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STOCHASTIC SPATIAL MODEL OF
PRODUCER–CONSUMER SYSTEMS
ON THE LATTICE

N. LANCHIER,∗ Arizona State University

Abstract

The objective of this paper is to give a rigorous analysis of a stochastic spatial model of
producer–consumer systems that has been recently introduced by Kang and the author
to understand the role of space in ecological communities in which individuals compete
for resources. Each point of the square lattice is occupied by an individual which is
characterized by one of two possible types, and updates its type in continuous time at
rate 1. Each individual being thought of as a producer and consumer of resources, the
new type at each update is chosen at random from a certain interaction neighborhood
according to probabilities proportional to the ability of the neighbors to consume the
resource produced by the individual to be updated. In addition to giving a complete
qualitative picture of the phase diagram of the spatial model, our results indicate that
the nonspatial deterministic mean-field approximation of the stochastic process fails to
describe the behavior of the system in the presence of local interactions. In particular, we
prove that, in the parameter region where the nonspatial model displays bistability, there
is a dominant type that wins regardless of its initial density in the spatial model, and that
the inclusion of space also translates into a significant reduction of the parameter region
where both types coexist.

Keywords: Interacting particle system; voter model; Richardson model; threshold contact
process
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1. Introduction

To understand the role of space in ecological communities in which individuals compete for
resources, Kang and the author [10] recently introduced a stochastic spatial model of producer–
consumer systems on the lattice. Based on their numerical simulations of this spatial model and
their analytical results for its nonspatial deterministic mean-field approximation, they concluded
that the inclusion of space drastically affects the outcome of such biological interactions. Their
results for the models with two species are reminiscent of those found in [15] for the spatially
explicit Lotka–Volterra model and in [12] for a non-Mendelian diploid model: in the parameter
region where the nonspatial model displays bistability, there is a dominant type that wins
regardless of its initial density in the spatial model, while the inclusion of space also translates
into a significant reduction of the parameter region where both species coexist. In the presence
of three species, other disagreements between the spatial and nonspatial models appear. The
main purpose of this paper is to give rigorous proofs of some of the results stated in [10] for
the stochastic spatial model with two species, which we now describe in detail.
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1.1. Model description

Each point of the d-dimensional square lattice is occupied by exactly one individual which
is characterized by one of two possible types, say type 1 and type 2. Each individual is thought
of as a producer and consumer of resources, and we describe the dynamics based on four
parameters aij ≥ 0 that denote the ability of an individual of type i to consume the resource
produced by an individual of type j , which we call resource j . To avoid degenerate cases, we
also assume that each resource can be consumed by at least one type: a1j + a2j > 0. Each
individual dies at rate 1, i.e. the type at each vertex is updated at rate 1, with the new type
being chosen at random from a certain neighborhood according to probabilities proportional to
the ability of the neighbors to consume the resource produced by the individual to be updated.
More formally, the model is a continuous-time Markov chain whose state at time t is a function

ηt : Z
d → {1, 2}

that maps the spatial structure into the set of types, thus representing the spatial configuration
of the system at time t . The dynamics are described by the Markov generator

Lf (η) =
∑
x∈Zd

∑
i �=j

aij fi(x, η)

a1j f1(x, η) + a2j f2(x, η)
[f (ηx,i) − f (η)], (1)

where fi(x, η) denotes the number of type-i neighbors

fi(x, η) = card{y �= x : |y1 − x1| + · · · + |yd − xd | ≤ M and η(y) = i}
and where the configuration ηx,i is obtained from the configuration η by assigning type i to
vertex x and leaving the type of all the other vertices unchanged. To avoid cumbersome notation,
we will write later x ∼ y to indicate that vertices x and y are neighbors, i.e.

y �= x and |y1 − x1| + |y2 − x2| + · · · + |yd − xd | ≤ M.

The positive integer M is referred to as the range of the interactions. The fraction in (1) means
that the conditional probability that the new type is chosen to be type i given that vertex x is
of type j at the time of an update is equal to the overall ability of the neighbors of type i to
consume resource j divided by the overall ability of all the neighbors to consume resource j .
Note that the assumption on the parameters, a1j + a2j > 0 for j = 1, 2, allows us to define

a1 := a11(a11 + a21)
−1 ∈ [0, 1] and a2 := a22(a12 + a22)

−1 ∈ [0, 1],
and to rewrite the Markov generator (1) in the form

Lf (η) =
∑
x∈Zd

∑
i �=j

(1 − aj )fi(x, η)

ajfj (x, η) + (1 − aj )fi(x, η)
[f (ηx,i) − f (η)], (2)

indicating that our model reduces to a two-parameter system. Note also that if one of the
original parameters in (1) is equal to 0 then the denominator in

aij fi(x, η)

a1j f1(x, η) + a2j f2(x, η)
= (1 − aj )fi(x, η)

ajfj (x, η) + (1 − aj )fi(x, η)
, i �= j, (3)

may be equal to 0, in which case the numerator is equal to 0 as well. When this happens, we
have the following alternatives and define (3) as follows.

Case 1: aj = fi = 0. In this case, motivated by the fact that there is no neighbor of type i, we
define probability (3) at which vertex x becomes type i to be 0.
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Case 2: aj = fi = 1. In this case, motivated by the fact that there are only neighbors of type i,
we define probability (3) at which vertex x becomes type i to be 1.

We point out that, in addition to be the most natural from a biological point of view, the
two assumptions above also make the transition probability (3) continuous with respect to the
parameters, which is a key to some of our proofs.

1.2. The mean-field approximation

As pointed out in [10], one of the most interesting aspects of the spatial model is that
it results in predictions that differ significantly from its nonspatial deterministic mean-field
approximation, thus indicating that the spatial component plays a key role in these interactions.
We recall that the mean-field model is obtained by assuming that the population is well mixing,
and refer to Durrett and Levin [8] for more details. This assumption results in a system of
coupled differential equations for the densities of each type, and since the densities sum to 1,
the mean-field model of (2) reduces to the one-dimensional system

du1

dt
= a12u1u2

a12u1 + a22u2
− a21u2u1

a11u1 + a21u2

= (1 − a2)u1(1 − u1)

a2(1 − u1) + (1 − a2)u1
− (1 − a1)u1(1 − u1)

a1u1 + (1 − a1)(1 − u1)
, (4)

where ui denotes the density of type-i individuals. Interestingly, the limiting behavior of the
mean-field model depends on whether the parameters a1 and a2 are smaller or larger than
one half, which has a biological interpretation in terms of altruism and selfishness. More
precisely,

• type i is said to be altruistic whenever ai < 1
2 since in this case the resources it produces

are more beneficial for the other type than for its own type,

• type i is said to be selfish whenever ai > 1
2 since in this case the resources it produces

are more beneficial for its own type than for the other type.

The mean-field model has two trivial equilibria given by e1 = 1 and e2 = 0, respectively. By
setting the right-hand side of (4) equal to 0 and assuming, in order to study the existence of
nontrivial interior fixed points, that the product u1 (1 − u1) �= 0, we find that

(1 − a2)
(
a1 − 1

2

)
u1 = (1 − a1)

(
a2 − 1

2

)
(1 − u1),

from which it follows that

e∗ = (1 − a1)(a2 − 1/2)

(1 − a2)(a1 − 1/2) + (1 − a1)(a2 − 1/2)

is the unique fixed point that may differ from 0 and 1. To analyze the global stability of the
fixed points, we observe that the sign of the derivative (4) is given by

sgn
(
(1 − a2)

(
a1 − 1

2

)
u1 − (1 − a1)

(
a2 − 1

2

)
(1 − u1)

)
= sgn

(
(1 − a2)

(
a1 − 1

2

)
(u1 − e∗) + (1 − a1)

(
a2 − 1

2

)
(u1 − e∗)

)
, (5)

which leads to the following three possible regimes for the mean-field model

Regime 1. A selfish type always wins against an altruistic type.

Proof. Without loss of generality, we may assume that a1 < 1
2 < a2, indicating that type 1

is altruistic whereas type 2 is selfish. In this case, the first line of (5) implies that the derivative
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of u1 is always negative when u1 ∈ (0, 1); hence, there is no fixed point in (0, 1), and the trivial
equilibrium e1 is unstable while the trivial equilibrium e2 is globally stable.

Regime 2. In the presence of two selfish types, the system is bistable.

