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Direct numerical simulation study of turbulent
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We carry out direct numerical simulations (DNS) of fully developed turbulent pipe flow
subjected to radial system rotation, examining a broad range of rotational speed and
Reynolds number. In response to the imposed system rotation, strong secondary motions
arise in the form of streamwise-aligned counter-rotating eddies, which engage significantly
with the boundary layer, exerting a notable influence on the turbulent flow. At high
rotation numbers, a Taylor–Proudman region appears, marked by a constant mean axial
velocity along the rotation axis. As rotation increases, local flow relaminarisation takes
place starting at the suction side of the pipe, ultimately resulting in full relaminarisation
when the rotation number is higher than unity. In this regime the near-wall region of
the flow exhibits the typical hallmark of laminar Ekman layers, whose strength varies
with the azimuthal position along the pipe perimeter. A predictive analytical formula for
frictional drag is derived for this ultimate high rotation which accurately reproduces the
DNS data. The behaviour of friction is more complex to predict at low-to-intermediate
rotation numbers owing to concurrent effects of viscosity, turbulence, secondary motions
and rotation, which we quantify in an extended version of the Fukagata–Iwamoto–Kasagi
identity.
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1. Introduction

Flows in rotating passages are prevalent in technological applications, especially in
turbomachinery (Greitzer, Tan & Graf 2007). In pipe flow, two canonical cases can be
identified, in which the rotation axis is either parallel or orthogonal to the pipe axis. In the
latter case on which we focus in the present work, Coriolis forces act on the fluid as body
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forces, breaking the azimuthal symmetry of the flow and inducing large-scale secondary
motions in the cross-stream plane. In particular, turbulence is suppressed at the suction
side of the duct, and enhanced at the pressure side, as highlighted in research dealing
with rotating channels (Kristoffersen & Andersson 1993). In a pioneering work, Barua
(1954) studied analytically laminar pipe flows with imposed radial rotation, obtaining
estimates for the friction coefficient. However, no such theory exists for the case where
the baseline pipe flow is turbulent, which makes it a compelling research case. Benton &
Boyer (1966) studied the flow through rapidly rotating channels of various cross-section,
from the experimental and analytical standpoint. For very high rotation rates, they showed
that the significance of viscous effects is confined to thin boundary layers along the
channel walls. Solutions for both the geostrophic region and the boundary layers were
derived and integrated to yield the entire velocity field. Experimental findings for a
circular conduit were provided, demonstrating favourable consistency with the theoretical
framework.

Ito & Nanbu (1971) investigated experimentally friction in fully developed smooth pipe
flow radially rotating at a constant angular velocity for bulk Reynolds numbers in the
range from 20 to 60 000, presenting empirical predictions for the friction factor in both
laminar and turbulent flow. Johnston, Halleent & Lezius (1972) conducted experimental
investigations on fully developed turbulent channel flow under steady rotation about
a spanwise axis. They found that the Coriolis force components in the region of
two-dimensional mean flow impacted both local and global stability.

Kristoffersen & Andersson (1993) conducted direct numerical simulation (DNS) of
fully developed pressure-driven turbulent flow in a rotating channel at a fixed low
Reynolds number, for various rotational speeds. At the lowest rotational speed, turbulence
statistics were found to be barely affected, with opposite effects observed along the stable
suction side and the unstable pressure side. Turbulent Reynolds stresses were found to
decrease near the suction side at increasing rotational speed, whereas turbulence intensities
increased on the pressure side, with streamwise intensity and the Reynolds shear stress also
increasing at moderate rotational speed but suppressed at higher speed. The mean velocity
profile was found to become increasingly asymmetric at high rotational speeds, reflecting
experimental observations. Large-scale coherent structures were deemed to be responsible
for transporting highly turbulent fluid from the pressure side to the channel middle,
enhancing the turbulence levels. However, those structures were unstable for most rotation
cases considered. Using similarity arguments and leveraging experimental and numerical
data, Ishigaki (1996) demonstrated quantitative analogy between fully developed turbulent
flows in curved pipes and orthogonally rotating pipes.

Large-eddy simulations of turbulent flow in a rotating square duct at fixed low Reynolds
number were carried out by Pallares & Davidson (2000). Notable changes from the
non-rotating state were observed even at low rotation rates, driven by the secondary
motions near the duct corners. The Coriolis effect was found to generate a descending
cross-stream current in the duct core, enhancing streamwise vorticity and secondary
motions that convect upwards near the sidewalls and towards the duct centre. Rotation
was found to intensify turbulence near walls where the main shear vorticity aligns with the
background vorticity, and to reduce turbulence at the other walls. At the highest rotation
rate considered by those authors, the turbulence levels were found to decrease at the stable
side due to flow stabilisation into a Taylor–Proudman regime resulting from intensified
Coriolis-induced vertical convective transport of streamwise momentum. In a follow-up
study, Pallares, Grau & Davidson (2005) derived a predictive formula for the velocities and
friction coefficients in a rotating square duct based on the solution of the simplified set of
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momentum equations. At rotational speed, the Ekman layers were found to be responsible
for a large share of the pressure drop.

Experimental investigations of rapidly rotating turbulent square and rectangular duct
flows were conducted by Mårtensson et al. (2002), at low-to-moderate Reynolds number.
Examination of inclined duct flow confirmed the significance of the normal component of
the rotation vector in understanding rotational effects. Analysis of various duct geometries
indicated that the contribution to pressure drop from near-wall Ekman layers dominated,
yielding an increase of the friction coefficient with the rotational speed. Rotation effects
were also studied by Dai et al. (2015) and Fang et al. (2017) for square ducts and by
Rosas, Zhang & Wang (2021) for elliptical pipes. At moderate rotation rate, the suction
side was found to relaminarise first as Coriolis forces dominate the energy transfer
mechanisms, and a Taylor–Proudman region was observed at high rotation numbers.
The DNS of radially rotating turbulent pipe flow by Zhang & Wang (2019) revealed
asymmetric flow patterns, with high-speed flow on the pressure side of the pipe and
low-speed flow on the suction side, driven by Coriolis forces. Secondary motions were
observed to emerge, which eventually disappear at high enough rotational speed. Those
authors also found that the Coriolis force affected the budget of Reynolds shear stress,
leading to asymmetric profiles and a decrease of Reynolds stresses at increasing rotational
speed.

The key controlling parameter in rotating duct flow is the rotation number, defined as
the ratio of a typical rotation velocity (e.g. angular velocity by hydraulic diameter) to
the flow bulk velocity. Typical rotation numbers in turbomachinery applications are in
the range 0.3–0.38, as documented in the studies of Coletti et al. (2012, 2014). Higher
rotation rates are nevertheless significant in various engineering applications, particularly
in gas turbine engines, for which the rotation number can be as high as 3.33–10 (Atkins &
Kanjirakkad 2014; Jackson et al. 2021; Luberti et al. 2021; Visscher et al. 2011; Sun et al.
2022). Furthermore, experimental studies of cooling systems such as that of Morris (1996)
emphasise the relevance of rotation numbers of about two in typical engine conditions, at
which the cooling performance is severely affected from secondary flows generated by
Coriolis forces. Liou et al. (2007) numerically simulated duct flow with rotation number
in the range between zero and two, and asserted that there is a strategic need to extend
the experimental data to emulate more closely realistic engine conditions by extending
Reynolds number and rotation number simultaneously. This shortcoming is also well
portrayed in the study of Ligrani (2013).

