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Quantum subgroups of a simple quantum group

at roots of one

Nicolás Andruskiewitsch and Gastón Andrés Garćıa

Abstract

Let G be a connected, simply connected, simple complex algebraic group and let ε be
a primitive `th root of one, ` odd and 3 - ` if G is of type G2. We determine all Hopf
algebra quotients of the quantized coordinate algebra Oε(G).

1. Introduction and preliminaries

1.1 Introduction

The purpose of this paper is to determine all quantum subgroups of a quantum group at a root
of one or, in equivalent terms, to determine all Hopf algebra quotients of a quantized coordinate
algebra at a root of one (over the complex numbers). This problem was first considered by
Podleś [Pod95] for quantum SU(2) and SO(3). The characterization of all finite-dimensional Hopf
algebra quotients of the quantized coordinate algebra Oq(SLN ) was obtained by Müller [Mul00].
Müller’s approach is via explicit computations with matrix coefficients; this strategy does not
apply to more general simple groups.

The present work can be viewed as a continuation of the long tradition of studying subgroups
of a simple algebraic group. In fact, our main theorem assumes knowledge of such subgroups,
see Definition 1.1. In addition to its intrinsical mathematical interest, our result would have
implications in quantum harmonic analysis (see, for example, [Let02]) and in the study of module
categories over the tensor category of comodules over the Hopf algebra Oε(G), in the sense
of [EO04].

An outcome of our main theorem is the construction of many new examples of finite-
dimensional Hopf algebras. At the present time, all examples of finite-dimensional Hopf algebras,
we are aware of, are:

– group algebras of finite groups;

– small quantum groups introduced by Lusztig [Lus90a, Lus90b], and variations thereof [AS];

– other pointed Hopf algebras with abelian group arising from the Nichols algebras discovered
in [Gra00, Hec06];

– a few examples of pointed Hopf algebras with non-abelian group [MS00, Gra];

– combinations of the preceding via some standard operations (duals, twisting, Hopf
subalgebras and quotients, extensions).
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Quantum subgroups

Building examples of Hopf algebras via extensions of a group algebra by a dual group algebra
is well understood, see for instance [Mas02]. Out of this, extensions can in principle be constructed
by means of weak actions and coactions, and pairs of compatible 2-cocycles. However, very few
explicit examples were presented in this way, and to the best of our knowledge none in finite
dimension, except for the trivial tensor product of two Hopf algebras. Our examples are indeed
non-trivial extensions of finite quantum groups by finite groups, but it is not clear how they could
be explicitly presented through actions, coactions and cocycles. A natural subsequent problem is
when the new examples of Hopf algebras are isomorphic with each other; this will be addressed
in (the forthcoming new version of) [AG06].

Furthermore, a result of Ştefan [Ste99, Theorem 1.5] states that a non-semisimple finite-
dimensional Hopf algebra generated by a simple four-dimensional coalgebra stable by the
antipode is a quotient of the quantized coordinate algebra of SL(2) at a root of one. It is tempting
to suggest that finite-dimensional quotients of more general quantized coordinate algebras might
play a prominent role in the classification of Hopf algebras.

We note that a different problem is sometimes referred to with a similar name: this is the
classification of indecomposable module categories over fusion categories arising in conformal
field theory, e.g. from the representation theory of finite quantum groups at roots of one.
See [Ocn02, KO02]. There is no evident relation between these two problems.

1.2 Statement of the main result

Let g be the Lie algebra of G, h⊆ g a fixed Cartan subalgebra, Π = {α1, . . . , αn} a basis of the
root system Φ = Φ(g, h) of g with respect to h and n= rk g.

Definition 1.1. A subgroup datum is a collection D = (I+, I−, N, Γ, σ, δ) where:

– I+ ⊆Π and I− ⊆−Π; let Ψ± = {α ∈ Φ : Supp α⊆ I±}, l± =
∑

α∈Ψ±
gα and l = l+ ⊕ h⊕ l−; l

is an algebraic Lie subalgebra of g; let L be the connected Lie subgroup of G with Lie(L) = l;

– N is a subgroup of T̂Ic , see Remark 2.12;

– Γ is an algebraic group;

– σ : Γ→ L is an injective homomorphism of algebraic groups;

– δ :N → Γ̂ is a group homomorphism.

If Γ is finite, we call D a finite subgroup datum. We parameterize with injective group
homomorphisms rather than group inclusions for a better description of the isomorphism
classes [AG06]. An equivalence relation among subgroup data is defined in § 2.4.

Our main result is as follows.

Theorem 1. There is a bijection between:

(a) Hopf algebra quotients q :Oε(G)→A;

(b) subgroup data up to equivalence.

In § 2, we carry out the construction of a quotient AD of Oε(G) starting from a subgroup
datum D, see Theorem 2.17. In § 2.4, we study the lattice of quotients AD. In § 3, we attach a
subgroup datum D to an arbitrary Hopf algebra quotient A and prove that AD 'A as quotients
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of Oε(G). This concludes the proof of the Theorem 1. As an immediate corollary of Theorem 1,
we obtain the following result.

Theorem 2. There is a bijection between:

(a) Hopf algebra quotients q :Oε(G)→A such that dimA<∞;

(b) finite subgroup data up to equivalence.

Theorem 2 generalizes the main result of [Mul00].

1.3 Conventions

Let C = (aij)1≤i,j≤n be the Cartan matrix of g and suppose that g is generated by the elements
{hi, ei, fi | 1≤ i≤ n} subject to the Chevalley–Serre relations. Let Q= ZΦ =

⊕n
i=1 Zαi be the

root lattice, $1, . . . , $n the fundamental weights, P =
⊕n

i=1 Z$i the weight lattice and W
the Weyl group. Let P+ be the cone of dominant weights and Q+ = P+ ∩ P . Let (−,−) be
the positive-definite symmetric bilinear form on h∗ induced by the Killing form of g. Let
di = (αi, αi)/2 ∈ {1, 2, 3}.

For t, m ∈ N0, q ∈ C and u ∈Q(q) r {0,±1} we use the notation

[t]u :=
ut − u−t

u− u−1
, [t]u! := [t]u[t− 1]u · · · [1]u,

[
m
t

]
u

:=
[m]u!

[t]u![m− t]u!
,

(t)u :=
ut − 1
u− 1

, (t)u! := (t)u(t− 1)u · · · (1)u,
(
m
t

)
u

:=
(m)u!

(t)u!(m− t)u!
.

1.4 Definitions

In this section we recall the definition of the quantized coordinate algebra of G. Let R= Q[q, q−1],
with q an indeterminate. If p`(q) ∈R denotes the `th cyclotomic polynomial, then R/[p`(q)R]'
Q(ε).

Definition 1.2. The simply connected quantized enveloping algebra Ǔq(g) of g is the Q(q)-
algebra with generators {Kλ | λ ∈ P}, E1, . . . , En and F1, . . . , Fn, satisfying the following
relations for λ, µ ∈ P and 1≤ i, j ≤ n:

K0 = 1, KλKµ =Kλ+µ,

KλEjK−λ = q(λ,αj)Ej , KλFjK−λ = q−(λ,αj)Fj ,

EiFj − FjEi = δij
Kαi −K−1

αi

qi − q−1
i

,

1−aij∑
l=0

(−1)l
[
1− aij
l

]
qi

E
1−aij−l
i EjE

l
i = 0 (i 6= j),

1−aij∑
l=0

(−1)l
[

1−aij
l

]
qi
F

1−aij−l
i FjF

l
i = 0 (i 6= j).
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Definition 1.3 [DL94, § 3.4]. Let qi = qdi , 1≤ i≤ n. The algebra Γ(g) is the R-subalgebra of
Ǔq(g) generated by the elements

K−1
αi (1≤ i≤ n),(

Kαi ; 0
t

)
:=

t∏
s=1

(
Kαiq

−s+1
i − 1
qsi − 1

)
(t≥ 1, 1≤ i≤ n),

E
(t)
i :=

Eti
[t]qi !

(t≥ 1, 1≤ i≤ n),

F
(t)
i :=

F ti
[t]qi !

(t≥ 1, 1≤ i≤ n).

Let C be the strictly full subcategory of Γ(g)-mod whose objects are Γ(g)-modules M such
that M is a free R-module of finite rank and the operators Kαi and

(
Kαi ; 0
t

)
are diagonalizable

with eigenvalues qmi and ( mt )qi respectively, for some m ∈ N and for all 1≤ i≤ n.

Definition 1.4 [DL94, § 4.1]. Let Rq[G] denote the R-submodule of HomR(Γ(g), R) spanned
by the coordinate functions tji of representations M from C: 〈g, tji 〉= 〈g ·mi, m

j〉, where (mi) is
an R-basis of M , (mj) is the dual basis of the dual module and g ∈ Γ(g). Since the subcategory
C is a tensor category, Rq[G] is a Hopf algebra.

Definition 1.5 [DL94, § 6]. The algebra Rq[G]/[p`(q)Rq[G]] is denoted by Oε(G)Q(ε) and is
called the quantized coordinate algebra of G over Q(ε) at the root of unity ε. In the same way as
for Oε(G)Q(ε), we can form the Q(ε)-Hopf algebra Γε(g) := Γ(g)/[p`(q)Γ(g)].

We now relate the Hopf algebras Oε(G)Q(ε) and Γε(g).

Definition 1.6. A Hopf pairing between two Hopf algebras U and H over a ring R is a bilinear
form (−,−) :H × U →R such that, for all u, v ∈ U and f, h ∈H,

(i) (h, uv) = (h(1), u)(h(2), v); (iii) (1, u) = ε(u);
(ii) (fh, u) = (f, u(1))(h, u(2)); (iv) (h, 1) = ε(h).