Proof. Since a1 > 1
2 and a2 > 1

2 , we have e∗ ∈ (0, 1). The second line of (5) implies that
the derivative of u1 has the same sign as u1 − e∗, so the interior fixed point is unstable and the
boundary equilibria locally stable: the system converges to e1 if the initial density of type 1 is
strictly larger than e∗, and to e2 if the initial density of type 1 is strictly smaller than e∗.

Regime 3. In the presence of two altruistic types, coexistence occurs.

Proof. Since a1 < 1
2 and a2 < 1

2 , the fixed point e∗ again belongs to (0, 1) as in the presence
of two selfish types. However, the second line in (5) now implies that the derivative of u1 has
the same sign as e∗ −u1, so the interior fixed point is globally stable whereas the two boundary
equilibria e1 and e2 are unstable.

1.3. The stochastic spatial model

In order to state our results for the spatial model, we start by defining some of the possible
regimes the spin system (2) can exhibit.

Definition 1. For the stochastic spatial model (2), we say that

1. type i wins if, starting from any configuration with infinitely many type i,

lim
t→∞ P(ηt (x) = i) = 1 for all x ∈ Z

d ,

2. the system clusters if, starting from any translation invariant configuration,

lim
t→∞ P(ηt (x) = ηt (y)) = 1 for all x, y ∈ Z

d ,

3. type i survives if, starting from any configuration with infinitely many type i,

lim inf
t→∞ P(ηt (x) = i) > 0 for all x ∈ Z

d ,

4. both types coexist if they both survive.

As pointed out above, the analytical results for the spatial and the nonspatial models differ in
many aspects, which reveals the importance of the spatial component in the interactions. These
disagreements are more pronounced in low dimensions and emerge when both types are selfish
or both types are altruistic, while in the presence of one selfish type and one altruistic type the
analytical results for both the spatial and nonspatial models agree.

To begin with, we focus on the one-dimensional nearest-neighbor process. In this case, one
obtains a complete picture of the phase diagram based on a simple analysis of the interfaces of
the process which almost evolve according to a system of annihilating random walks, whereas
the more challenging study in higher dimensions and for larger ranges of interactions relies
on very different techniques. We point out that the one-dimensional nearest-neighbor process
appears as a degenerate case in which coexistence is not possible, while increasing the spatial
dimension or the range of the interactions may result in coexistence of altruistic types.

Theorem 1. Assume that M = d = 1. Then the following statements hold.

1. Except for the case a1 = a2 = 1, the process clusters.

2. Assuming, in addition, that a1 < a2, type 2 wins.
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The exclusion of the case a1 = a2 = 1 is simply due to the fact that, under this assumption,
a vertex may flip to a new type if and only if all its neighbors already have this type, which
implies that the process has infinitely many absorbing states. While, in the absence of space,
one type wins regardless of the initial densities only in selfish-altruistic systems, Theorem 1
indicates that the most selfish/least altruistic type always wins in the one-dimensional nearest-
neighbor case. In particular, coexistence no longer occurs even in altruistic systems. Although
this case is pathological, it is also symptomatic of the general behavior of the spatial model
for which the existence of a dominant type that always wins may occur even when both types
are altruistic. The next result shows that, in any spatial dimension and for any dispersal range,
selfish-altruistic interactions result in the same outcome in the spatial and nonspatial mean-field
models.

Theorem 2. Assume that a1 < 1
2 < a2. Then type 2 wins.

Even though its rigorous proof is not straightforward, the result is predictable since, when
one type is selfish and the other type is altruistic, regardless of the type of the vertex to be
updated and the spatial configuration, each of the selfish neighbors is individually more likely
to be selected to determine the new type than each of the altruistic neighbors. In contrast, in
the case of selfish-selfish interactions covered by Theorem 3 below, the spatial and nonspatial
models disagree in all dimensions and for all dispersal ranges. Recall that in this case the
mean-field model is bistable, indicating that the long-term behavior is determined by both the
parameters and the initial densities. The next result shows on the contrary that, including local
interactions, even if both types are selfish, enough asymmetry in the parameters implies that
the most selfish type wins.

Theorem 3. For all a1 < 1, there exists ρ > 0 such that type 2 wins when a2 > 1 − ρ.

Numerical simulations in two dimensions indicate more generally that, when type 2 is selfish,
it wins whenever a1 < a2. In the neutral case, the obvious symmetry of the evolution rules
implies that none of the types wins, but simulations indicate that the population again clusters,
with boundaries getting sharper as the common value of a1 = a2 > 1

2 increases. This suggests
that, in the presence of two selfish types, the long-term behavior of the one-dimensional nearest-
neighbor process occurs in two dimensions as well, a property that we believe is true in any
spatial dimension and for any range of interactions. Looking finally at altruistic-altruistic
interactions, recall that coexistence always occurs in the mean-field approximation whereas the
least altruistic type always wins in the one-dimensional nearest-neighbor process. Our last two
results show that the long-term behavior of the process in higher spatial dimensions and/or for
larger dispersal ranges is intermediate between these two extreme behaviors.

Theorem 4. For all (M, d) �= (1, 1), there exists ρ > 0 such that coexistence occurs when

a1 < ρ and a2 < ρ.

In words, sufficiently strong mutual altruism translates into coexistence of both types.
Numerical simulations of the two-dimensional system suggest in addition that two altruistic
types coexist in the neutral case a1 = a2 < 1

2 ; therefore, the coexistence region of the
spatial model stretches up to the parameter point corresponding to voter model interactions.
Interestingly, our last result shows that there exists a parameter region for which even altruistic
types cannot coexist, thus indicating that the inclusion of local interactions translates into a
reduction of the coexistence region in general and not only in the one-dimensional nearest-
neighbor case.
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Figure 1: Phase diagrams of the nonspatial (left) and spatial (right) models.

Theorem 5. There exists ρ > 0 such that type 2 wins whenever

a1 < ρ and a2 > 1
2 − ρ.

We note that, even though the inclusion of local interactions always translates into a reduction
of the coexistence region, numerical simulations indicate that this reduction becomes less
pronounced while increasing the spatial dimension or the range of the interactions. The results
for the mean-field model and spatial model when (M, d) �= (1, 1) are summarized in Figure 1.
In the phase diagram of the spatial model, the dashed regions are those that are covered by our
theorems, while the thick lines are the critical curves suggested by simulations. For a detailed
analysis of the nonspatial model and additional results based on numerical simulations for the
spatial model in the presence of three species, we refer the reader to the companion paper [10].

The rest of this paper is devoted to the proofs. To avoid cumbersome notation and messy
calculations, we prove all our results, with the exception of Theorem 4, when the range of the
interactions is equal to 1. However, we point out that all the techniques used in the proofs easily
extend to larger dispersal ranges. The reason for excluding Theorem 4 from this rule is that it is
the only result that shows a disagreement between the one-dimensional nearest-neighbor case
and the other cases, thus indicating that the range of the interactions plays a specific role in the
presence of strong altruistic-altruistic interactions.

2. The one-dimensional spatial model

This section is devoted to the proof of Theorem 1 which gives a complete picture of the
long-term behavior of the one-dimensional process with nearest-neighbor interactions. To
begin with, we study the evolution in the nonneutral case, and look at the process starting with
only type-2 individuals in an interval of length N + 1. The following lemma shows that the
survival probability of the individuals of type 1 decreases exponentially with N when a1 < a2.

Lemma 1. Assume that M = d = 1 and a1 < a2. Then

P(ηt (x) → 2 for all x ∈ Z | η0(x) = 2 for all x ∈ [0, N ] ∩ Z) ≥ 1 − cN
0 ,

where c0 := (1 − a2) (1 − a1)
−1 < 1.
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Proof. First, we observe that the process is attractive, which directly follows from the
monotonicity of the probabilities in (3) with respect to the fractions of neighbors of each
type. In particular, it suffices to prove the result when starting with exactly N + 1 individuals
of type 2. To understand how the number of type-2 vertices evolves, let x ∈ Z and assume that
the neighbors of x have different types. Then, the rate at which vertex x jumps from type 2 to
type 1 is

c− := (1 − a2)f1(x, η)

(1 − a2)f1(x, η) + a2f2(x, η)
= 1 − a2

(1 − a2) + a2
= 1 − a2, (6)

while the rate at which it jumps from type 1 to type 2 is

c+ := (1 − a1)f2(x, η)

a1f1(x, η) + (1 − a1)f2(x, η)
= 1 − a1

a1 + (1 − a1)
= 1 − a1. (7)

In particular, as long as there are at least two individuals of type 2, the number of such individuals
performs a random walk that jumps to the right at rate 2c+ and to the left at rate 2c− since, due
to one-dimensional nearest-neighbor interactions and the choice of the initial configuration, at
all times the set of vertices of type 2 is an interval. Moreover, on the event that type 2 survives,
the leftmost vertex of type 2 converges almost surely to −∞, while the rightmost vertex of
type 2 converges almost surely to +∞; therefore, the probability to be estimated is equal to
the probability that the asymmetric random walk described above tends to ∞. The result then
reduces to a standard estimate for asymmetric random walks. More precisely, let Zn denote
the number of individuals of type 2 after n updates of the system, and let

Pi := P(Zn = 1 for some n ≥ 0 | Z0 = i).

