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The draft genome of the lichen-forming fungus Lasallia hispanica
(Frey) Sancho & A. Crespo

Francesco DAL GRANDE, Anjuli MEISER, Bastian GRESHAKE TZOVARAS,
Jürgen OTTE, Ingo EBERSBERGER and Imke SCHMITT

Abstract: Lasallia hispanica (Frey) Sancho & A. Crespo is one of three Lasallia species occurring in
central-western Europe. It is an orophytic, photophilous Mediterranean endemic which is sympatric
with the closely related, widely distributed, highly clonal sister taxon L. pustulata in the supra- and
oro-Mediterranean belts.We sequenced the genome of L. hispanica from amultispore isolate. The total
genome length is 41·2Mb, including 8488 genemodels.We present the annotation of a variety of genes
that are involved in protein secretion, mating processes and secondary metabolism, and we report
transposable elements. Additionally, we compared the genome of L. hispanica to the closely related, yet
ecologically distant, L. pustulata and found high synteny in gene content and order. The newly
assembled and annotatedL. hispanica genome represents a useful resource for future investigations into
niche differentiation, speciation and microevolution in L. hispanica and other members of the genus.
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Introduction

Lasallia hispanica (Frey) Sancho & A. Crespo
represents one of three species of the genus
Lasallia which occur in central Western
Europe (Sancho & Crespo 1989). The three
Lasallia species differ in distribution,
habitat preference, morphology and mode of
reproduction. Lasallia pustulata has the widest

distribution, occurring in Mediterranean to
boreal-montane habitats from southern
Europe to northern Scandinavia (Hestmark
1992; Rolshausen et al. 2018). The other two
congeners are endemic to the Mediterranean
region: L. hispanica prefers supra- and
oro-Mediterranean habitats in the Iberian
Peninsula, southern Italy and northern
Morocco, and L. brigantium is confined to
coastal areas in west Corsica and north-west
Sardinia below 300m a.s.l. (Sancho &Crespo
1989). Lasallia hispanica is sympatric with
L. pustulata in the supra- and oro-
Mediterranean bioclimatic belts (Sancho &
Crespo 1989) where the two species often
share the same photobiont (Dal Grande et al.
2017). Lasallia hispanica and L. pustulata
differ in their water acquisition strategies:
L. pustulata relies on surface run-offs, whereas
L. hispanica takes up moisture directly from
fog and low-lying clouds, therefore becoming
desiccated more rapidly and more frequently
(Vivas et al. 2017). A recent study comparing
the photosynthetic performance of the two
species in nature and under laboratory condi-
tions suggests that L. hispanica might be more
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resistant to environmental stress than L. pustu-
lata. This is probably due to the more efficient
and rapid activation of stress-related repair
mechanisms in L. hispanica (Vivas et al. 2017).
The three Lasallia species have a mixed asexual
and sexual reproductive strategy. However,
reproduction in L. pustulata is predominantly
vegetative, bymeans of isidia, whileL. hispanica
and L. brigantium predominantly reproduce
sexually (Sancho & Crespo 1989). While L.
pustulata has been used as a model to explore
climate adaptation in lichens (Dal Grande et al.
2018) and symbiont-driven ecological expan-
sion (Rolshausen et al. 2018),molecular studies
on L. hispanica are lacking. The genetic differ-
entiation among the three species has yet to be
explored.
The genomics revolution is transforming

the way we study evolution and ecology
(Wolfe & Li 2003; Grube et al. 2014).
Evolutionary genomics and phylogenomics
further our understanding of speciation,
phylogenetic relationships and the evolu-
tionary origin of functional traits in
lichenized fungi. Phylogenomic datasets have
been used to resolve evolutionary relation-
ships in the Rhizoplaca melanophthalma
species complex (Chan & Ragan 2013;
Leavitt et al. 2016). Comparative genomics
has been used to reveal gene family size
changes and gene deletions associated with
lichenization in Endocarpon pusillum (Wang
et al. 2014), to derive phylogenetic markers
useful for resolving relationships among
close relatives (Magain et al. 2017), and to
study the properties and evolution of
mitochondrial genomes (Xavier et al. 2012).
Ecological genomics is an emerging field