It follows that (h, S(u)) = (S(h), u), for all u ∈ U , h ∈H. Given a Hopf pairing, one has Hopf
algebra maps U →H◦ and H → U◦, where H◦ and U◦ are the Sweedler duals. The pairing is
called perfect if these maps are injections.

Proposition 1.7 [DL94, Lemmas 4.1 and 6.1]. There exists a perfect Hopf pairing Rq[G]⊗R
Γ(g)→R, which induces a perfect Hopf pairing Oε(G)Q(ε) ⊗Q(ε) Γε(g)→Q(ε). In particular,
Oε(G)Q(ε) ⊆ Γε(g)◦ and Γε(g)⊆Oε(G)◦Q(ε). 2

If k is any field containing Q(ε), we denote Oε(G)k :=Oε(G)Q(ε) ⊗Q(ε) k. When k = C we
simply write Oε(G) for Oε(G)C. The following two results imply by [Mon93, Proposition 3.4.3]
that Oε(G) is a central extension of O(G) by a finite-dimensional Hopf algebra.

Theorem 1.8. We have the following results:

(a) [DL94, Proposition 6.4] Oε(G) contains a central Hopf subalgebra isomorphic to the
coordinate algebra O(G) of G;

(b) [BG02, § III.7.11] Oε(G) is a free O(G)-module of rank `dimG. 2

We end this section by spelling out explicitly the quotient of Oε(G) by its central Hopf
subalgebra O(G).
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Let Oε(G) =Oε(G)/[O(G)+Oε(G)] and denote by π :Oε(G)→Oε(G) the quotient map. By
Theorem 1.8 and [Mon93, Proposition 3.4.3], Oε(G) is a Hopf algebra of dimension `dimG which
fits into the exact sequence

1→O(G)→Oε(G)→Oε(G)→ 1.

Let uε(g) be the Frobenius–Lusztig kernel of g at ε; that is, the Hopf subalgebra of Γε(g) generated
by the elements Ei, Fi and Kαi for 1≤ i≤ n. See [BG02] for details. We denote by

T := {Kα1 , . . . , Kαn}=G(uε(g)) (1)

the ‘finite torus’ of group-like elements of uε(g).

Theorem 1.9 [BG02, § III.7.10]. We have Oε(G)' uε(g)∗ as Hopf algebras. 2

Summarizing, the quantized coordinate algebra Oε(G) of G at ε fits into the central exact
sequence

1→O(G) ι−→Oε(G) π−→ uε(g)∗→ 1. (2)

We need the following technical lemma.

Lemma 1.10. There exists a surjective algebra map ϕ : Γε(g)→ uε(g) such that ϕ|uε(g) = id.

Proof. Since Γε(g) = Γ(g)/[p`(q)Γ(g)], we may define ϕ as a map from Γ(g) such that ϕ(q) = ε.
Let ϕ be the unique algebra map which takes the following values on the generators:

ϕ(E(m)
i ) =

{
E

(m)
i if 1≤m< `

0 otherwise,

ϕ(F (m)
i ) =

{
F

(m)
i if 1≤m< `

0 otherwise,

ϕ

((
Kαi ; 0
m

))
=


(
Kαi ; 0
m

)
if 1≤m< `

0 otherwise,
ϕ(K−1

αi ) = K`−1
αi , ϕ(q) = ε,

for all 1≤ i≤ n. Since ϕ is the identity on the generators of uε(g) and E`i = 0 = F `i , K`
αi = 1 on

uε(g), it follows from a direct computation that ϕ satisfies the relations given in [DL94, § 3.4];
see [Gar07, Proposition 4.1.17] for details. Hence, ϕ is a well-defined algebra map whose image
is uε(g). 2

1.5 Hopf subalgebras of a pointed Hopf algebra
In this section we describe Hopf subalgebras of pointed Hopf algebras. Let U be a Hopf algebra
such that the coradical U0 is a Hopf subalgebra. Let (Un)n≥0 be the coradical filtration of U ,
set U−1 = 0, gr U(n) = Un/Un−1 and let gr U =

⊕
n≥0 gr U(n) be the associated graded Hopf

algebra. Let ι : U0→ gr U be the canonical inclusion and let π : gr U → U0 be the homogeneous
projection. Let R= (gr U)co π be the diagram of U ; R is a graded braided Hopf algebra, that is,
a Hopf algebra in the category U0

U0
YD of Yetter–Drinfeld modules over U0. Its coalgebra structure

is given by ∆R(r) = ϑR(r(1))⊗ r(2), for all r ∈R, where ϑR : gr U →R is the map defined by

ϑR(a) = a(1)ιπ(Sa(2)), for all a ∈ gr U. (3)
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It can be easily shown that ϑR(rh) = rε(h), ϑR(hr) = h · r for r ∈R, h ∈ U0. One has that
gr U 'R#U0, R=

⊕
n≥0 R(n), R(0)' C and R(1) = P(R). We say that R is a Nichols algebra

if R is generated as an algebra by R(1). See [AS02] for more details.
To state the following result, we need to introduce some terminology. Let A be a Hopf algebra,

M a Yetter–Drinfeld module over A and B a Hopf subalgebra of A. We say that a vector subspace
N of M is B-compatible if:

(a) it is stable under the action of B; and
(b) it bears a B-comodule structure inducing the coaction of A.

In inaccurate but descriptive words, ‘N is a Yetter–Drinfeld submodule over B’ (although M
is not necessarily a Yetter–Drinfeld module over B).

Lemma 1.11. Let Y be a Hopf subalgebra of U . Then the coradical Y0 is a Hopf subalgebra and
the diagram S of Y is a braided Hopf subalgebra of R.

If R= B(V ) is a Nichols algebra with dim V <∞, then S is also a Nichols algebra. In this
case, Hopf subalgebras of U are parameterized by pairs (Y0, W ) where Y0 is a Hopf subalgebra
of U0 and W ⊂ V =R(1) is Y0-compatible.

Proof. The first claim follows since Y0 = Y ∩ U0 and the intersection of two Hopf subalgebras is a
Hopf subalgebra. By [Mon93, Lemma 5.2.12], the coradical filtration of Y is given by Yn = Y ∩ Un;
thus, we have an injective homogeneous map of Hopf algebras γ : gr Y ↪→ gr U inducing the
following commutative diagram.

gr Y � � γ //

πY
��

gr U

π

��
Y0

� � // U0

Thus, S = {a ∈ gr Y : (id⊗ πY )∆(a) = a⊗ 1} is a subalgebra, and also a braided vector subspace,
of R. Note that γϑS = ϑRγ, see (3); thus, S is a subcoalgebra of R. Assume now that R'B(V )
is a Nichols algebra with dim V <∞. Taking graded duals, we have a surjective map of graded
braided Hopf algebras ℘ : B(V ∗)→ Sgr dual. Since B(V ∗) and Sgr dual are pointed irreducible
coalgebras, by [Swe69, Theorem 9.1.4], ℘ maps the coradical filtration of the first onto the
coradical filtration of the second; hence, P(Sgr dual) = Sgr dual(1) and a fortiori S is generated in
degree one, i.e. is a Nichols algebra. Furthermore, Y is determined by Y0 and S(1), the last being
Y0-compatible. Conversely, if Y0 is a Hopf subalgebra of U0 and W ⊂R(1) is Y0-compatible, then
choose (yi)i∈I in U1 such that the classes (yi)i∈I in U1/U0 generate W#1. Then the subalgebra Y
of U generated by Y0 and (yi)i∈I is a actually a Hopf subalgebra giving rise to the pair (Y0, W ). 2

The lemma above also holds if V is a locally finite braided vector space.
Let us now turn to Hopf subalgebras of pointed Hopf algebras. The notion of ‘compatibility’

for groups reads as follows. Let G be a group and M a Yetter–Drinfeld module over the group
algebra C[G]. If F is a subgroup of G, a vector subspace N of M is F -compatible if:

(a) it is stable under the action of F ; and
(b) it is a C[G]-subcomodule and SuppN := {g ∈G :Ng 6= 0} is contained in F .

Corollary 1.12. Let U be a pointed Hopf algebra whose diagram R is a Nichols algebra. Then
Hopf subalgebras of U are parameterized by pairs (F, W ) where F is a subgroup of G(U) and
W ⊂R(1) is F -compatible. 2
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The corollary reads even better if G(U) is abelian and dimR(1)g = 1 for all g ∈ SuppR(1).
Indeed, Hopf subalgebras of U are parameterized in this case by pairs (F, J) where F is
a subgroup of G(U) and J ⊂ SuppR(1) is contained in F . In this way, we recover results
from [CM96, Mul98].

Corollary 1.13 [Mul98, Theorem 6.3]. The Hopf subalgebras of uε(g) are parameterized by
triples (Σ, I+, I−), where Σ is a subgroup of T and I+ ⊆Π, I− ⊆−Π such that Kαi ∈ Σ if
αi ∈ I+ ∪ −I−. 2

1.6 A five-lemma for extensions of Hopf algebras
The following general lemma was kindly communicated to us by Akira Masuoka.

Lemma 1.14. Let H be a bialgebra over an arbitrary commutative ring, and let A, A′ be
right H-Galois extensions over a common algebra B of H-coinvariants. Assume that A′ is right
B-faithfully flat. Then any H-comodule algebra map θ :A→A′ that is identical on B is an
isomorphism.