Then, using a first-step analysis, for all i ≥ 2 we have

(c+ + c−)Pi = c+Pi+1 + c−Pi−1

and Pi+1 − Pi = c0(Pi − Pi−1) = · · · = ci−1
0 (P2 − P1),

where c0 = c−/c+ = (1 − a2) (1 − a1)
−1. Since P1 = 1, we deduce that Pi = ci−1

0 and

P(ηt (x) → 2 for all x ∈ Z | η0(x) = 2 for all x ∈ [0, N ] ∩ Z)

≥ P(ηt (x) → 2 for all x ∈ Z | {x : η0(x) = 2} = [0, N ] ∩ Z)

≥ 1 − PN+1

= 1 − cN
0 .

This completes the proof.

With Lemma 1 in hand, we can now establish the first part of Theorem 1 in the nonneutral
case as well as the second part of the theorem.

Lemma 2. Assume that M = d = 1 and a1 < a2. Then type 2 wins.

Proof. Let N be a positive integer. Then, starting from any initial configuration with
infinitely many vertices of type 2, with probability 1, there exist z ∈ Z and t < ∞ such
that

ηt (x) = 2 for x = z, z + 1, . . . , z + N.
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Using, in addition, the facts that the process is attractive, and the evolution rules are translation
invariant in space and time, Lemma 1 implies that

P(ηt (x) → 2 for all x ∈ Z | card{x : η0(x) = 2} = ∞)

≥ P(ηt (x) → 2 for all x ∈ Z | η0(x) = 2 for all x ∈ [0, N ] ∩ Z)

≥ 1 − cN
0 .

Since this holds for all N and since c0 < 1, the lemma follows.

To complete the proof of Theorem 1, it remains to show that, when a1 = a2 �= 1, the
process clusters. Due to the particular geometry of the configurations in the one-dimensional
nearest-neighbor case, the proof reduces to the analysis of an auxiliary process that we will
call the interface process: the spin system (ξt ) defined on the translated lattice D = Z + 1

2 by
setting

ξt (v) = ∣∣ηt

(
v + 1

2

) − ηt

(
v − 1

2

)∣∣ for all v ∈ D.

In words, the process has a 1 at sites v ∈ D which are located between two vertices that have
different types, and a 0 at sites which are located between two vertices that have the same type,
so the process keeps track of the interfaces of the spatial model.

Lemma 3. Assume that M = d = 1 and a1 = a2 �= 1. Then the process clusters.

Proof. Thinking of each site v ∈ D as being occupied by a particle if ξ(v) = 1 and as empty
otherwise, the idea of the proof is to establish almost-sure extinction of this system of particles,
which is equivalent to clustering of the spatial model. First, the proof of Lemma 1 indicates
that a vertex of either type, say type i, changes its type

• at rate 1 if none of its two nearest neighbors is of type i,

• at rate c− = c+ > 0 defined in (6) and (7) if its neighbors have different types.

This induces the following dynamics for the interface process: a particle at site v ∈ D jumps
to each of its empty nearest neighbors at rate c+ and two particles a distance 1 apart annihilate
each other at rate 1. More formally, the Markov generator is given by

Lξf (ξ) =
∑
v∈D

∑
|w−v|=1

c+ 1{ξ(v) �= ξ(w)}[f (ξv↔w) − f (ξ)]

+
∑
v∈D

∑
|w−v|=1

1{ξ(v) = ξ(w)}[f (ξv,w) − f (ξ)],

where configuration ξv↔w is obtained from ξ by exchanging the contents of vertices v and w

while configuration ξv,w is obtained by killing the particles at v and w if they exist. Since
particles can only annihilate, the probability that a given site is occupied by a particle decreases
in time so it has a limit when time goes to ∞. Since, in addition, the evolution rules of the
process are translation invariant, this limit does not depend on the site under consideration:

there exists a such that lim
t→∞ P(ξt (v) = 1) = a for all v ∈ D.

In other respects, given any two particles alive at time t , at some random time s > t almost
surely finite, either one of these particles is killed due to a collision with a third particle or
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both particles annihilate each other. The latter follows immediately from the fact that one-
dimensional random walks are recurrent, while each time two particles are a distance 1 apart,
there is a positive probability that they annihilate at their next jump when a1 = a2 �= 1. This
implies that the limit a must equal 0, from which we conclude that

lim
t→∞ P(ηt (x) �= ηt (y)) ≤ lim

t→∞

y−x∑
i=1

P

(
ξt

(
x + i − 1

2

)
= 1

)
= 0

for all x, y ∈ Z. This completes the proof.

3. Altruistic-selfish interactions

This section is devoted to the proof of Theorem 2 which states that, in the presence of
altruistic-selfish interactions, the selfish type always wins. The proof is divided into four steps.
The first step is to show that, under the assumptions of the theorem, the set of type 2 dominates
its counterpart in a process that we will call perturbation of the voter model. In particular, in
order to establish the theorem, it suffices to prove that type 2 wins for this new process. The
reason for introducing a perturbation of the voter model is that, contrary to process (2), it can be
studied using duality techniques, and the second step of the proof is to describe its dual process
in detail, while the third step is to construct selected dual paths that are key to proving that type 2
survives. Finally, the fourth step combines these selected dual paths to a block construction
in order to prove that not only type 2 survives but also type 1 goes extinct. Before giving the
details of the proof, we note that the third step will be used again in the proof of Theorem 5
while the fourth step will be used again in the proofs of both Theorems 3 and 5, but these two
steps are detailed in this section only. We also point out that Theorem 2 can be proved without
the use of a block construction, but since it is needed in the proofs of Theorems 3 and 5, we
follow the same approach for all three theorems.

3.1. Coupling with a voter model perturbation

We first observe that, under the assumptions of the theorem, there exists a constant ρ > 0
fixed from now on such that

a1 <
1 − ρ

2
and a2 >

1 + ρ

2
, (8)

in which case the set of type 2 for the spatial model (2) dominates stochastically its counterpart
in a certain perturbation of the voter model that we denote later by (ξt ). The dynamics of this
voter model perturbation depend on the single parameter

ε := ρ

d(1 − ρ) + ρ
(9)

and can be described as follows. As in the original spatial model, the type at each vertex x is
updated at rate 1, but the new type is now chosen according to the following rules:

• with probability 1 − ε > 0, the new type at vertex x is chosen uniformly at random from
the set of the nearest neighbors,

• with the residual probability ε > 0, the new type at vertex x is chosen to be type 1 if all
the nearest neighbors are of type 1, and type 2 otherwise.
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More formally, the dynamics are described by the Markov generator

Lξf (ξ) =
∑
x∈Zd

[(1 − ε)f1(x, ξ) + ε 1{f2(x, ξ) = 0}][f (ξx,1) − f (ξ)]

+
∑
x∈Zd

[(1 − ε)f2(x, ξ) + ε 1{f2(x, ξ) �= 0}][f (ξx,2) − f (ξ)], (10)

where configuration ξx,i is obtained from ξ by assigning type i to vertex x and leaving the type
of all the other vertices unchanged. Then we have the following result.

Lemma 4. Assume that η0 ≡ ξ0 and (8) holds. Then

P(ηt (x) = 2) ≥ P(ξt (x) = 2) for all x ∈ Z
d and all t > 0.

