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Abstract. Let S be an (ideal) extension of a completely 0-simple semigroup S0

by a completely 0-simple semigroup S1. Congruences on S can be uniquely repre-
sented in terms of congruences on S0 and S1. In this representation, for a con-
gruence � on S, we express �K; �T; �

K and �T, where these denote the least (greatest)
congruences with the same kernel (trace) as �. Let � be the least completely 0-simple
congruence on S. We provide necessary and su�cient conditions, in terms of the
kernel of �, in order that the relation K be a congruence, and also that C�S�=K be a
modular lattice, where C�S� denotes the congruence lattice of S.

1. Introduction and summary. The study of congruences on a regular semigroup
S is greatly facilitated by the kernel-trace approach which consists in analysing their
kernels and their traces. The kernel and the trace of a congruence � on S are de®ned
by

ker � � a 2 S j a � e for some e 2 E�S�� 	
; tr� � � jE�S� �1�

where E�S� denotes the set of all idempotents of S. These quantities determine the
congruence uniquely and induce the following relations K and T on the congruence
lattice C�S�:

�K �, ker � � ker �; �T �, tr� � tr�: �2�

The former is a complete ^-congruence and the latter a complete congruence on
C�S�. These relations can be successfully used for a detailed study of the structure of
the lattice C�S�. In particular, the classes of these relations are intervals in C�S� and
we may thus use the notation

�K � �K; �
K

� �
; �T � �T; �

T
� �

� 2 C�S�� �: �3�

In this way, we arrive at the four operators

�! �K; �! �K; �! �T; �! �T � 2 C�S�� � �4�

which provide further means for a study of the congruence lattice C�S�. One may
also consider necessary and su�cient conditions on a special or an arbitrary semi-
group in order that K be a (_-) congruence. The general reference for this subject is
[3] and related results may be found in [4].

With this general preamble, we concentrate in the paper on some of the topics
raised above as they apply to the special situation when S is an ideal extension of a
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completely 0-simple semigroup S0 by a completely 0-simple semigroup S1. Reference
[5] is devoted to the congruence lattice on these semigroups from which we shall
draw the form of congruences on S in terms of congruences on S0 and S1, respec-
tively, as well as many of their basic properties. Given a congruence � on S in such a
representation, we shall ®nd explicitly the form of �K; �T; �

K and �T as well as
necessary and su�cient conditions on S in order that K be a congruence and also
that C�S�=K be a modular lattice. These achievements complete and supplement
several of the results with modest partial solutions in [5].

As a basis for further consideration, Section 2 contains several elementary
results concerning congruences on completely 0-simple semigroups. The construc-
tion of congruences as well as many of their properties are stated or, if they are new,
also proved in Section 3. The main result in Section 4 provides expressions for �K
and �T, whereas in Section 5 for �K and �T for an arbitrary congruence � on the
cited extension. Necessary and su�cient conditions on S for K to be a congruence
are established in Section 6 and for K to be a congruence and C�S�=K to be modular
in Section 7. The theorems in Sections 6 and 7 have simpler versions for strict
extensions in Section 8.

2. Congruences on completely 0-simple semigroups. Let

S �M0�I;G;�;P�
be a Rees matrix semigroup whose elements we denote by (i; g; �) with multiplication

�i; g; ��� j; h; �� � �i; gp�jh; �� if p�j 6� 0
0 otherwise

n
:

A congruence � on any semigroup is proper if � is not the universal relation. These
congruences on S are described by means of the following device.

Let r be a partition of I, N be a normal subgroup of G and � be a partition of �
satisfying the following conditions:

(i) if i r j, then for all �; � 2 �,
(a) p�i 6� 0, p�j 6� 0,
(b) p�i 6� 0; p�i 6� 0) p�ip

ÿ1
�i p�jp

ÿ1
�j 2 N;

(ii) if ���, then for all i; j 2 I,
(a) p�i 6� 0, p�i 6� 0,
(b) p�i 6� 0; p�j 6� 0) p�ip

ÿ1
�i p�jp

ÿ1
�j 2 N.

In such a case (r;N; �) is an admissible triple for S, and we de®ne a relation
� � C�r;N; �� on S by

�i; g; ��� �j; h; �� , i r j; � ��; pvigp�kN � pvjhp�kN

for some [any] v 2 �; k 2 I such that pvi 6� 0; p�k 6� 0; and 0 � 0. Then C�r;N; �� is a
proper congruence on S, and conversely, every proper congruence on S can be so
written for a unique admissable triple. In addition, for � � C�r;N; �� and
�0 � C�r0;N0; �0�,

� _ �0 � C�r _ r0;NN0; � _ �0�; � ^ �0 � C�r \ r0;N \N0; � \ �0�:
For proofs, see [2, III.4 and III.5].
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We shall presently need the following constructs. For a normal subgroup N of
G, we de®ne the relations N� on I and N� on �, respectively, by

i N� j, ÿ
p�i 6� 0, p�j 6� 0 for all � 2 �;

p�i 6� 0; p�i 6� 0 ) p�ip
ÿ1
�i p�jp

ÿ1
�j 2 N

�
;

�N��, ÿ
p�i 6� 0, p�i 6� 0 for all; i 2 I;

p�i 6� 0; p�j 6� 0 ) p�ip
ÿ1
�i p�jp

ÿ1
�j 2 N

�
:

For partitions r of I and � of�, let r� be the normal subgroup ofG generated by the set

p�ip
ÿ1
�i p�jp

ÿ1
�j j p�i; p�i; p�j; p�j 6� 0; either i r j or ���

n o
:

We denote by " and ! the equality and the universal relation on any set if there
is no danger of confusion. Recall the de®nitions contained in (1), (2) and (3).

Lemma 2.1. Let S �M0�I;G;�;P� and � � C�r;N; ��; �0 � C�r0;N0; �0�.
(i) ker � � �i; g; �� 2 S j p�i 6� 0; gp�i 2 N

� 	 [ 0f g.
(ii) �K �0 , N � N0.
(iii) �K � C�";N; "�; �K � C�N�;N;N��.
(iv) For p�i 6� 0 and p�j 6� 0,

�i; pÿ1�i ; �� tr� �j; pÿ1�j ; �� , i r j; � ��:

(v) �T �0 , r � r0; � � �0.
(vi) �T � C�r; r�; ��; �T � C�r;G; ��.

Proof. (i) This is proved in [4, Lemma 3.1].
(ii) This follows easily from part (i).
(iii) The ®rst assertion is obvious. For the second, we observe that the de®ni-

tions of N� and N� mimic the conditions in the de®nition of an admissible triple so
that admissibility of �r;N; �� can be written as r � N� and � � N�. The maximality
of �N�;N;N�� relative to N is now obvious which yields the second assertion in view
of part (ii).