Proof. Let β :A⊗B A→A⊗H, β(x⊗ y) = xy(0) ⊗ y(1) and β′ :A′ ⊗B A′→A′ ⊗H, β′(x′ ⊗
y′) = x′y′(0) ⊗ y

′
(1) be the corresponding Galois maps, for x, y ∈A, x′, y′ ∈A′. Using the A-module

structure of A′ given by θ, we can extend β to an isomorphism

α :A′ ⊗B A'A′ ⊗A A⊗B A
id⊗β−−−→A′ ⊗A A⊗H 'A′ ⊗H.

Explicitly, α(a′ ⊗ a) = a′θ(a(0))⊗ a(1) for all a′ ∈A′, a ∈A. Then α fits into the following
commutative diagram.

A′ ⊗B A
id⊗θ //

α
'

&&LLLLLLLLLL A′ ⊗B A′

β

'

xxrrrrrrrrrr

A′ ⊗H
Hence, id⊗θ is an isomorphism; since A′ is right B-faithfully flat, θ is an isomorphism. 2

The lemma applies to a commutative diagram of Hopf algebras

1 // B
ι // A

π //

θ
����

H // 1

1 // B
ι′ // A′

π′ // H // 1

(4)

where the rows are exact sequences of Hopf algebras, in the sense of [AD95]: Aco π =B
and ker π =B+A; similarly for A′. If the top row is a cleft exact sequence, then θ is an
isomorphism [AD95, Lemma 3.2.19]. Masuoka’s Lemma 1.14 implies another version of the five-
lemma: if A and A′ are H-Galois over B, and A′ is right B-faithfully flat, then θ is also an
isomorphism.

Corollary 1.15. Assume in (4) that dimH is finite, A′ is noetherian and B is central in A′.
Then θ is an isomorphism.

Proof. As the rows are exact, the corresponding Galois maps β and β′ are surjective; since
dimH <∞, they are bijective [KT81, Theorem 1.7]. Thus, A and A′ are H-Galois over B. Now
A′ is B-faithfully flat by [Sch93, Theorem 3.3]. 2
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2. Constructing quantum subgroups

In this section we construct quotients of the quantized coordinate algebra Oε(G). We do this in
three steps.

2.1 First step

We construct in this step a quotient of Oε(G) associated to a Hopf subalgebra of uε(g); it
corresponds to a connected Lie subgroup L of G. Let r : uε(g)∗→H be a surjective Hopf algebra
morphism. Then we have an injective Hopf algebra map tr :H∗→ uε(g) and by Corollary 1.13,
the Hopf algebra H∗ corresponds to a triple (Σ, I+, I−). We eventually show that this triple is
part of a subgroup datum as in Definition 1.1.

2.1.1 The Hopf subalgebra Γε(l) of Γε(g)

Definition 2.1. For every triple (Σ, I+, I−) define Γ(l) to be the subalgebra of Γ(g) generated
by the elements

K−1
αi (1≤ i≤ n),(

Kαi ; 0
m

)
:=

m∏
s=1

(
Kαiq

−s+1
i − 1
qsi − 1

)
(m≥ 1, 1≤ i≤ n),

E
(m)
j :=

Emj
[m]qj !

(m≥ 1, j ∈ I+),

F
(m)
k :=

Fmk
[m]qk !

(m≥ 1, k ∈ I−),

where qi = qdi for 1≤ i≤ n. Note that Γ(l) does not depend on Σ.

Choosing a reduced expression si1 · · · siN of the longest element of the Weyl group, one can
order totally the positive part Φ+ of the root system Φ with β1 = αi1 , β2 = si1αi2 , . . . , βN =
si1 · · · siN−1αiN . Then using the algebra automorphisms Ti introduced by Lusztig [Lus90b], one
may define corresponding root vectors Eβk = Ti1 · · · Tik−1

Eik and Fβk = Ti1 · · · Tik−1
Fik . Consider

now the R-submodules of Γ(g) given by

J` = R

{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

∃nβ, ti, mα 6≡ 0 mod (`)
}

Γ` = R

{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

for all nβ, ti, mα ≡ 0 mod (`)
}
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Then, by [DL94, Theorem 6.3], there is a decomposition of free R-modules Γ(g) = J` ⊗ Γ` and
Γ`/[p`(q)Γ`]' U(g)Q(ε). Let QI± =

⊕
i∈I± Zαi and define the following R-submodules of Γ(l):

W` = R

{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

∃nβ, ti, mα 6≡ 0 mod (`) with β ∈QI− , α ∈QI+ , 1≤ i≤ n
}

Θ` = R

{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

for all nβ, ti, mα ≡ 0 mod (`) with β ∈QI− , α ∈QI+ , 1≤ i≤ n
}
.

Using the decomposition of Γ(g) as a free R-module we obtain the following result.

Lemma 2.2. There is a decomposition of free R-modules Γ(l) =W` ⊗Θ`. In particular, Γ(l) is
a direct summand of Γ(g).

Proof. Clearly, Γ(l) contains the free R-module W` ⊗Θ`. Thus, it is enough to show that
Γ(l)⊆W` ⊗Θ`, but this follows directly from the fact that Γ(l) is generated as an algebra over
R by the elements in Definition 2.1 and these generators satisfy the relations given in [DL94,
§ 3.4]. 2

Let Γε(l) := Γ(l)/[p`(q)Γ(l)]. Then we have the following proposition.

Proposition 2.3. We have:

(a) Γε(l) is a Hopf subalgebra of Γε(g);

(b) Γε(g)' Γ(g)⊗R R/[p`(q)R] and Γε(l)' Γ(l)⊗R R/[p`(q)R].

Proof. We only prove part (a) since part (b) is straightforward. By definition, the elements Ej are
(Kαj , 1)-primitives, Fk are (1, K−1

αk
)-primitives and Kαi are group-like. Moreover, the antipode

is given by S(Kαi) =K−1
αi , S(Ej) =−K−1

αj Ej and S(Fk) =−FkKαk with 1≤ i≤ n, j ∈ I+ and
k ∈ I−. Hence, the subalgebra of Γ(l) generated by these elements is a Hopf subalgebra of Γ(g)
and Γ(l)/[p`(q)Γ(g) ∩ Γ(l)] is a Hopf subalgebra of Γε(g). However, by Lemma 2.2, we know
that Γ(g) = Γ(l)⊕N for some R-submodule N . Then p`(q)Γ(g) ∩ Γ(l) = p`(q)(Γ(l)⊕N) ∩ Γ(l) =
p`(q)Γ(l), which implies that Γε(l) = Γ(l)/[p`(q)Γ(g) ∩ Γ(l)]. 2

2.1.2 The regular Frobenius–Lusztig kernel uε(l). Let uε(l) be the subalgebra of Γε(l)
generated by the elements

{Kαi , Ej , Fk : 1≤ i≤ n, j ∈ I+, k ∈ I−}.

Lemma 2.4. The subalgebra uε(l) is a Hopf subalgebra of Γε(l) such that Γε(l) ∩ uε(g) = uε(l)
and corresponds to the triple (T, I+, I−), see (1).

Proof. It is clear that uε(l) is a Hopf subalgebra of Γε(l). Since the Frobenius–Lusztig kernel uε(g)
is the subalgebra of Γε(g) generated by the elements {Kαi , Ei, Fi : 1≤ i≤ n}, we have that
uε(l)⊆ Γε(l) ∩ uε(g). However, from Lemma 2.2, it follows that every element of Γε(l) ∩ uε(g)
must be contained in uε(l). The last assertion follows immediately from Corollary 1.13. 2
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Recall that the quantum Frobenius map Fr : Γε(g)→ U(g)Q(ε) is defined on the generators of
Γε(g) by

Fr(E(m)
i ) =

{
e

(m/`)
i if `|m

0 otherwise,
Fr(F (m)

i ) =

{
f

(m/`)
i if `|m

0 otherwise,

Fr
((

Kαi ; 0
m

))
=


(
hi; 0
m

)
if `|m

0 otherwise,

Fr(K−1
αi ) = 1, for all 1≤ i≤ n,

and one has an exact sequence of Hopf algebras; see [Lus90b], [DL94, Theorem 6.3]:

1→ uε(g)−→ Γε(g) Fr−→ U(g)Q(ε)→ 1.

If we define U(l)Q(ε) := Fr(Γε(l)), then it follows that U(l)Q(ε) is a subalgebra of U(g)Q(ε) and the
following diagram commutes

uε(g) � � // Γε(g) Fr // // U(g)Q(ε)

uε(l)
� � //

?�

OO

Γε(l)
Fr // //

?�

OO

U(l)Q(ε)

?�

OO
(5)

where Fr is the restriction of Fr to Γε(l).

Remarks 2.5. (a) Let l be the set of primitive elements P (U(l)Q(ε)) of U(l)Q(ε). Then l is a Lie
subalgebra of g, which is in fact regular in the sense of [Dyn57]: it is the Lie subalgebra generated
by the set {hi, ej , fk : 1≤ i≤ n, j ∈ I+, k ∈ I−}. This agrees with Definition 1.1.

(b) Ker Fr is the two-sided ideal I of Γε(l) generated by the set{
E

(m)
j , F

(m)
k ,

(
Kαi ; 0
m

)
, Kαi − 1 : 1≤ i≤ n, j ∈ I+, k ∈ I−, m≥ 0, ` -m

}
,

and coincides with W`. Indeed, by [DL94, Theorem 6.3] we know that Ker Fr = J` and coincides
with the two-sided ideal generated by{

E
(m)
i , F

(m)
i ,

(
Kαi ; 0
m

)
, Kαi − 1 : 1≤ i≤ n, m≥ 0, ` -m

}
.