in lichenology. It allows questions to be
addressed related to, for example, niche dif-
ferentiation, ecological specialization and
local adaptation. Transcriptomics has been
employed to infer the response of Peltigera
membranacea and its cyanobiont to thermal
stress (Steinhäuser et al. 2016), and of
Trebouxia to desiccation (Candotto Carniel
et al. 2016). Recently, we used a population
genomics approach based on whole-genome
resequencing of pools of DNA from lichen
populations to study the genomic signatures
of adaptation in L. pustulata along an

altitudinal gradient (Dal Grande et al. 2017).
In this study we revealed the existence of two
locally adapted ecotypes using correlations
between single-nucleotide polymorphisms
(SNPs) and environmental parameters.
Lichen metagenomics (i.e. the direct

sequencing of mixed genomic material from
lichen thalli) represents a cultivation-
independent approach to explore the
diversity and functional aspects of the lichen
symbiosis. For instance, it is possible to
reconstruct the genomes of the individual
symbiotic partners using a single, short-read
sequencing library layout (i.e. metagenome
skimming; Greshake Tsovaras et al. 2016;
Meiser et al. 2017). Metagenomic lichen
samples have also been used to apply restric-
tion site-associated DNA sequencing (RAD-
seq) for phylogenetic reconstructions of
lichenized fungi based on genomic sequence
information (Grewe et al. 2017). Genome
mining is increasingly employed to survey
lichens for genes associated with the bio-
synthesis of active metabolites, revealing in
some cases unexpected biosynthetic potential
(e.g. Kampa et al. 2013). For example,
Cladonia uncialis contained a gene cluster
responsible for the biosynthesis of a haloge-
nated isocoumarin (Abdel-Hameed et al.
2016). The advent of long-read sequencing
technologies from Pacific Biosciences (Pac-
Bio) and Oxford Nanopore Technologies will
drastically improve the assembly process as
well as the in-silico separation of organisms
from mixed DNA samples.
Here we present the de novo assembly and

annotation of the genome ofL. hispanica. Using
Illumina next-generation sequencing technol-
ogy we obtained and annotated a high-quality
draft genome. We identified gene clusters
associated with secondary metabolite bio-
synthesis, mating-type loci and transposable
elements, and compared them to the closely
related L. pustulata (Davydov et al. 2010).
Finally, we established synteny and orthology
between L. hispanica and L. pustulata. In addi-
tion to providing structured data for various
phylogenetic studies, the work presented here
will provide a genomic resource for further
studies aiming to 1) understand the basis of
polygenic adaptation in L. hispanica based on
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population genomic resequencing of natural
populations, 2) study the impact of different
reproductive strategies on the evolution of
genomes and populations inL. hispanica andL.
pustulata, and 3) infer the genomic footprints of
niche differentiation of the two species.

Materials and Methods

In vitro cultivation of the lichen-forming
fungus Lasallia hispanica

The lichen-forming fungus L. hispanica was isolated
in vitro from a specimen collected from Puerto de Pico
(Ávila, Spain; 40·322527°, −5·013808°, 1350m a.s.l.;
hb. Senckenbergianum voucher no. FR-0265086) in
June 2014. The mycobiont culture (Schmitt laboratory,
SBiK-F, C0002) was obtained from a multispore dis-
charge from a single apothecium ofL. hispanica following
themethod of Yamamoto et al. (1985). Briefly, apothecia
were picked from the thallus, washed under distilled
running water for several minutes and transferred indi-
vidually onto inverted 4% water agar plates with sterile
nylon membrane filters for 48 h. After ejection, the filters
with the spores were transferred to germination medium

in Petri dishes (Denison 2003). Upon germination, the
spores were transferred to malt yeast extract medium.
The mycobiont colonies were maintained at room
temperature in darkness and were sub-cultured monthly
onto fresh medium until sufficient biomass for genomic
analysis was obtained (c. 6 months; Fig. 1).