Proof. This follows from certain inequalities between the transition rates. When all the
neighbors of vertex x are of the same type at the time of an update, then vertex x becomes of
this type with probability 1 in both processes. Also, given that x is of type 2 and has at least one
neighbor of each type, the rate at which it becomes 1 for process (2) is bounded from above by

(1 − a2)f1(x, η)

(1 − a2)f1(x, η) + a2f2(x, η)
≤ (1 − ρ)f1(x, η)

(1 − ρ)f1(x, η) + (1 + ρ)f2(x, η)

= (1 − ρ)f1(x, η)

(1 − ρ) + 2ρf2(x, η)

≤ d(1 − ρ)

d(1 − ρ) + ρ
f1(x, η)

= (1 − ε)f1(x, η), (11)

which is the rate at which it becomes 1 for process (10). Similarly, given that x is of type 1 and
has at least one neighbor of each type, the rate at which it becomes 2 for process (2) is

(1 − a1)f2(x, η)

a1f1(x, η) + (1 − a1)f2(x, η)
≥ (1 + ρ)f2(x, η)

(1 − ρ)f1(x, η) + (1 + ρ)f2(x, η)

= (1 + ρ)f2(x, η)

(1 − ρ) + 2ρf2(x, η)

≥ d(1 − ρ)f2(x, η) + ρ

d(1 − ρ) + ρ

= (1 − ε)f2(x, η) + ε, (12)

which is the rate at which it becomes 2 for process (10). To see that the last inequality is indeed
true, we introduce the functions

g(z) = (1 + ρ)z

(1 − ρ) + 2ρz
and h(z) = d(1 − ρ)z + ρ

d(1 − ρ) + ρ
,

and observe that we have the equalities

g(1) = h(1) = 1 and g((2d)−1) = h((2d)−1) = 1 + ρ

2d(1 − ρ) + 2ρ
.

Since, in addition, g is concave on (0, 1) whereas h is linear, the last inequality in (12) follows.
The inequalities on the transition rates in (11) and (12) give the lemma.
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3.2. Duality with branching coalescing random walks

In view of Lemma 4, standard coupling arguments—see [13, Section II.1] for details about
coupling techniques—imply that, to prove the theorem, it suffices to prove that type 2 wins
for process (10). Recall that the reason for introducing this process is that, contrary to the
original spatial model, it can be studied using duality techniques. First, we construct process
(10) graphically as follows:

• for each oriented edge e = (x, y) ∈ Z
d × Z

d with x ∼ y,

◦ we let �(x, y) be a Poisson point process with intensity (2d)−1(1 − ε),

◦ we draw an arrow from vertex y to vertex x at times t ∈ �(x, y) to indicate that
the individual at x mimics the individual at y,

• for each vertex x ∈ Z
d ,

◦ we let �(x) be a Poisson point process with intensity ε,

◦ we draw a set of 2d arrows from each y ∼ x to vertex x at times t ∈ �(x) to
indicate that x becomes of type 1 if all its neighbors are of type 1, and of type 2
otherwise.

We refer the reader to the left-hand diagram of Figure 2 for an illustration of the graphical
representation. The type at any space–time point can be deduced from the graphical represen-
tation and the configuration of the system at earlier times by going backwards in time. Declare
that a dual path from space–time point (x, T ) down to (y, T − s) exists, which we write as
(x, T ) ↓ (y, T − s), whenever there are sequences of times and vertices

s0 = T − s < s1 < · · · < sm+1 = T and x0 = y, x1, . . . , xm = x

Tx )( , Tx )( ,
T

T
im

e
T

im
e

0

Figure 2: Pictures related to the proofs of Theorems 2 (left) and 5 (right).
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such that the following two conditions hold:

• for i = 1, 2, . . . , m, there is an arrow from xi−1 to xi at time si, and

• for i = 0, 1, . . . , m, there is no arrow that points at the segments {xi} × (si, si+1).

The dynamics imply that vertex x is of type 1 at time T if and only if

ξ0(y) = 1 for all y ∈ Z
d such that (x, T ) ↓ (y, 0). (13)

Note that the set-valued process

ξ̂s (x, T ) = {y ∈ Z
d : (x, T ) ↓ (y, T − s)} for all 0 ≤ s ≤ T

defines a system of branching coalescing random walks where particles jump at rate 1 − ε to
one of their nearest neighbors chosen uniformly at random and split at rate ε into 2d particles
which are sent to each of their neighbors. In addition, whenever two particles are located on
the same vertex, they coalesce. See the left-hand diagram of Figure 2 for an illustration, where
the system of random walks is represented by thick lines. This process is reminiscent, though
not identical, of the dual process of the biased voter model [4], and we also refer the reader to
[1] and [11] for similar dual processes.

3.3. Selected dual paths and random walk estimates

To bound the probability that a given space–time point (x, T ) is of type 1, we now construct
a dual path (Xt (x)) that keeps track of a specific particle in the dual process. For each i =
1, 2, . . . , d, we define the hyperplane

Hi := {z = (z1, z2, . . . , zd) ∈ R
d : zi = 0}

as well as the deterministic times Ti = ic1N, where c1 = 4ε−1. Recall that the constant ε is
defined in (9). Also, we let dist(x, H) denote the Euclidean distance between a vertex x and its
orthogonal projection on a set H . The dual path starts at X0(x) = x and is defined recursively
from the graphical representation as follows. For all t > 0, define

s(t) = inf{s > t : T − s ∈ �(Xt(x)) or T − s ∈ �(Xt(x), y) for some y ∼ Xt(x)}.
For all s ∈ (t, s(t)), we set Xs(x) = Xt(x), while at time s(t) we have the following
alternatives.

1. If T − s(t) ∈ �(Xt(x), y) for some y ∼ Xt(x) then Xs(t)(x) = y.

2. If T − s(t) ∈ �(Xt(x)) and t ∈ (Ti−1, Ti) for some i = 1, 2, . . . , d, then

Xs(t)(x) ∼ Xt(x) and dist(Xs(t)(x), Hi) < dist(Xt (x), Hi).

3. If T − s(t) ∈ �(Xt(x)) and t > Td then

P(Xs(t)(x) = y) = (2d)−1 for all y ∼ Xt(x).

Note that there is a unique Xs(t)(x) that satisfies condition 2 above, so the dual path is well
defined. In words, the dual path travels backwards in time down the graphical representation
following the arrows from tip to tail. When a set of 2d arrows is encountered, the process jumps
in the direction that makes it closer to the hyperplane Hi between time Ti−1 and time Ti, while
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after the last time Td the process jumps uniformly at random in all directions. This, together
with the properties of the graphical representation introduced above, implies that the selected
dual path always jumps at rate 1. At each jump, with probability 1 − ε, the target site is chosen
uniformly at random from the set of the nearest neighbors, whereas, with probability ε, the
process moves so as to decrease its distance to H1 until time T1 when a similar mechanism
operates in the direction of the second axis, and so on. In order to later compare process (10)
with oriented site percolation, we start by collecting important properties of the selected dual
path. These properties are based on random walk estimates and are given in the following three
lemmas.

Lemma 5. There exist C1 < ∞ and γ1 > 0 such that, for all i = 1, 2, . . . , d,

P
(
dist(XTi

(x), Hi) > 1
2N

∣∣ dist(XTi−1(x), Hi) ≤ 4N
) ≤ C1 exp(−γ1N)

for all sufficiently large N .

Proof. First, we observe that, for all t ∈ (Ti−1, Ti), we have

dist(Xt (x), Hi) →
{

dist(Xt (x), Hi) + 1 at rate (2d)−1(1 − ε),

dist(Xt (x), Hi) − 1 at rate (2d)−1(1 − ε) + ε,

from which we deduce that, for all t ∈ (Ti−1, Ti),

lim
h→0

h−1
E(dist(Xt+h(x), Hi) − dist(Xt (x), Hi)) = −ε. (14)

In particular, recalling the definitions of Ti and Ti−1, we obtain

E(dist(XTi
(x), Hi) | dist(XTi−1(x), Hi) = 4N) = 4N − ε(Ti − Ti−1) = 0.

The lemma then follows from large deviation estimates for the Poisson distribution and the
binomial distribution together with standard coupling arguments.

Lemma 6. For any constant C > 4dε−1 and all i = 1, 2, . . . , d,

P
(
dist(Xt (x), Hi) > N for some t ∈ (Ti, CN)

∣∣ dist(XTi
(x), Hi) ≤ 1

2N
) ≤ 3 exp(−√

N)

for all sufficiently large N .

