, H2 =

( 2
3
)1/3H1/3, H3 =

( 1
6
)1/3H1/3.
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For every triple x ∈ R3, consider the function T(x) = x3
1 + x3

2 + x3
3. Define the sets

H =
{
(y, y) ∈ N3 :

P
2
≤ y ≤ P, y ∈ A(P, Pη)2

}
,

W = {(y, y) ∈ N3 : H1 ≤ y ≤ H2, y ∈ A(H3, Pη)2},

and the corresponding weights

ax = |{x ∈ H : x = T(x)}|, bh = |{x ∈ W : h = T(x)}|,

where bh is the choice that we make for the weights of W(α) in (1-3). We use ax to
define the weighted exponential sum

h(α) =
∑

x≤3P3

axe(αxk).

Before describing the roles of h(α) and W(α) in the argument, we first produce
upper bounds on the L2-norms of the weights to estimate the minor arc contribution.
Let X > 0, write

f (α; X) =
∑
x≤X

e(αx3), f (α; X; Xη) =
∑

x∈A(X,Xη)

e(αx3),

and define the mean value

U(X) =
∫ 1

0
| f (α; X)|2| f (α; X; Xη)|4 dα.

It is a consequence of [22, Theorem 1.2] that U(X) � X3+1/4−τ, where τ = 0.00128432.
Consequently, on considering the underlying Diophantine equations due to orthogo-
nality, it follows that∑

x≤3P3

a2
x ≤ U(P) � P3+1/4−τ,

∑
H/2≤h≤H

b2
h ≤ U(H1/3) � H13/12−τ/3. (2-9)

The reader may note that we did not write the entire decimal expression of τ, so the
bound for U(X) holds for a slightly bigger τ. Therefore, whenever we encounter bounds
involving the mean value U(X), we can omit the parameter ε in the exponents.

Take

s(k) = 2k when k = 2, 3,

t(2) = 4 and t(3) = 9. (2-10)

For ease of notation we just write s and t instead of s(k) and t(k) throughout the paper.
Let R(n) be the number of solutions of the equation

n =
t∑

i=1

T(pixi)
k +

s+t∑
i=t+1

T(xi)
k,
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where xi ∈ W for pi prime satisfying M/2 ≤ pi ≤ M when 1 ≤ i ≤ t and xi ∈ H for
t + 1 ≤ i ≤ s + t. Note that by orthogonality,

R(n) =
∫ 1

0
h(α)sW(α)te(−αn) dα.

Our goal throughout Sections 2 to 6 is to obtain a lower bound for R(n) for all
sufficiently large n. For such purpose, we make use of a Hardy–Littlewood dissection
in our analysis. When 1 ≤ X ≤ Mk, we define the major arcsM(X) to be the union of

M(a, q) =
{
α ∈ [0, 1) : |α − a/q| ≤ X

qn

}
(2-11)

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. For simplicity we write

M = M(Mk), N = M((6k)−1H1/3).

We define the minor arcs as m = [0, 1) \M and n = [0, 1) \ N. This dissection remains
valid for the case k = 4 and is used in Section 7. We then take α ∈ m and observe that
by Dirichlet’s approximation there exist nonnegative integers a, q with (a, q) = 1 and
1 ≤ q ≤ nM−k such that

|α − a/q| ≤ Mk

qn
.

Consequently, one has q > Mk and hence (2-9) and Lemma 2.1 yield the bound

W(α) � H1/2+εM1/2
(∑

h≤H

b2
h

)1/2
� H1+1/24−τ/6M1/2. (2-12)

As observed right after (1-3), the reader may find it useful to note that employing the
definitions of (2-7) the above estimate is worse than the trivial one HM whenever k ≥
5. This explains why we restrict our analysis to the cases 2 ≤ k ≤ 4. In the following
proposition, we combine this pointwise bound with some restriction estimates to
bound the minor arc contribution.

PROPOSITION 2.2. When k = 2, 3,
∫
m

|h(α)|s|W(α)|t dα � (HM)tP3s−3k−δ. (2-13)

PROOF. Combining [1, Equation (1.6)] when k = 2 and [7, Theorem 4.1] when k = 3
with Equation (2-9), we find that

∫ 1

0
|h(α)|s dα � P3s/2−3k+ε

( ∑
x≤3P3

a2
x

)s/2
� P3s−3k+s/8−δ.
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Therefore, an application of the pointwise bound on the minor arcs in (2-12) yields the
estimate

∫
m

|h(α)|s|W(α)|t dα � Ht+t/24Mt/2P3s−3k+s/8−δ.

We define the parameter ξ(k) as ξ(2) = 0 and ξ(3) = 7/92, and deduce that the
proposition then follows after noting by (2-7) and (2-8) that Ht/24Mt/2Ps/8 =

MtP−ξ(k). �

Here, knowing the existence of δ > 0 for which (2-13) holds suffices. The reader
may observe though that the precise saving over the expected main term that we obtain
here is Htτ/6Pξ(k)+sτ/2−ε.