However, by Lemma 2.2, Ker Fr = Ker Fr ∩Γε(l) = J` ∩ Γε(l) =W` I.
(c) Since, by [DL94, Theorem 6.3], the morphism Γ`/[p`(q)Γ`]→ U(g)Q(ε) induced by the

quantum Frobenius map is bijective and by definition Θ` ⊆ Γ` and U(l)Q(ε) = Fr(U(g)Q(ε)), it
follows by Lemma 2.2 that Θ` ∩ p`(q)Γ` = p`(q)Θ` and the morphism Θ`/[p`(q)Θ`]→ U(l)Q(ε) is
also bijective.

The following proposition gives some properties of uε(l).

Proposition 2.6. We have the following results.

(a) The following sequence of Hopf algebras is exact

1→ uε(l)
j−→ Γε(l)

Fr−→ U(l)Q(ε)→ 1. (6)

(b) There is a surjective algebra map ψ : Γε(l)→ uε(l) such that ψ|uε(l) = id.
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Proof. (a) We need only to prove that Ker Fr = uε(l)+Γε(l) and co FrΓε(l) = uε(l). The first
equality follows directly from Remark 2.5(b), since the two-sided ideal generated by uε(l)+

coincides with I. The second equality follows from Lemma 2.4, because co FrΓε(g) = uε(g) by
[And96, Lemma 3.4.1] and uε(l) = uε(g) ∩ Γε(l) = co FrΓε(g) ∩ Γε(l) = co FrΓε(l).

(b) By Lemma 1.10, there exists a surjective algebra map ϕ : Γε(g)→ uε(g) such that
ϕ|uε(g) = id. If we define ψ := ϕ|uε(l) : Γε(l)→ uε(g), then Im ψ ⊆ uε(l) and ϕ|uε(l) = id, from
which follows that Im ψ = uε(l). 2

2.1.3 The quantized coordinate algebra Oε(L). The inclusion Γε(l) ↪→ Γε(g) determines by
duality a Hopf algebra map Res : Γε(g)◦→ Γε(l)◦. Since by Proposition 1.7, we have that
Oε(G)Q(ε) ⊆ Γε(g)◦, we may define

Oε(L)Q(ε) := Res(Oε(G)Q(ε)).

Moreover, as O(G)Q(ε) ⊆Oε(G)Q(ε), Res(O(G)Q(ε)) is a central Hopf subalgebra of Oε(L)Q(ε) and
whence there exists an algebraic subgroup L of G such that Res(O(G)Q(ε)) =O(L)Q(ε). Next we
show that L is connected and the corresponding Lie subalgebra of g is no other than the Lie
algebra l discussed in Remark 2.5(a).

Recall that a Lie subalgebra k⊆ g is called algebraic if there exists an algebraic subgroup
K ⊆G such that k = Lie(K). We say that k+ is the algebraic hull of k if k+ is an algebraic
subalgebra of g such that k⊆ k+ and if a is an algebraic subalgebra of g that contains k, then
k+ ⊆ a.

Proposition 2.7. The algebraic group L is connected and Lie(L) = l.

Proof. Since O(G)Q(ε) ⊆ U(g)◦Q(ε), dualizing diagram (5) we have O(L)Q(ε) = Res(O(G)Q(ε))⊆
U(l)◦Q(ε). However, by [Hoc81, §XVI.3], U(l)◦Q(ε) and consequently O(L)Q(ε) are integral domains,
implying that L is irreducible and therefore connected.

To show Lie(L) = l, we prove that Lie(L) is the algebraic hull of l and l is an algebraic Lie
algebra. Since Ker Res |Oε(G)Q(ε)

= {f ∈ Oε(G)Q(ε) : f |Γε(l) = 0} and the inclusion of O(G)Q(ε) in
Oε(G)Q(ε) is given by the transpose of the quantum Frobenius map Fr (see § 2.1.2), it follows
that O(L)Q(ε) 'O(G)Q(ε)/J , where

J = {f ∈ O(G)Q(ε) : 〈f, Fr(x)〉= 0, for all x ∈ Γε(l)}
= {f ∈ O(G)Q(ε) : 〈f, x〉= 0, for all x ∈ U(l)Q(ε)}.

In particular, 0 = 〈f, x〉= x(f) for all x ∈ U(l)Q(ε). Since by [FR05, Lemma 6.9], Lie(L) = {τ ∈
g : τ(f) = 0, for all f ∈ J}, it is clear that l⊆ Lie(L). Now let K ⊆G such that l⊆ Lie(K) =: k

and denote by I the ideal of K; then k = {τ ∈ g : τ(I) = 0}. As l⊆ k, τ(I) = 0 for all τ ∈ l. Since
the pairing 〈, 〉 is multiplicative, we have that I ⊆ J and whence L⊆K. Thus, Lie(L)⊆ k for all
algebraic Lie subalgebra k such that l⊆ k, implying that Lie(L) = l+.

Now we show that l is algebraic, implying that l = l+ = Lie(L). Consider g as a G-module
with the adjoint action and define Gl = {x ∈G : x · l = l} and gl = {τ ∈ g : [τ, l]⊆ l}. Then, by
[FR05, Exercise 8.4.7], Lie(Gl) = gl. Thus, it is enough to show that l equals its normalizer in g.

By construction, we know that l = l+ ⊕ h⊕ l−, where h is the Cartan subalgebra of g

and l± =
⊕

α∈Ψ±
gα, with Ψ± = {α ∈ Φ : Supp(α)⊆ I±}. Let x ∈ gl, then we may write x=∑

α∈Φ cαxα + x0 with x0 ∈ h. Thus, for all H ∈ h, we have that [H, x] =
∑

α∈Φ cαα(H)xα ∈ l.
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This implies that, for all H ∈ h, cαα(H) = 0 for all α /∈Ψ = Ψ+ ∪Ψ−. Hence, cα = 0 for all
α /∈Ψ and x ∈ l. 2

Since O(L)Q(ε) is a central Hopf subalgebra of Oε(L)Q(ε), the quotient

Oε(L)Q(ε) :=Oε(L)Q(ε)/[O(L)+
Q(ε)Oε(L)Q(ε)]

is a Hopf algebra which is finite-dimensional. The following proposition shows that, as expected,
this algebra is isomorphic to uε(l)∗, see § 2.1.2.

Proposition 2.8. We have the following results.

(a) The following sequence of Hopf algebras is exact

1→O(L)Q(ε)
ιL−→Oε(L)Q(ε)

πL−−→Oε(L)Q(ε)→ 1. (7)

(b) There exists a surjective Hopf algebra map P : uε(g)∗→Oε(L)Q(ε) making the following
diagram commutative.

1 // O(G)Q(ε)
ι //

Res
����

Oε(G)Q(ε)
π //

Res
����

uε(g)∗

P
����

// 1

1 // O(L)Q(ε)
ιL // Oε(L)Q(ε)

πL // Oε(L)Q(ε)
// 1

(8)

(c) We have Oε(L)Q(ε) ' uε(l)∗ as Hopf algebras.

Proof. (a) We only need to show that O(L)Q(ε) = co πLOε(L)Q(ε). The algebra Oε(G)Q(ε) is
noetherian, by Theorem 1.8(b). Therefore, Oε(L)Q(ε) is also noetherian, since it is a quotient
of Oε(G)Q(ε). Then, by [Sch93, Theorem 3.3], Oε(L)Q(ε) is faithfully flat over O(L)Q(ε) and, by
[Mon93, Proposition 3.4.3], it follows that O(L)Q(ε) = co πLOε(L)Q(ε) =Oε(L)co πL

Q(ε) .

(b) Since the sequence (2) is exact, we have that Ker π =O(G)+
Q(ε)Oε(G)Q(ε) and uε(g)∗ '

Oε(G)Q(ε)/[O(G)+
Q(ε)Oε(G)Q(ε)]. However, then πL Res(Ker π) = πL(O(L)+

Q(ε)Oε(L)Q(ε)) = 0 and

hence there exists a Hopf algebra map P : uε(g)∗→Oε(L)Q(ε) which makes the diagram (8)
commutative.

(c) Dualizing diagram (5) we obtain the following commutative diagram.

U(g)◦Q(ε)

��

� � t Fr // Γε(g)◦ F //

Res

��

uε(g)∗

p
����

U(l)◦Q(ε)
� �

tFr

// Γε(l)◦
f

// uε(l)∗

(9)

Since Oε(L)Q(ε) = Res(Oε(G)Q(ε)), O(L)Q(ε) = Res(O(G)Q(ε)) and O(G)Q(ε) ' U(g)◦Q(ε), because
g is simple, it follows that O(L)Q(ε) ⊆ tFr(U(l)◦Q(ε)). In particular, O(L)+

Q(ε) ⊆Ker f .
Moreover, since F (Oε(G)Q(ε)) = π(Oε(G)Q(ε)) = uε(g)∗ we have that uε(l)∗ = f Res(Oε(G)Q(ε)) =
f(Oε(L)Q(ε)). Hence, there exists a surjective Hopf algebra map β :Oε(L)Q(ε)→ uε(l)∗; and
dimOε(L)Q(ε) ≥ dim uε(l)∗.

We show next that there exists a surjective morphism uε(l)∗→Oε(L)Q(ε) implying that β is
an isomorphism. Consider the map p : uε(g)∗→ uε(l)∗ as in (9) and let a ∈Ker p. Since uε(g) is
finite-dimensional, the coordinate functions of the regular representation of uε(g) span linearly
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uε(g)∗ and we may assume that a is a coordinate function of a finite-dimensional representation
M of uε(g). As p is just the map given by the restriction, we have that a must be trivial on every
basis of uε(l); in particular, we have the following:{∏

β≥0

F
nβ
β ·

n∏
i=1

Kti
αi ·

∏
α≥0

Emαα : 0≤ nβ, ti, mα < `, β ∈QI− , 1≤ i≤ n, α ∈QI+
}
.