Proof. Denote by (Zn) the discrete-time, one-dimensional simple symmetric random walk,
and introduce the discrete random variable Js that counts the number of times the ith coordinate
of the process (Xt (x)) jumps by time s. Since the ith coordinate evolves according to the
continuous-time simple symmetric random walk run at rate d−1(1 − ε) after time Ti , we have

P
(
dist(Xt (x), Hi) > N for some t ∈ (Ti, CN)

∣∣ dist(XTi
(x), Hi) ≤ 1

2N
)

≤ P(JCN > N0) + P
(
Zn /∈ (−N, N) for some n ≤ N0

∣∣ Z0 ∈ (− 1
2N, 1

2N
))

for all N0 > 0. Taking N0 = d−1CN , large deviation estimates for the Poisson distribution
imply that the first term on the right-hand side can be bounded by

P(JCN > N0) ≤ P(JCN > d−1(1 − ε)CN) ≤ C2 exp(−γ2N) ≤ exp(−√
N)
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for suitable constants C2 < ∞ and γ2 > 0, and all sufficiently large N . To estimate the second
term, we use the reflection principle and Chebyshev’s inequality. For all θ > 0, we have

P
(
Zn /∈ (−N, N) for some n ≤ N0

∣∣ Z0 ∈ (− 1
2N, 1

2N
))

≤ P
(
Zn /∈ (− 1

2N, 1
2N

)
for some n ≤ N0

∣∣ Z0 = 0
)

≤ 2P
(
ZN0 /∈ (− 1

2N, 1
2N

) ∣∣ Z0 = 0
)

≤ 2 exp
(− 1

2θN
)
E(exp(θZN0) | Z0 = 0)

≤ 2 exp
(− 1

2θN
)[E(exp(θZ1) | Z0 = 0)]N0

≤ 2 exp
(− 1

2θN + N0 ln φ(θ)
)
,

where the function φ(θ) is the moment generating function of Z1. Since

ln φ(θ) = ln

(
eθ + e−θ

2

)
= ln

(
1 + θ2

2
+ o(θ2)

)
≤ θ2

when θ > 0 is small enough, taking θ = 4/
√

N , we can conclude that

P
(
Zn /∈ (−N, N) for some n ≤ N0

∣∣ Z0 ∈ (− 1
2N, 1

2N
))

≤ 2 exp
(− 1

2θN + N0 ln φ(θ)
)

≤ 2 exp(−2
√

N + 16d−1C)

≤ 2 exp(−√
N)

for all sufficiently large N . This completes the proof.

Lemma 7. Let C3 > 4dε−1 and x ∈ (−2N, 2N ]d . Then, for all large N ,

P(Xt (x) /∈ (−4N, 4N ]d for some t < C3N or XC3N(x) /∈ (−N, N ]d) ≤ 7d exp(−√
N).

Proof. Since dist(Xt (x), Hi) is stochastically smaller than the rate 1 simple symmetric
random walk on the set of nonnegative integers with a reflecting boundary at 0 and starting
from the same initial state, the proof of Lemma 6 directly implies that

P(dist(Xt (x), Hi) > 4N for some t < C3N) ≤ 3 exp(−√
4N) (15)

for all large N and all i = 1, 2, . . . , d. Moreover, by Lemmas 5 and 6,

P(dist(XC3N(x), Hi) > N | dist(Xt (x), Hi) ≤ 4N for all t < C3N)

≤ P
(
dist(XTi

(x), Hi) > 1
2N

∣∣ dist(XTi−1(x), Hi) ≤ 4N
)

+ P
(
dist(Xt (x), Hi) > N for some t ∈ (Ti, C3N)

∣∣ dist(XTi
(x), Hi) ≤ 1

2N
)

≤ C1 exp(−γ1N) + 3 exp(−√
N) (16)

for all large N and all i = 1, 2, . . . , d. Finally, combining (15) and (16), we conclude that

P(Xt (x) /∈ (−4N, 4N ]d for somet < C3NorXC3N(x) /∈ (−N, N ]d)

≤ P(Xt (x) /∈ (−4N, 4N ]d for somet < C3N)

+ P(XC3N(x) /∈ (−N, N ]dandXt(x) ∈ (−4N, 4N ]d for allt < C3N)

≤ 3d exp(−√
4N) + dC1 exp(−γ1N) + 3d exp(−√

N)

≤ 7d exp(−√
N)

for all sufficiently large N . This completes the proof.
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3.4. Block construction

To complete the proof of Theorem 2, the last step is to use a rescaling argument, a technique
also known as block construction, which has been introduced by Bramson and Durrett [3]. The
general idea of the block construction is to couple certain good events related to the interacting
particle system properly rescaled in space and time with the set of open sites of an oriented site
percolation process on the lattice

H = {(z, n) = (z1, . . . , zd , n) ∈ Z
d × Z : z1 + · · · + zd + n is even and n ≥ 0}.

We refer the reader to Section 4 of [7] for more details about this technique and a rigorous
definition of oriented site percolation. Lemmas 5–7 give us the appropriate space and time
scales to compare process (10) with oriented percolation. More precisely, we let T = C3N,

where the constant C3 is as in Lemma 7, and declare (z, n) ∈ H to be good whenever the event

�(z, n) = {ξnT (x) = 2 for all x ∈ Nz + (−N, N ]d ∩ Z
d}

occurs. Then we have the following lemma.

Lemma 8. For all sufficiently large N ,

P(Xt (x) /∈ (−4N, 4N ]d for some (x, t) ∈ (−2N, 2N ]d × (0, T ))

+ P((±ei, 1) is not good for some i = 1, 2, . . . , d | (0, 0)is good)

≤ 7d((4N)d + 1) exp(−√
N),

where ei denotes the ith d-dimensional unit vector.

Proof. By construction, there exists a dual path (x, T ) ↓ (XT (x), 0). Therefore, Lemma 7
and the duality relationship (13) imply that

P((±ei, 1) is not good for some i = 1, 2, . . . , d | (0, 0) is good)

= P(ξT (x) = 1 for some x ∈ (−2N, 2N ]d | ξ0(y) = 2 for all y ∈ (−N, N ]d)

≤ P(ξ0(XT (x)) = 1 for some x ∈ (−2N, 2N ]d | ξ0(y) = 2 for all y ∈ (−N, N ]d)

≤ (4N)d sup
x∈(−2N,2N ]d

P(ξ0(XT (x)) = 1 | ξ0(y) = 2for ally ∈ (−N, N ]d)

≤ (4N)d sup
x∈(−2N,2N ]d

P(XT (x) /∈ (−N, N ]d)

≤ 7d(4N)d exp(−√
N)

for all large N . Lemma 7 also implies that, for all x ∈ (−2N, 2N ]d , we have

P(Xt (x) /∈ (−4N, 4N ]d for some t ∈ (0, T )) ≤ 7d exp(−√
N)

for all sufficiently large N . The lemma follows.

The right-hand side of the inequality in the statement of Lemma 8 tends to 0; therefore, both
probabilities on the left-hand side tend to 0, as N tends to ∞. Convergence to 0 of the second
probability together with the translation invariance of the evolution rules of the process in space
and time imply that, for all γ > 0, there exists N large such that

P((z ± ei, n + 1) is good for all i = 1, 2, . . . , d | (z, n) is good) ≥ 1 − γ. (17)

Convergence to 0 of the first probability in the statement of the lemma implies that, with
probability close to 1 when N is large, the good event in (17) depends only on the realization
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of the graphical representation in a finite space–time box which, together with (17), implies the
existence of events Gz,n such that

1. Gz,n is measurable with respect to the graphical representation in

{Nz + (−4N, 4N ]d} × [nT , (n + 1)T ] for all (z, n) ∈ H ,

2. for all γ > 0, there exists N large such that P(Gz,n) ≥ 1 − γ ,

3. we have the inclusions of events

Gz,n ∩ �(z, n) ⊂ �(z ± ei, n + 1) for all i = 1, 2, . . . , d.

These three conditions are the assumptions of Theorem 4.3 of [7], from which we deduce the
existence of a coupling such that the set of good sites contains the set of wet sites of a certain
oriented site percolation process with parameter 1−γ and finite range of dependency when the
scale parameter N is large. Since such a percolation process is supercritical when γ is small
enough, starting with infinitely many vertices of type 2, we have

lim inf
t→∞ P(ξt (x) = 2) > 0 for all x ∈ Z

d .

This only proves survival of the type-2 individuals, and the last step of the proof is to also
establish extinction of the type-1 individuals, which is not obvious since oriented site percolation
has a positive density of closed sites. The existence of an in-all-directions expanding region
void of type 1 is proved in the following lemma which we will apply again to prove Theorems 3
and 5.

Lemma 9. For all x ∈ Z
d , we have P(ξt (x) = 1) → 0 as time t → ∞.

Proof. The proof follows an idea of Durrett [6] which relies on the lack of percolation of
the dry sites, where a site in the percolation process is said to be dry if it is not wet. First, we
define the oriented graphs G1 and G2 with common vertex set H and respective edge sets

E1 = {((z1, n1), (z2, n2)) ∈ H × H : z1 − z2 ∈ {±e1, . . . ,±ed} and n1 = n2 − 1},
E2 = E1 ∪ {((z1, n1), (z2, n2)) ∈ H × H : z1 − z2 ∈ {±2e1, . . . ,±2ed} and n1 = n2}.