(iv) Indeed,

�i; pÿ1�i ; �� tr� �j; pÿ1�j ; �� , i r j; p�ip
ÿ1
�i p�iN � p�jp

ÿ1
�j p�iN; � ��

, i r j; p�ip
ÿ1
�i p�jp

ÿ1
�j 2 N; � ��

, i r j; � ��;

since the middle condition follows from i r j (also from ���).
(v) Using part (iv), we obtain

�T �0 , i; pÿ1�i ; �
ÿ �

� j; pÿ1�j ; �
� �

, i; pÿ1�i ; �
ÿ �

�0 j; pÿ1�j ; �
� �

for all p�i 6� 0; p�j 6� 0
� �

, i r j; � ��� � , i r0 j; � �0 �� �� � , r � r0; � � �0:
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(vi) The de®nition of r� mimics the condition in the de®nition of an admissible
triple �r;N; �� which is equivalent to the requirement that N � r�. This obviously
entails the minimality of �r; r�; �� which in view of part (v) implies the ®rst assertion.
The second assertion is obvious because of part (v).

Corollary 2.2. For a completely 0-simple semigroup S, in (4), the ®rst and the
fourth mappings are homomorphisms, the second is a ^-homomorphism and the third is
a _-homomorphism.

Proof. For � 2 C�S�, by Lemma 2.1(iii), we obtain that �K � ! if � � ! and S
has zero divisors and �K � � ^H otherwise.Using this, the ®rst assertion follows
easily from Lemma 2.1(iii)(vi). The second claim follows from Lemma 2.1(iii) since
straightforward checking shows that both mappings � and � are ^-homomorphisms.
The third assertion follows similarly form Lemma 2.1(vi); however, the mapping
�! �T is a complete _-homomorphism for arbitrary regular semigroups as proved
in [3, Theorem 4.13].

The following two examples supplement Corollary 2.2.

Example 2.3. Let I � 1; 2f g;G � Z2 � Z2

P � �0; 0� �0; 0�
�0; 0� �1; 1�

" #

and S �Mo�I;G; I;P�. Further let N � Z2 � 0
� 	

;N0 � 0
� 	� Z2; � � C�";N; "� and

�0 � C�";N0; "�. Then NN0 � G so that �NN0�� � !; p11pÿ121 p22p
ÿ1
12 � �1; 1� 62 N [N0

and thus N� � N0� � ". Now Lemma 2.1(iii) gives

�� ^ �0�K � C�";N; "� _ C�";N0; "�� �K� C�";NN0; "�� �K� C�!;G; !�;
��K _ �0K� � C�";N; "�� �K_ C�";N0; "�� �K� C�";N; "� _ C�";N0; "� � C�";G; "�:

Therefore the mapping �! �K fails to be a _-homomorphism.

Example 2.4. Let I � 1; 2f g;G � Z2;P � 0 0
0 1

� �
and S �M0�I;G; I;P�.

Further let � � C�";G; !� and �0 � C�!;G; "�. Now Lemma 2.1(vi) yields �T � � and
�0T � �0 so that

�� ^ �0�T � C�";G; "�� �T � "; �T ^ �0T � C�";G; "�:
Therefore the mapping �! �T fails to be a ^-homomorphism.

The next lemma will be useful later. A semigroup T is reductive if for any
a; b 2 T, whenever either ax � bx for all x 2 T or xa � xb for all x 2 T, we have
a � b.

Lemma 2.5. Let S �M0�I;G;�;P� and � 2 C�S�. Then S=�K is reductive.

Proof. If ker � � S, then �K � ! and S=�K is trivial, so reductive. Assume that
ker � 6� S. Then � must be proper and hence � � C�r;N; �� for an admissible triple
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�r;N; ��. By Lemma 2.1(iii), �K � C�N�;N;N��. We let �i; g; ��; �j; h; �� 2 S and
assume that

�i; h; ���k; s; �� �K � j; h; ���k; s; �� �5�

for all �k; s; t� 2 S. For p�k 6� 0, we get i N� j. For p�k 6� 0; p�i 6� 0; p�` 6� 0, we get
p�k 6� 0 from (5) and p�j 6� 0 since i N� j. Hence p�igp�ksp�`N � p�jhp�ksp�`N so that
p�igp�kN � p�jhp�kN.

From (5), we also get p�k 6� 0, p�k 6� 0. Now assume that p�k 6� 0; p�` 6� 0. As
above, we get p�igp�`N � p�jhp�`N where we have also supposed that p�i 6� 0 so that
p�j 6� 0. It follows that

�p�igp�kpÿ1�khÿ1pÿ1�j � �p�igp�`pÿ1�`hÿ1pÿ1�j �ÿ1 2 N

whence p�igp�kp
ÿ1
�kp�lp

ÿ1
�` g
ÿ1pÿ1�i 2 N and since N is normal, this implies that

p�kp
ÿ1
�kp�`p

ÿ1
�` 2 N. Therefore �N��, which together with i N� j and p�igp�kN �

p�jhp�kN whenever p�i 6� 0 and p�k 6� 0, yields �i; g; �� �K � j; h; ��.
We have proved that in S=�K; ax � bx for all x implies a � b. A dual proof will

show that also xa � xb for all x implies that a � b. Therefore S=�K is reductive.

3. Extensions. Throughout the remainder of the paper, we ®x the following
notation: S stands for an (ideal) extension of a completely 0-simple semigroup S0 by
a completely 0-simple semigroup S1 such that S0S1 6� 0f g. The reason for the last
restriction is that in case S0S1 � 0f g;S is a primitive regular semigroup which was
treated in [4, (Section 3)] and for which �K; �

K; �T and �T can be found readily using
Lemma 2.1.

If A is a subset of a semigroup with zero, we write A� � An 0f g. For i � 0; 1, we
denote by "i the equality relation on Si, by !i the universal relation on Si, by &i the
greatest proper congruence on Si, by C�Si� the lattice of congruences on Si and by
C0�Si� the lattice of proper congruences on Si. Recall that the natural partial order
on a regular semigroup S is de®ned thus: a � b if a � eb � bf for some e; f 2 E�S�.

From [5] (Section 3 and particulary Lemma 3.5), we extract the following
description of congruences on S.

Let �0 2 C�S0� be such that for every a 2 S�1 and some [all] b 2 S�0 such that
a > b, we have ax �0 bx and xa �0 xb for all x 2 S0. In such a case, we de®ne a rela-
tion �0� � on S by

a �0� � b,
a �0 b if a; b 2 S�1; a > a > 0; b > b > 0,
a �0 b if a 2 S0; b 2 S�1; b > b > 0,
a �0 b if a 2 S�1; b 2 S0; a > a > 0,
a �0 b if a; b 2 S0,

8>><>>:
where a or b can be taken ``for all such'' or ``for some''.

Next let �0 2 C�S0� and �1 2 C0�S1� be such that

a; b 2 S�1; a �1 b; x �0 y) ax �0 by; xa �0 yb:

In such a case, de®ne a relation �0; �1� � on S by
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a �0; �1� � b, a �1 b if a; b 2 S�1
a �0 b if a; b 2 S0

�
:

Then the relations �0� � and �0; �1� � are congruences on S. Conversely, every
congruence on S can be so represented in a unique way. For an indication of proof,
consult [5, Theorem 3.2].

If � is a relation on any semigroup T, we denote by �� the congruence on T
generated by �. The following congruence on S will play an important role in many
of our considerations. Let

� � �e; f � 2 E�S� � E�S� j e > f > 0
� 	�

and �0 � �jS0
. Note that � � �0� � and � is the least completely 0-simple congruence on S.