DNA isolation and sequencing

About 0·5 g of mycobiont mycelia was collected and
ground in liquid nitrogen with a mortar and pestle.
Genomic DNA was isolated using the CTABMaxi-prep
method (Cubero & Crespo 2002), resulting in a total
yield of c. 5 µg DNA. Three Illumina genomic libraries
were sequenced: 1) short-insert DNA library, paired-end
(300 bp), on Illumina MiSeq, 2) Nextera mate-pair
library with 3 kb inserts, 3) Nextera mate-pair library
with 8 kb inserts. Sequencing was performed at StarSeq
(Mainz, Germany).

Genome assembly and annotation

Adapters and low quality short-insert reads were
trimmed (i.e. Q score< 20 in a sliding window of 5 bp,
minimum length< 100 bp) using Trimmomatic 0.36
(Bolger et al. 2014). The reads were further quality-
filtered using the software Sickle v.1.33 (-l 127 -q 20;

A B

C D

FIG. 1. Lasallia hispanica. A, thallus with apothecia; B, apothecia; C, mycobiont culture used for genome
sequencing; D, section of thallus with apothecia. Scales: A=10mm; B–D= 1mm.
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available at https://github.com/najoshi/sickle). Adapters
were removed from the mate-pair reads using NxTrim
v.0.3.2 (O’Connell et al. 2015). Prior to genome assem-
bly, we assembled overlapping pairs of short-insert reads
using PEAR v.0.9.6 (Zhang et al. 2014). Reads were
subsequently assembled de novo using SPAdes v.3.9.0
(-k 21,33,55,77,99,127; Bankevich et al. 2012).

We filled gaps between contigs using SSPACE (Boetzer
et al. 2011) and GapFiller (Boetzer & Pirovano 2012). To
filter the assembly from potential contaminants and to
extract contigs of fungal origin, we taxonomically assigned
the scaffolds using MetaWatt v.3.5.3 (Strous et al. 2012)
against a non-redundant database consisting of genomes
from 122 Archaea, 1747 Bacteria, 514 Eukaryota and
535 Viruses. We estimated genome completeness of the
newly assembledL. hispanica genome using BUSCO v.2.0
(Benchmarking Universal Single-Copy Orthologs; Simão
et al. 2015) and a lineage-specific set of Ascomycota single-
copy orthologs.

The newly assembled genome of L. hispanica was
annotated using funannotate v.0.5.4 (https://github.com/
nextgenusfs/funannotate). As training data for funanno-
tate, RNAseq data from L. pustulata (Dal Grande et al.
2017) was assembled using Trinity and PASA and used
along the unassembled reads. Furthermore, we used the
predicted protein sequences from Xanthoria parietina
(https://genome.jgi.doe.gov/Xanpa2/Xanpa2.home.html)
and Cladonia grayi (https://genome.jgi.doe.gov/Clagr3/
Clagr3.home.html) as training data for the gene prediction.
Blast2GO v.4.1.9 (Conesa et al. 2005) was used to annotate
the predicted protein sequences with gene ontology (GO)
terms and protein names using the NCBI nr database at
an E-value cut-off of 1×10−3 and default weighting
parameters. The functional annotations were simplified to a
set of broad terms by mapping the GO annotations to the
Generic GO-Slim terms using Blast2GO.