Given this background, is is clear that there is a strong demand for improving the
knowledge of flows in ducts in the presence of rotation, since: (1) existing DNS and
large-eddy simulations are restricted to low Reynolds number, at which turbulence is
barely developed; (2) experimental measurements are scarce, and by the way affected by
substantial uncertainties; (3) there is a lack of data for the technologically outstanding
case of flow in a rotating circular pipe; and (4) predictive friction formulas for duct flow
are not sufficiently qualified, and mainly based on empirical fitting of existing (sparse)
data. The goal of this work is then to fill in the existing gap of knowledge, and for that
purpose we carry out DNS of flow in a smooth circular pipe subjected to radial rotation,
at sufficiently high Reynolds number to be representative of realistic flow instances, and
for a wide range of rotation numbers. The paper is organised as follows. In § 2 we present
the DNS dataset used for the analysis. The flow structure and the turbulence statistics are
presented in § 3, and friction is analysed in detail in § 5. Concluding comments are made
in § 6.
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2. The numerical dataset

The DNS solver relies on a second-order finite-difference discretisation of the
incompressible Navier–Stokes equations in cylindrical coordinates, utilising the
marker-and-cell method to maintain discrete conservation of the total kinetic energy
(Orlandi 2000). To ensure a constant mass flow rate, uniform volumetric forcing is applied
to the axial momentum equation. The Poisson equation resulting from enforcement of the
divergence-free condition is efficiently solved through double trigonometric expansion in
periodic axial and azimuthal directions, coupled with tridiagonal matrix inversion in the
radial direction (Kim & Moin 1985). The polar singularity at the pipe axis is handled as
suggested by Verzicco & Orlandi (1996). Time advancement relies on a hybrid third-order
low-storage Runge–Kutta algorithm, whereby diffusive terms are treated implicitly and
convective terms are treated explicitly. Implicit treatment of the convective terms in the
azimuthal direction is also used to mitigate the time-step restriction (Akselvoll & Moin
1996; Wu & Moin 2008). The code is optimised for GPU clusters using CUDA Fortran
and OpenACC directives, with CUFFT libraries facilitating fast Fourier transforms (Fatica
& Ruetsch 2014).

A sketch of the computational domain is shown in figure 1. The radial coordinate
measured from the pipe axis is denoted as r. Numerical simulations are carried out using
periodic boundary conditions in the axial (z) and azimuthal (θ ) directions. The effect of
rotation is accounted for by augmenting the Navier–Stokes equations with the Coriolis
forces:

F c = 2Ω

⎡
⎣ −uz sin θ

uz cos θ

ur cos θ − uθ sin θ

⎤
⎦ , (2.1)

where the angular velocity (Ω) is assumed to be parallel to the polar (x2) axis. The wall
distance is hereafter denoted as y. As noted in previous studies, centrifugal forces are not
explicitly added as they are absorbed into the pressure term (Kristoffersen & Andersson
1993). As illustrated in figure 1, the primary effect of rotation normal to the pipe axis is
the onset of Coriolis forces which on average act orthogonal to both the pipe axis and
the rotation axis, resulting in increased shear at the pressure side of the pipe and in shear
suppression at the suction side. The flow is controlled by two parameters, namely the bulk
Reynolds number, Reb = 2Rub/ν, and the rotation number, N = ΩR/ub, with R the pipe
radius, ub the bulk velocity and ν the fluid kinematic viscosity. This definition is used here
as it emphasises the maximum peripheral velocity with respect to the bulk velocity, but
one should be careful and note that several previous studies of rotating ducts rather define
the rotation number based on the hydraulic diameter, here the pipe diameter. The friction
Reynolds number Reτ is also an important flow parameter, defined as Reτ = Ru∗

τ /ν, with
u∗
τ = (τ ∗

w/ρ)1/2 the global friction velocity and τ ∗
w the azimuthally averaged mean wall

shear stress. The flow properties normalised by these global viscous scales are hereafter
denoted with an asterisk. In all DNS the pipe length is taken to be Lz = 15R, which we
have found to be sufficient to achieve convergence of all the statistics herein reported, as
shown in the Appendix. The grid points are clustered towards the pipe walls according to
the stretching function developed by Pirozzoli & Orlandi (2021), whereas the grid points
are uniformly spaced in the z and θ directions. Adequacy of the grid resolution has been
evaluated through a grid sensitivity analysis, also reported in the Appendix.

A complete list of the simulations that we have carried out is given in table 1.
A one-decade range of Reynolds numbers has been explored, along with a wide range
of rotation numbers, including cases with weak rotation as well as cases in which
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ub

z

R

x2

x1

r
θ

Lz = 15R

Ω

Fc

Figure 1. Definition of coordinate system for DNS of rotating pipe flow. Coordinates z, r, θ are the axial, radial
and azimuthal coordinates, respectively, R is the pipe radius, Lz is the pipe length, ub is the bulk velocity, Ω

is the angular velocity and F c is the resultant mean Coriolis force. The Cartesian coordinates x1, x2 define
positions in the cross-stream plane.

rotation dominates. For the sake of clarity, uppercase letters are used to denote flow
properties averaged along the axial direction and in time, and fluctuations thereof
are denoted with lowercase letters. Instantaneous properties are denoted with tilde
superscripts. Angular brackets are used to denote the averaging operator.

3. Flow organisation

As a first step, we analyse the flow organisation from representative instantaneous
snapshots at the two extreme Reynolds numbers, namely Reb = 17 000 and Reb = 133 000.
Specifically, in figures 2 and 3 we show the contours of the axial velocity in the
cross-stream plane and in figures 4 and 5 we show the axial velocity contours in a
cylindrical shell at small distance (y∗ = 15 for the non-rotating case) from the wall.
The former are used to get insight into the large-scale bulging motions which connect
the near-wall region with the bulk flow, whereas the latter are used to get insight into
the modifications of the near-wall streaks resulting from pipe rotation. For the sake of
correct interpretation of the figures, we note that the azimuth angle θ as defined in
figure 1 is such that θ = 0◦ ± 15◦ corresponds to the suction side of the pipe, whereas
θ = 180◦ ± 15◦ corresponds to pressure side. Coriolis forces are such that on average
momentum is transported from the suction side towards the pressure side (Zhang & Wang
2019). The angles θ = 90◦ and 270◦ correspond to the north and south poles of the
pipe, respectively, along which the effects of rotation are most active. The first important
information gained from the visualisations is that, even at modest rotation number (less
that about 0.01) the effect of rotation is quite apparent on the suction side, which shows
a visible momentum defect with respect to the pressure side. Bulging motions are instead
still observed on the rest of the pipe perimeter. As the rotation number increases, the
zone with reduced momentum at the suction side of the pipe becomes progressively more
extended, and severe reduction of the turbulence activity is visible at N � 0.1. At higher
rotation numbers suppression of turbulence is also visible within the pipe core, and hints
of flow relaminarisation become visible also on the pressure side at N � 1. Eventually,
at high rotation rates, the flow tends to become symmetric about the polar axis, and
the velocity field tends to become organised in bands parallel to it. The relaminarisation
process is best observed in the near-wall shells. At low rotation numbers streaks dominate
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Reb Reτ N Nτ Nz × Nr × Nθ N5Δ λ× 10−2 Line