We shall also need the following constructs which extend some of those in
[5, Section 4].

Let �0 2 C�S0� be such that �0 � �jS0
for some � 2 C�S�. De®ne a relation �00 on

S�1 by

a �00 b, �x �0 y) ax �0 by; xa �0 yb�
and let 0 �00 0.

We show now that �00 is an equivalence relation. First, �00 is re¯exive since
�0 � �jS0

and it is obviously symmetric. Let a; b; c 2 S�1 be such that a �00 b and b �00 c.
Then for any x �0 y, we have

ax �0 bx �0 by; xa �0 xb �0 yb

so that a �00 c. Therefore �
0
0 is transitive.

Let �0 � ��00�0, the greatest congruence on S1 contained in �00, that is,

a �0 b, xay �00 xby for all x; y 2 S1
1:

Note that since �0; 0�� 	
is a �00-class, the congruence �0 is proper.

We shall need a number of properties of congruences introduced in this section.

Lemma 3.1. Let �0; �1� � 2 C�S�.
(i) ker �0; �1� � � ker �0 [ �ker �1��.
(ii) If a > b > 0 and a 2 ker �1, then b 2 ker �0.

Proof. These statements are proved in [5], Lemmas 6.1(ii) and 6.2, respectively.

Lemma 3.2. Let �0� � 2 C�S� and �0 2 C�S0�.
(i) ker �0� � � ker �0 [ a 2 S�1 j a > b > 0 for some b 2 ker �0

� 	
.

(ii) If a > b > 0, then a �0� � b.
(iii) If a > b > 0 and b 2 ker �0, then a 2 ker �0� �.
(iv) �0� �K� �K0

� �
.

(v) �0� � 2 C�S� , �0 � �0.

Proof. These statements are proved in [5], Lemmas 6.1(i), 3.4, 6.1(i), Proposition
6.7 and Lemma 3.6(ii), respectively.
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Lemma 3.3. Let �0� �; �0� � 2 C�S�.
(i) �0� � � �0� � , �0 � �0.
(ii) �0� � � �0� � � �0 � �0� � � 2 ^;_f g� �.
(iii) �0� �K �0� � , �0 K �0.

Proof. These statements are proved in [5], Lemmas 3.3(i) and 4.1 and Corollary
6.3(i), respectively.

Lemma 3.4. Let �0� �; �0; �1� � 2 C�S�.
(i) �0� � _ �0; �1� � � �0 _ �0� �.
(ii) �0� � ^ �0; �1� � � �0 ^ �0; �0 ^ �1

� �
.

(iii) �0� �K �0; �1� � , �0 K �0; �a > b > 0; b 2 ker �0 ) a 2 ker �1�.

Proof. These statements are proved in [5], Lemma 4.5 and Corollary 6.3(iii),
respectively.

Lemma 3.5. Let �0; �1� �; �0; �1� � 2 C�S�.
(i) �0; �1� � � �0; �1� � , �0 � �0; �1 � �1.
(ii) �0; �1� � � �0; �1� � � �0 � �0; �1 � �1� � �� 2 ^;_f g�.
(iii) �0; �1� �P �0; �1� � , �0 P �0; �1 P �1 P 2 K;Tf g� �.

Proof. These statements are proved in [5], Lemmas 3.3(ii), 4.2 and Corollary
6.3(ii), respectively.

Lemma 3.6. Let �0 2 C�S0� and �1 2 C0�S1� be such that S0=�0 is reductive and for
a; b 2 S�1,

a �1 b; x 2 S0 ) ax �0 bx; xa �0 xb:

Then �0; �1� � 2 C�S�.

Proof. Let a; b 2 S�1; a �1 b; x �0 y; u 2 S0. Then ax �0 bx and

u�ax� �0 u�bx� � �ub�x �0 �ub�y � u�by�

and since S0=�0 is reductive, we get ax �0 by. One proves dually that xa �0 yb.

Let �0; �1� � 2 C�S�. From the de®nition of �0; �1� �, it follows that if �1 2 C�S1� is
such that �1 � �1, then �0; �1� � is de®ned. If S0=�0 is reductive and �0 2 C�S0� is such
that �0 � �0, then Lemma 3.6 implies that �0; �1� � is de®ned. The former procedure
decreases the upper congruence and the latter increases the lower congruence.

Lemma 3.7.
(i) If �0� � 2 C�S�, then �0; �0

� � � �0� � ^ !0; �1� �.
(ii) Let �0 2 C�S0� and �1 2 C0�S1�. Then �0; �1� � 2 C�S� if and only if �1 � �0.
(iii) If �0� � is de®ned, then �K0 � �K0 .
(iv) If �0 and �0 are de®ned, then �0 ^ �0 � �0 ^ �0.
(v) If �0� �; �0� � 2 C�S�, then �0 ^ �0 � �0 ^ �0.

Proof. (i) This is proved in [5, Lemma 4.4].
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(ii) Necessity. Letting � � �0; �1� �, we have �0 � �jS0
so that �0 is de®ned. From

the de®nition of �00 and the fact that �0 � �00, we obtain that �0; �0
� �

is de®ned. Let
a; b 2 S�1 be such that a �1 b and let x �0 y. Then ax �0 by and xa �0 yb and thus a �00 b.
Hence �1 � �00 whence �1 � �0. Therefore �0; �1� � � �0; �0

� �
.

Su�ciency. This follows directly from the de®nition of �0.
(iii) Let ��0� be de®ned. In view of Lemma 3.2(v), ��K0 � is also de®ned. Since

�0 K �
K
0 , Lemma 3.3(iii) implies that ��0�K ��K0 �. Hence �!0; �1� ^ ��0�K �!0; �1� ^ ��K0 �

which by part (i) yields ��0; �0�K ��K0 ; �K0 �. Now Lemma 3.5(iii) gives �0 K �
K
0 which

then implies that �K0 � �K0 .
(iv) This follows directly from the de®nition.
(v) If �0� �; �0� � 2 C�S�, then by part (i),

�0; �0
� � ^ �0; �0

� � � �0� � ^ �0� � ^ !0; �1� � � �0 ^ �0� � ^ !0; �1� � � �0 ^ �0; �0 ^ �0
� �

which by Lemma 3.5(ii) yields �0 ^ �0 � �0 ^ �0.
As a consequence of Lemma 3.7(ii), we have that �0; �0

� �
is the greatest con-

gruence on S of the form �0; �1� �.

4. A construction of �K and �T. After a lemma of independent interest, we
establish a theorem which provides a representation of �K and �T in the form
described in the preceding section. We also treat a special case in which �K assumes a
simple form.

Lemma 4.1. For �0� � 2 C�S�, the following conditions are equivalent.
(i) �0� �K �0; �1� � for some �0; �1� � 2 C�S�.
(ii) a > b > 0; b 2 ker �0 ) a2 2 S�1.
(iii) �0� �K �0; �0

� �
.