Repeat elements

We surveyed the draft genome of L. hispanica for
transposable elements (TEs) and repeated sequences.
For this purpose, we first constructed a reference TE
consensus library using the TEdenovo (Flutre et al.
2011; Hoede et al. 2014) and the TEannot (Quesneville
et al. 2005) from the REPETTE annotation pipelines for
the high quality PacBio assembly of the L. pustulata
genome. These sequences were used as probes to anno-
tate the L. hispanica genome with TEannot from the
REPET pipeline. TE consensus nucleotide sequences
were classified according to the Repbase database (Jurka
et al. 2005) and named according to the classification
proposed by Wicker et al. (2007).

Secreted proteins

To identify proteins with an extracellular secretion sig-
nal, we used SignalP v.4.0 (Petersen et al. 2011), TargetP
v.1 (Emanuelsson et al. 2007) and Tmhmm2.0c (Krogh
et al. 2001). Only annotated protein-coding genes having a
signal peptide and not having a membrane localization
domain were considered as putatively secreted.

Mating-type annotation

MAT alleles are typically flanked by the putative DNA
lyase (APN2) and the cytoskeleton assembly control
(SLA2) genes (Debuchy & Turgeon 2006).We identified
the MAT locus in L. hispanica and L. pustulata using
BlastP searches against a database composed of ADN2,
SLA2, MAT1-1, and MAT1-2 protein sequences of var-
ious ascomycetes, including lichen-forming fungi.

Annotation of genes and gene clusters
associated with secondary metabolite
biosynthesis

Genes and gene clusters involved in secondary
metabolism in L. hispanica and L. pustulata were pre-
dicted using antiSMASH fungal v.4.0.0 (fungiSMASH;
Blin et al. 2017).

Synteny and orthology analysis

We compared the genome of the closely related
species L. pustulata (Greshake Tsovaras 2018) to find
orthologous gene pairs between the two species. For this
purpose, we identified reciprocal best BLAST hits
(RBH) between the two gene sets. This approach con-
stitutes a relatively simple and fast method for finding
orthologs between different assemblies of the same or
closely related species (Ward & Moreno-Hagelsieb
2014). We ran BLAST v.2.2.30+ using Smith-
Waterman alignment and soft filtering (use_sw_tback,
soft_masking true, seq yes, evalue 1e-6) for better detecting
orthologs as RBH (Moreno-Hagelsieb & Latimer 2008;
Ward & Moreno-Hagelsieb 2014). To identify RBH we
filtered the BLAST output for a minimum identity of
70% over the alignment length and a minimum query
coverage of 50% (Camacho et al. 2009), sorted for the
highest bitscore and lowest E-value, and manually
removed multiple identical top hits, if present.

Lasallia hispanica and L. pustulata assemblies and gene
sets were compared to identify genomic portions in which
gene order is conserved (i.e. syntenic regions). For this
purpose, we used SyMap v.4.2 (Synteny Mapping and
Analysis Program; Soderlund et al. 2011) to compute and
display syntenic relationships between L. hispanica and L.
pustulata. For this, we aligned scaffolds longer than 50kb
of each species using MUMmer (Kurtz et al. 2004) and
used synteny to order the draft genome (L. hispanica)
against the reference (L. pustulata). To calculate the per-
centage of genes located in syntenic blocks, gene coordi-
nates of the two species were imported into SyMap as .gff.

Results and Discussion

Genome assembly and annotation

After adapter removal, and length and
quality filtering, we obtained 11 313 695
short-insert paired-end reads, plus 3 163 139
and 3 351 197 mate pair reads for the 3 kb
and 8 kb libraries, respectively. These reads
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were assembled using SPAdes into 1619
scaffolds longer than 500 bp (N50= 145 035;
Table 1). The draft assembly has a total
length of 41·2 Mb and a coverage of
approximately 160×. The evaluation of the
genome completeness of our draft genome
assembly based on 1315 single-copy fungal
orthologs showed that most of the gene space
was covered (96·3%). The L. hispanica
genome assembly contained 1256 complete
and single-copy, 10 duplicated, 27 frag-
mented and 22 missing BUSCO genes. The
overall GC content of the L. hispanica
genome is 51·2%. The GC content of gene
coding sequences increases to 54·1% and
is similar to that of L. pustulata (overall
GC= 51·7%; CDS GC= 53·2%).

