
A GENERALIZATION OF THE HARDY SPACES 

P. G. ROONEY 

1. Introduction. The Hardy spaces for right half-planes, §p(o"), a real, 
1 < p < » , are defined to consist of all those functions/(s), holomorphic for 
Re s > a, for which /xp(/, x) exists and is bounded for x > a, where 

MP(/, X) = { ^ £ ° |/(* + iy) {'dyj, 1< £ < a,, 

and 

Moo(f>*0 = sup |/(x + £y)|. 

These spaces have been studied extensively (see, for example, 3, Chapter 8, 
and 2, §19.1). 

In particular, it is known that if e~fftF(t) Ç Lp(0, <»), 1 < p < 2, and if/ 
is the Laplace transform of F, then / G Ôç(o-), where now and henceforth 
£ - 1 + q'1 = 1, and if / 6 §p(o"), 1 < ^ < 2, then there is a function F, with 
e~atF(t) G £e(0, °°), such t h a t / i s the Laplace transform of F. These results 
are essentially due to Doetsch (1). (Doetsch proved them for <r = 0 and 
1 < p < 2 ; the extension to non-zero a, and to p = 1 is easy and we shall take 
the results as known.) In an earlier article (5), we generalized the Hardy spaces 
somewhat and found corresponding generalizations of Doetsch's results. 

Here we propose further to generalize these spaces and to obtain the corre­
sponding generalizations of Doetsch's theorems. The generalized Hardy spaces 
are defined in §2 and some preliminary lemmas are proved, while the generaliza­
tions of Doetsch's theorems occupy §3. 

As might be expected, the generalization of §2(0-) possesses certain proper­
ties not shared by the other spaces, and consequently we devote §4 to the 
elaboration of some of these. 

2. Generalized spaces. Let a be a non-constant non-decreasing function 
defined on [0, 00), with a(0) = 0, and with the property that the integral 

J e'txda(x) = 4>{t) 
0 

converges for all t > 0. Let c = c(a) be the first point in [0, °°), where a 
varies; that is c is the point such that if x > c, a(pc) > 0, and if a(x) > 0, 
x > c. 
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HARDY SPACES 359 

With each such a, and each p, 1 < p < oo , we associate a space § / defined 
as follows: / 6 ^y* if and only if (i) / Ç §p(o-) for each a > c/q, and (ii) 
\\f\\a,P < °°, where 

I I f 11. ,P = ) (/**(/» x/q))qda(x) + sup a (c+) • (/**(/, * /g) )V . 

The presence of the second term in the definition of the norm may appear a 
trifle unnatural, but it can be given a form, which may appear natural, as 
follows. Let m be the Lebesgue-Stieltjes measure generated on [0, oo) by a, 
and iim{{c)) ^ 0—that is if a(c+) ?* 0—define nP(f, c/q) to be the supremum 
for x > c of jLtp(/, x/q) (this is natural for from (i) of our definition, and (2, 
Theorem 19.1.4), pp(f, x/q) is a decreasing function of x). Then 

Uoo "Ï 1/ff 

(Hp{ftx/q)ydm(x)j . 
I If 11 

We also define § i a to consist of those functions in ^)i(o-) for all a > c with 
the property that ||/||a,i < °° , where 

||/||«,i = sup«(xVi(/ ,x) . 
x>c 

The spaces Sr>p(o) are special cases of the Sfrp
a
y coming from choosing a(x) = 

H(x — a), where H is the Heaviside function 

H(x) = l0' X<0i 
n{X) l l , x > 0 . 

Also if a(x) = (x — œ)QX/q\y X > 0, we obtain the spaces §p
x(co) that we 

discussed in (5). Hence our generalization includes these previous cases, but 
of course many more. For example a(x) = [x] leads to quite new spaces. 

It should be noted that if a(c+) ^ 0, then &p
a is a subspace of &p(c/q). 

For, if x > c, 

/*(f,*/<z) < \\f\\aj(ct(c+))1", 1 < p < » , 

and 

Mi(f,*) < | | / | | t t i i /a(c+). 

If a(c+) = 0, as in the second example above, then $p
a need not be a subspace 

of §v(c/q). 
The following lemmas are needed in the next section. 