17 000 496 0.0009765625 0.0167 769 × 97 × 769 97 2.72 —
17 000 497 0.001953125 0.0334 769 × 97 × 769 97 2.73 —
17 000 501 0.00390625 0.0663 769 × 97 × 769 91 2.78 —
17 000 509 0.0078125 0.130 769 × 97 × 769 75 2.87 —
17 000 516 0.015625 0.257 769 × 97 × 769 62 2.94 —
17 000 523 0.03125 0.507 769 × 97 × 769 53 3.03
17 000 539 0.0625 0.986 769 × 97 × 769 45 3.21
17 000 566 0.125 1.87 769 × 97 × 769 39 3.56
17 000 610 0.25 3.48 769 × 97 × 769 35 4.12
17 000 669 0.5 6.34 769 × 97 × 769 31 4.96
17 000 856 2.0 19.8 769 × 97 × 769 24 8.12
17 000 1004 4.0 33.8 769 × 97 × 769 22 11.2
17 000 1187 8.0 57.2 769 × 97 × 769 19 15.6

44 000 1188 0.01 0.185 1793 × 165 × 1793 84 2.33 —
44 000 1296 0.1 1.69 1793 × 165 × 1793 48 2.78 —
44 000 1405 0.5 7.83 1793 × 165 × 1793 35 3.26 —
44 000 1761 2.0 25.0 1793 × 165 × 1793 27 5.12 —
44 000 2043 4.0 43.0 1793 × 165 × 1793 24 6.90 —
44 000 2418 8.0 72.7 1793 × 165 × 1793 22 9.67 —

82 500 2077 0.01 0.198 3073 × 244 × 3073 97 2.03 —
82 500 2294 0.1 1.79 3073 × 244 × 3073 53 2.47 —
82 500 2379 0.5 8.66 3073 × 244 × 3073 38 2.66 —
82 500 2833 2.0 29.1 3073 × 244 × 3073 29 3.77 —
82 500 4595 16.0 143 3073 × 244 × 3073 21 9.93 —

133 000 3181 0.01 0.209 4609 × 328 × 4609 107 1.83 —
133 000 3527 0.1 1.88 4609 × 328 × 4609 57 2.25
133 000 3663 0.5 9.15 4609 × 328 × 4609 40 2.39
133 000 4110 2.0 32.3 4609 × 328 × 4609 31 3.06
133 000 6573 16.0 161 4609 × 328 × 4609 22 7.82

Table 1. Flow parameters for DNS of rotating pipe flow. The bulk Reynolds number is defined as Reb =
2Rub/ν, with R the pipe radius, ub the bulk velocity and ν the fluid kinematic viscosity; N = ΩR/ub is the
rotation number and Nτ = ΩR/u∗

τ is the friction rotation number with the global friction velocity. Parameters
Nz, Nr, Nθ are respectively the number of grid points in the axial, radial and azimuthal directions. The
parameter N5Δ highlights the number of points in the radial direction up to five Ekman layer thicknesses
Δ = (ν/Ω)1/2, evaluated at θ = ±90◦. The global friction factor is λ = 8τ ∗

w/ρu2
b, with τ ∗

w the azimuthally
averaged mean wall shear stress and ρ the fluid density. Parameter Reτ = Ru∗

τ /ν is the friction Reynolds
number, with u∗

τ = (τ ∗
w/ρ)1/2 the mean friction velocity.

the near-wall region, although some evidence for their local suppression at θ ≈ 0◦ is
visible. At intermediate rotation numbers streaks become progressively confined about
the poles of the pipe, and they tend to vanish on the pressure side as well. At high
rotation numbers, the flow no longer shows any sign of turbulence activity (please see
supplementary movies at: https://doi.org/10.1103/APS.DFD.2023.GFM.V0041).

Since the flow exhibits homogeneity in the axial direction, its statistical characteristics
solely rely on the azimuthal and radial coordinates. The mean axial velocity within
the cross-stream plane is depicted in figure 6 for flow cases with Reb = 17 000, at
various rotation numbers. Representative cross-flow streamlines are superimposed to
the velocity contours to emphasise the variations in secondary motions as the rotation
number changes. At low-to-moderate N (figure 6a–d), a notable alteration involves the
symmetry breaking with respect to the polar axis, which implies gradual increase of axial
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Figure 2. Instantaneous axial velocity contours at Reb = 17 000 in the cross-stream plane. Contour levels
ranging from 0 to 1.4 are shown, in colour scale from blue to red. The pressure side of the pipe is on the left
and the suction side is on the right of each panel. Various rotation numbers are considered: (a) N = 0.0078125,
(b) N = 0.125, (c) N = 0.25, (d) N = 0.5, (e) N = 2.0, ( f ) N = 8.0.

momentum on the pressure side of the pipe (left) and a decrease on the suction side
(right), on account of Coriolis forces. Consequently, secondary motions emerge in the
form of two counter-rotating eddies that facilitate momentum redistribution across the
pipe cross-section, with primary flow moving from the suction to the pressure side along
the horizontal symmetry axis and return motion occurring along the circumference of the
pipe. Remarkably, at low N, these secondary motions closely resemble those predicted to
form under laminar flow conditions (Barua 1954). As the rotation number increases, there
is a discernible trend towards uniformity in mean velocity along the vertical direction,
accompanied by a tendency for the momentum deficit at the suction to be compensated,
resulting in symmetrisation of the flow field. This observed phenomenon distinctly marks
the onset of Taylor–Proudman columns (Proudman 1916; Taylor 1917), characterised by
a tendency for the velocity to be constant along the axis of rotation, with no tilting or
stretching of material lines parallel to this axis. At extreme rotation numbers, the secondary
motions correspondingly take the form of right-to-left cross-stream motion, with return
motions barely noticeable and confined to the near-wall proximity. Identical cross-stream
flow information is presented in figure 7 for flow cases with Reb = 133 000. A remarkably
similar flow pattern is discerned at corresponding values of the rotation number, for
instance, comparing figure 6(a,d) with figure 7(a,b). This observation reinforces the idea
that rotational effects on the mean flow properties are relatively unaffected by changes in
the flow Reynolds number.