On the other hand, we know by Lemma 1.10 that there exists a surjective algebra map
ϕ : Γε(g)→ uε(g) such that ϕ|uε(g) = id. Hence, the uε(g)-module M admits a Γε(g)-module
structure via ϕ. Since M is finite-dimensional and K`

αi acts as the identity for every 1≤ i≤ n, it
follows that each operator Kαi is diagonalizable with eigenvalues εmi for some m ∈ N. This implies
by definition that the coordinate function ϕ∗(a) of the Γε(g)-module M must be contained in
Oε(G)Q(ε). Thus, using the definition of ϕ we have that Res ϕ∗(a) must annihilate the set

W` = Q(ε)
{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

∃nβ, ti, mα 6≡ 0 mod (`) with β ∈QI− , 1≤ i≤ n, α ∈QI+
}
.

Since, by Lemma 2.2, Γ(l) =W` ⊗Θ` as free R-modules and by Remark 2.5, Ker Fr =W` and
the map Θl/[p`(q)Θ`]→ U(l)Q(ε) induced by the restriction of the quantum Frobenius map Fr is
bijective. Then there exists b ∈ U(l)◦Q(ε) such that tFr(b) = Res(ϕ∗(a)). Hence,

P (a) = P (π(ϕ∗(a))) = πL(Res(ϕ∗(a))) = πL(tFr(b)) = ε(b) = ε(a) = 0,

and a ∈Ker P . Thus, Ker p⊆Ker P and there exists a surjective map uε(l)∗→Oε(L)Q(ε). 2

Remark 2.9. By the proposition above, we have the following commutative diagram of exact
sequences of Hopf algebras.

1 // O(G)Q(ε)
ι //

Res
����

Oε(G)Q(ε)
π //

Res
����

uε(g)∗

p
����

// 1

1 // O(L)Q(ε)
ιL // Oε(L)Q(ε)

πL // uε(l)∗ // 1

(10)

2.2 Second step

We consider now the complex form of the algebras defined above. Denote the C-form of the
Frobenius–Lusztig kernels just by uε(g) and uε(l).

The following proposition tells us how to construct Hopf algebras from a central exact
sequence and a surjective Hopf algebra map. We perform it in a general setting and then we
apply it to our situation. The characterization of these algebras as pushouts will be crucial.

Proposition 2.10. Let A and K be Hopf algebras, let B be a central Hopf subalgebra of A such
that A is left or right faithfully flat over B and let p :B→K be a surjective Hopf algebra map.
Then H =A/AB+ is a Hopf algebra and A fits into the exact sequence 1→B

ι−→A
π−→H → 1. If

we set J = Ker p⊆B, then (J ) =AJ is a Hopf ideal of A and A/(J ) is the pushout given by
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the following diagram.

B
� � ι //

p
����

A

q
����

K
� �

j
// A/(J )

Moreover, K can be identified with a central Hopf subalgebra of A/(J ) and A/(J ) fits into the
exact sequence

1→K→A/(J )→H → 1. (11)

Proof. The first assertion follows directly from [Mon93, Proposition 3.4.3]. Since B is central
in A, (J ) is a two-sided ideal of A. Moreover, from the fact that ε and ∆ are algebra maps
and S(J )⊆ J , it follows that (J ) is indeed a Hopf ideal. Identify K with B/J . Then the map
j :K→A/(J ) given by j(b+ J ) = ι(b) + (J ) defines a morphism of Hopf algebras because ι is
a Hopf algebra map. Since A is faithfully flat over B, by [Sch92, Corollary 1.8], B is a direct
summand in A as a B-module, say A=B ⊕M . Then (J ) ∩B = JA ∩B = (JB ⊕ JM) ∩B =
(J ⊕ JM) ∩B = J . Thus, if j(b+ J ) = 0, then ι(b) ∈ (J ) and this implies that b ∈ (J ) ∩B = J
by the equality above. Hence, j is injective.

Let us see now that A/(J ) is a pushout: let C be a Hopf algebra and suppose that there
exist Hopf algebra maps ϕ1 :K→ C and ϕ2 :A→ C such that ϕ1p= ϕ2ι. We have to show that
there exists a unique Hopf algebra map φ :A/(J )→ C such that φq = ϕ2 and φj = ϕ1.

B
ι //

p

��

A

q

�� ϕ2

��

K
j

//

ϕ1 ,,

A/(J )

∃!φ
F

F

""F
F

C

Since ϕ2((J )) = ϕ2(AJ ) = ϕ2(A)ϕ2(ι(J )) = ϕ2(A)ϕ1(p(J )) = 0, there exists a unique Hopf
algebra map φ :A/(J )→ C such that φq = ϕ2. Moreover, let x ∈K and b ∈B such that p(b) = x.
Then φj(x) = φjp(b) = φqι(b) = ϕ2ι(b) = ϕ1p(b) = ϕ1(x), from which it follows that φj = ϕ1.

Denote also by K the image of K under j. To see that K is central in A/(J ) we have to
verify that j(c)ā= āj(c) for all ā ∈A/(J ), c ∈K. Since p is surjective, for all c ∈K there exists
b ∈B such that p(b) = c and since q is an algebra map, it follows that āj(c) = q(a)j(p(b)) =
q(a)q(ι(b)) = q(aι(b)) = q(ι(b)a) = q(ι(b))q(a) = j(c)ā, because B is central in A. In particular,
the quotient H̃ = [A/(J )]/[K+(A/(J ))] is a Hopf algebra. To see that A/(J ) is a central
extension of K by H̃, by [Mon93, Proposition 3.4.3] it is enough to show that A/(J ) is flat
over K and K is a direct summand of A/(J ) as K-modules, since by [Sch92, Corollary 1.8] this
implies that A/(J ) is faithfully flat over K.

First we show that A/(J ) is flat over K. Let M1 and M2 be two right K-modules
and let f :M1→M2 be an injective homomorphism. In particular, they admit a B-module
structure via the map p :B→K, which we denote by M i for i= 1, 2; thus, f is an injective
homomorphism of B-modules. Since A is faithfully flat over B, the homomorphism of A-modules
f ⊗ id :M1 ⊗B A→M2 ⊗B A is also injective. As J is central in A, we have for i= 1, 2 that
(M i ⊗B A)(J ) = 0. Then the A-modules are also A/(J )-modules and M i ⊗B A'Mi ⊗K A/(J )
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as A/(J )-modules by the construction of M i. Hence, the homomorphism of A/(J )-modules
f ⊗ id :M1 ⊗K A/(J )→M2 ⊗K A/(J ) is injective and A/(J ) is flat over K.

As A=B ⊕M as B-modules, we have that (J ) =AJ = J ⊕MJ , where MJ is a
B-submodule of M and J =B ∩ (J ⊕MJ ). Hence, A/(J ) = (B ⊕M)/(J ⊕MJ ) =K ⊕
(M/MJ ) as K-modules, which implies that K is a direct summand of A/(J ).

In conclusion, A/(J ) fits into an exact sequence of Hopf algebras

1→K
j−→A/(J ) r−→ H̃ → 1.

Since the map Ψ :K+(A/(J ))→ (B+A)/(J ) defined by Ψ(ba) = ba is a k-linear isomorphism, it
follows that H̃ = (A/(J ))/[K+(A/(J ))]' (A/(J ))/[(B+A)/(J )]'A/B+A=H and, therefore,
A/(J ) fits into an exact sequence (11). 2

Let Γ be an algebraic group and let σ : Γ→G be an injective homomorphism of algebraic
groups such that σ(Γ)⊆ L. Then we have a surjective Hopf algebra map tσ :O(L)→O(Γ).
Applying the pushout construction given in Proposition 2.10, we obtain a Hopf algebra Al,σ

which is part of an exact sequence of Hopf algebras and fits into the following commutative
diagram.

1 // O(G) ι //

Res
��

Oε(G) π //

Res
��

uε(g)∗ //

p

��

1

1 // O(L)

tσ
��

ιL // Oε(L)
πL //

ν

��

uε(l)∗ // 1

1 // O(Γ)
j // Al,σ

π̄ // uε(l)∗ // 1

(12)

Remark 2.11. Let 1→K→A→H → 1 be an exact sequence of Hopf algebras. If β :A⊗K A→
A⊗H, β(x, y) = xy(0) ⊗ y(1) denotes the Galois map, then β is surjective, since H 'A/K+A. If,
moreover, H is finite-dimensional, then A is a finitely generated projective K-module by [KT81,
Theorem 1.7]. In particular, if dimK is finite, then dimA= dimK dimH is also finite. In our
case, if Γ is finite, we obtain that dimAl,σ = |Γ| dim uε(l).

2.3 Third step

In this section we take the third and last step of the construction. It consists essentially of taking
a quotient by a Hopf ideal generated by differences of central group-like elements of Al,σ. The
crucial point here is the description of H as a quotient of uε(l)∗ and the existence of a coalgebra
morphism ψ∗ : uε(l)∗→Oε(L).

Recall that from the beginning of this section that we fixed a surjective Hopf algebra map
r : uε(g)∗→H and H∗ is determined by the triple (Σ, I+, I−). Since the Hopf subalgebra uε(l)
is determined by the triple (T, I+, I−) with T⊇ Σ, we have that H∗ ⊆ uε(l)⊆ uε(g). Denote by
v : uε(l)∗→H the surjective Hopf algebra map induced by this inclusion. Then H is a quotient
of uε(l)∗ which fits into the following commutative diagram.

uε(g)∗
p // //

r
$$ $$JJJ

JJJ
JJJ

J
uε(l)∗

v
����
H
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Remark 2.12. Let I = I+ ∪ −I−, Ic = Π− I and TI = {Kαi : i ∈ I}. Let s= |Ic|. By
Corollary 1.13, we know that TI ⊆ Σ⊆ T = TI × TIc . If we set Ω = Σ ∩ TIc , it follows clearly
that Σ' TI × Ω.