3. Approximation of exponential sums over the major arcs

We adapt the argument of Vaughan [16, Theorem 4.1] to estimate the differences
between the exponential sums h(α), W(α) and their approximations over the major arcs.
Let y ∈ [0, P]2 and set

Cy = y3
1 + y3

2. (3-1)

Let β ∈ R and let p be a prime number. Consider the integrals

vy(β) =
∫ P

P/2
e(β(x3 + Cy)k) dx and vy,p(β) =

∫ H2

H1

e(βp3k(x3 + Cy)k) dx. (3-2)

Note that by a change of variables one finds that

vy(β) =
∫ Ny

My

By(γ)e(βγ) dγ, vy,p(β) =
∫ Ny,p

My,p

By,p(γ)e(βγ) dγ, (3-3)

where the limits of integration taken are My = (P3/8 + Cy)k, Ny = (P3 + Cy)k, My,p =

(Hp3/2 + Cpy)k and Ny,p = (2Hp3/3 + Cpy)k, and the functions inside the integral are
defined as

By(γ) =
1
3k
γ1/k−1(γ1/k − Cy)−2/3, By,p(γ) =

1
3kp
γ1/k−1(γ1/k − Cpy)−2/3. (3-4)

We introduce the auxiliary multiplicative function wk(q) defined for prime powers by
taking

wk(p3ku+v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p−u−v/3k when u ≥ 1 and 1 ≤ v ≤ 3k,
p−1 when u = 0 and 2 ≤ v ≤ 3k,
p−1/2 when u = 0 and v = 1.

(3-5)
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In order to discuss the approximation of f (α) on the major arcs, it is convenient to
consider, for a ∈ Z and q ∈ N with (a, q) = 1, the sums

Sy(q, a) =
q∑

r=1

eq(a(r3 + Cy)k) and V(α, q, a) = q−1
∑

y

Sy(q, a)vy(β), (3-6)

where y runs over the setA(P, Pη)2 of pairs of smooth numbers.

LEMMA 3.1. Suppose that a ∈ Z and q ∈ N satisfy (a, q) = 1. Let α ∈ [0, 1) and β =
α − a/q. Then we have the estimate

h(α) − V(α, q, a) � P2q1+εwk(q)(1 + n|β|)1/2.

Moreover, if |β| ≤ (2 · 3kkq)−1Pn−1 then

h(α) − V(α, q, a) � P2q1+εwk(q). (3-7)

PROOF. Let b ∈ Z and y ∈ A(P, Pη)2. We define

Sy(q, a, b) =
q∑

r=1

eq(a(r3 + Cy)k + br) and Iy(b) =
∫ P

P/2
e(F(γ; b)) dγ, (3-8)

where

F(γ; b) = β(γ3 + Cy)k − bγ/q.

Both the complete exponential sum and the integral have roles in the analysis of the
main and the error terms. Observe that h(α) can be written as

h(α) =
∑

y∈A(P,Pη)2

hy(α) with hy(α) =
∑

P/2≤x≤P

e(α(x3 + Cy)k).

Then, by sorting the summation into arithmetic progressions modulo q and applying
orthogonality, it follows that

hy(α) = q−1
∑

−q/2<b≤q/2

Sy(q, a, b)
∑

P/2≤x≤P

e(F(x; b));

whence, using [16, Lemma 4.2], we obtain

hy(α) − q−1Sy(q, a)vy(β) = q−1
∑
−B<b≤B

b�0

Sy(q, a, b)Iy(b)

+ O
(
q−1 log(H + 2)

∑
−q/2<b≤q/2

|Sy(q, a, b)|
)
, (3-9)

where B = (H + 1/2)q and H = �3kkP−1n|β| + 1/2�. Note that by the quasi- multiplica-
tive property, in order to bound Sy(q, a, b) it suffices to consider the case when q
is a prime power. For such purposes, we take q = p3ku+v. We observe first that by
[16, Theorem 7.1] one has that Sy(q, a, b) � q1−1/3k+ε. Moreover, when v ≥ 2 and
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u = 0 we can deduce from the proof of the same theorem (see in particular the
argument following [16, Equation (7.16)]) that Sy(pv, a, b) � pv−1. For the case q = p,
the work of Weil [19] yields the estimate Sy(p, a, b) � p1/2 (see [13, Corollary 2F]
for an elementary proof of this bound). Therefore, combining these bounds with the
definition in (3-5), one finds that

Sy(q, a, b) � q1+εwk(q). (3-10)

Consequently, by (3-9) we have

hy(α) − q−1Sy(q, a)vy(β) � qεwk(q)
∑
−B<b≤B

b�0

|Iy(b)| + q1+εwk(q) log(H + 2). (3-11)

To treat the sum on the right-hand side, we use the methods of the proof of [16,
Theorem 4.1]. In his analysis Vaughan classifies the range of integration of I(b)
according to the size of |G′(γ)|, where

G(γ) = βγk − bγ/q and I(b) =
∫ X

0
e(G(γ)) dγ.

We follow Vaughan’s analysis closely, dividing the range of integration of Iy(b)
according to the size of |F′(γ; b)|, to obtain∑

−B<b≤B
b�0

|Iy(b)| � q1+ε(1 + n|β|)1/2.

Since log(H + 2) � (1 + n|β|)1/2,

hy(α) − q−1Sy(q, a)vy(β) � q1+εwk(q)(1 + n|β|)1/2.

Summing over y ∈ A(P, Pη)2 yields the first statement of the lemma. Note that when
|β| ≤ (2 · 3kkq)−1Pn−1 and b � 0 one has |F′(x; b)| ≥ |b|/(2q) and H = 1. Observing that
F′(x; b) is monotonic, partial integration yields∑

−B<b≤B
b�0

|Iy(b)| �
∑
−B<b≤B

b�0

q
|b| � q1+ε.

Combining this estimate with (3-11) and summing over y ∈ A(P, Pη)2, we
get (3-7). �

By applying similar methods we can obtain the same type of approximation for the
exponential sum W(α). For a ∈ Z and q ∈ N with (a, q) = 1, and recalling (3-2) and
(3-6), we introduce the auxiliary function

W(α, q, a) = q−1
∑
y,p

Spy(q, a)vy,p(β) (3-12)

where y ∈ A(H3, Pη)2 and M/2 ≤ p ≤ M.
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LEMMA 3.2. Suppose that (a, q) = 1 and (p, q) = 1 for all primes with M/2 ≤ p ≤ M.
Let α ∈ [0, 1) and β = α − a/q. Then we have the estimate

W(α) −W(α, q, a) � MH2/3q1+εwk(q)(1 + n|β|)1/2(log P)−1.