Given a realization of the percolation process in which sites are open with probability 1 − γ ,
we say that there is a regular dry path from (0, 0) to (z, n) if there is a sequence

(z0, n0) = (0, 0), (z1, n1), . . . , (zk, nk) = (z, n) ∈ H

such that the following two conditions hold:

1. ((zi, ni), (zi+1, ni+1)) ∈ E1 for all i = 0, 1, . . . , k − 1, and

2. the site (zi, ni) is dry for all i = 0, 1, . . . , k.

Extending condition 1 by replacing E1 with the larger edge set E2, we call the sequence a
generalized dry path. Assuming that initially only site (0, 0) is closed, we introduce

• D0(G1), the set of sites that can be reached from the origin by a regular dry path, and

• D0(G2), the set of sites that can be reached from the origin by a generalized dry path.
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We call these sets the regular dry cluster and the generalized dry cluster, respectively. Returning
to the particle system, in order to prove extinction of type 1, we first modify our definition of
good sites: a site (z, n) ∈ H is now said to be good if the event

�̄(z, n) = {ξs(x) = 2 for all s ∈ [nT , (n + 1)T ] and all x ∈ Nz + (−N, N ]d ∩ Z
d}

occurs. The same arguments as in the proofs of Lemmas 5–8 imply that

P((±ei, 1) is not good for some i = 1, 2, . . . , d | (0, 0) is good) ≤ C4 Nd exp(−√
N)

for some suitable C4 < ∞; thus, there again exists a coupling such that the set of good sites
contains the set of wet sites of an oriented site percolation process with parameter 1−γ provided
the parameter N is large. The reason for introducing this new definition of good sites is that
the presence of a type-1 individual at vertex x ∈ Nz + (−N, N ]d at time nT now implies the
existence of a generalized dry path from some (z0, 0) to (z, n). In particular, the problem of
extinction reduces to proving the lack of percolation of the generalized dry sites when γ > 0
is small enough. To do this, the first step is to prove the existence of C5 < ∞ and γ5 > 0 such
that

P(D0(G2) �⊂ ([−m, m]d × R) ∩ H) ≤ C5 exp(−γ5m) for small γ > 0. (18)

This is essentially Theorem 5 of Durrett [6] which states the result for the regular dry cluster,
but his proof easily extends to our case. To begin with, we define the collection of cubes

Q =
{
r ∈ R

d+1 :
∑

i=1,2,...,d+1

|ri | ≤ 1

}
and Q(z, n) = (z, n) + Q for (z, n) ∈ H ,

and orient the faces of the cubes by assigning the value +1 to the d + 1 faces at the top of each
cube, and the value −1 to the d + 1 faces at the bottom. Then we define the contour of the
regular and generalized dry clusters as the algebraic sum of all the faces of the cubes that make
up

D0(Gi ) = ∪{Q(z, n) : (z, n) ∈ D0(Gi )} for i = 1, 2. (19)

To prove (18), the first ingredient is to observe that each contour has an equal number of plus
and minus faces and sites below the plus faces must be closed. This holds regardless of the
geometry of the underlying oriented graph so Lemma 4 of [6] directly applies: if the contour
has length m then there is a set of at least m(2(d + 1))−1 sites that must be closed. The second
ingredient is given by Lemmas 5–6 of [6] which state that there exist C6 < ∞ and μ > 0
such that the number of contours with m faces is bounded by C6μ

m. The result is proved for
the regular dry cluster, but again it is straightforward to extend the proof to the generalized dry
cluster. To see this, the key is simply to observe that any cube that makes up the dry region
(19) associated with the generalized dry cluster has at least one corner in common with another
such cube. Then, following the lines of the proof of Theorem 5 of [6] and using the previous
two estimates, we obtain

P(D0(G2) �⊂ ([−m, m]d × R) ∩ H) ≤
∞∑

k=m

C6μ
kγ k(2(d+1))−1

,

from which (18) follows for γ < μ−2(d+1). To deduce from (18) the lack of percolation of the
dry sites, we denote by Wn and W̄n the sets of wet sites at level n in the coupled percolation
processes having the same sets of open sites except at level 0 where

W0 = {0} and W̄0 = {z ∈ Z
d : z1 + z2 + · · · + zd is even}.
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The proof of Lemma 8 of [6] gives the existence of a constant a > 0 such that

W̄n ∩ B2(0, an) ⊂ Wn for all large n on the event {Wn �= ∅ for all n ≥ 0}. (20)

Following the proof of Lemma 11 of [6], and using (18) and (20), we obtain

lim
m→∞ P

(
a generalized dry path starting at some (z, 0)

intersects
(
B2

(
0, 1

2na
) × {n}) ∩ H for some n ≥ m

) = 0

on the event {Wn �= ∅ for all n ≥ 0}. Through the coupling with process (10), we deduce the
existence of an in-all-directions expanding region containing only good sites, and, thus, the
existence of an in-all-directions expanding region which is void of type 1.

From Lemma 9, we deduce that type 2 wins for process (10); therefore, the same holds for
process (2) according to Lemma 4, which completes the proof of Theorem 2.

4. Selfish-selfish interactions

This section is devoted to the proof of Theorem 3 which claims the existence of cases of
selfish-selfish interactions for which the most selfish type outcompetes the other type whenever
starting with infinitely many representatives. The key to our proof is to first show that type 2
wins for the process with parameters a1 < 1 and a2 = 1, which we denote by (η̄t ), and then use
a perturbation argument to extend the result to a neighborhood of this parameter point. First,
we note that, under the assumption that a2 = 1, the dynamics of process (2) reduce to

Lη̄f (η̄) =
∑
x∈Zd

1{f2(x, η̄) = 0}[f (η̄x,1) − f (η̄)]

+
∑
x∈Zd

(1 − a1)f2(x, η̄)

a1f1(x, η̄) + (1 − a1)f2(x, η̄)
[f (η̄x,2) − f (η̄)]. (21)

Invasion of type-2 individuals in the particular case when a2 = 1 is established in the following
lemma through a comparison with the Richardson model introduced in [16].

Lemma 10. Let δ > 0. Then, for all sufficiently large N ,

P(η̄C7N(x) = 1 for some x ∈ (−2N, 2N ]d | η̄0(x) = 2 for all x ∈ (−N, N ]d) ≤ δ

for some constant C7 < ∞ that does not depend on δ.

Proof. First, we observe that, given that vertex x has at least one neighbor of type 2 at the
time it is updated, it flips from type 1 to type 2 with probability

(1 − a1)f2(x, η̄)

a1f1(x, η̄) + (1 − a1)f2(x, η̄)
≥ ε := 1 − a1

a1(2d − 1) + (1 − a1)
> 0,

while it flips from type 2 to type 1 with probability 0. This implies that, for every connected
component A ⊂ Z

d containing at least two vertices, if all vertices in A are of type 2 at some time
then this remains true at any later time. In particular, the set of type-2 individuals dominates
stochastically the set of occupied sites in the Richardson model (ξt ), i.e. the contact process with
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no death, with birth parameter ε (2d)−1 > 0 under certain initial conditions. More precisely,
both processes can be constructed from the same graphical representation in such a way that

P(ξt ⊂ {x : η̄t (x) = 2} for all t ≥ 0 | ξ0 ⊂ {x : η̄0(x) = 2}) = 1

whenever the initial set of type-2 individuals is connected and has at least two vertices. This,
together with the shape theorem for the Richardson model [16], implies that there exists a finite
constant C7 < ∞ that depends only on the parameter ε such that, for all δ > 0,

P(η̄C7N(x) = 1 for some x ∈ (−2N, 2N ]d | η̄0(x) = 2 for all x ∈ (−N, N ]d)

≤ P(ξC7N �⊃ (−2N, 2N ]d | ξ0 = (−N, N ]d)

≤ δ

for all sufficiently large N . This completes the proof.