We predicted a total of 8488 ab initio gene
models, of which 3929 (46·3%) were assigned
a total of 15 820 GO terms. The most abun-
dant biological process GO-Slim terms were
organic substance metabolic process (15·6%),
cellular metabolic process (15·2%), primary
metabolic process (14·7%) and nitrogen com-
pound metabolic process (10·6%). Abundant
molecular function GO-Slim terms included
organic cyclic compound binding (17·8%), ion
binding (15·6%), hydrolase activity (11·7%)
and transferase activity (11·2%). Finally, most
of the cellular components GO-Slim terms
were categorized as intracellular (19·9%),
intracellular part (19·4%), intracellular orga-
nelle (15·3%) and membrane-bounded orga-
nelle (13·2%) (Fig. 2).

Transposable elements

Transposable Elements (TEs) are DNA
fragments with the ability to move within the
genome by generating new copies of

themselves. TEs are an important source of
mutations in genomes and may promote gen-
ome restructuring and chromosome instability
due to their repeated nature (Bonchev & Par-
isod 2013). TEs are typically divided into two
classes depending on their mechanism of
mobility: retrotransposons (class I) and DNA
transposons (class II) (Wicker et al. 2007). The
cut-and-paste transposition mechanism of
retrotransposons involves an RNA inter-
mediate which is reverse transcribed by a
reverse transcriptase often encoded by the TE
itself. DNA transposons instead transpose
directly from DNA to DNA.

In fungi, 0–30% of the genome consists of
transposable elements, with LTR (Long
Terminal Repeats)-retrotransposons usually
representing the largest fraction (Castanera
et al. 2016). The repetitive nature of TE
sequences, in combination with short-read
sequencing technologies, exacerbates the
correct assembly of TEs, especially for TE
families exhibiting high sequence identity,
high copy number or complex genomic
arrangements (Nilsson 2016).

Transposable elements were found to cover
21·23% of the L. pustulata genome for a total of
c. 7 Mbp, including 70 class I and 35 class II
elements with full length copies (444–11000
bp, mean size: 4021 bp) (see Supplementary
Material Table S1, available online).
Conversely, the draft genome of L. hispanica
displayed an almost complete absence of full
length elements. These results confirm the
limitation of the short-read sequencing tech-
nology in reconstructing TEs. Therefore, the
current resolution of this draft genome, like
most Illumina-based genome assemblies, is
insufficient to give a detailed picture of the TE
content.

TABLE 1. Information on the L. hispanica genome assembly.

Scaffolds Genes

Total number 1619 Total number 8488
Total size (bp) 41 207 996 Proportion covered by genes (%) 33
Longest scaffold (bp) 615 827 Mean protein size in aa (min/max) 470 (50/6, 195)
Mean size (bp) 25 453 GC content (%) 51·2
Median size (bp) 3294 Coding region GC (%) 54·1
N50 length (bp) 145 035
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Secreted proteins

The secretion of proteins and other
enzymes into the extracellular environment is
a vital process in fungi (Krijger et al. 2014). In
particular, secreted proteins play an essential

role in nutrient acquisition and self-
protection. Furthermore, the fungal secre-
tome directly or indirectly modulates
interactions of the fungus with living and
non-living substrata, including recognition
processes (Wessels 1993). We found 104
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single-organism
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FIG. 2. Distribution of Blast2GO annotations for L. hispanica. Charts show level 3 annotations for Biological
Process (A), Molecular Function (B) and Cellular Components (C).
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genes encoding putatively secreted proteins
in L. hispanica, including 16 glycoside
hydrolases, six carboxipeptidases and two
glucoamylases. Putatively secreted proteins
ranged in length from 61 to 1672 aa
(see Supplementary Material Table S2, avail-
able online).