Moreover, if |β| ≤ (6kq)−1H1/3n−1 then

W(α) −W(α, q, a) � MH2/3q1+εwk(q)(log P)−1.

PROOF. In the same way as before, we can express the exponential sum W(α) as

W(α) =
∑
y,p

Wy,p(α) where Wy,p(α) =
∑

H1≤x≤H2

e(αp3k(x3 + Cy)k),

and the parameter Cy was defined in (3-1). Sorting the summation into arithmetic
progressions modulo q and applying orthogonality, one has that

Wy,p(α) = q−1
∑

−q/2<b≤q/2

Sy(q, ap3k, b)
∑

H1≤x≤H2

e
(
βp3k(x3 + Cy)k − bx

q

)
.

Because (q, p) = 1, a change of variables yields Sy(q, ap3k) = Spy(q, a). Therefore, the
application of the argument of [16, Theorem 4.1] in the same way as above leads to

Wy,p(α) − q−1Spy(q, a)vy,p(β) � q1+εwk(q)(1 + n|β|)1/2,

and if |β| ≤ (6kq)−1H1/3n−1 then

Wy,p(α) − q−1Spy(q, a)vy,p(β) � q1+εwk(q).

Summing over the range of (y, p) described in (3-12) delivers the desired result. �

4. Treatment of the singular series

Unless otherwise specified, in this section and the subsequent two we assume that
k = 2, 3. We introduce some exponential sums and present upper bounds which we
obtain by using the arguments in Vaughan [16, Theorem 7.1]. We also discuss the
congruence problem and introduce some divisibility constraints on Cyi and Cpiyi to
ensure local solubility. For further purposes, we remind the reader of the definition in
(2-10). For the rest of the paper, unless otherwise specified, Y = (y1, . . . , ys+t) ∈ N2s+2t

and p = (p1, . . . , pt) denote tuples with yi ∈ A(P, Pη)2 for t + 1 ≤ i ≤ s + t and yi ∈
A(H3, Pη)2 for 1 ≤ i ≤ t, where pi are primes satisfying M/2 ≤ pi ≤ M. We take for
convenience q ∈ N and define

SY,p(q) = q−s−t
q∑

a=1
(a,q)=1

e(−an/q)
t∏

i=1

Spiyi (q, a)
s+t∏

i=t+1

Syi (q, a).

The following technical lemma provides a straightforward upper bound for the
previous exponential sum and is used throughout the major arc treatment.
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LEMMA 4.1. Assume that 2 ≤ k ≤ 4. Let m ≥ 2. Take α ≤ (m − 1)/3k when m ≥ 3 and
α = 0 for m = 2. Let Q ≥ 1. Then, when wk is defined as in (3-5), one has∑

q≤Q

qαwk(q)m � Qε.

Moreover, for the case k = 4 we also have∑
q≤Q

qτ4(q)4w4(q) � Qε, (4-1)

where τ4(q) is defined just before Lemma 2.1.

PROOF. By the multiplicative property of wk(q) it follows that

∑
q≤Q

qαwk(q)m �
∏
p≤Q

(
1 +

∞∑
h=1

phαwk(ph)m
)
�
∏
p≤Q

(1 + Cp−1) � Qε.

For the second estimate we use the bound τ4(ph)4 � p−h when h ≥ 2 to obtain
∞∑

h=1

phτ4(ph)4w4(ph) � p−3/2 +
∑
h≥2

w4(ph) � p−1.

Equation (4-1) then follows by combining the above bound with multiplicativity. �

LEMMA 4.2. Let a ∈ Z and q ∈ N be such that (a, q) = 1. The functions Sy(q, a) and
SY,p(q) defined above satisfy

Sy(q, a) � q1+εwk(q), SY,p(q) � q1+εwk(q)s+t. (4-2)

As a consequence, for every Q ≥ 1 and every α ≤ ((s + t − 1)/3k) − 1 it follows that∑
q≤Q

qα|SY,p(q)| � Qε and
∑
q>Q

|SY,p(q)| � Qε−α. (4-3)

PROOF. Recalling (3-8), note that Sy(q, a) = Sy(q, a, 0). Therefore, (3-10) yields
Sy(q, a) � q1+εwk(q); and hence (4-2) holds. These estimates and Lemma 4.1 imply
the first inequality in (4-3). Finally, observe that as a consequence we have∑

Q≤q≤2Q

|SY,p(q)| � Qε−α,

from which the second inequality of (4-3) follows by summing over dyadic
intervals. �

We apply the bounds obtained in the previous lemma to a collection of singular
series and other related series. For this purpose, it is convenient to define, for tuples
(Y, p) and each prime p, the sums

SY,p(n) =
∞∑

q=1

SY,p(q), σ(p) =
∞∑

l=0

SY,p(pl).
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LEMMA 4.3. The singular series SY,p(n) converges absolutely, the identity

SY,p(n) =
∏

p

σ(p) (4-4)

holds and 0 ≤ SY,p(n) � 1. We recall (2-10) and (3-1) to the reader. Then one has
SY,p(n) � 1 provided that the following hold.

(1) When k = 2, one has Cpiyi ≡ 28 (mod 108) for 1 ≤ i ≤ t and Cyi ≡ 28 (mod 108)
for t + 1 ≤ i ≤ s + t.

(2) When k = 3, one has Cpiyi ≡ 0 (mod 162) for 1 ≤ i ≤ t and Cyi ≡ 0 (mod 162) for
t + 1 ≤ i ≤ s + t.