Due to the rearrangement of the flow, significant changes occur in wall friction as N
varies. To examine this effect, figure 8 illustrates the local streamwise wall shear stress,
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Figure 3. Instantaneous axial velocity contours at Reb = 133 000 in the cross-stream plane. Contour levels
ranging from 0 to 1.4 are shown, in colour scale from blue to red. The pressure side of the pipe is on the
left and the suction side is on the right of each panel. Various rotation numbers are considered: (a) N = 0.01,
(b) N = 0.5, (c) N = 16.0.
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Figure 4. Instantaneous axial velocity contours at Reb = 17 000 in an unrolled cylindrical shell at a distance
y∗ = 15 from the wall (evaluated in the non-rotating case). Contour levels ranging from 0 to 1.4 are shown, in
colour scale from blue to red. The insets in the top-right corner of each panel report magnified views of a small
portion of the shell. Various rotation numbers are considered: (a) N = 0.0078125, (b) N = 0.25, (c) N = 0.5,
(d) N = 8.0.

τw/ρ = ν∂Uz/∂y|w, normalised either by the reference dynamic pressure ρu2
b (figure 8a,c)

or the mean wall shear stress τ ∗
w (figure 8b,d). A polar diagram is employed for clarity. The

figure clearly demonstrates that even at very low rotational speeds, friction is nearly
completely suppressed at the suction side of the pipe (θ = 0). Conversely, the behaviour on
the pressure side (θ = π) is non-monotonic, where the local streamwise wall shear stress
initially increases due to local acceleration of the bulk flow, then abruptly declines beyond
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Figure 5. Instantaneous axial velocity (uz/ub) at Reb = 133 000 in an unrolled cylindrical shell at a distance
y∗ = 15 from the wall (evaluated in the non-rotating case). Contour levels ranging from 0 to 1.4 are shown,
in colour scale from blue to red. The insets in the top-right corner of each panel report magnified views of a
small portion of the shell. Various rotation numbers are considered: (a) N = 0.01, (b) N = 0.5, (c) N = 2.0,
(d) N = 16.0.
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Figure 6. Mean axial velocity contours with superposed cross-flow streamlines, at Reb = 17 000. Twenty-four
contour levels ranging from 0 to 1.4 are shown, in colour scale from blue to red. The pressure side of the
pipe is on the left and the suction side is on the right of each panel. Various rotation numbers are considered:
(a) N = 0.0078125, (b) N = 0.125, (c) N = 0.25, (d) N = 0.5, (e) N = 2.0, ( f ) N = 8.0.
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Figure 7. Mean axial velocity contours with superposed cross-flow streamlines, at Reb = 133 000.
Twenty-four contour levels ranging from 0 to 1.4 are shown, in colour scale from blue to red. The pressure
side of the pipe is on the left and the suction side is on the right of each panel. Various rotation numbers are
considered: (a) N = 0.01, (b) N = 0.5, (c) N = 16.0.

N ≈ 1, signifying the dominance of rotation and the concentration of momentum around
the vertical axis of the pipe. Friction at the poles of the pipe (θ = 90◦, 270◦) exhibits a
monotonically increasing trend with the rotation number, on account of local thinning of
the boundary layer, as detailed further ahead. At higher values of N considered, the local
friction tends to attain a universal distribution when scaled by its mean value, regardless
of the Reynolds number.

The mean axial velocity profiles are shown in outer scaling in figure 9. For the sake of
clarity, the radial profiles are shown in the interval θ = [0, 90◦] along the pipe perimeter.
Due to flow symmetry, this interval is sufficient to fully describe the state of the axial
velocity in the pipe. The axial velocity for the non-rotating case (N = 0) is also reported
for reference, which is obviously symmetric. As rotation sets in, the velocity profile along
the horizontal symmetry axis (in orange shades) is immediately broken, and the peak
value is shifted from the pipe centre to the pressure side of the pipe due to the presence
of secondary motions in the cross-stream direction. The tendency of the axial velocity
peak to shift towards the pressure side of the pipe is, however, non-monotonic. As the
rotation number approaches unity, in fact the peak value of the axial velocity moves back
towards the centre of the pipe, as shown in figure 9(b–d), and the velocity profiles again
become symmetric with respect to the origin. As for the velocity profiles along the polar
direction (in purple shades), they show a sudden tendency to flatten out in the middle of
the pipe, whereas peaks tend to arise towards the pipe walls, which are associated with
the formation of Ekman layers due to rotation. This tendency is exacerbated at high N, at
which the mean axial velocity is very nearly constant throughout the vertical axis of the
pipe, and gradients become progressively restricted to the near-wall vicinity. This change
in the flow structure is clearly related to the onset of Taylor–Proudman columns previously
noted when discussing figure 6. The same changes in the flow behaviour are also observed
at Reb = 133 000 (figure 9(e–h). However, when comparing cases with the same vale of
N (e.g. figures 9b and 9f ), one can observe that the tendency for the flow to become
symmetric about the vertical axis is faster at higher Reb, whereas the Ekman layers are
visually thinner at the higher Reb.

It is important to recognise the substantial difference of the present flow arrangement
with respect to the case of a spanwise rotating channel which was considered by
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Figure 8. Polar distribution of the local streamwise wall shear stress (τw), normalised by either the reference
dynamic pressure ρu2

b (a,c) or the mean wall shear stress τ ∗
w (b,d), at Reb = 17 000 (a,b) and Reb = 133 000

(c,d). The colour codes correspond to different values of N, as given in table 1, grey denoting cases without
rotation. The dashed blue line in (a,c) denotes the predictive formula given in (5.4).

Kristoffersen & Andersson (1993). In that case the Taylor–Proudman columns that would
form at high rotation rates would be aligned with the spanwise direction, parallel to the
rotation axis. Hence, they would not interact with solid walls and give rise to Ekman layers,
which in the flow case under scrutiny here are chiefly responsible for drag increase around
the north and south poles, as figure 8 shows.

Figure 10 reports representative wall-normal axial velocity profiles in local wall units
(i.e. based on the local friction velocity uτ = (τw/ρ)1/2) as a function of the wall distance,
to highlight deviations from the universal law of the wall which is observed in non-rotating
pipe flow. For the sake of clarity, the velocity profiles are shown up to the occurrence
point of their first maximum. The figure shows that the velocity distributions on the
suction side (orange shades) become immediately diverted from the logarithmic behaviour,
highlighting a clear decrease of the local friction. The velocity profiles on the pressure side
(in cyan shades) are more resilient to the effect of rotation, and a logarithmic layer is still
observed at low rotation numbers. At intermediate rotation numbers, the logarithmic part
of the velocity profiles is shifted downwards, indicating an increase of the local friction,
until the logarithmic layer becomes entirely disrupted at N � 1. As seen in Figure 10(e–h),
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Figure 9. Radial profiles of outer-scaled axial velocity at various azimuthal positions, for flow cases at
Reb = 17 000 (a–d) and Reb = 133 000 (e–h). Only the interval θ = [0◦, 90◦] is shown, at stations spaced 7.5◦
apart, with negative values of r signifying profiles taken at θ + 180◦. Values of (a) N = 0.03125, (b) N = 0.5,
(c) N = 2.0, (d) N = 8.0, (e) N = 0.1, ( f ) N = 0.5, (g) N = 2.0, (h) N = 16.0. The black solid line denotes
the mean axial velocity profile in the non-rotating case.

an increase of the Reynolds number mainly implies greater robustness of the logarithmic
behaviour, which persists until N ≈ 1 at Reb = 133 000.