Extinction of type-1 individuals stated in Theorem 3 follows from Lemmas 9 and 10 through
the comparison of the process properly rescaled in space and time with a certain oriented site
percolation process in which dry sites do not percolate. Let T = C7N, where C7 < ∞ is the
constant fixed in Lemma 10, and declare (z, n) ∈ H to be a good site whenever the event

�̄(z, n) = {η̄s(x) = 2 for all s ∈ [nT , (n + 1)T ] and all x ∈ Nz + (−N, N ]d ∩ Z
d}

occurs. In the particular case when a1 < a2 = 1, individuals of type 2 with at least one neighbor
of type 2 cannot change; therefore, it follows from Lemma 10 that, for all δ > 0,

P((z ± ei, n + 1) is good for all i = 1, 2, . . . , d | (z, n) is good) ≥ 1 − δ

for all large N . Theorem 4.3 of [7] again gives the existence of a coupling such that the set
of good sites contains the set of wet sites of a certain oriented site percolation process with
finite range of dependency and parameter 1 − δ. To complete the proof of Theorem 3, we show
extinction of individuals of type 1 when a2 < 1 is close enough to 1, relying on a perturbation
argument.

Lemma 11. Let a1 < 1. Then there exists ρ > 0 small such that

lim
t→∞ P(ηt (x) = 1) = 0 for all x ∈ Z

d whenever a2 > 1 − ρ.

Proof. First, we fix γ > 0 such that (18) in Lemma 9 holds, and set δ = γ /2. Then we
apply Lemma 10 to obtain the existence of a scaling parameter N such that

P(η̄s(x) = 1 for some (x, s) ∈ (−2N, 2N ]d × [T , 2T ] | η̄s(x) = 2 for

all (x, s) ∈ (−N, N ]d × [0, T ])
≤ δ. (22)

The scaling parameter being fixed, since the transition rates are continuous with respect to the
parameters, there exist a small ρ = ρ(N) > 0 and a coupling of (2) and (21) such that

P(ηs(x) �= η̄s(x) for some (x, s) ∈ (−2N, 2N ]d × [T , 2T ] | ηs(x) = η̄s(x) = 2 for

all (x, s) ∈ (−N, N ]d × [0, T ])
≤ δ (23)
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whenever a2 > 1 − ρ. By combining (22) and (23), we obtain

P(ηs(x) = 1 for some (x, s) ∈ (−2N, 2N ]d × [T , 2T ] | ηs(x) = 2 for

all (x, s) ∈ (−N, N ]d × [0, T ])
≤ 2δ

= γ

whenever a2 > 1 − ρ. Hence, a new application of Theorem 4.3 of [7] gives the existence
of a coupling such that the set of good sites contains the set of wet sites of an oriented site
percolation process with parameter 1−γ when a2 > 1−ρ. Having such a coupling, extinction
of type-1 individuals directly follows as previously from the proof of Lemma 9.

5. Strong altruistic-altruistic interactions

This section is devoted to the proof of Theorem 4 which indicates that, in contrast with the
one-dimensional nearest-neighbor model, coexistence occurs in any other spatial dimensions
and for any other range of interactions provided cooperation is strong enough. The first step
of the proof is to show that, excluding the one-dimensional nearest-neighbor case, the critical
value of the threshold contact process is strictly smaller than 1, and then use a standard coupling
argument to deduce the existence of a small constant ρ > 0 such that type-1 individuals survive
for the process with parameters a1 = 0 and a2 = ρ. The coexistence result will then follow
from symmetry and the monotonicity of the survival probabilities with respect to the parameters.
Recall that the threshold contact process with parameter α is the spin system (ξt ) in which each
occupied vertex becomes empty at rate 1, and each empty vertex with at least one occupied
neighbor becomes occupied at rate α. Formally, the dynamics are described by the Markov
generator

Lξf (ξ) =
∑
x∈Zd

α 1{f1(x, ξ) �= 0}[f (ξx,1) − f (ξ)] +
∑
x∈Zd

[f (ξx,0) − f (ξ)],

where empty and occupied vertices are identified to states 0 and 1, respectively. The reason for
looking at the threshold contact process is that, when the birth rate α = 1, it is closely related
to process (2) with parameters a1 = a2 = 0.

Lemma 12. Assume that (M, d) �= (1, 1). Then

αc = inf{α : P(ξt �= ∅ for all t ≥ 0 | ξ0 = {0}) > 0} < 1.

Proof. The rate at which a vertex becomes empty is constant while the rate at which a vertex
becomes occupied is a nondecreasing function of the configuration, where the partial order on
the set of configurations is the inclusion. This indicates that the threshold contact process is an
attractive spin system. In particular, Theorem 2.4 of [2] implies that

{α : P(ξt �= ∅ for all t ≥ 0 | ξ0 = {0}) > 0} is an open interval. (24)

In addition, Lemma 2.1 of [9], which relies on a result of [14], implies that

P(ξt �= ∅ for all t ≥ 0 | ξ0 = {0}) > 0 for (M, d) �= (1, 1) and α ≥ 1. (25)

Combining (24) and (25) gives 1 ∈ (αc, ∞); therefore, αc < 1.

https://doi.org/10.1239/aap/1386857862 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1386857862


Stochastic spatial model of producer–consumer systems on the lattice 1177

Relying on Lemma 12, we now prove the existence of ρ > 0 small such that type-1
individuals survive for the process with parameters a1 = 0 and a2 = ρ, which we denote
by (η̄t ). Note that, for this choice of parameters, the dynamics reduce to

Lη̄f (η̄) =
∑
x∈Zd

(1 − ρ)f1(x, η̄)

(1 − ρ)f1(x, η̄) + ρf2(x, η̄)
[f (η̄x,1) − f (η̄)]

+
∑
x∈Zd

1{f2(x, η̄) �= 0}[f (η̄x,2) − f (η̄)]. (26)

Lemma 13. For all (M, d) �= (1, 1), there exists ρ > 0 such that

lim inf
t→∞ P(η̄t (x) = 1) > 0 for all x ∈ Z

d .

Proof. Thinking of vertices of type 1 as occupied by a particle and those of type 2 as empty,
(26) indicates that particles die at rate at most 1, while empty vertices with at least one occupied
neighbor become occupied at rate at least

α(ρ) = 1 − ρ

1 − ρ + ρ((2M + 1)d − 1)
= 1 − ρ

1 + ((2M + 1)d − 2)ρ
> αc,

provided ρ > 0 is small enough since αc < 1 according to Lemma 12. Therefore, for ρ > 0
small such that the previous inequality holds, the set of type-1 vertices dominates stochastically
the set of occupied sites of a supercritical threshold contact process. Hence, it suffices to prove
the result for the latter: starting with infinitely many occupied vertices,

lim inf
t→∞ P(ξt (x) = 1) > 0 for all x ∈ Z

d and all α > αc.

This is a direct consequence of the complete convergence theorem for the threshold contact
process established in [5] which implies that, starting with infinitely many occupied vertices, the
process converges in distribution to the limit obtained when starting with all vertices occupied,
which is a nontrivial translation invariant measure when α > αc.

To deduce Theorem 4 from Lemma 13, we first invoke the monotonicity of the survival
probabilities with respect to the parameters to deduce that, for ρ > 0 as in the lemma, type 1
survives when the parameters are a1 = a2 = ρ. By symmetry, individuals of type 2 survive as
well, and so both types coexist for these parameters. Finally, invoking again the monotonicity
of the survival probabilities, we deduce that coexistence occurs for all a1, a2 < ρ.

6. Strong altruistic-weak altruistic interactions

This section is devoted to the proof of Theorem 5 which gives the existence of a parameter
region in which coexistence occurs for the nonspatial model but not the spatial model. The
proof combines ideas from Sections 3 and 4. First, we study the process with a1 = 0 and a2 = 1

2
using techniques which are reminiscent of duality techniques, though the process does not have
a dual process at this parameter point. This is done through the new concept of breaking point
that we introduce in this paper. Using breaking points, we construct selected dual paths as in
Section 3, and using a block construction, we deduce that type 2 wins when a1 = 0 and a2 = 1

2 .
To complete the proof of the theorem, we rely as in Section 4 on a perturbation argument.
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6.1. Breaking points

First, we assume that a1 = 0 and a2 = 1
2 . Under this assumption, the type at each vertex x

is updated at rate 1 according to the following rules.

• If vertex x is of type 2 at the time of the update then the new type is chosen uniformly at
random from the set of the 2d nearest neighbors.

• If vertex x is of type 1 at the time of the update then it switches to type 2 whenever at
least one of its nearest neighbors is of type 2.