As mentioned above, the constraints on Cyi and Cpiyi ensure the local solubility of
the problem. Note that the set of tuples with these divisibility conditions has positive
density over the set of tuples without these restrictions, since it follows from the
proof of Lemma 5.4 of [15] that smooth numbers are well distributed on arithmetic
progressions. Therefore, we are still able to get the expected lower bound for the major
arc contribution. Observe though that the choices for the constraints are not unique,
but for the purpose of this exposition it will suffice to study just one of the possible
restrictions.

PROOF. Note that the application of Lemma 4.2 yields the estimate

σ(p) − 1 � p−2. (4-5)

This bound and the multiplicative property of SY,p(q) imply (4-4), the convergence
of the series SY,p(n) and the desired upper bound for it. To give a more arithmetic
description of σ(p) it is convenient to introduce

Mn(ph) =
{
X ∈ [1, ph]s+t : n ≡

t∑
i=1

(x3
i + Cpiyi )

k +

s+t∑
i=t+1

(x3
i + Cyi )

k (mod ph)
}

and Mn(ph) = |Mn(ph)|. Observe that by a standard argument making use of orthogo-
nality we obtain the relation

h∑
l=0

SY,p(pl) = p(1−s−t)hMn(ph).

In view of (4-5), in order to prove the lower bound for SY,p(n) it suffices to show that
p(1−s−t)hMn(ph) ≥ Cp for some positive constant Cp depending on p. For each p prime,
take τ ≥ 0 for which pτ‖3k. Define γ = γ(p) = 2τ + 1 and

M∗n(pγ) = {X ∈ Mn(pγ) : p � x1, p � (x3
1 + Cp1y1 )}.

We take h ≥ γ for convenience. Our priority for the rest of the proof is to show that
|M∗n(pγ)| > 0, since then an application of Hensel’s Lemma yields the bound Mn(ph) ≥
p(s+t−1)(h−γ).
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For further discussion, it is convenient to consider for a fixed number C ∈ N the sets

TC(pγ) = {x3 + C (mod pγ)}, T ∗C(pγ) = {x3 + C (mod pγ) : p � x, p � (x3 + C)}.

Let p ≡ 1 (mod 3). Under this condition one has p ≥ 7, whence it then follows that
γ = 1 with |TC(p)| = (p + 2)/3 and |T ∗C(p)| ≥ 1. If we denote the set of k th powers of
the above set by

T k
C(pγ) = {yk (mod pγ) : y ∈ TC(pγ)},

then |T k
C(p)| ≥ �(p + 2)/3k�. One can check that |T k

C(7)| ≥ 2 for every C ∈ N, and,
whenever p > 7,

(s + t − 1)
(⌈ p + 2

3k

⌉
− 1
)
≥ p;

whence Cauchy–Davenport [16, Lemma 2.14] delivers |M∗n(p)|> 0. When p ≡
2 (mod 3) and p > 2 then γ = 1, and we further get |TC(p)| = p and |T ∗C(p)| ≥ 1;
whence another application of [16, Lemma 2.14] yields |M∗n(p)| > 0. For the case
p = 2 and k = 2 the divisibility constraints reduce the problem to the resolution of

y6
1 + · · · + y6

8 ≡ n (mod 8)

with yi ∈ N and 2 � y1, which is straightforward. The case k = 3 is also trivial since
then one would have γ(2) = 1. Likewise, if one has p = 3 one finds that whenever C ≡
1 (mod 27) then T 2

C(27) = {0, 1, 4, 13, 22} and |T ∗C(27)| = 3; so |M∗n(27)| > 0 when
k = 2 follows by combining the constraints for Cpiyi and Cyi described above and [16,
Lemma 2.14]. Finally, when k = 3 we make use of the conditions Cyi ≡ 0 (mod 81)
and Cpiyi ≡ 0 (mod 81) to reduce the problem to finding a solution for

y9
1 + · · · + y9

17 ≡ n (mod 243)

with yi ∈ N and 3 � y1. The solubility of this congruence is a consequence of [16,
Lemma 2.15]. �

5. Singular integral

In this section we analyse the size of the singular integral following the classical
approach making use of Fourier’s integral theorem. For each pair of tuples (Y, p)
consider

JY,p(n) =
∫ ∞
−∞

VY,p(β)e(−nβ)dβ where VY,p(β) =
t∏

i=1

vyi,pi (β)
s+t∏

i=t+1

vyi (β),

and vyi,pi (β) and vyi (β) are defined in (3-2).

LEMMA 5.1. One has that 0 ≤ JY,p(n) � PsHt/3n−1. Moreover, whenever (Y, p) satis-
fies M/2 ≤ pi ≤ 51M/100 for 1 ≤ i ≤ t and yi ≤ P/2 for t + 1 ≤ i ≤ s + t, then

JY,p(n) � PsHt/3n−1. (5-1)
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In the following discussion we rewrite JY,p(n) as an integral whose size is easier to
estimate. The conditions on the tuples described above ensure that we get a suitable
range of integration for such an integral. Note that the set of tuples on that range has
positive density over the set of tuples without the restrictions, and hence we are still
able to get the expected lower bound for the major arc contribution.