Yang et al. (2020) argued that, for a channel that rotates about its spanwise axis at
a reasonably high speed, the mean flow near the pressure side should follow a linear
scaling, i.e.

U+
z = 2

Ωy
uτ

+ C, (3.1)

with additive constant

C = 1
κ

log
(

u2
τ

νΩ

)
. (3.2)

This prediction is compared with the DNS data in figure 11, where we have assumed κ =
0.33. We find that the scaling holds with reasonable accuracy for cases with intermediate
rotation rate, specifically for N = 0.25, 0.5 at Reb = 17 000 and for N = 0.5, 2.0 at Reb =
133 000, but it clearly fails at high rotation rates as the flow relaminarises.

The statistics of the turbulence kinetic energy (k = 〈uiui〉/2) are examined in figure 12.
As for the mean velocity, we find that axial symmetry observed in non-rotating cases
is broken in the presence of weak rotation. At low rotation numbers (figure 12a) the
magnitude of the buffer-layer peak along the horizontal symmetry axis of the pipe (orange
shades) increases on the pressure side and decreases on the suction side, in response to
increase and decrease of the imposed shear, respectively. Relaminarisation of the flow
occurs on the suction side of the pipe already at N ≈ 0.125. The buffer-layer peaks along
the polar direction (purple shades) are instead barely affected. The most notable feature
in the weak rotation regime is the reduction and flattening of k in the interior part of
the pipe. This tendency becomes most evident as N increases, with suppression of the
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Figure 10. Wall-normal profiles of inner-scaled axial velocity, at various azimuthal positions spaced 7.5◦
apart, for flow cases at Reb = 17 000 (a–d) and Reb = 133 000 (e–h). Only the interval θ = [0◦, 180◦] is shown.
Values of (a) N = 0.03125, (b) N = 0.5, (c) N = 2.0, (d) N = 8.0, (e) N = 0.1, ( f ) N = 0.5, (g) N = 2.0,
(h) N = 16.0. The black solid line denotes the mean axial velocity profile in the non-rotating case. The dashed
grey lines depict the compound law of the wall U+ = y+, U+ = log y+/0.387 + 4.53.
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Figure 11. Inner-scaled wall-normal mean velocity profiles at θ = 180◦ (pressure side). Solid lines refer to
DNS data and dashed lines to (3.1), for flow cases at Reb = 17 000 (a) and cases at Reb = 133 000 (b). Colour
codes are as in table 1.

turbulence kinetic energy in the entire flow field, at N � 2. A similar scenario is also
found at higher Reb (figure 12e–h), at which, however, some signs of turbulence activity
are still visible at the pressure side, even at N = 2 (figure 12g). The flow is found to be
fully laminar at N = 16.

As noted when discussing figure 9, starting from rotation numbers of the order of unity,
the flow exhibits the clear hallmark of Ekman layers, namely thin layers in which the
direction of the wall-parallel velocity changes as a result of varying relative importance of
imposed pressure gradient, Coriolis and viscous forces. The laminar Ekman solution for

1004 A15-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1172


A. Ceci and S. Pirozzoli

0

0.01

2
k/
u b2

2
k/
u b2

0.02

0.03

0.04

0.05

0

0.01

0.02

0.03

0.04

0.05

0

0.01

0.02

0.03

0.04

0.05

0

0.01

0.02

0.03

0.04

0.05

0

0.01

0.02

0.03

0.04

0.05

0

0.01

0.02

0.03

0.04

0.05

0

0.01

0.02

0.03

0.04

0.05

0

0.01

0.02

0.03

0.04

0.05

−1.0 −0.5 0 0.5 1.0 −1.0 −0.5 0

r/R r/R r/R r/R

0.5 1.0 −1.0 −0.5 0 0.5 1.0 −1.0 −0.5 0 0.5 1.0

−1.0 −0.5 0 0.5 1.0 −1.0 −0.5 0 0.5 1.0 −1.0 −0.5 0 0.5 1.0 −1.0 −0.5 0 0.5 1.0

0° 45° 90°

θ

(b)(a) (d )(c)

(e) ( f ) (h)(g)

Figure 12. Radial profiles of outer-scaled turbulence kinetic energy at various azimuthal positions, for flow
cases at Reb = 17 000 (a–d) and Reb = 133 000 (e–h). Only the interval θ = [0◦, 90◦] is shown, at stations
spaced 7.5◦ apart, with negative values of r signifying profiles taken at θ + 180◦. Values of (a) N = 0.03125,
(b) N = 0.5, (c) N = 2.0, (d) N = 8.0, (e) N = 0.1, ( f ) N = 0.5, (g) N = 2.0, (h) N = 16.0. The black solid
line denotes the mean turbulence kinetic energy profile in the non-rotating case.

rotating flow over a flat wall reads (Greenspan 1968)

Uz( y)
Ug

= 1 − e−y/Δ cos
( y
Δ

)
, (3.3a)

Uθ ( y)
Ug

= e−y/Δ sin
( y
Δ

)
, (3.3b)

where y is the wall distance, Ug is the intensity of the asymptotic (geostrophic) wind and
Δ = (ν/Ω)1/2 is the thickness of the Ekman layer. The Ekman layer in the vicinity of the
north pole of the pipe (namely θ = 90◦) is analysed in figure 13, where the wall distance
is scaled with respect to the Ekman length scale, and the geostrophic wind intensity is
assumed to be the mean velocity at the pipe centreline, say U0. The individual axial and
azimuthal velocity components are shown in figure 13(a), the flow angle with respect to
the axial direction is shown in figure 13 (b) and the projection in the hodograph plane is
shown in figure 13 panel (c). As the rotation number increases the figure shows the onset
of an overshoot of the axial velocity and the presence of a non-zero azimuthal velocity
component. As a consequence, the flow becomes diverted from the axial direction, to an
extent which is proportional to N. Excellent agreement between the computed profiles at
high values of the rotation number and the theoretical prediction given in (3.3) is found.
This is in our opinion a rather remarkable result, as the laminar Ekman solution is derived
for the case of wall-normal rotation over a flat wall. Here, we find that it also applies with
excellent accuracy to flow over a curved surface, with an effective rotation rate given by
the wall-normal projection of the angular velocity vector. The same arguments apply for
the highest tested Reynolds number (see figure 14), for which a laminar Ekman layer is
found at N = 16.
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Figure 13. Profiles of mean axial (Uz) and azimuthal (Uθ ) velocity (a), wall-parallel flow angle ϕ =
tan−1(Uθ /Uz) (b) and hodograph diagram (c) at the polar coordinate θ = π/2 (north pole of the pipe). Data
are shown for Reb = 17 000, at various rotation numbers: N = 0.03125, N = 0.0625, N = 0.125, N = 0.25,
N = 0.5, N = 2.0, N = 4.0, N = 8.0. See table 1 for the colour codes. The velocity profiles are scaled by the
mean centreline axial velocity U0. The black circles denote the analytical solution for a laminar Ekman layer
(Greenspan 1968).
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Figure 14. Profiles of mean axial (Uz) and azimuthal (Uθ ) velocity (a), wall-parallel flow angle ϕ =
tan−1(Uθ /Uz) (b) and hodograph diagram (c) at the polar coordinate θ = π/2 (north pole of the pipe). Data
are shown for Reb = 133 000, at various rotation numbers: N = 0.1, N = 0.5, N = 2.0, N = 16.0. See table 1
for the colour codes. The velocity profiles are scaled by the mean centreline axial velocity U0. The black circles
denote the analytical solution for a laminar Ekman layer (Greenspan 1968).