Mating types

The mating system of filamentous asco-
mycetes is usually represented by one locus
(i.e. theMAT locus) which encodes proteins of
the high-mobility-group (HMG) superfamily
(Coppin et al. 1997). The MAT locus is typi-
cally present in two complementary forms
(i.e. idiomorphs) referred to as MAT1-1 and
MAT1-2 (or MAT-1 and MAT-2). Homo-
thallic species typically contain both MAT
genes (i.e. MAT-1 encoding a protein with a
MATα_HMG domain and MAT-2 encoding
a protein with a MATA_HMG domain)
within the same genome. Heterothallic
species instead contain a single MAT locus;
isolates can thus carry eitherMAT-1 orMAT-2
genes (Kronstad & Staben 1997). In this
study we identified the MAT loci in the
L. hispanica and L. pustulata genomes.

Only one complete mating-type locus
was found in the genome assembly for
L. hispanica: MAT1-2 containing the
MATA_HMG domain. The orthologous
MAT1-2 idiomorph was also found in a
newly assembled genome of L. pustulata
(Greshake Tsovaras 2018). As in L. hispanica,
the MAT1-2 idiomorph of L. pustulata
includes an unknown gene containing a
homeodomain. The complementary mating
idiomorph (i.e. MAT1-1) was also found in

our first draft assembly of L. pustulata avail-
able at the European Nucleotide Archive
GCA_000938525.1 obtained from a different
thallus. This region lacks MAT1-2 and the
homeodomain-containing gene, while it
includes a full MAT1-1 gene with the
MATα_HMG (Fig. 3). Our results provide
evidence for a heterothallic lifestyle of both
Lasallia species. However, inferences based
on genome sequence analysis require addi-
tional experimental validation, including
analysis of single-spore isolates and estima-
tion of MAT frequencies in natural popula-
tions using MAT-idiomorph specific probes
(Honegger et al. 2004; Singh et al. 2012, 2015;
Alors et al. 2017; Ludwig et al. 2017).

Secondary metabolite biosynthetic
genes and gene clusters

The advent of genome sequencing techno-
logies is revolutionizing the field of natural
product discovery (Doroghazi et al. 2014).
Whole-genome mining of biosynthetic gene
clusters has revealed a large number of
uncharacterized secondary metabolite gene
clusters in various organisms, including
lichen-forming fungi (e.g. Kampa et al. 2013;
Abdel-Hameed et al. 2016).

HPLC analyses revealed similarities in the
chemical profiles of L. hispanica and
L. pustulata, with gyrophoric acid as the major
compound and traces of lecanoric, umbili-
caric, hiascic acids and skyrin (Posner et al.
1991). In the L. hispanica genome we identi-
fied 18 secondary metabolite clusters with
complete core biosynthetic genes (core bio-
synthetic genes=polyketide synthases (PKS),
non-ribosomal peptide synthetases (NRPS),

L. hispanica MAT2

L. pustulata MAT2

L. pustulata MAT1

apn2

apn2

apn2

MAT2

MAT2

MAT1

sla2

sla2

18Kbp13.59
Homeodomain-containing protein

sla2

4.50

*

*

*

FIG. 3. Configuration of the MAT loci in L. hispanica and in two L. pustulata assemblies (MAT1: European
Nucleotide Archive GCA_000938525.1; MAT2: Greshake (2018)).
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etc.) (Table 2, Supplementary Material Table
S3). Among the non-reducing type I PKS,
three genes showed duplicated ACP domains
(Supplementary Material Table S4, available
online). Interestingly, we found only partial
homology between the biosynthetic gene
clusters of L. hispanica and L. pustulata, with
13 putative orthologs among 40 complete,
core biosynthetic genes of the two species

(Table 2, Supplementary Material Table S3).
Eleven biosynthetic clusters, including four
non-reducing and two reducing PKS, four
terpene synthases and one type III PKS,
showed high similarity of core genes and genes
coding for tailoring enzymes. These clusters
therefore represent ideal candidates for the
biosynthesis of natural compounds that are
shared between the two lichen species (Fig. 4).