Proof. We assume ®rst that �0 6� !0.
(i) implies (ii). Let a > b > 0 and b 2 ker �0. By Lemma 3.2(i),

a 2 ker �0� � � ker �0; �1� � and hence a 2 �ker �1��. Since �1 is proper, a must be con-
tained in a subgroup of S1 so a2 2 S�1.

(ii) implies (iii). By Lemma 3.7(i), we have �0� � ^ !0; �1� � � �0; �0
� �

and hence
�ker �0�� � ker �0� � \ S�1. Conversely, let a 2 ker �0� � \ S�1. By Lemma 3.2(i),
a > b > 0 for some b 2 ker �0 and hence, by hypothesis, a2 2 S�1. Thus aH e for
some e 2 E�S�1�. Letting � � �0� �jHe

, we obtain a congruence � on the group He such
that a � a2 and thus a � e. Therefore a �0� � e.

Now let x; y 2 S1
1; u �0 �. Then �xay�u �0� � �xey�� and u�xay� �0� � ��xey� so that

�xay�u �0 �xey�� and u�xay� �0 ��xey� which shows that xay �00 xey and thus a �0 e.
Therefore a 2 ker �0 which proves that ker �0� � \ S�1 � �ker �0�� and equality pre-
vails. Consequently �0� �K �0; �0

� �
in view of Lemma 3.2(i)(iii).

(iii) implies (i). This is trivial.
We now consider the case �0 � !0. Then �0� � � !. If (i) holds, then

ker �0; �1� � � S implies that S1 has no zero divisors and (ii) holds. If (ii) holds, again
S1 has no zero divisors so !K !0; !0� � where !0 � �1 and (iii) holds. Trivially (iii)
implies (i).

We are now ready for the ®rst principal result of the paper.
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Theorem 4.2.
(i) For �0; �1� � 2 C�S� and P 2 K;Tf g, let

h�0; �1;Pi � \ �0 2 C�S0� j �0 P �0; a ��1�P b; x �0 y) ax �0 by; xa �0 yb
� 	

: �6�

Then �0; �1� �P� h�0; �1: Pi; ��1�P
� �

.
(ii) For �0� � 2 C�S�, we use the notation
(N) if a > b > 0; b 2 ker �0, then a2 2 S�1.

Then

�0� �K �
h�0; �0;Ki; ��0�K
� �

if �N� holds,

��0�K _ �0
� �

otherwise,

(
�0� �T � ��0�T

� �
:

Proof. (i) Let � � �0; �1� �. By Theorem 3.2 of [3], we have

�K � �a; a2� 2 S� S j a � a2� 	�
; �7�

�T � �e; f � 2 E�S� � E�S� j e � f� 	�
: �8�

First let a; b 2 S be such that a �P b. Then there exists a sequence

a � x1u1y1; x1v1y1 � x2u2y2; . . . ; xnvnyn � b �9�

for some xi; yi 2 S1; ui � vi, for P � K, either u2i � vi or ui � v2i and for P � T,
ui; vi 2 E�S�, i � 1; 2; . . . n. Notice that either ui �0 �i or ui �1 �i; i � 1; 2; . . . ; n. Since
a 2 S�1, we have x1u1y1 2 S�1 so that x1u1y1 � x1v1y1 yields x1v1y1 2 S�1. Thus
y1; v1 2 S1

1 and u1 �1 v1. We may continue this procedure with all the elements of
sequence (9). In view of formulae (7) and (8), we conclude that a ��1�P b. Therefore
�PjS�

1
� ��1�PjS�1 and the opposite inclusion is trivial. Consequently �P � �0; ��1�P

� �
for some �0 2 C�S0�.

Let F be the family of congruences � on the right hand side of (6). Since �0; �1� �
is de®ned, we have

a �1 b; x �0 y) ax �0 by; dxa �0 yb

which evidently implies that

a ��1�P b; x �0 y) ax �0 by; xa �0 yb:

Hence �0 2 F so that F 6� �. Obviously F is closed under arbitrary intersections
which implies that h�0; �1;Pi; ��1�P

� �
is de®ned. Also, for every � 2 F , we have

�P �0 and thus h�0; �1;PiK �0. Hence h�0; �1;Pi; ��1�P
� �

P �0; �1� �. The minimality
of the former is obvious from the de®nition of h�0; �1;Pi.

(ii) According to Lemma 4.1, condition (N) is equivalent to �0� �K �0; �0
� �

; in
such a case, by part (i), we have

�0� �K� �0; �0
� �

K
� h�0; �0;Ki; ��0�K
� �

:
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Otherwise �0� �K� �0� � for some �0 2 C�S0�. Hence �0� �K �0� �; by Lemma 3.3(iii) we
have �0 K �0 and thus �0 � ��0�K. Since �0� � is de®ned, by Lemma 3.2(v), we get
�0 � �0 and thus �0 � ��0�K _ �0. Now

ker �0 � ker �0 � ker ��0�K _ �0
ÿ � � ker ��0�K � ker �0

and equality prevails throughout. Therefore �0 K ��0�K _ �0. By Lemma 3.2(v),
��0�K _ �0
� �

is de®ned and �0� �K ��0�K _ �0
� �

by Lemma 3.3(iii). If �0� �K �0� �, then by
Lemma 3.3(iii), �0 K �0 so �0 � ��0�K and since �0� � is de®ned, we have �0 � �0 by
Lemma 3.2(v). Thus �0 � ��0�K _ �0 whence by Lemma 3.3(i), �0� � � ��0�K _ �0

� �
.

Consequently �0� �K� ��0�K _ �0
� �

.
The last assertion of the theorem is proved in Proposition 6.9 of [5].

There is a special case when �K assumes a simple form. The ®rst part of the next
result generalizes the ®rst part of Theorem 7.8(i)) of [5].

Proposition 4.3. Assume that H is a congruence on S. If �0; �1� � 2 C�S�, then
�0; �1� �K� ��0�K; ��1�K

� �
. If �0� � 2 C�S� and condition (N) holds for �0, then

�0� �K� ��0�K; ��0�K
� �

.

Proof. Let �0; �1� � 2 C�S�. For the ®rst assertion, it is evidently su�cient to
prove that ��0�K; ��1�K

� �
is de®ned. Hence let a ��1�K b and x ��0�K y. Then a �1 b and

x �0 y which by hypothesis implies that ax �0 by and xa �0 yb. Suppose that �0 is
proper. By Lemma 2.1(iii), we have ��i�K � �i \Hi for i � 0; 1 and thus aH1 b and
xH0 y. Hence aH b and xH y in S and the hypothesis implies that axH by and
xaH yb. Therefore ax �0 ^H0 by and xa �0 ^H0 yb. In view of Lemma 2.1(iii), we get

��0�K � !0 if S0 has zero divisors and �0 � !0,
�0 ^H0 otherwise.

�
Thus in any case ax ��0�K by and xa ��0�K yb, as required. This establishes the ®rst
assertion.

Now assume that �0� � 2 C�S�. By Lemma 4.1 and Theorem 4.2, the validity of (N)
implies that �0� �K �0; �0

� �
. Applying the ®rst statement now gives the second assertion.