PROOF. By using the expressions for vy(β) and vy,p(β) in (3-3), we find that

JY,p(n) = lim
λ→∞

∫ λ
−λ

∫
x∈S

BY,p(x)e
(
β
( s+t∑

i=1

xi − n
))

dx dβ,

where the function BY,p(x) is taken to be

BY,p(x) =
t∏

i=1

Byi,pi (xi)
s+t∏

i=t+1

Byi (xi)

and we integrate over the set S =∏[Myi,pi , Nyi,pi ] ×
∏

[Myi , Nyi ]. Then, by integrating
with respect to β and making the change of variables v =

∑s+t
i=1 xi, we obtain

JY,p(n) = lim
λ→∞

∫ S2

S1

φ(v)
sin(2πλ(v − n))
π(v − n)

dv,

where φ(v) is defined as

φ(v) =
∫

x∈S′(v)
Bys+t

(
v −

s+t−1∑
i=1

xi

) t∏
i=1

Byi,pi (xi)
s+t−1∏
i=t+1

Byi (xi) dx,

the subset S′(v) ⊂ Rs+t−1 denotes the tuples satisfying

xi ∈ [Myi,pi , Nyi,pi ] for 1 ≤ i ≤ t, xi ∈ [Myi , Nyi ] for t + 1 ≤ i ≤ s + t − 1,

and

Mys+t ≤ v −
s+t−1∑

i=1

xi ≤ Nys+t (5-2)

and the above limits of integration are

S1 =

t∑
i=1

Myi,pi +

s+t∑
i=t+1

Myi , S2 =

t∑
i=1

Nyi,pi +

s+t∑
i=t+1

Nyi .

Since φ(v) is a function of bounded variation, it follows from Fourier’s integral theorem
(to which we refer the reader to the argument in Davenport [3, pages 21–22] or in [20,
Section 9.43]) that JY,p(n) = φ(n), which implies positivity. Note that combining the
identity (2-8), the limits of integration defined after (3-3) and Equation (3-4), we find
that whenever x ∈ S′(n) then Byi,pi (xi) 
 H1/3n−1 for 1 ≤ i ≤ t and Byi (xi) 
 Pn−1 for
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t + 1 ≤ i ≤ s + t − 1, and one further has

Bys+t

(
n −

s+t−1∑
i=1

xi

)

 Pn−1.

Therefore, combining the previous ideas we obtain the upper bound for JY,p(n) stated
at the beginning of the lemma. Moreover, if (Y, p) lies in the range described right after
that bound, then there exist intervals Ii ⊂ [Myi,pi , Nyi,pi ] for 1 ≤ i ≤ t and Ii ⊂ [Myi , Nyi ]
for t + 1 ≤ i ≤ s + t − 1 satisfying |Ii| 
 n, with the property that whenever xi ∈ Ii, (5-2)
holds for v = n. Consequently, the preceding discussion yields (5-1). �

For the sake of brevity we define the auxiliary functions h∗(α) and W∗(α) by putting

h∗(α) = V(α, q, a) and W∗(α) = W(α, q, a)

when α ∈ M(a, q) ⊂ M and h∗(α) = W∗(α) = 0 for α ∈ m. Here the reader may want
to recall (3-6) and (3-12). In the rest of this section we present some bounds for these
functions.

LEMMA 5.2. Let β ∈ R. For every prime p and y ∈ N2 one has

vy(β) � P
1 + n|β| and vy,p(β) � H1/3

1 + n|β| .

Moreover, whenever α ∈ M(a, q) ⊂ M we have

h∗(α) � qεwk(q)P3

1 + n|α − a/q| and W∗(α) � qεwk(q)MH
(1 + n|α − a/q|)(log P)

.

PROOF. When |β| ≤ n−1, the bound for vy(β) follows observing that by (3-3) and the
limits of integration given after (3-3) we have

vy(β) �
∫ Ny

My

y1/k−1(y1/k − Cy)−2/3 dy � P.

The function Cy in the above line is defined in Equation (3-1). For the case |β| > n−1,
using the fact that By(y) is decreasing and integrating by parts, we have that

vy(β) � |β|−1By(My) � |β|−1n1/3k−1,

which proves the statement. The bound for vy,p(β) is proved in a similar way; the proof
follows after applying (2-8). Combining these estimates and Lemma 4.2 we get the
bounds for h∗(α) and W∗(α). �

6. Major arc contribution

In this section we show that the contribution of the set of narrow arcs N is
asymptotic to the expected main term. We then prove that the contribution of the
remaining arcs is smaller by combining major and minor arc techniques and making
use of Lemma 2.1.
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PROPOSITION 6.1. There exists δ > 0 such that
∫
M

h(α)sW(α)te(−αn) dα =
∑
Y,p

SY,p(n)JY,p(n) + O(HtMtP3s−3k−δ),

where (Y, p) lies in the range of summation described at the beginning of Section 4.

PROOF. We note first that the triangle inequality yields

h(α)s − h∗(α)s � |h(α) − h∗(α)|(|h∗(α)|s−1 + |h(α) − h∗(α)|s−1).

Observe that by (2-7) and the definition in (2-11), whenever α ∈ N(a, q) one has
that (1 + n|β|)−1 ≥ qH−1/3 ≥ qP−1 and |β| ≤ (6kq)−1H1/3n−1 ≤ (2 · 3kkq)−1Pn−1 for n
sufficiently large. Consequently, Lemma 3.1 applied to |h(α) − h∗(α)| and Lemma 5.2
applied to |h∗(α)| in the above inequality deliver

h(α)s − h∗(α)s � q1+εwk(q)sP3s−1(1 + n|β|)−s+1; (6-1)

and by the same reason, whenever α ∈ N(a, q) with (p, q) = 1 for all primes p having
the property that M/2 ≤ p ≤ M, Lemma 3.2 gives

W(α)t −W∗(α)t � MtHt−1/3q1+εwk(q)t(1 + n|β|)−t+1. (6-2)

We also need a bound on the following quantity to exploit some orthogonality
relation when averaging over q. Denote by N(q, P) the number of solutions of the
congruence