Thus, giving a subgroup Σ such that TI ⊆ Σ⊆ T is the same as giving a subgroup Ω⊆ TIc ,
and this is the same as giving a subgroup N ⊆ T̂Ic . Namely, N is the kernel of the group
homomorphism ρ : T̂Ic → Ω̂ induced by the inclusion. In particular, we have that |Σ|= |TI ||Ω|=
`n−s|Ω|= `n/|N |.

Definition 2.13. For all 1≤ i≤ n such that αi /∈ I+ or αi /∈ I− we define Di ∈G(uε(l)∗) =
Alg(uε(l), C) on the generators of uε(l) by

Di(Ej) = 0 for all j : αj ∈ I+, Di(Fk) = 0 for all k : αk ∈ I−,
Di(Kαt) = 1 for all t 6= i, 1≤ t≤ n, Di(Kαi) = εi,

where εi is a primitive `th root of one. If αi /∈ I+ or αi /∈ I−, then Ei or Fi is not a generator of
uε(l), respectively. Hence, Di is a well-defined algebra map, since it verifies all of the defining
relations of Γε(g) (see [DL94, § 3.4]); further details are available in [Gar07, Definition 5.2.12].

Let Ic = {αi1 , . . . , αis} and let N ⊆ T̂Ic , correspond to Σ as in Remark 2.12. We define for
all z = (z1, . . . , zs) ∈ T̂Ic the following group-like element

Dz :=Dz1
i1
· · ·Dzs

is
.

Recall that (M) denotes the two-sided ideal generated by a subset M of an algebra R.

Lemma 2.14. We have the following results:

(a) if αi ∈ Ic, then Di is central in uε(l)∗; in particular, Dz is central for all z ∈ T̂Ic ;
(b) H ' uε(l)∗/(Dz − 1 | z ∈N).

Proof. (a) We have to show that Dif = fDi for all f ∈ uε(l)∗. First observe that Di coincide
with the counit of uε(l) in all elements of the basis which do not contain some positive power of
Kαi . By Lemma 2.2 we know that uε(l) has a basis of the form{∏

β≥0

F
nβ
β ·

n∏
i=1

Kti
αi ·

∏
α≥0

Emαα : 0≤ nβ, ti, mα < `, with β ∈QI− , α ∈QI+ , 1≤ i≤ n
}
.

Thus, using the defining relations of Γε(g) (see [DL94, § 3.4]), we may assume that this basis is
of the form Kti

αiM with 0≤ ti < ` and M does not contain any power of Kαi . Then, for every
element of this basis, we have

Dif(Kti
αiM) = Di(Kti

αiM(1))f(Kti
αiM(2)) =Di(Kti

αi)Di(M(1))f(Kti
αiM(2))

= εtii ε(M(1))f(Kti
αiM(2)) = εtii f(Kti

αiM)

= fDi(Kti
αiM).

(b) By part (a) we know that Dz is a central group-like element of uε(l)∗ for all z ∈N . Hence,
the quotient uε(l)∗/(Dz − 1 | z ∈N) is a Hopf algebra.

On the other hand, following Corollary 1.13 we know that H∗ is determined by the triple
(Σ, I+, I−) and, consequently,H∗ is included in uε(l). If we denote by v : uε(l)∗→H the surjective
map induced by this inclusion, we have that Ker v = {f ∈ uε(l)∗ : f(h) = 0, for all h ∈H∗}.
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However, Dz − 1 ∈Ker v for all z ∈N , since Dz(ω) = ρ(z)(ω) = 1 for all ω ∈ Ω. Hence, there
exists a surjective Hopf algebra map

γ : uε(l)∗/(Dz − 1 | z ∈N) �H.

Combining Corollary 1.13 with the Poincaré–Birkhoff–Witt (PBW) basis of H and uε(l) we have
that

dimH = `|I+|+|I−||Σ|= `|I+|+|I−|`n−s|Ω|= `|I+|+|I−|`n−s|Ω̂|= `|I+|+|I−|
`n

|N |
= dim(uε(l)∗/(Dz − 1 | z ∈N)),

which implies that γ is an isomorphism. 2

Remark 2.15. The lemma above is very similar to a result used by Müller in the case of type
An (see [Mul00, § 4]) for the classification of the finite-dimensional quotients of Oε(SLN ). The
new point of view here consists of regarding H as a quotient of the dual of uε(l).

Before going on with the construction we need the following technical lemma. Let X =
{Dz | z ∈ T̂Ic} be the set of central group-like elements of uε(l)∗ given by Lemma 2.14.

Lemma 2.16. There exists a subgroup Z := {∂z | z ∈ T̂Ic} of G(Al,σ) isomorphic to X consisting
of central elements.

Proof. By Proposition 2.6(b), we know that there exists an algebra map ψ : Γε(l)→ uε(l); it
induces a coalgebra map ψ∗ : uε(l)∗→ Γε(l)◦ such that the following diagram commutes.

Γε(g)◦

Res
����

uε(g)∗
ϕ∗oo

p
����

Γε(l)◦ uε(l)∗
ψ∗

oo

Here, ϕ∗ is the coalgebra map induced by the algebra map ϕ : Γε(g)→ uε(l) given by Lemma 1.10,
whose restriction to Γε(l) defines ψ. Furthermore, by the proof of Proposition 2.6(c), Im ϕ∗ ⊆
Oε(G); since Res(Oε(G)) =Oε(L), it follows that Im ψ∗ ⊆Oε(L). Consequently, we obtain a
group of group-like elements Y = {dz = ψ∗(Dz) | z ∈ T̂Ic} in Oε(L). Moreover, by Lemma 2.2
and the definitions of ψ and the elements Di, the elements of Y are central.

Since the map ν :Oε(L)→Al,σ given by the pushout construction is surjective, the image of
Y defines a group of central group-like elements in Al,σ:

Z = {∂z = ν(dz) | z ∈ T̂Ic}.

In addition, |Z|= |Y|= |X|= `s. Indeed, π̄(Z) = π̄ν(Y) = πL(Y) = πLψ
∗(X) = X since the

diagram (12) is commutative and πLψ
∗ = id. Hence, |π̄(Z)|= |X|, from which the assertion

follows. 2

We are now ready for our first important result.

Theorem 2.17. Let D = (I+, I−, N, Γ, σ, δ) be a subgroup datum. Then there exists a Hopf
algebra AD which is a quotient of Oε(G) and fits into the exact sequence

1→O(Γ) ι̂−→AD
π̂−→H → 1.
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Concretely, AD is given by the quotient Al,σ/Jδ where Jδ is the two-sided ideal generated by
the set {∂z − δ(z) | z ∈N} and the following diagram of exact sequences of Hopf algebras is
commutative.

1 // O(G) ι //

Res
��

Oε(G) π //

Res
��

uε(g)∗ //

p

��

1

1 // O(L)

tσ
��

ιL // Oε(L)
πL //

ν

��

uε(l)∗ // 1

1 // O(Γ)
j // Al,σ

π̄ //

t

��

uε(l)∗ //

v

��

1

1 // O(Γ) ι̂ // AD
π̂ // H // 1

(13)

Proof. By Remark 2.12, N determines a subgroup Σ of T and the triple (Σ, I+, I−) give rise
to a surjective Hopf algebra map r : uε(g)∗→H. Since σ : Γ→ L⊆G is injective, by the first
two steps developed before one can construct a Hopf algebra Al,σ which is a quotient of Oε(G)
and an extension of O(Γ) by uε(l)∗, where uε(l) is the Hopf subalgebra of uε(g) associated to
the triple (T, I+, I−). Moreover, by Lemma 2.14(b), H is the quotient of uε(l)∗ by the two-
sided ideal (Dz − 1 | z ∈N). If δ :N → Γ̂ is a group map, then the elements δ(z) are central
group-like elements in Al,σ for all z ∈N , and the two-sided ideal Jδ of Al,σ generated by the set
{∂z − δ(z) | z ∈N} is a Hopf ideal. Hence, by [Mul00, Proposition 3.4(c)], the following sequence
is exact

1→O(Γ)/J→Al,σ/Jδ→ uε(l)∗/π̄(Jδ)→ 1,

where J = Jδ ∩ O(Γ). Since π̄(∂z) =Dz and π̄(δ(z)) = 1 for all z ∈N , we have that π̄(Jδ) is
the two-sided ideal of uε(l)∗ given by (Dz − 1 | z ∈N), which implies by Lemma 2.14(b) that
uε(l)∗/π̄(Jδ) =H. Hence, if we denote AD :=Al,σ/Jδ, we can re-write the exact sequence of above
as

1→O(Γ)/J→AD→H → 1. (14)

To end the proof it is enough to see that J = Jδ ∩ O(Γ) = 0. Clearly, Jδ coincides with the
two-sided ideal (∂zδ(z)−1 − 1 | z ∈N) of Al,σ. Moreover, Υ := {∂zδ(z)−1 | z ∈N} is a subgroup
of central group-like elements of G(Al,σ) and Jδ = (g − 1 | g ∈Υ) =Al,σC[Υ]+. Let ∂N =
{∂z | z ∈N}. Then clearly the subalgebra B :=O(Γ)C[∂N ] is a central Hopf subalgebra of Aσ
which contains C[Υ]. Further, B 'O(Γ̃) for some algebraic group Γ̃ and one has the following
exact sequence of Hopf algebras

1→O(Γ)→O(Γ̃)→R→ 1,

where R=O(Γ̃)/O(Γ̃)O(Γ)+. However, R' π̄(O(Γ̃)) = C[N ], since

π̄(O(Γ̃)) = [O(Γ̃) +O(Γ)+Al,σ]/[O(Γ)+Al,σ]'O(Γ̃)/[O(Γ̃) ∩ (O(Γ)+Al,σ)]
' O(Γ̃)/O(Γ̃)O(Γ)+.