5. A construction of �K and �T. The analysis here is quite parallel to that in the
preceding section.

Lemma 5.1. The following conditions on � � �0; �1� � 2 C�S� are equivalent.
(i) �K �0� � for some �0� � 2 C�S�.
(ii) �0 � �K0 ; a > b > 0; b 2 ker �0 ) a 2 ker �1.
(iii) �K � �K0

� �
.

Proof. (i) implies (ii). The hypothesis that �K �0� � by Lemma 3.4(iii) implies that
�0 K �0 and thus �K0 � �0. Since �0� � is de®ned, Lemma 3.2(v) implies that �0 � �0.
Therefore �K0 � �0. Let a > b > 0 and b 2 ker �0. Then b 2 ker �0 and in view of
Lemma 3.2(iii), we have a 2 ker �0� �. Hence a 2 ker �0; �1� � so that a 2 ker �1 by
Lemma 3.1(i).
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(ii) implies (iii). Since �0 � �K0 , Lemma 3.2(v) implies that �K0
� �

is de®ned. Note
that �jS0

� �0 K �K0 � �K0
� �jS0

by Lemma 3.2(i). If a 2 �ker �1��, by [5, Lemma 2.2],
there exists b 2 S0 such that a > b > 0, whence b 2 ker �0 by Lemma 3.1(ii) and thus
a 2 ker �K0

� �
by Lemma 3.2(i). Conversely, if a 2 ker �K0

� � \ S�1, then by Lemma
3.2(i), there exists b 2 S0 such that a > b > 0, which by hypothesis implies that
a 2 �ker �1��. Therefore �K �K0

� �
. It follows that �K � �K0

� �K
and since by Lemma

3.2(iv), �K0
� �K� �K0

� �
, we obtain �K � �K0

� �
.

(iii) implies (i). This is trivial.

We can now prove the second principal result of the paper.

Theorem 5.2. Let P 2 K;Tf g.
(i) For �0� � 2 C�S�, we have �0� �P� �P0

� �
.

(ii) For �0; �1� � 2 C�S�, we use the notation
(M) �0 � �K0 ; a > b > 0; b 2 ker �0 ) a 2 ker �1.

Then �0; �1� �K� �K0
� �

if (M) holds and

�0; �1� �P� �P0 ; �
P
0 ^ �P1

h i
for P � K when (M) fails or P � T.

Proof. (i) For P � K, this is Lemma 3.2(iv) and for P � T, this is Proposition 6.9
of [5].

(ii) If condition (M) holds, the assertion follows from Lemma 5.1. We consider
®rst the case P � K when (M) fails. Let � � �0; �1� � and observe that �K � �0; �1� �
for some �0; �1. By Lemma 3.5(iii), we have �0 K �0 so that �0 � �0 � �K0 . Also, by
the de®nition of �0; �1� �, it holds

a �1 b; x �0 y) ax �0 by; xa �0 yb

which then implies

a �1 b; x 2 S0 ) ax �K0 bx; xa �K0 yb:

By Lemma 2.5, S0=�
K
0 is a reductive semigroup which by Lemma 3.6 implies that

�K0 ; �1
� �

is de®ned. Again by Lemma 3.5(iii), we have �K0 ; �1
� �

K � and by Lemma
3.5(i), �0; �1� � � �K0 ; �1

� �
which by the maximality of �0; �1� � implies that

�0; �1� � � �K0 ; �1
� �

whence �0 � �K0 .
We now have �K � �K0 ; �1

� �
so that, by Lemma 3.5(iii), we get �1 K �1 and thus

�1 � �1 � �K1 . Since �K0 ; �1
� �

is de®ned, Lemma 3.7(ii) implies that �1 � �K0 and thus

�1 � �K0 ^ �K1 . It follows that

ker �1 � ker ��K0 ^ �K1 � � ker �K0 \ ker �K1 � ker �K0 \ ker �1 � ker �1

and thus �1 K �K0 ^ �K1 . Further

a �K0 ^ �K1 b; x �K0 y) ax �K0 by; xa �K0 yb;

and thus �K0 ; �
K
0 ^ �K1

h i
is de®ned. By Lemma 3.5(iii), we have
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�K0 ; �1
� �

K �K0 ; �
K
0 ^ �K1

h i
and by Lemma 3.5(i) that ��K0 ; �1� � ��K0 ; �K0 ^ �K1 � since �1 � �K0 ^ �K1 . By the

maximality of ��K0 ; �1�, we conclude that ��K0 ; �1� � ��K0 ; �K0 ^ �K1 �. Therefore

�1 � �K0 ^ �K1 , as asserted.
We now consider the case P � T. Let �0; �1� �T� �0; �1� �. By Lemma 3.5(iii), we

have �0 T �0 and �1 T �1. Hence �0 � �T0 . By ([3], Theorem 3.2), we have

�T � �L� L� L \R�R�R�0 �10�

where ( )0 means the greatest congruence contained in ( ) and � � tr�. Applying this
to �0 and letting �0 � tr�0, we get that �0 � � and thus �T0 � �T. Hence
�T0 � �T jS0

� �0. Therefore �0 � �T0 .
Now both ��T0 ; �1� and ��T0 ; �T0 � are de®ned which by Lemma 3.7(ii) gives that

�1 � �T0 . By Lemma 3.5(iii), we have �1 T �1 which implies that �1 � �T1 and thus

�1 � �T0 ^ �T1 . Hence

tr �1 � tr �T0 \ tr �T1 � tr �T1 � tr �1 � tr �1

and thus �1 T �T0 ^ �T1 . By Lemma 3.5(iii), it follows that

�T0 ; �1
� �

T �T0 ; �
T
0 ^ �T1

h i
where the latter is de®ned since �T0 ^ �T1 � �T0 . Also

�T0 ; �1
� � � �T0 ; �

T
0 ^ �T1

h i
which by the maximality of the former yields

�T0 ; �1
� � � �T0 ; �

T
0 ^ �T1

h i
:

Thus �1 � �T0 ^ �T1 , as asserted.

There is a special case when �T assumes a simple form. The next result gen-
eralizes the second part of ([5], Theorem 7.8(i)).

Proposition 5.3. Assume that H is a congruence on S and let �0; �1� � 2 C�S�.
Then �0; �1� �T� �T0 ; �

T
1

� �
.

Proof. In view of Theorem 5.2(ii), it su�ces to prove that �T0 ; �
T
1

� �
is de®ned.

Hence let a �T1 b, x �
T
0 y, �1 � C�r1;N1; �1� (see Section 2), a � �i; g; ��, b � �j; h; ��,

p�i 6� 0 and p�q 6� 0. Then i r1 j and ��1 �. Since

p�i�pÿ1�i pÿ1�q �p�qN1 � p�j�pÿ1�j pÿ1�q �p�qN1

letting a0 � �i; pÿ1�i pÿ1�q ; �� and b0 � � j; pÿ1�j pÿ1�q ; ��, we obtain aH a0, bH b0, a0 �1 b0.
Analogously, there exist x0; y0 such that xH x0, yH y0, x0 �0 y0.
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Since H is a congruence and �0; �1� � is de®ned, we get
axH a0x0 �0 b0y0 H by

which by Lemma 2.1(vi) implies that ax �T0 by. Similarly, we obtain that xa �T0 yb.
Consequently �T0 ; �

T
1

� �
is de®ned.