T(p1x1)k + T(p2x2)k ≡ T(p3x3)k + T(p4x4)k (mod q),

where xi ∈ [1, H1/3]3 and M/2 ≤ pi ≤ M with q ∈ N. By expressing q as the prod-
uct of prime powers, using the structure of the ring of integers modulo a prime
power and noting that the number of primes dividing q is O((log q)/ log log q), we
obtain

N(q, P) � qε(MH)4(log P)−4(q−1 + P−1), (6-3)

where we also use the identity (2-8); hence, by orthogonality it follows that

q∑
a=1

|W(β + a/q)|4 ≤ qN(q, P) � q1+ε(MH)4(log P)−4(q−1 + P−1). (6-4)
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Combining (6-1) and (6-4) one has that∫
N

|h(α)s − h∗(α)s||W(α)|t dα � (HM)tP3s−3k−1
∑

q≤H1/3

q1+εwk(q)s

� (HM)tP3s−3k−δ,

where we use (2-7) and Lemma 4.1. Before introducing the auxiliary function W∗(α) to
replace W(α) we must ensure that the contribution of the arcs having the property that
M/4 < q ≤ (6k)−1H1/3 is small enough. By doing so we avoid having to approximate
W(α) for the cases when p | q for primes p appearing in the definition (1-3) of W(α).
Combining Lemma 5.2 with (6-4) one finds that

∑
M/4<q≤(6k)−1H1/3

q∑
a=1

(a,q)=1

∫ 1

0
|h∗(β + a/q)|s|W(β + a/q)|t dβ

� (HM)tP3s−3k+ε
∑

M/4<q≤(6k)−1H1/3

wk(q)s � (HM)tP3s−3k−δ,

where in the last step we apply the definition in (3-5). For the range q ≤ M/4 we always
have (p, q) = 1 for all primes p with M/2 ≤ p ≤ M; so we can use (6-2) and Lemma
5.2 to obtain

∑
q≤M/4

q∑
a=1

(a,q)=1

∫
N(a,q)
|h∗(α)|s|W(α)t −W∗(α)t | dα

� P3s−3kMtHt−1/3
∑

q≤M/4

q2+εwk(q)s+t � (HM)tP3s−3k−δ,

where in the last line we use (2-7) and apply Lemma 4.1. By Lemmas 4.1 and 5.2 one
has that

∑
q≤M/4

q∑
a=1

(a,q)=1

∫
|α−a/q|>(6kq)−1H1/3n−1

|h∗(α)|s|W∗(α)|t dα

� H2t/3−s/3+1/3MtP3s−3k
∑

q≤M/4

qs+t+εwk(q)s+t � (HM)tP3s−3k−δ.

Therefore, using the previous bounds, making a change of variables and combining
Lemmas 4.2 and 5.2, we have∫

N

h(α)sW(α)te(−αn) dα =
∑
Y,p

SY,p(n)JY,p(n) + O((HM)tP3s−3k−δ). (6-5)

The rest of this section is devoted to ensuring that the contribution of the remaining
major arcs is smaller than the main term in the previous equation. Let R(q, P) be the
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number of solutions of the congruence

T(x1)k + T(x2)k ≡ T(x3)k + T(x4)k (mod q),

where xi ∈ [1, P]3. Applying the same argument we use in (6-3) for bounding N(q, P),
we find that R(q, P) � qεP12(q−1 + P−1), and hence by orthogonality it follows that

q∑
a=1

|h(β + a/q)|4 ≤ qR(q, P) � q1+εP12(q−1 + P−1). (6-6)

Moreover, observe that for the case k = 2 by a similar argument we get
q∑

a=1

|h(β + a/q)|2 � q1+εP6(q−1 + P−1). (6-7)

We consider for convenience the mean value

IM =

∫
M\N
|h(α)|s|W(α)|t dα.

Our strategy for the treatment of this integral is to bound W(α) pointwise via Lemma
2.1 and use some major arc estimates. For such purposes, we first define Υ(α) for
α ∈ [0, 1) by taking

Υ(α) = τk(q)(1 + n|α − a/q|)−1

when α ∈ M(a, q) ⊂ M, and Υ(α) = 0 otherwise. When a ∈ Z and q ∈ N satisfy the
inequality 0 ≤ a ≤ q ≤ Mk and (a, q) = 1, consider the set of arcs

M′(a, q) =
{
α ∈ [0, 1) : |α − a/q| ≤ M

q1/kn

}
(6-8)

and take M′ to be the union of such arcs. Note that one then has M′ ⊂ M. Observe
that for α ∈ M \M′, the bound on the right-hand side of (2-4) corresponding to
the diagonal contribution dominates over the one corresponding to the nondiagonal
contribution. Therefore, we can apply the same argument that we use in Proposition
2.2 to estimate the integral over this set. When α ∈ M′, the dominating bound is the
one corresponding to the nondiagonal terms. Let I′M be the contribution of M′ \ N to
the integral IM . By making use of Lemma 2.1 and (2-9) we obtain that

I′M � Ht+t/24−δMt
∫
M′\N
|h(α)|sΥ(α)t/2 dα � Ht+t/24−δMt(I1 + I2),

where

Ii =

∫
M′\N
|h(α)|s−2Gi(α)Υ(α)t/2 dα, i = 1, 2,

with G1(α) = |h∗(α)|2 and G2(α) = |h(α) − h∗(α)|2. In view of the definitions in (2-11)
and (6-8) for N and M′, respectively, we make a distinction between the ranges
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q ≤ (6k)−1H1/3 and (6k)−1H1/3 < q ≤ Mk. We also combine Lemmas 4.1 and 5.2 with
Equations (6-6) and (6-7) and the bound given in (2-2) to obtain

I1 � P3s−3kH−t/6−1/3
∑

q≤(6k)−1H1/3

wk(q)2qt/2+1−t/2k+ε

+ P3s−3k
∑

(6k)−1H1/3<q≤Mk

wk(q)2q1−t/2k+ε(q−1 + P−1) � P3s−3k+εH−t/6k.