The last isomorphism follows from the fact that O(Γ̃) ∩ (O(Γ)+Al,σ) =O(Γ̃)O(Γ)+. Indeed, since
O(Γ̃) is a central Hopf subalgebra of the noetherian algebra Al,σ, by [Sch92, Theorem 3.3],
O(Γ̃) is a direct summand of Al,σ as a O(Γ̃)-module, say Al,σ =O(Γ̃)⊕M . Then O(Γ)+Al,σ =
O(Γ)+O(Γ̃)⊕O(Γ)+M and the claim follows since O(Γ̃) ∩ O(Γ)+M = 0. Hence, we have an
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exact sequence

1→O(Γ)→O(Γ̃) π̄−→ C[N ]→ 1,
which is cleft by the proof of Lemma 2.16, since π̄ admits a coalgebra section. Moreover, this
section on C[N ] is, by definition, a bialgebra section, implying that O(Γ̃)'O(Γ)⊗ C[∂N ].

Let Λ = (1/|Υ|)
∑

z∈N δ(z)∂−z be the integral of C[Υ] and denote by LΛ the endomorphism
of O(Γ̃) given by left multiplication of Λ. Since O(Γ̃)'O(Γ)⊗ C[∂N ]'O(Γ)⊗ C[Υ], it follows
that Ker LΛ =O(Γ)(C[Υ])+. However, since Al,σ =O(Γ̃)⊕M as O(Γ̃)-modules, we have that
Jδ ∩ O(Γ̃) =Al,σ(C[Υ])+ ∩ O(Γ̃) =O(Γ̃)(C[Υ])+ =O(Γ)(C[Υ])+ = Ker LΛ. Hence, Jδ ∩ O(Γ) =
Ker LΛ ∩ O(Γ) = 0 as if x ∈Ker LΛ ∩ O(Γ), then

0 = Λx=
1
|Υ|

∑
z∈N

(δ(z)⊗ ∂−z)(x⊗ 1) =
1
|Υ|

∑
z∈N

δ(z)x⊗ ∂−z,

which implies that δ(z)x= 0 for all z ∈N , because the elements ∂z are linearly independent.
Thus, x= 0 since δ(z) is invertible for all z ∈N . 2

Remark 2.18. (a) If Γ is finite-dimensional, then O(Γ) = CΓ and by Remark 2.11, dimAD =
|Γ| dimH. In this case, D is a finite subgroup datum and the last step of the proof of the
theorem above follows easily by dimension arguments. Indeed, by [Mul00, Lemma 4.8], we have
that dimAD = dimAl,σ/|Υ|. Since Al,σ and AD are extensions, it follows that

dim CΓ dim uε(l)
|Υ|

= dimAD = dim(CΓ/J) dimH = dim(CΓ/J)
dim uε(l)
|N |

. (15)

Since π̄(Υ) = {Dz | z ∈N} and π̄(∂zδ(z)−1) =Dz = 1 if and only if z = 0, we have that |Υ|= |N |.
Thus, from the equality (15) it follows that CΓ = CΓ/J.

(b) All exact sequences in the rows of diagram (13) are of the type B ↪→A�H, where B is
central in A and H is finite-dimensional. Thus, by [KT81, Theorem 1.7], B ⊂A is an H-Galois
extension and A is a finitely-generated projective B-module. Moreover, using Lemma 1.10 and
Proposition 2.6(b), one can see that the first three exact sequences are cleft.

2.4 Relations between quantum subgroups
Let U be any Hopf algebra and consider the category QUOT (U), whose objects are surjective
Hopf algebra maps q : U →A. If q : U →A and q′ : U →A′ are such maps, then an arrow q α // q′

in QUOT (U) is a Hopf algebra map α :A→A′ such that αq = q′. In this language, a quotient
of U is just an isomorphism class of objects in QUOT (U); let [q] denote the class of the map q.
There is a partial order in the set of quotients of U , given by [q]≤ [q′] if and only if there exists
an arrow q α // q′ in QUOT (U). Note that [q]≤ [q′] and [q′]≤ [q] implies [q] = [q′].

Our aim is to describe the partial order in the set [qD], D a subgroup datum, of quotients
qD :Oε(G) �AD given by Theorem 2.17. Eventually, this will be the partial order in the set of
all quotients of Oε(G). We begin by the following definition. By an abuse of notation we write
[AD] = [qD].

Definition 2.19. Let D = (I+, I−, N, Γ, σ, δ) and D′ = (I ′+, I
′
−, N

′, Γ′, σ′, δ′) be subgroup data.
We say that D ≤D′ if and only if:

– I ′+ ⊆ I+ and I ′− ⊆ I−; in particular, this condition implies that I ′ ⊆ I, TI′ ⊆ TI and
TIc ⊆ TI′c ; since Σ = TI × Ω and Σ′ = TI′ × Ω′, we have that Ω′ ⊆ Ω⊆ TIc ⊆ TI′c ; as TI′c =
TIc × TI′c−Ic , the restriction map T̂I′c � T̂Ic admits a canonical section η and η(N)⊆N ′;
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– there exists a morphism of algebraic groups τ : Γ′→ Γ such that στ = σ′;

– δ′η = tτδ.

Furthermore, we say that D 'D′ if and only if D ≤D′ and D′ ≤D. This means that:

– I+ = I ′+ and I− = I ′−;

– there exists an isomorphism of algebraic groups τ : Γ′→ Γ such that στ = σ′;

– N =N ′ and δ′ = tτδ.

Theorem 2.20. Let D and D′ be subgroup data. Then:

(a) [AD]≤ [AD′ ] if and only if D ≤D′;
(b) [AD] = [AD′ ] if and only if D 'D′.

Proof. Let q = qD and q′ = qD′ . Suppose that [AD]≤ [AD′ ], that is, there exists a surjective Hopf
algebra map α :AD→AD′ such that αq = q′. Since by Theorem 2.17, ι̂ tσ = qι and ι̂′ tσ′ = q′ι,
we have that αι̂ tσ = αqι= q′ι= ι̂′ tσ′. Thus, the Hopf algebra map β := αι̂ :O(Γ)→O(Γ′) is
surjective with Im β ⊆ Im tσ and its transpose defines an injective map of algebraic groups
τ : Γ′→ Γ such that στ = σ′.

Again by Theorem 2.17, we know that both AD and AD′ are central extensions by H '
AD/ADO(Γ)+ and H ′ 'AD′/AD′O(Γ′)+, respectively. Since π̂′α(ADO(Γ)+) = π̂′(AD′O(Γ′)+) =
0, there exists a surjective Hopf algebra map γ :H →H ′ such that the following diagram
commutes.

1 // O(G) ι //

tσ′

��

tσ
��

Oε(G) π //

q

��

q′

��

uε(g)∗ //

r

��

r′

��

1

1 // O(Γ)

β
��

ι̂ // AD
π̂ //

α

��

H //

γ

��

1

1 // O(Γ′) ι̂′ // AD′
π̂′ // H ′ // 1

Since tr :H∗ ↪→ uε(g) and tr′ : (H ′)∗ ↪→ uε(g) are just the inclusions, it follows that tγ : (H ′)∗ ↪→
H∗ is the same inclusion. If H∗ and (H ′)∗ are determined by the triples (Σ, I+, I−) and
(Σ′, I ′+, I

′
−), it follows that Σ′ ⊆ Σ, I ′+ ⊆ I+, I ′− ⊆ I−, whence η(N)⊆N ′. Thus, uε(l′)⊆ uε(l)

by Lemma 2.4.
Now, by Theorem 2.17, δ(z) = t(∂z) in AD and δ′(z′) = t′(∂z

′
) in AD′ , for all z ∈N and

z′ ∈N ′. Thus, for all z ∈N , we have
tτδ(z) = αδ(z) = αt(∂z) = αtν(ψ∗(Dz)) = t′ν ′((ψ′)∗η(Dz)) = δ′(η(z)),

where the fourth equality follows from the construction of the quotients AD, AD′ and αq = q′.
All of this implies that D ≤D′.

Suppose now that D ≤D′. This implies that uε(l′)⊆ uε(l) and, by construction, there exists
a Hopf algebra map κ :Oε(L)→Oε(L′) such that

Oε(G) Res // //

Res′ $$ $$IIIIIIIII
Oε(L)

κ
����

Oε(L′)
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commutes. Since tτ tσ = tσ′, the following commutative diagram exists.

O(L)
ιL //

tσ
��

Oε(L)

ν

��
t′ν′κ

��

O(Γ)
ῑ

//

tτ ''

Al,σ

O(Γ′)
ι̂′

// AD′

As Al,σ is a pushout, there exists a surjective Hopf algebra map α̃ :Al,σ→AD′ such that
α̃ν = t′ν ′κ. Since AD =Al,σ/Jδ, to show the existence of a surjective map α :AD→AD′ such
that αq = q′, it is enough to prove that α̃(Jδ) = 0. However, Jδ is the two-sided ideal of Al,σ

generated by δ(z)− ∂z with z ∈N ; now

α̃(δ(z)− ∂z) = tτδ(z)− α̃(νψ∗(Dz)) = tτδ(z)− t′ν ′η(z)
= tτδ(z)− δ′η(z) = 0,

by assumption. Hence, α̃(Jδ) = 0. This finishes the proof of part (a). Now part (b) follows
immediately. 2

3. Determining quantum subgroups

Let q :Oε(G)→A be a surjective Hopf algebra map. We prove now that it is isomorphic to
qD :Oε(G)→AD for some subgroup datum D. This concludes the proof of Theorem 1.