Corollary 5.4. Assume that H is a congruence on S. Then the mapping
�! �T � 2 C�S�� � is a homomorphism.

Proof. This follows easily from [3, Theorem 4.13], Corollary 2.2, Theorem 5.2.(i)
and Proposition 5.3.

6.When isK a congruence? We ®rst prove a proposition which speci®es precisely
when there exist no K-related congruences of di�erent ``types''. This is followed by
necessary and su�cient conditions on S, in terms of ker �, in order that K be a
congruence on C�S�.

Proposition 6.1. The following conditions are equivalent.
(i) For no �0� �; �0; �1� � 2 C�S�, do we have �0� �K �0; �1� �.
(ii) For every �0� � 2 C�S�; �0� �K� ��0�K

� �
.

(iii) For every �0; �1� � 2 C�S�, we have �0; �1� �K� �K0 ; �
K
0 ^ �K1

h i
.

(iv) �K � �.
(v) There exists x 2 ker � \ S�1 such that x2 2 S0.

Proof. Assume that (i) holds. Then for �0� � 2 C�S�, we must have �0� �K� �0� � for
some �0 and hence Theorem 4.2(ii) implies that �0� �K� ��0�K

� �
. Also, for

�0; �1� � 2 C�S�, we have �0; �1� �K� �0; �1� � for some �0; �1 and hence by Theorem
5.2(iii), we get

�0; �1� �K� �K0 ; �
K
0 ^ �K1

h i
:

Since � � �0� �, we have by part (ii) that �K � ��0�K
� �

. Now ��0�K
� �

being de®ned by
Lemma 3.2(v) implies that �0 � ��0�K whence �0 � ��0�K. But then � � �K. Therefore
parts (ii), (iii) and (iv) hold.

Suppose that (i) fails, say �0� �K �0; �1� �. Then �0� �K� �0; �1� � and hence
�0� �K 6� ��0�K

� �
even if the latter is de®ned. Also �0; �1� �K� �0� � so that

�0; �1� �K 6� �K0 ; �
K
0 ^ �K1

h i
even if the latter is de®ned. Further � ^ �0� �K � ^ �0; �1� � which by Lemma 3.2(v)
yields �K �0; �1� � for some �0; �1 and hence �K � �0; �1� � for some �0; �1. Therefore
parts (ii), (iii) and (iv) fail.

Assume that (iv) fails. As we have seen above, we must have �K � �0; �1� � for
some �0; �1. If now x 2 ker � \ S�1, then by Lemmas 3.1(i) and 3.2(i), x 2 �ker �1�� so
that x2 2 S�1 since �1 is proper. Hence (v) fails.
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Finally suppose that (iv) holds. By Theorem 4.2(ii), condition (N) fails for � and
hence there exist x > y > 0 such that x2 2 S0 and y 2 ker �0. By Lemma 3.2(ii), we
have x � y so that x 2 ker � \ S�1. Therefore (v) holds.

The following theorem has as a crude precedent ([5, Theorem 6.4]) and special
cases ([5], Theorems 7.6, 7.9 and 8.2).

Theorem 6.2. The kernel relation K is a congruence on C�S� if and only if either
S1 has no zero divisors and S�1 � ker � or there exists x 2 ker � \ S�1 such that x2 2 S0.

Proof. Necessity. Suppose ®rst that S1 has no zero divisors. By Theorem 8.2 of
[5] we have A � ker �, where

A � b 2 S�0 j there exists a 2 S�1 such that a > b
� 	

:

Let a 2 S�1. By [5, Lemma 2.2], there exists b 2 S0 such that a > b > 0. Hence b 2 A
so b 2 ker � and thus, by Lemma 3.2(i)(iii), a 2 ker �. Therefore S�1 � ker �.

Assume next that S1 has zero divisors. We consider two cases.
Case 1: �0� �K �0; �1� � for some �0� �; �0; �1� � 2 C�S�. It follows that

�0� � _ !0; "1� �K �0; �1� � _ !0; "1� �
which by Lemmas 3.4(i) and 3.5(ii) gives !K !0; �1� � so that �ker �1�� � S�1 and thus
ker �1 � S1. Since �1 is proper, this implies that S1 has no zero divisors, contrary to
the hypothesis. Therefore this case can not occur.

Case 2: �0� �K �0; �1� � for no �0� �; �0; �1� � 2 C�S�. In this case, the assertion fol-
lows from Proposition 6.1.

Su�ciency. If S1 has no zero divisors, the argument above shows that A � ker �
which by [5, Theorem 8.2] yields that K is a congruence. If S1 has zero divisors, then
by Proposition 6.1, we have that �0� �K �0; �1� � never occurs which by Theorem 6.4 of [5]
implies that K is a congruence.

Remark 6.3. Recall that �1 denotes the greatest proper congruence on S1. It is
easily seen that ker �1 is the union of all (maximal) subgroups of S1. Letting A �
�ker �1�� and B � S�1 \ ker �, we may paraphrase Theorem 6.2 succinctly as follows.

K � K� , A � B if S1 has no zero divisors,
B 6� A if S1 has zero divisors.

�

7. When is K a congruence and CC�S�=K is modular? A sequence of eight lemmas
leads to necessary and su�cient conditions on S, in terms of ker �1 and ker �, in
order that K be a congruence and C�S�=K be modular.

Our ®rst lemma is of general interest.

Lemma 7.1 Let R be a regular semigroup for which K is a congruence. Then
C�R�=K is modular if and only if for any �; �; � 2 C�R�,

ker � � ker �; ker �� ^ �� � ker �� ^ ��; ker �� _ �� � ker �� _ �� �11�

implies ker � � ker �.
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Proof. First

ker � � ker �, ker � � ker �� ^ �� , �K � ^ �, �K � �K
and relations (11) can be written, since K is a congruence, as

�K � �K; �K ^ �K � �K ^ �K; �K _ �K � �K _ �K
and it is well known that this implies �K � �K if and only if C�R�=K is modular.

Our second lemma pertains to congruences on a completely 0-simple semigroup.

Lemma 7.2. Let C �M0�I;G;�;P� and for �; �; � 2 C�C� assume relations (11).
Then ker � � ker �.

Proof. If � � !, then ker � � ker � directly. If � � !, then ker � � ker � and, in
view of [4], Proposition 2.2 and Lemma 3.2, ker � _ ker � � C and thus
ker � � C � ker �.

It remains to consider the case when all three congruences �; � and � are proper.
As in Section 2, we have

� � C�r;N; ��; � � C�r0;N0; �0�; � � C�r00;N00; �00�

for some admissible triples. Since

� ^ � � C�r \ r00;N \N00; � \ �00�; � _ � � C�r _ r00;NN00; � _ �00�

and similarly for � ^ � and � _ �, in the light of Lemma 2.1(i)(ii), relations (11) imply

N � N0; N \N00 � N0 \N00; NN00 � N0N00:

Now modularity of the lattice of normal subgroups of G yields that N � N0. By
Lemma 2.1(ii), we get ker � � ker �.