Likewise, combining Equations (6-6) and (6-7) with Lemmas 3.1 and 4.1 one finds
that

I2 � P3s−3k−2+εH−t/6+2/3
∑

q≤(6k)−1H1/3

qt/2−t/2kwk(q)2

+ P3s−3k−2+ε
∑

(6k)−1H1/3<q≤Mk

wk(q)2q3−t/2k(q−1 + P−1) � P3s−3k+εH−t/6k,

where we make use of (2-7). Therefore, we obtain that I′M = O((HM)tP3s−3k−δ), whence
the proposition follows by combining (6-5) with the previous
estimates. �

PROOF OF THEOREM 1.1 WHEN k = 2, 3. Note first that Lemma 5.1 ensures positivity
for JY,p(n) and guarantees that for (Y, p) in the range described there JY,p(n) �
PsHt/3n−1. Similarly, Lemma 4.3 ensures the positivity of SY,p(n) and implies that
for (Y, p) satisfying the local conditions described after (4-4) one hasSY,p(n) � 1. As
observed at the beginning of the lemmas, the intersection of the sets of pairs (Y, p)
satisfying these conditions has positive density. Therefore, we find that∑

Y,p

SY,p(n)JY,p(n) � (HM)tP3s−3k(log P)−t.

Propositions 2.2 and 6.1 then yield the bound R(n) � (HM)tP3s−3k(log P)−t, which
proves the theorem for k = 2, 3. �

7. The case k = 4.

In this section we discuss the proof of the theorem for fourth powers. For this
purpose, it is convenient to introduce the exponential sum

f (α) =
∑

x∈A(P,Pη)

e(αx12).

Let R4(n) be the number of solutions of the equation

n =
11∑
i=1

T(pixi)
4 + 81(y12

1 + · · · + y12
46),
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where xi ∈ W with M/2 ≤ pi ≤ M for 1 ≤ i ≤ 11 and yi ∈ A(P, Pη) for 1 ≤ i ≤ 46.
Observe that the sums of three cubes on the right-hand side have been replaced by the
specialisation 3y3. Note as well that orthogonality yields the identity

R4(n) =
∫ 1

0
W(α)11 f (81α)46e(−αn) dα.

Our goal throughout this section is to obtain a lower bound for R4(n) for all sufficiently
large n. Recalling (2-7) and (2-12) and using the table of permissible exponents for
k = 12 from [18], we find that

∫
m

|W(α)|11| f (81α)|46 dα � H11+11/24−δM11/2
∫ 1

0
| f (α)|46 dα

� (HM)11P34+Δ23−1/2−δ, (7-1)

where Δ23 = 0.498 838 3; it follows that the minor arc contribution is then
O((HM)11P34−δ).

We define a set of narrow major arcs P by taking the union of

P(a, q) =
{
α ∈ [0, 1) : |α − a/q| ≤ R

n

}

with 0 ≤ a ≤ q ≤ R and (a, q) = 1, where R = (log P)1/5, and consider p = [0, 1) \P.
In the next few lines we combine various major and minor arc techniques to prune back
to the set of narrow arcs P. As observed after (6-8), whenever α ∈ M \M′, the bound
on the right-hand side of (2-4) corresponding to the diagonal contribution dominates
over the one corresponding to the nondiagonal contribution. Therefore, we can apply
the same argument that we applied in (7-1) to obtain that the integral over that set is
O((HM)11P34−δ).

We next note that Theorem 1.8 from Vaughan [15] yields

sup
n

| f (81α)| � P1−ρ+ε, (7-2)

where ρ = 0.004 259. (Although one could obtain a slightly bigger ρ by applying
methods from [23], such improvement in the exponent would have no impact on
the argument.) Observe that using the same procedure as in (6-4) and (6-6) we
deduce that

q∑
a=1

| f (81(β + a/q))|12 � q1+εP12(q−1 + P−1). (7-3)

Note as well that whenever α ∈ M′ \ N then (1 + n|β|)3/2 ≥ H1/3q−1, and hence
Lemmas 3.2 and 5.2 yield

W(α) � MH2/3q1+εw4(q)(1 + n|β|)1/2.
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By the preceding discussion, together with Lemma 2.1 and Equations (7-2) and (7-3),
we obtain∫

M′\N
|W(α)|11| f (81α)|46 dα � (HM)11P34(1−ρ)

∑
q≤M4

q2τ4(q)4w4(q)(q−1 + P−1).

Here, we apply the estimates (2-4) and (2-9) to eight copies of W(α) and the
bound for W(α) deduced above to just one of them. Likewise, we make use of the
pointwise estimate (7-2) to bound 34 copies of f (81α), and we use the other 12 to
exploit the congruence condition via (7-3). We find that the above sum when q ≤ P
is O((HM)11P34−δ) via Lemma 4.1. Similarly, we use Lemma 4.1 and the bound
qP−1 ≤ P1/11, which follows after an application of (2-7), for the range P ≤ q ≤ M4 to
obtain that this contribution is also O((HM)11P34−δ). By the observation made before
(6-1), which is still valid for k = 4, and Lemma 3.2 we find that whenever α ∈ N then

W(α) � qεw4(q)HM
(1 + n|β|)(log P)

.

Therefore, the application of this bound and (6-4) yield
∫
N\P
|W(α)|11| f (81α)|46 dα � (HM)11P34(log P)−11R−6

∑
q≤R

qεw4(q)7

+ (HM)11P34(log P)−11
∑
q>R

qεw4(q)7.

Consequently, a succinct application of Lemma 4.1 and (3-5) implies that this integral
is O((HM)11P34(log P)−11−δ).