The Hopf subalgebra K = q(O(G)) is central in A and whence A is an H-extension
of K, where H is the Hopf algebra H =A/AK+. Indeed, it follows directly from [Mon93,
Proposition 3.4.3], because A is faithfully flat over K by [Sch92, Theorem 3.3]. Since K is
a quotient of O(G), there exists an algebraic group Γ and an injective map of algebraic
groups σ : Γ→G such that K 'O(Γ). Moreover, since q(Oε(G)O(G)+) =AK+, we have
that Oε(G)O(G)+ ⊆Ker π̂q, where π̂ :A→H is the canonical projection. Since uε(g)∗ '
Oε(G)/[Oε(G)O(G)+], there exists a surjective map r : uε(g)∗→H and by Proposition 1.12, H∗

is determined by a triple (Σ, I+, I−). In particular, we have the following commutative diagram.

1 // O(G) ι //

tσ
��

Oε(G) π //

q

��

uε(g)∗ //

r

��

1

1 // O(Γ) ι̂ // A
π̂ // H // 1

(16)

Let N correspond to Σ as in Remark 2.12. Our aim is to show that there exists δ such
that A'AD for the subgroup datum D = (I+, I−, N, Γ, σ, δ). Recall the Lie algebra l from
Definition 1.1 and the Hopf algebra uε(l)⊇H∗ from § 2.1.2. Denote by v : uε(l)∗→H the
surjective Hopf algebra map induced by this inclusion.

Lemma 3.1. The diagram (16) factorizes through the exact sequence

1 // O(L)
ιL // Oε(L)

πL // uε(l)∗ // 1
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that is, there exist Hopf algebra maps u, w such that the following diagram with exact rows
commutes.

1 // O(G) ι //

tσ
��

Res
��

Oε(G) π //

Res
��

q

��

uε(g)∗ //

p

��

r

��

1

1 // O(L)

u

��

ιL // Oε(L)
πL //

w

��

uε(l)∗ //

v

��

1

1 // O(Γ) ι̂ // A
π̂ // H // 1

Proof. To show the existence of the maps u and w it is enough to show that Ker Res⊆Ker q,
since u is simply wιL. This clearly implies that vπL = π̂w.

Let Ǔε(b+) and Ǔε(b−) be the Borel subalgebras of Ǔε(g) (see [DL94] and [Jan96, Ch. 4,
§ 4.4]), and let Aε be the subalgebra of Ǔε(b+)⊗ Ǔε(b−) generated by the elements

{1⊗ ej , fj ⊗ 1, K−λ ⊗Kλ : 1≤ j ≤ n, λ ∈ P},

where P is the weight lattice. By [DL94, § 4.3], this algebra has a basis given by the set
{fK−λ ⊗Kλe}, where λ ∈ P and e, f are monomials in eα and fβ, respectively, α, β ∈Q+.
Moreover, Aε is a (Q−, P, Q+)-graded algebra whose gradation is given by

deg(fj ⊗ 1) = (−αj , 0, 0), deg(1⊗ ej) = (0, 0, αj),
deg(K−λ ⊗Kλ) = (0, λ, 0),

for all 1≤ j ≤ n, λ ∈ P . By [DL94, § 4.3 and Proposition 6.5], there exists an injective algebra
map µε :Oε(G)→ Aε such that µε(O(G))⊆ A0, where A0 is the subalgebra of Aε generated by
the elements

{1⊗ e`j , f `j ⊗ 1, K−`λ ⊗K`λ : 1≤ j ≤ n, λ ∈ P}.
Hence, it is enough to show that µε(Ker Res)⊆ µε(Ker q).

Claim. We claim that µε(Ker Res) is the two-sided ideal I generated by the elements

{1⊗ ek, fj ⊗ 1 : αk /∈ I−, αj /∈ I+}.

Indeed, let λ ∈ P+ and let ψλ ∈ Γε(g)◦ such that

ψλ(FME) = δ1,Eδ1,FM(λ), ψ−λ(EMF ) = δ1,Eδ1,FM(−λ),

for all elements FME of the PBW basis of Γε(g), where M ∈Q and the form M(λ) is simply the
linear extension of the bilinear form 〈αj , λ〉= εdi(αi,λ) for all λ ∈ P , 1≤ i≤ n. By [DL94, § 4.4],
there exist matrix coefficients ψ±α±λ , and α ∈Q+ such that

ψα−λ(EMF ) = ψ−λ(EMFEα), ψ−α−λ (EMF ) = ψ−λ(FαEMF ),

for all elements EMF of the PBW basis of Γε(g). Moreover, one has that

µε(ψ−$i) =K−$i ⊗K$i , µε(ψ
αk
−$i) =K−$i ⊗K$iek,

µε(ψ
−αj
−$i) = fjK−$i ⊗K$i ,

for all 1≤ i, j ≤ n. Through a direct computation one can see that ψαk−$i , ψ
−αj
−$i ∈Ker Res and

µε(ψ$iψ
αk
−$i) = 1⊗ ek µε(ψ

−αj
−$iψ$i) = fj ⊗ 1.

for all αk /∈ I−, αj /∈ I+. Hence, the generators of I are in µε(Ker Res).
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Conversely, if h ∈Ker Res, then h|Γε(l) = 0 and, by definition, we have that

〈µε(h), EM ⊗NF 〉= 〈h, EMNF 〉= 0,

for all elements EMNF of the PBW basis of Γε(l). Thus, using the existence of perfect pairings
(see [DL94, § 3.2]) and evaluating in adequate elements, it follows that each term of the basis
{fK−λ ⊗Kλe} that appears in µε(h) must lie in I.

Since 0 = πL Res(h) = rπ(h) = π̂q(h), we have that q(h) ∈Ker π̂ =O(Γ)+A= q(O(G)+Oε(G)).
Then there exist a ∈ O(G)+Oε(G) and c ∈Ker q such that h= a+ c; in particular, for all
generators t of I we have that t= µε(a) + µε(c), where µε(a) is contained in A0. Comparing
degrees in both sides of the equality we have that µε(a) = 0, which implies that each generator
of I must lie in µε(Ker q). 2

The following lemma shows the convenience of characterizing the quotients Al,σ of Oε(G) as
pushouts.

Lemma 3.2. We have σ(Γ)⊆ L and therefore A is a quotient of Al,σ given by the pushout.
Moreover, the following diagram commutes

1 // O(G) ι //

Res
��

Oε(G) π //

Res
��

uε(g)∗ //

p

��

1

1 // O(L)

u

��

ιL // Oε(L)
πL //

ν

��

uε(l)∗ // 1

1 // O(Γ)
j // Al,σ

π̄ //

t

��

uε(l)∗ //

v

��

1

1 // O(Γ) ι̂ // A
π̂ // H // 1

(17)

Proof. Recall the maps u, w defined in the lemma above; we have that wιL = ι̂u, that is, the
following diagram commutes

O(L)
ιL //

u

��

Oε(L)

ν

�� w

��

O(Γ)
j

//

ι̂ ,,

Al,σ

A

Since Al,σ is a pushout, there exists a unique Hopf algebra map t :Al,σ→A such that ts= w
and tj = ι̂. This implies that Ker π̄ = j(O(Γ))+Al,σ ⊆Ker π̂t and therefore the diagram (17) is
commutative. 2

Let (Σ, I+, I−) be the triple that determines H. Recall that by Remark 2.12, giving a group
Σ such that TI ⊆ Σ⊆ T is the same as giving a subgroup N ⊆ T̂Ic . In fact, by Lemma 2.16, we
know that the Hopf algebra Al,σ contains a set of central group-like elements Z = {∂z | z ∈ T̂Ic}
such that π̄(∂z) =Dz for all z ∈ T̂Ic and H = uε(l)∗/(Dz − 1 | z ∈N). To see that A=AD for
a subgroup datum D = (I+, I−, N, Γ, σ, δ) it remains to find a group map δ :N → Γ̂ such that
A'Al,σ/Jδ. This is given by the last lemma of the paper.
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Lemma 3.3. There exists a group homomorphism δ :N → Γ̂ such that Jδ = (∂z − δ(z) | z ∈N)
is a Hopf ideal of Al,σ and A'AD =Al,σ/Jδ.

Proof. Let ∂z ∈ Z. Then π̂t(∂z) = vπ̄(∂z) = 1 for all z ∈N , by Lemma 2.14(b). Since t(∂z) is
a group-like element, this implies that t(∂z) ∈Aco π̂ =O(Γ). As G(O(Γ)) = Γ̂, we have a group
homomorphism δ given by

δ :N → Γ̂, δ(z) = t(∂z) for all z ∈N.

The two-sided ideal of Al,σ given by Jδ = (∂z − δ(z) | z ∈N) is clearly a Hopf ideal and
t(Jδ) = 0. Consequently, we have a surjective Hopf algebra map θ :AD �A, which makes the
following diagram commutative.

1 // O(Γ) ι̃ // AD
π̃ //

θ
����

H // 1

1 // O(Γ) ι̂ // A
π̂ // H // 1

(18)

Then θ is an isomorphism by Corollary 1.15. 2
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