Non-reducing type I PKS Cluster

3

6

9

13

4

10

21

10 Kbp
f

g

jml

k

i j

bfed

a b c

g h

d

Reducing type I PKS

Type III PKS

FIG. 4. Configuration of L. hispanica biosynthetic gene clusters with orthologs in L. pustulata. Black boxes represent
core biosynthetic genes (PKSs in the upper six clusters and a chalcone and stilbene synthase in the bottom cluster).
Shaded boxes indicate genes coding for tailoring enzymes: a, acyltransferase; b, metallo-beta-lactamase family protein;
c, halogenase; d, aldo/keto reductase; e, drug resistance transporter EmrB/QacA; f, cytochrome P450;
g, O-methyltransferase; h, haloalkane dehalogenase; i, dioxygenase TauD/TfdA; j, FAD-linked oxidase domain

protein; k, serine/threonine protein kinase; l, acyl-CoA dehydrogenase; m, AMP-dependent synthetase and ligase.

TABLE 2. Biosynthetic genes and gene clusters in L. hispanica and L. pustulata. A dash indicates no genes were
detected for that class.

Class L. hispanica L. pustulata
Core biosynthetic
gene orthologs

Ortholog gene
clusters

Non-reducing PKS 5 7 5 4
Reducing PKS 6 6 3 2
Hybrid non-red/red PKS 2 – – –

Hybrid PKS_NRPS – 1 – –

Type III PKS 1 1 1 1
Terpene synthase 4 5 4 4
Lantipeptide synthetase – 1 – –

Partial PKS 3 3 – –
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Our results suggest that both Lasallia species
have a far greater potential to produce specia-
lized secondary metabolites than previously
thought. Genomics-driven discovery of fungal
natural products and comparison of gene
clusters between closely related species with
similar chemical profiles is just the first step
towards linking these gene clusters to their
metabolites (Chooi & Solomon 2014).

Synteny and orthology analysis

Based on RBH analysis, 6382 orthologous
gene pairs were identified betweenL. hispanica
and L. pustulata proteins (see Supplementary
Material Table S5, available online).
The 211 largest (i.e. >50kb) L. hispanica

scaffolds (representing 75·6% of the genome)
were then aligned with the 31 largest
L. pustulata scaffolds (99·5%of the genome) to
find syntenic regions. The alignment pro-
duced 68% and 71% of syntenic coverage in
L. hispanica andL. pustulata, respectively, with
gene retention >80% for both species. The
circle plot of this genome comparison shows a
high degree of synteny conservation between
L. hispanica and L. pustulata, with only a few
rearrangements (Fig. 5).

The draft genome of L. hispanica
presented in this study sets the found-
ation for further research into speciation
and niche evolution mechanisms in
lichen-forming fungi. We believe that the
L. hispanica-L. pustulata system is

Lasallia pustulata
71% coverage
82% genes

Lasallia hispanica
68% coverage

89% genes

31 scaffolds
(>50kb)
32.7Mb

211 scaffolds
(>50kb)
31.1Mb

FIG. 5. Circle plot of the genome alignment between 31 L. pustulata (left) and 211 L. hispanica (right) scaffolds.
Scaffolds of L. hispanica were ordered to align against the genome of L. pustulata using information from 202

syntenic blocks.

2018 Lasallia hispanica genome—Dal Grande et al. 337

https://doi.org/10.1017/S002428291800021X Published online by Cambridge University Press

https://doi.org/10.1017/S002428291800021X


particularly suitable for this application
owing to the ecological, reproductive and
genetic differences between the species. In
addition, the annotated draft genome serves
as a resource for developing molecular mar-
kers, targeting specific functional genes and
analysing repetitive elements in the context
of population studies.
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