4. Friction

Frictional drag in pipes is obviously a parameter of paramount importance as it is related to
power expenditure to sustain the flow. Whereas accurate estimates of friction are available
for pressure-driven pipe flow, the presence of imposed rotation has profound effects on the
structure of turbulence and the onset of secondary motions, which were pinpointed in the
previous section. In order to isolate the contributions of turbulence, secondary motions
and rotation to frictional drag, here we consider a generalised version of the FIK identity
(Fukagata, Iwamoto & Kasagi 2002), which was derived for flow in ducts with arbitrary
cross-section (Modesti et al. 2018). The starting point is the mean momentum balance
equation, which reads

ν∇2Uz = −Π + ∇ · τT + ∇ · τC + Fc,z, (4.1)

where Π is the driving pressure gradient, τT = 〈uzurθ 〉 accounts for turbulent convection
(urθ = (ur, uθ ) is the cross-stream velocity vector), τC = UzUrθ accounts for mean
cross-stream convection (hence, with the secondary motions) and Fc,z is the axial
component of the Coriolis forces given in (2.1). Equation (4.1) may be regarded as a
Poisson equation for Uz velocity whose source terms can be obtained from DNS data.
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Hence, the mean streamwise velocity field can be cast as a superposition of four
contributions, which individually satisfy

∇2UzV = −Π, ∇2UzT = ∇ · τT , ∇2UzC = ∇ · τC , ∇2UzR = Fc,z, (4.2a–d)

with homogeneous boundary conditions, from viscous effects (V), from turbulence (T),
from mean cross-stream convection (C) and from rotation (R). The bulk velocity can then
be obtained as the superposition of four terms,

ub = ubV + ubT + ubC + ubR, (4.3)

each denoting the mean value associated with the four velocity fields defined in (4.2a–d).
Using (4.3) in the definition of the friction factor one obtains

λ = 8τ ∗
w

ρubVub

(
1 − ubT

ub
− ubC

ub
− ubR

ub

)
= λV + λT + λC + λR, (4.4)

where the viscous contribution (λV = 64/Reb) corresponds to the case of laminar flow.
This information has major importance as it allows one to highlight the key physical
mechanisms for friction generation depending on the pipe rotation rate. Notably, (4.4)
reverts to the classical FIK identity in the case of canonical plane channel and circular pipe
flow, in the absence of rotation. It is important to acknowledge that the FIK identity cannot
be strictly intended as a tool to precisely isolate causality links in the flow. For instance,
it is clear that secondary motions in circular pipe flow would not form in the absence of
rotation, and that rotation causes a change in the structure of turbulence. Nevertheless, the
generalised form of the FIK identity as here introduced is useful as it provides quantitation
of the friction contributions from the various terms appearing in the mean momentum
balance equation, thus allowing one to identify distinct flow regimes depending on their
relative importance.

Figure 15 shows the contributions to the mean friction factor in both relative and
absolute terms. According to (4.4), the absolute viscous contribution to the friction
factor does not change with N, hence its relative contribution decreases monotonically.
As regards the turbulent contribution, in non-rotating cases it increases from 86 %
(at Reb = 17 000) to 97 % (at Reb = 133 000), and it monotonically decreases with N,
becoming negligible at N � 1. At the lower Re, for which several data points are available
at low N, we see that the contributions to friction are basically identical to those for the
non-rotating case up to N ≈ 0.001. The contribution from the secondary motions has a
non-monotonic behaviour being nearly zero in the two extreme cases of non-rotating and
rapidly rotating flow, whereas it accounts for as much as 50 % in the intermediate rotation
regimes (0.01 � N � 0.1). The distributions are also very similar at the two Reynolds
numbers reported in the figure, although λC is found to become slightly negative at the
higher Re. This similarity might suggest that N is an appropriate parameter to quantify the
importance of secondary motions in radially rotating pipe flow. Monotonic growth of the
contribution due to rotation is observed, with weak sensitivity to the Reynolds number.
In quantitative terms, rotation accounts for almost 40 % of the total friction for N ≈ 0.1,
and it is responsible for at least 80 % of friction at N � 1.

5. Friction estimates

Based on the results of the previous section, herein we attempt to derive predictive
formulas for the friction coefficient as a function of the controlling parameters, namely
Reynolds and rotation numbers. Preliminarily, we consider the two limiting cases of no
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Figure 15. Contributions to friction factor (•) from viscous effects (+), turbulence (∗), mean cross-stream
convection (�) and rotation (�), as defined in (4.4). Percentage contributions are shown as a function of N
in (a,c) and absolute contributions are shown as a function of (N/Reb)

1/2 in (b,d), for Reb = 17 000 (a,b) and
Reb = 133 000 (c,d).

rotation (N = 0) and rapid rotation (N � 1). In the former case, the Prandtl friction law
for smooth pipes is known to perform very well, namely

1/λ
1/2
0 = A log10

(
Rebλ

1/2
0

)
− B, (5.1)

where λ0 is the friction factor for the non-rotating case at a given Reb, and A ≈ 2.102,
B ≈ 1.148, as obtained from fitting DNS data (Pirozzoli et al. 2021).

In the opposite case of rapid rotation an approximate theoretical treatment is possible
as the flow tends to become fully laminar. As a first step for that purpose, we recall that
analysis of the mean velocity maps in figures 6 and 7 shows that, with the exception of
the near-wall Ekman layers, the mean axial velocity becomes solely a function of the
horizontal direction as a result of the Taylor–Proudman theorem. Hence, in figure 16
we show a scatter plot of the mean axial velocity as a function of the horizontal
coordinate (x1 = r cos θ ), after removing points closer to the wall than 5Δ, which roughly
corresponds to the effective thickness of the Ekman layer. The figure shows that, regardless
of the Reynolds number, all data points fall on the same distribution, thus corroborating
the initial assumption. Furthermore, we find that a convenient fit for the axial velocity
distribution is as follows:

Uz,e(r, θ)

ub
= A

[
1 −

( r
R

)2
cos2 θ

]
+ B

[
1 −

( r
R

)2
cos2 θ

]2

, (5.2)
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Figure 16. Scatter plots of mean axial velocity as a function of the horizontal coordinate, for Reb =
17 000, N = 8 (a) and Reb = 133 000, N = 16 (b), in blue. Only points at wall distance greater than five Ekman
layer thicknesses are shown. The black dashed lines denote the velocity profile given in (5.2).

with A = 1.74 and B = −0.484 as determined from fitting the DNS data, which also lends
itself to simple mathematical manipulations. Lack of perfect symmetry in figure 16 is
rather apparent, which could be incorporated in (5.2); however, the practical impact of
such corrections on the overall friction would be minimal.