Corollary 7.3. For any completely 0-simple semigroup C;K is a congruence on
C�C� and C�C�=K is a modular lattice.

Proof. The ®rst assertion is the content of [4, Lemma 3.2]. The second assertion
is a consequence of Lemma 7.2.

We now go back to our extension S of completely 0-simple semigroups S0 and
S1. In Lemmas 7.4±7.9, we let �; �; � 2 C�C� with either � � �0� � or � � �0; �1� � where
� 2 �; �; �f g; � be as before and �1 be the greatest proper congruence on S1. Note
that �ker �1�� is the union of all nonzero (maximal) subgroups of S1.

Lemma 7.4.
(i) ker �0� � � ker �0� � , ker �0 � ker �0.
(ii) ker �0; �1� � � ker �0; �1� � , ker �i � ker �i; i � 0; 1.
(iii) ker �0; �1� ��ker �0� �,�ker �0�ker �0; a 2 �ker �1��; a>b>0)b2ker �0�.
(iv) ker �0� � � ker �0; �1� �,�ker �0 � ker �0; b 2 ker �0; a>b>0) a2ker �1�.

EXTENSION OF COMPLETELY 0-SIMPLE SEMIGROUPS 225

https://doi.org/10.1017/S0017089599970866 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599970866


Proof. This follows easily from Lemmas 3.1(i) and 3.2(i).

Lemma 7.5. For � 2 �; �; �f g, let �0 � � jS0
. Then relations (11) imply that

ker �0 � ker �0.

Proof. In view of Lemmas 3.1(i) and 3.2(i), relations (11) yield ker �0 � ker �0,
ker ��0 ^ �0� � ker ��0 ^ �0�, ker ��0 _ �0� � ker ��0 _ �0� which by Lemma 7.2 gives
ker �0 � ker �0.

Lemma 7.6. Assume relations (11) in the following cases:
(i) � � �0� �; � � �0� �; � � �0� �,
(ii) � � �0� �; � � �0� �; � � �0; �1� �,
(iii) � � �0; �1� �; � � �0; �1� �; � � �0; �1� �.

Then ker � � ker �.

Proof. (i) This follows easily from Lemmas 3.2(i), 3.3(i)(ii), 7.2 and 7.4(i).
(ii) This follows easily from Lemmas 3.1(i), 3.2(i), 3.4(i)(ii), 7.2 and 7.4(i).
(iii) This follows easily from Lemmas 3.2(i), 3.5(i)(ii), 7.2 and 7.4(ii).

Lemma 7.7. Assume that K is a congruence on C�S� and that relations (11) hold in
the following cases:

(i) � � �0; �1� �; � � �0� �; � � �0� �,
(ii) � � �0; �1� �; � � �0� �; � � �0; �1� �,
(iii) � � �0� �; � � �0; �1� �; � � �0� �,
(iv) � � �0� �; � � �0; �1� �; � � �0; �1� �.

Then S1 has no zero divisors and ker � � ker �.

Proof. (i) The second relation in (11) yields

ker �0; �1� � ^ �0� �� � � ker �0� � ^ �0� �� �

which by Lemmas 3.3(ii) and 3.4(ii) gives

�0 ^ �0; �1 ^ �0
� �

K �0 ^ �0� �:

Now Theorem 6.2 and Proposition 6.1 imply that S1 has no zero divisors. Further,
the second relation in (11), by Lemmas 3.1(i) and 3.2(i), yields

ker ��1 ^ �0� � a 2 S1 j a > b > 0; b 2 ker ��0 ^ �0�
� 	

: �12�

By Lemma 3.2(v), we have �0 � �0 ^ �0 and thus by Lemma 7.4(i),
ker � � ker �0 ^ �0� �. Since K is a congruence and S1 has no zero divisors, Theorem
6.2 implies that S�1 � ker �0 ^ �0� �. In view of Lemma 3.7(i), we obtain that the right
hand side of (12) equals S1. Now by (12), we have ker ��1 ^ �0� � S1 and thus
ker �1 � S1. By Lemmas 3.1(i)(ii), 3.7(i) and 7.5, we get

ker � � ker �0 [ �ker �1�� � ker �0 [ S�1 � ker �;

as required.
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(ii) Similarly as above, we obtain that S1 has no zero divisors and

ker ��1 ^ �1� � ker ��0 ^ �1�; ker ��1 ^ �1� � S1 � ker �0: �13�

From the ®rst and the last equalities in (13), we obtain ker �1 � ker �1. By [4]
(Proposition 2.2) and the second equality in (13), we get ker �1 _ ker �1 � S1 which
together with ker �1 � ker �1 yields ker �1 � S1. Now

ker � � ker �0 [ S�1 � ker �0 [ S�1 � ker �;

as required.
(iii) Similarly as above, we obtain that S1 has no zero divisors. The second

relation in (11) implies that ker �1 � S1 and thus

ker � � ker �0 [ S�1 � ker �0 [ S�1 � ker �: �14�

(iv) Again, as above it follows that S1 has no zero divisors. In addition,
ker �1 � ker �0 � S1 which as in (14) implies that ker � � ker �.

Lemma 7.8. Let � � �0; �1� �; � � �0; �1� �; � � �0� �, and relations (11) be satis®ed.
(i) Let S1 have no zero divisors and K be a congruence on C�S�. Then

ker � � ker �.
(ii) Let S1 have zero divisors. Then ker �1 � ker �1 and ker ��1 ^ �0� �

ker ��1 ^ �0�.

Proof. (i) By Theorem 6.2, we have S�1 � ker � and by Lemmas 3.2(v) and 7.4(i),
we have ker � � ker �0� � so that S�1 � ker �0� �. In view of Lemma 3.7(i), we get
S1 � ker �0 which by the second relation in (11) yields ker �1 \ S1 � ker �1 \ S1 so
that ker �1 � ker �1. Now Lemmas 7.5 and 3.5(iii) imply that ker � � ker �.

(ii) By Lemma 7.4(ii), the ®rst relation in (11) yields ker �1 � ker �1. In view of
Lemmas 3.4(ii) and 3.5(iii), the second relation in (11) gives ker ��1 ^ �0� �
ker ��1 ^ �0�.

Lemma 7.9. Assume that S1 has zero divisors and that K is a congruence on C�S�.
Then �ker �1�� � S�1 \ ker � if and only if

�C� � � �0; �1� �; � � �0; �1� �; � � �0� �; ker �1 � ker �1

ker ��1 ^ �0� � ker ��1 ^ �0� ) ker �1 � ker �1:

Proof. Necessity. Assume the antecedent of condition �C�. By Lemmas 3.7(i),
3.1(i) and 3.2(i), we obtain

ker �0 [ �ker �0�� � S0 [ �ker �1��� � \ ker �0� �

whence

�ker �0�� � �ker �1�� \ ker �0� �: �15�

Now
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�ker �1�� � ker ��1 ^ �1�� �� since �1 � �1
� �ker �1�� \ �ker �1��
� �ker �1�� \ �S�1 \ ker �� by hypothesis

� �ker �1�� \ ker �0� � by Lemma 3:2�v� and �15�
� �ker �1�� \ �ker �0�� � ker ��1 ^ �0�
� ker ��1 ^ �0�
ÿ �

by hypothesis

� �ker �1��

so that ker �1 � ker �1 which together with the hypothesis implies that ker �1 � ker �1.
Therefore �C� holds.