More formally, the dynamics of the process with a1 = 0 and a2 = 1
2 , which we denote by (η̄t ),

are described by the Markov generator

Lη̄f (η̄) =
∑
x∈Zd

f1(x, η̄)[f (η̄x,1) − f (η̄)] +
∑
x∈Zd

1{f2(x, η̄) �= 0}[f (η̄x,2) − f (η̄)]. (27)

We construct the process (27) graphically as follows:

• for each oriented edge e = (x, y) ∈ Z
d × Z

d with x ∼ y,

◦ we let �(x, y) be a Poisson point process with intensity (2d)−1,

◦ we draw at all times t ∈ �(x, y) a solid arrow y → x and an additional 2d − 1
dashed arrows from the other neighbors of x to vertex x to indicate that if x is of
type 2 then it mimics vertex y, whereas if it is of type 1 then it switches to type 2
whenever at least one of its neighbors is of type 2.

Definition 2. We call (x, t) where t ∈ �(x, y) a breaking point if

sup{�(y, x) ∩ (0, t)} = sup{(�(x, z) ∪ �(y, z)) ∩ (0, t) : z ∼ x or z ∼ y}
and the set �(y, x) ∩ (0, t) is nonempty.

In words, (x, t), t ∈ �(x, y), is a breaking point if the next solid arrow pointing at either
vertex x or vertex y we see going down the graphical representation is directed from x to y.
We refer the reader to the right-hand diagram of Figure 2 for an illustration of the graphical
representation that includes the breaking points, which we represent with filled circles. The
reason for looking at breaking points is that they allow us, as in the proof of Theorem 2, to
construct selected dual paths with a drift towards regions void of type-1 individuals and, thus,
to prove invasion of type 2. This good property of the breaking points is expressed in the
following lemma.

Lemma 14. Assume that (x, t) is a breaking point. Then

η̄t (x) = 1 if and only if η̄t (z) = 1 for all z ∼ x.

Proof. Assume that t ∈ �(x, y), and let s = sup {�(y, x) ∩ (0, t)}. Then

η̄s(x) = 2 �⇒ η̄s(y) = 2 because there is a solid arrow x → y at time s (28a)

�⇒ η̄r (y) = 2 for all r ∈ (s, t) since no arrow points at {y} × (s, t) (28b)

�⇒ η̄t (x) = 2 because there is a solid arrow y → x at time t . (28c)
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From (28), we deduce that

η̄t (x) = 1 �⇒ η̄t (x) = 1 and η̄s(x) = 1

�⇒ η̄t (x) = 1 and η̄t−(x) = 1 because no arrow points at {x} × (s, t)

�⇒ η̄t (z) = 1 for all z ∼ x,

where the last implication follows from the evolution rules of the process. This proves the
necessary condition. The sufficient condition is trivial and we point out that it is always true
provided an arrow points at (x, t), whereas the reverse holds because (x, t) is a breaking point.

Motivated by Lemma 14, we now construct from the graphical representation a certain
system of branching coalescing random walks that we will call a dual process as it allows us
to obtain information about the type of a given vertex, say x, at the current time, say T , based
on the configuration at earlier times. To define the dual process starting at (x, T ), the first step
is to remove from the graphical representation all the dashed arrows that point at a space–time
point which is not a breaking point. Then we say that there is a dual path from (x, T ) down
to (y, T − s), which we again write as (x, T ) ↓ (y, T − s), whenever there are sequences of
times and vertices

s0 = T − s < s1 < · · · < sm+1 = T and x0 = y, x1, . . . , xm = x

such that the following two conditions hold:

1. for i = 1, 2, . . . , m, there is an arrow from xi−1 to xi at time si, and

2. for i = 0, 1, . . . , m, there is no arrow that points at the segments {xi} × (si, si+1).

We point out that condition 1 above must hold after removal of the dashed arrows that are not
directed to a breaking point. The dual process starting at (x, T ) is the set-valued process

η̂s(x, T ) = {y ∈ Z
d : (x, T ) ↓ (y, T − s)} for all 0 ≤ s ≤ T .

See the right-hand diagram of Figure 2 where the dual process is represented by thick lines. One
of the keys to proving Theorem 5 is the following duality relationship which is simply obtained
by applying Lemma 14 at each of the breaking points that occurs along the dual process:

η̄T (x) = 1 only if η̄T −s(y) = 1 for all y ∈ η̂s(x, T ). (29)

6.2. Selected dual paths

To bound the probability that space–time point (x, T ) is of type 1, we follow the same
approach as in Section 3 and construct a process (Yt (x)) that keeps track of a specific particle
in the dual process. Recall that

Hi := {z = (z1, z2, . . . , zd) ∈ R
d : zi = 0} for i = 1, 2, . . . , d.

In addition, we let Ti := i c2N for i = 0, 1, . . . , d, where

c2 := 4ε−1 with ε := 2d(1 − e−1/2)2e−(2d−1) > 0

and where N is a scaling parameter that will be fixed later. The choice of ε will become clear
in the proof of Lemma 15 below. The dual path starts at Y0(x) = x. To construct this path at
later times, assuming that it is defined up to time t , we introduce

s(t) = inf{s > t : T − s ∈ �(Yt (x), y) for some y ∼ Yt (x)}. (30)
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For all s ∈ (t, s(t)), we set Ys(x) = Yt (x), while at time s(t) we have the following
alternatives.

• If (Yt (x), T − s(t)) is a breaking point and t ∈ (Ti−1, Ti) for some i = 1, 2, . . . , d, then

Ys(t)(x) ∼ Yt (x) and dist(Ys(t)(x), Hi) < dist(Yt (x), Hi).

• Otherwise, Ys(t)(x) = y is the neighbor for which the infimum in (30) is reached.

In words, the process goes backwards in time down the graphical representation following the
solid arrows from tip to tail except when a breaking point is encountered, in which case the
process crosses the arrow, either dashed or solid, that makes it closer to the hyperplane Hi

between the times Ti−1 and Ti . After time Td only the solid arrows are crossed. The process is
thus embedded in the dual process which, together with relationship (29), implies that

η̄T (x) = 1 only if YT (x) = 1. (31)

Motivated by condition (31), the next step is to prove the analog of Lemma 7 for this new
selected dual path. More precisely, we have the following lemma.

Lemma 15. Let x ∈ (−2N, 2N ]d . Then there exists C8 < ∞ such that

P(Yt (x) /∈ (−4N, 4N ]d for some t < C8N or YC8N(x) /∈ (−N, N ]d) ≤ C9 exp(−γ9
√

N)

for suitable C9 < ∞ and γ9 > 0, and all sufficiently large N .

Proof. To begin with, we call s ∈ (0, T − 1) a breaking time whenever

1. there is a unique neighbor y of vertex Ys(x) such that there is a solid arrow y → Ys(x)

in the time interval (T − s, T − s − 1
2 ),

2. there is a unique solid arrow Ys(x) → y in the time interval (T − s − 1
2 , T − s − 1),

3. no other solid arrows point at Ys(x) or y in the time interval (T − s, T − s − 1).

Note that these three conditions imply that the dual path crosses exactly one breaking point
between dual times s and s + 1. Moreover, a simple calculation shows that

P(s is a breaking time ) = 2d(1 − e−1/2)2e−(2d−1) = ε > 0.

Since, in addition, disjoint parts of the graphical representations are independent, it follows that
the discrete-time process (Yn(x) : n ∈ (0, T ) ∩ Z) is a Markov chain that satisfies

E(dist(Yn+1(x), Hi) − dist(Yn(x), Hi))

≤ εE(dist(Yn+1(x), Hi) − dist(Yn(x), Hi) | n is a breaking time)

≤ −ε

for all n ∈ (Ti−1, Ti) ∩ Z. This is the analog of (14). In particular, the rest of the proof follows
from the exact same arguments as in the proofs of Lemmas 5–7.
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6.3. Block construction

To complete the proof of Theorem 5, we let T = C8N and declare site (z, n) ∈ H to be a
good site whenever the following event occurs:

�̄(z, n) = {η̄s(x) = 2 for all s ∈ [nT , (n + 1)T ] and all x ∈ Nz + (−N, N ]d ∩ Z
d}.

Lemma 15 and (31) imply that, for all δ > 0,

P((z ± ei, n + 1) is good for all i = 1, 2, . . . , d | (z, n) is good) ≥ 1 − δ,

provided the scale parameter N is sufficiently large. This, together with the exact same
arguments as in the proofs of Lemmas 8 and 9, implies that type 2 wins for process (27).
Finally, using the continuity of the transition rates with respect to the parameters and the same
approach as in the proof of Lemma 11, we deduce the existence of ρ > 0 small such that type
2 wins as well for process (2) when a1 < ρ and a2 > 1

2 − ρ. This completes the proof.
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