In what follows, we briefly describe the singular series involved in the problem.
There might be other approaches that would lead to more precise asymptotic formulae,
but for the sake of simplicity we avoid including the sums of three cubes in the singular
series. Recalling (2-1), it is convenient to consider, for an integer m ∈ N and a prime
p, the sums

Sm(q) = q−46
q∑

a=1
(a,q)=1

S12(q, 81a)46eq(−a(n − m)), σm(p) =
∞∑

h=0

Sm(ph).

Observe that whenever 3 � q we can make a change of variables to rewrite Sm(q) as

Sm(q) = q−46
q∑

a=1
(a,q)=1

S12(q, a)46eq(−a81
−1

(n − m)),

where 81
−1

denotes the inverse of 81 (mod q). Note as well that Lemma 3 of [14] yields
the bound Sm(q) � qτ12(q)46, which implies that σm(p) = 1 + O(p−22) and delivers the
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convergence of the singular series

Sm(n) =
∞∑

q=1

Sm(q)

and its upper bound Sm(n) � 1. Here, we implicitly use the multiplicativity of Sm(q)
and the expression of the singular series as the product

Sm(n) =
∏

p

σm(p).

The estimate Sm(q) � q−17/6, which follows trivially via an application of [16,
Theorem 4.2], also delivers, for Q ≥ 1, the bound∑

q>Q

|Sm(q)| � Q−α (7-4)

for some α > 0. Observe that by Lemmas 2.12, 2.13 and 2.15 of [16] one gets for
every prime p � 3 the lower bound σm(p) ≥ p−45γ, where γ = 3 when p = 2 and γ = 1
otherwise. Likewise, note that when m ≡ n (mod 81) and h ≥ 5, orthogonality yields

h∑
l=0

Sm(3l) = 3−45hMn,m(3h),

where Mn,m(3h) denotes the number of solutions of the congruence

x12
1 + · · · + x12

46 ≡ (n − m)/81 (mod 3h−4)

with 1 ≤ xi ≤ 3h. Therefore, the application of Lemmas 2.13 and 2.15 of [16]
gives σm(3) ≥ 3−86. Consequently, combining the preceding lower bounds with the
favourable fact that σm(p) − 1 = O(p−22) we obtain Sm(n) � 1. Observe as well that
the above discussion yields Sm(n) ≥ 0 for every m ∈ N.

Before determining a lower bound of the expected size for the contribution of the
set of narrow arcs, we introduce for convenience the weighted exponential sum

w(β) =
∑

P12η<x≤n

1
12

x−11/12ρ
( log x
12η log P

)
e(βx),

where ρ denotes the Dickman function, defined for real x by

ρ(x) = 0 when x < 0,

ρ(x) = 1 when 0 ≤ x ≤ 1,

ρ continuous for x > 0,

ρ differentiable for x > 1,

xρ′(x) = −ρ(x − 1) when x > 1.
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For the sake of simplicity, we define the auxiliary function f ∗(α) by putting f ∗(α) =
q−1S(q, 81a)w(81(α − a/q)) when α ∈ P(a, q) ⊂ P, and f ∗(α) = 0 for α ∈ p. Then, it
is a consequence of [15, Lemma 5.4] (where the condition (a, q) = 1 can be relaxed
to (a, q) = C for some constant C) that for α ∈ P(a, q) ⊂ P one has f (81α) − f ∗(α) =
O(PR−3) and f ∗(α) � q−1/12P(1 + n|β|)−1/12. Moreover, by the methods of [16, Lemma
2.8] and the monotonicity of ρ it follows that

w(β) � P
(1 + n|β|)1/12 . (7-5)

Finally, when m ∈ N it is convenient to introduce K(m), defined as the number of
solutions of the equation

m = T(p1x1)4 + · · · + T(p11x11)4

for xi ∈ W and M/2 ≤ pi ≤ M. Combining the estimates mentioned before (7-5), we
obtain that∫

P

W(α)11 f (81α)46e(−αn) dα =
∑

m≤11n

K(m)
∫
P

f ∗(α)46e(−α(n − m)) dα

+ O((HM)11P34(log P)−11−δ).

Observe that the main term on the right can be written as
∑

m≤11n

K(m)
∑
q≤R

Sm(q)
∫
|β|≤n−1R

w(81β)46e(−β(n − m)) dβ. (7-6)

By (7-5) we obtain that the integral in the above expression over the range |β| > n−1R
is O(P34(log P)−δ). Therefore, an application of this observation and (7-4) gives that
the contribution of the set of narrow arcs P is

∑
m≤11n

K(m)Sm(n)
∫ 1

0
w(81β)46e(−β(n − m)) dβ + O((HM)11P34(log P)−11−δ).

We further note that whenever P12η < x ≤ n we have

ρ
( log x
12η log P

)
� 1;

so, combining the positivity of Sm(n), orthogonality and the lower bound Sm(n) � 1
when m ≡ n (mod 81), we obtain that (7-6) is bounded below by∑

m≤11n/12
m≡n (mod 81)

K(m)(n − m)17/6.

One can check via an application of Hensel’s Lemma (because the set of sums of three
cubes modulo 27 comprises the residue classes not congruent to 4 nor 5 modulo 9) and
Lemma 2.14 of [16] that the set of numbers of the shape T(p1x1)4 + · · · + T(p11x11)4
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with pi, xi ≤ 81 covers all the residue classes modulo 81. Consequently, by the
preceding discussion we find that

∫
P

W(α)11 f (81α)46e(−αn) dα � (HM)11P34(log P)−11,

which, combined with the estimates obtained through the pruning process, yields
R4(n) � (HM)11P34(log P)−11.
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