Su�ciency. By contrapositive, suppose that �ker �1�� 6� S�1 \ ker �. Let

�1 � ��1jS�
1
\ �jS�

1
� [ �0; 0�� 	

so that �1 is a proper congruence on S1. Let � � !0; �1� �; � � !0; �1� � and � � �. By
hypothesis, we get �ker �1�� � �ker �1�� and

ker ��1 ^ �0�� �� � �ker �1�� \ �ker �0�� � �ker �1�� \ ker � \ �ker �0��
� �ker �1�� \ �ker �0�� � ker ��1 \ �0�� �

which implies that ker ��1 ^ �0� � ker ��1 ^ �0� and �C� fails.

We are ®nally ready for the theorem of this section.

Theorem 7.10. The kernel relation K is a congruence on C�S� and C�S�=K is a
modular lattice if and only if either S1 has no zero divisors and S�1 � ker � or S1 has
zero divisors and �ker �1�� � S�1 \ ker �.

Proof. Necessity. If S1 has no zero divisors, then S�1 � ker � by Theorem 6.2. If
S1 has zero divisors, then S�1 \ ker � 6� �ker �1�� by Theorem 6.2, and by Lemmas 7.1,
7.8(ii) and 7.9, we get �ker �1�� � S�1 \ ker �.

Su�ciency. If S1 has no zero divisors, then Theorem 6.2 implies that K is a
congruence. If S1 has zero divisors, then S�1 \ ker � 6� �ker �1�� by Theorem 6.2
implies that K is a congruence. In view of Lemma 7.1, we must verify that relations
(11) imply that ker � � ker �. The cases considered in Lemmas 7.5±7.9 cover all
posibilities for the congruences �; � and �, as required.

Using the notation introduced in Remark 6.3, we can express the contents of
Theorem 7.10 succinctly as follows.

K � K�; C�S�=K is modular, A � B if S1 has no zero divisors,
A � B if S1 has zero divisors.

�
Also note that if S1 has no zero divisors and K is a congruence, then C�S�=K is
automatically modular.

8. Strict extensions. In both Theorems 6.2 and 7.10, the conditions are
expressed in terms of ker � which does not seem to lend itself to a simple explicit
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form thereby causing certain di�culty in comprehending what these conditions
really mean. In order to illustrate these conditions, we shall now specialize S to be a
strict extension of S0 by S1, that is the multiplication is determined by a partial
homomorphism. To this end, we shall need the following construction.

Let

S0 �M0�I0;G0;�0;P�; S1 �M0�I1;G1;�1;Q�;
� : I1! I0; u : I1! G0; ! : G1 ! G0; � : �1 ! G0; � : �1! �0

be functions such that ! is a homomorphism, u : i! ui, � : �! �� and p�i 6� 0
implies p�i! � ��q��;i�ui. De®ne a function ' by

' : �i; g; �� ! �i�; ui�g!���; ��� �i; g; �� 2 S�1
ÿ �

: �17�

Then ' : S�1 ! S�0 is a partial homomorphism and conversely, every partial homo-
morphism S�1 ! S�0 can be so constructed. The semigroup S is a strict extension of
S0 by S1 if there is a partial homomorphism ' : S�1 ! S�0 which determines the mul-
tiplication in S in the sense that

ab � �a'�b; ba � b�a'� if a 2 S�1; b 2 S0;
ab � �a'��b'� if a; b 2 S�1; ab � 0 in S1:

For proofs, see [1] (Theorems 3.14 and 4.19). Throughout this section we assume
that S is a strict extension as constructed above.

According to [5, Proposition 7.1], we have �0 � "0 and, by [5, Lemma 7.2],

ker � � E�S0� [ a 2 S�1 j a' 2 E�S0�
� 	

:

Now Theorem 6.2 immediately yields [5, Theorem 7.6] which we state as follows.

Lemma 8.1. The relation K is a congruence on C�S� if and only if either S1 has no
zero divisors and ' : S�1 ! E�S0� or there exists x 2 S�1 such that x' 2 E�S0� and
x2 2 S0.

The next result takes into account the form of the partial homomorphism '. A
homomorphism with range one element semigroup is said to be trivial.

Proposition 8.2. Let S be the strict extension determined by the partial homo-
morphism ' in (17). Then K is a congruence on C�S� if and only if either S1 has no zero
divisors and ! is trivial or S contains an element x such that x > x2 > 0.

Proof. First assume that S1 has no zero divisors. In view of Lemma 8.1, we must
show that ' : S�1 ! E�S0� if and only if ! is trivial.

Assume that ' : S�1 ! E�S0�. For any �i; g; �� 2 S�1, in view of (17), we must have
ui�g!��� � qÿ1��;i� whence g

ÿ1! � ��q��;i�ui. Since the right hand side does not depend
on g, we conclude that ! is trivial.

Conversely, suppose that ! is trivial. For any �i; g; �� 2 S�1, we have p�i 6� 0 since Si

has no zero divisors which implies that p�i! � ��q��;i�ui. Since! is trivial, we get qÿ1��;i� �
ui�� which together with g! � 1 in (17) yields that �i; g; ��' 2 E�S0�, as required.

EXTENSION OF COMPLETELY 0-SIMPLE SEMIGROUPS 229

https://doi.org/10.1017/S0017089599970866 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599970866


Suppose now that S1 has zero divisors. In view of Lemma 8.1, it su�ces to
prove that for x 2 S, we have x 2 S�1; x' 2 E�S0� and x2 2 S0 if and only if
x > x2 > 0. Note that for any a 2 S�1; b � a' is the unique element with the property
that a > b > 0.

If x 2 S�1; x' � e 2 E�S0� and x2 2 S0, then x2 � �x'�2 � e2 � e � x' and hence
x > x' � x2 > 0. Conversely, if x > x2 > 0, then x' � x2 2 S0 and there exists
f 2 E�S� such x2 � fx whence

x4 � fx3 � f�fx�x � fx2 � fx � x2

and x' 2 E�S0�.

Proposition 8.3. Let S be the strict extension determined by the partial homo-
morphism ' in (17). Then K is a congruence on C�S� and C�S�=K is a modular lattice if
and only if ! is trivial and if S1 has zero divisors, then there exists x 2 S such that
x > x2 > 0.

Proof. Necessity. In view of Proposition 8.2, it remains to prove that when S1

has zero divisors, then ! is trivial. By Theorem 7.10, we have �ker �1�� � S�1 \ ker �.
From this, the proof that ! is trivial is essentially the same as in the second para-
graph of the proof of Proposition 8.2.

Su�ciency. In view of Theorem 7.10, it su�ces to show that in the case that S1

has zero divisors, ! trivial implies that �ker �1�� � S�1 \ ker �. Now the argument is
essentially the same as in the third paragraph of the proof of Proposition 8.2.

Comparing Propositions 8.2 and 8.3 we see that the conditions in them di�er
only when S1 has zero divisors in which case the triviality of ! must be added.
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