As for the mean axial velocity profiles within the Ekman layer, (3.3a) is adapted to the
present case by assuming that: (i) the local effective angular velocity at a given azimuthal
angle is the wall-normal component, namely Ω sin θ , and (ii) the effective geostrophic
velocity is the wall-limiting value of the mean velocity distribution in the pipe core, as
given in (5.2); hence we set Ug(θ) = Uz,e(R, θ).

These assumptions are scrutinised in figure 17, where we shown the mean axial velocity
profiles as a function of the wall distance, scaled respectively by the assumed geostrophic
velocity and by the local Ekman layer thickness. Several profiles along the pipe perimeter
are shown, with the exception of those at θ = 0◦ and θ = 180◦, where Uz,e = 0. The
cases with highest rotation numbers for each extreme Reynolds number are reported in the
figure. The figure confirms that the local Ekman layer thickness (Δ = (ν/(Ω sin θ))1/2)
is the correct length scale for the velocity profiles, as it yields universality of the velocity
overshoot point, which occurs at y ≈ 2.3Δ, regardless of the azimuthal positions. Whereas
the profiles near the north pole, θ = 90◦, exhibit perfect agreement with the canonical
Ekman solution, good agreement is also observed at all azimuthal positions.

A prediction for the distribution of the wall friction along the pipe perimeter is then
obtained from (3.3a), which upon differentiation at the wall yields

τw

ρ
= ν

dUz

dy

∣∣∣∣
y=0

= ν
Uz,e(R, θ)

(ν/(Ω sin θ))1/2 . (5.3)

Using (5.2) to determine the geostrophic velocity one then obtains

τw = 21/2ρu2
b(sin θ)1/2

(
N

Reb

)1/2 [
A

(
1 − cos2 θ

)
+ B

(
1 − cos2 θ

)2
]

. (5.4)

This prediction is tested in figure 8 (dashed blue line in figure 8a,c) for the cases at the
highest rotation number, for which it is found to yield an excellent approximation of the
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Figure 17. Mean axial velocity profiles scaled by the local geostrophic velocity (Ug) as a function of wall
distance normalised by the local Ekman layer thickness, Δ = (ν/(Ω sin θ))1/2, at Reb = 17 000, N = 8 (a) and
Reb = 133 000, N = 16 (b). Profiles along the pipe perimeter are shown in intervals of 7.5◦, with the exception
of θ = 0◦ and θ = 180◦.

DNS data. Finally, the global friction factor is evaluated by averaging the wall shear stress
(5.4) along the pipe perimeter to obtain

λ = 8τ ∗
w

ρu2
b

= 8
ρu2

b

1
2π

∫ 2π

0
τw dθ = kE

(
N

Reb

)1/2

, (5.5)

with kE ≈ 7.044 resulting from integration.
This is the key prediction of the present study, which implies that the similarity

parameter for friction in the rapidly rotating pipe regime is N/Reb. This prediction is in
line with the analysis of Pallares et al. (2005), who derived a similar scaling for the friction
coefficient at the lateral walls of rotating square ducts. It is important to acknowledge that,
at high rotation rates (N � 1), friction basically only includes the viscous and rotational
contributions, hence to a good approximation

λ = 64
Reb

+ kE

(
N

Reb

)1/2

. (5.6)

Figure 18(a) compares the prediction of (5.6) with the DNS data at various N, Reb. The
agreement is remarkably good provided (N/Reb)

1/2 � 0.005.
In light of the previously noted flow complexity, cases with intermediate rotation

can only be handled via semi-empirical formulas. For instance, to achieve continuous
transition from the non-rotating case to the rapidly rotating regime, we propose the
following interpolation:

λ =
(
λ2

0 + k2
E

N
Reb

)1/2

, (5.7)

with λ0 defined in (5.1). It is noteworthy to mention that this type of blending already
includes the viscous contribution to the friction through the non-rotating part λ0. The
results of the proposed interpolation formula are shown in figure 18(b) which indicate
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Figure 18. Distribution of friction factor as a function of (N/Reb)
1/2 for DNS data at Reb = 17 000 (+), Reb =

44 000 (∗), Reb = 82 500 (�), Reb = 133 000 (�). In (a), the solid lines denote the asymptotic prediction
for the rapid-rotation regime (5.6) at Reb = 17 000 (blue), Reb = 44 000 (red), Reb = 82 500 (orange), Reb =
133 000 (purple). Lines in (b) denote prediction of the interpolation formula (5.7).

reasonable prediction of the friction factor. However, the DNS data may exhibit complex
non-monotonic behaviour (e.g. see the figure inset), which is not accounted for by (5.7).

A popular semi-empirical formula correlation for the intermediate-rotation regime was
proposed by Ito & Nanbu (1971). According to their study, the similarity parameter for
friction in the turbulent regime is Kt = RebN2/4; hence they proposed that, for 1 � Kt �
500,

λ

λ0
= 0.942 + 0.058K0.282

t , (5.8)

whereas at Kt > 500 one should use
λ

λ0
= 0.924K0.05

t . (5.9)

In figure 19 we compare these empirical formulas with the DNS data. Use of the parameter
Kt indeed yields satisfactory universality of the friction data in the range of modest rotation
numbers, at which friction increase with respect to the non-rotating case is no more
than 30 %; however, discrepancies at high rotation rates are very large. In this range of
parameters the correlation of Ito & Nanbu (1971) is consistent with the DNS data, but
not quantitatively accurate. We find that a marginally better empirical fit is given by the
power-law formula

λ

λ0
= 1.09K0.033

t . (5.10)

As shown in figure 19(b), this formula is more accurate at low values of Kt. Analysis of
the zoomed inset within figure 18(b) reveals a non-trivial trend of the friction factor within
the Reynolds number range from 44 000 to 133 000. Notably, at the lowest rotation rates
the friction factor exhibits steeper growth than given in (5.7), which leads us to suggest the
correlation (5.10) in that regime, although it may also fail if the parameter Kt drops below
0.01, as the agreement is not perfect there.

6. Conclusions

Numerical investigation of flow in a rotating pipe through DNS has revealed a
rather complex scenario, which includes disparate flow regimes, whose occurrence
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Figure 19. Distribution of friction factor (normalised by the non-rotating case value) as a function of the
parameter Kt = RebN2/4 (Ito & Nanbu 1971) for DNS data at Reb = 17 000 (+), Reb = 44 000 (∗), Reb =
82 500 (�), Reb = 133 000 (�). In (a), the black line denotes the composite correlation (5.8) + (5.9), and in
(b) the power-law fit (5.10).

critically depends on the delicate balance between rotational, inertial and viscous forces.
In particular, in contrast to the case of flow in a non-rotating pipe, we have observed strong
inhomogeneity of the flow along the azimuthal direction, with local flow features being
primarily controlled by the rotation number. Specifically, at low rotation numbers, the flow
features strong asymmetry between the pressure side, where turbulence intensifies and the
local friction coefficient increases, and the suction side, where turbulence is significantly
suppressed, even under very modest rotation rates. In this regime, the poles of the pipe
aligned with the rotation axis are relatively unaffected. As a result, friction increases
mildly as compared with the non-rotating case, at a rate which is reasonably well predicted
by the correlation (5.10), which is an improvement over empirical formulas proposed in
previous studies based on experimental campaigns (Ito & Nanbu 1971). At higher rotation
numbers, the effects of rotation manifest themselves more clearly with the formation of
Taylor–Proudman columns, with accumulation of momentum in the central part of the
pipe, and return to a symmetric state, whereby the pressure side of the pipe also tends to
attain a laminar state, along with the rest of the flow. In this regime the flow features a
core region with flow properties depending only on the direction normal to the angular
velocity, and thin laminar Ekman layers adjacent to the walls, across which the magnitude
and the flow direction change abruptly. The most important observation based on the DNS
data is that the wall-normal velocity profiles within the Ekman layers at a given azimuthal
coordinate are very accurately parametrised in terms of the local wall-normal projection of
the angular velocity with associated viscous length scale, and of the local value of the core
velocity. This finding allows a boundary-layer-like theory to be developed and applied
for the prediction of the local and global friction coefficients. The analysis highlights
the crucial importance of the parameter N/Reb in controlling the fast-rotation regime of
motion. Indeed, in agreement with studies for square ducts (Pallares et al. 2005), we find
that λ ∼ (N/Reb)

1/2, hence the friction factor increases with the rotation number at much
faster rate than in the low-N regime.

In the case of low-to-moderate rotation number the friction factor has a complex
behaviour resulting from the interplay of viscosity, turbulence, secondary motions and
Coriolis forces, which we have rigorously isolated and distilled in an extended form of the
FIK identity. In general terms, the analysis shows decreasing importance of turbulence
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and increasing importance of Coriolis forces at increasing rotation number, with a
cross-over at N ≈ 0.1, where the effect of secondary motions is also maximum. Hence,
we have identified three flow regimes: (1) a low-rotation-rate regime in which the
momentum budget is essentially the same as in non-rotating flow, for N � 0.001; (2) an
intermediate-rotation-rate regime for 0.001 � N � 1, for which all physical effects convey
a comparable contribution to the friction factor; and (3) a high-rotation-rate regime for
N � 1, for which the contributions of Coriolis and viscous forces are by far dominant. The
intermediate-rotation regime is especially challenging as all physical effects are at play,
thus precluding analytical quantification. However, empirical power-law correlations such
as that by Ito & Nanbu (1971) can provide reasonably accurate prediction of friction, upon
suitable tuning of the coefficients.

We anticipate that these insights into the effect of rotation on frictional drag will
have significant implications for the design and operation of engineering applications
where controlling or leveraging rotational effects is essential. Given the substantial role
of secondary motions in the intermediate-rotation regime (contributing up to 50 % of total
friction), we also recognise that accurately predicting these effects presents a considerable
challenge for turbulence models. The present database offers a valuable benchmark for
developing improved models.

Supplementary material. Supplementary movies are available at https://doi.org/10.1103/APS.DFD.2023.
GFM.V0041. The data that support the findings of this study are openly available at http://newton.dma.
uniroma1.it/database.
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Appendix

Given the complex nature of the flow under scrutiny we have carried out a comprehensive
study of the effect of the pipe length and grid resolution on the flow statistics. General
guidelines for the selection of the grid spacings in wall-bounded flows were provided by
Hoyas & Jiménez (2006), namely that the streamwise spacing should be �z+ � 10, the
spanwise spacing should be R+�θ � 5 and the wall-normal spacing at the wall should
be �r+

w 
 1. Figure 20 reports the azimuthal distribution of the grid spacings for all flow
cases herein computed. In cases with low rotation rate and fully turbulent flow, the previous
prescriptions are in fact satisfied. However, these putative upper bounds are exceeded in
flows with high rotation rate. This observation could convey the false impression that the
DNS are under-resolved, whereas it is rather associated with the occurrence of a locally
laminar flow state, to which the traditional estimates do not apply. For complex flows such
as the one under scrutiny here only a grid resolution study, which we report hereafter, can
provide guidance for the selection of grid and computational box size. For that purpose, a
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Figure 20. Polar distribution of the inner-scaled grid spacings, at Reb = 17 000 (a–c) and Reb = 133 000
(d–f ): streamwise spacing �z+ (a,d), azimuthal spacing R+�θ (b,e) and radial spacing at the wall �r+

w (c, f ).
The colour codes correspond to different values of N, as given in table 1.

Reb Reτ N Lz/R Nz × Nr × Nθ λ× 10−2 Line

17 000 669 0.5 15 769 × 97 × 769 4.963
17 000 669 0.5 30 1537 × 97 × 769 4.963
17 000 669 0.5 45 2305 × 97 × 769 4.963
17 000 670 0.5 15 769 × 193 × 769 4.977
17 000 669 0.5 15 769 × 97 × 1537 4.966

Table 2. Computational parameters for grid sensitivity study. See table 1 for the nomenclature.

representative flow case with moderate rotation rate has been considered, namely Reb =
17 000, N = 0.5.

A summary of the relevant simulations we have carried out is given in table 2, whereby
we have doubled or tripled the pipe length, and doubled the number of grid points
along the azimuthal and radial directions. As a first confirmation that grid convergence
of the statistics is achieved, the table shows differences of no more than 0.3 % in the
global friction coefficient, as compared with the baseline simulation. This conclusion is
corroborated from figure 21, showing the azimuthal distribution of the local streamwise
wall shear stress. Again, the influence of pipe length (figure 21a) and grid resolution
(figure 21b) is seen to be negligible, showing overall relative differences smaller than 0.6 %
for cases with finer grids. Last, in figure 22 we show the outer-scaled velocity profiles in
the wall-normal direction. The profiles are found to be identical on the suction side and
only exhibit small differences (of less than 0.7 %) on the pressure side for cases with finer
grids.

1004 A15-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1172


A. Ceci and S. Pirozzoli

0°

45°

90°

135°

(a) (b)

180°

225°

270°

315°

0.0025
0.0050

0.0075
0.0100

0°

45°

90°

135°

180°

225°

270°

315°

0.0025
0.0050

0.0075
0.0100

Figure 21. Polar distribution of the local streamwise wall shear stress (τw) normalised by the reference
dynamic pressure ρu2

b at Reb = 17 000 and N = 0.5. (a) Effects of domain length and (b) effects of grid
refinement. The colour codes correspond to the different runs of the grid sensitivity study, as given in table 2.
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Figure 22. Radial profiles of outer-scaled axial velocity at various azimuthal positions for flow cases at Reb =
17 000 and N = 0.5. Only the interval θ = [0◦, 90◦] is shown, at stations spaced 15◦ apart, with negative values
of r signifying profiles taken at θ + 180◦. (a,c) Effects of pipe length and (b,d) effects of grid refinement. The
colour codes correspond to the different runs of the grid sensitivity study, as given in table 2.
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