LEMMA 1. If 

f" <Kt)\F(t)\*dt< co, 

then e~~vtF(i) £ Lp(0, » ) /or m i a- > c/p, and for a = c/p if a(c+) j* 0. 
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Proof. Clearly, if x > 0, 

(*) <K0 = Ve-tuda{u)> ( e-'uda(u)>e-,z ('da(») = e~'xa(x). 
Jo Jo Jo 

Hence, if a (pa) > 0, 

J»oo /»oo 

e-*"\F(t)\'dt < (aip*))-1 4>(f)\F(t)\'dt«», 
0 t / 0 

and e~otF(t) Ç Lp(0, » ) . But a(pa) > 0 if a- > c/£. Also, letting x -> c + in 
the inequality </>(/) >e~**«(#), we obtain <£(/) > e~c'o:(c4-), so that if a(c+) > 0, 

/»oo /«oo 

e - e , | F ' ( 0 | ' * < ( a ( c + ) r 1 * (0 |F (0 r<«<» , 
t /0 Jo 

3Lnde-otF(t) 6 Lp(0, «>) for o- = c/p. 

LEMMA 2. If a > cy 

J»oo 

0 

Proof. From (*), 0(/) > *-*<»+«>'<*(*(*• + c))f and a(i(er + c)) > 0. 
3. Generalized theorems. Theorems 1 and 2 correspond respectively 

to Theorems 2 and 3 of (1). 

THEOREM 1. If 1 < p < 2, awd 

f%(0|/W*<», 
«/o 

/ftew T7 /zas a Laplace transform f, and f £ ^ e
a , a^d 

Proof. By Lemma 1, e~atF(t) Ç Lp(0, <») if a- > c/£, and hence F has a 
Laplace transform/ in §p(er) for each a > c/p. Further, since for x > c/p, 

J»oo 

eiyt(e-xtF(t))dt, 
o 

and e~xtF(i) Ç £p(0, °° ), it follows that for each such x,f(x — iy) is the Fourier 
transform of a function in Lp(0, °°), and hence by (7, Theorem 74), if 
1 < p < 2, 

( i r°° )1/g 

n*(f,x) =\± J^\f(x + iy)\9dyj 

= { ^ J_ ̂ x - ty^yf < \ J0 «"~'i w # / • 
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This inequality also holds for p = 1, for 

\f(x + iy)\< §~ e~xt\F(t)\dt, 

so that 

/**>(/,*)< j ~ e-xt\F(t)\dt. 

Thus 

(œ Mf,x/P)Yda(x)< ^ r e-xt\F(t)\pdtda(x) 
•J c+ •/ c+ •/ 0 

/»oo /»oo 

\Ht)\P e~"da(x)dt. 
«/0 J c+ 

If a ( c+) = 0, this last inequality is just the statement 

(ii/iu'< {" mm?*, 

Jo 

4>(t) = ^ e~txda{x) + a(c+)e~ct. 

J c+ 

/»oo 

J e-"\F(t)\'dt < » , 
J /»oo ^ 1/P 

(ll/lk.)' = r (M/, *//>))'**(*) + sup («(<:+)• 0i,(/, */i>))P) 

/•oo / »œ /»oo 

< 1^(0 T e-"da(x)dt + a(c+) e-ct\F(t)\pdt 
J 0 •/ c+ «/ 0 

Jo 

for 

f c+ 

Ua(c+) ^ 0, then 

so that 

Hence 

'o 

THEOREM 2. Iff G § / , 1 < £ < 2, 2/z£?z //^re w a function F, with 

f~ 4,(t)\F(t)\°dt 

/»oo J /»oo J 1/ff 

/ ( 5 ) = Jo e~S'F(t)dt' Res>c/q, and^J 4>{t)\F(t)\<dtj < | | / | | 

«/o 
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Proof. S ince/ 6 §p(o) for each a > c/q, by (1, Theorem 3), for each such 
a there is a function Fff, with e~atFa($) Ç LQ(0, oo), such that 

Jo 

But by the uniqueness theorem for Laplace transforms (8, Chapter 2, Corollary 
9.35), if o-i and a2 are larger than c/q, Fai (t) = Fa2 (t) almost everywhere. Hence 
if F is one of the F9's, e-fftF(t) G Lg(0, «>) if a > c/q, and 

f(s) = J™ e-
stF(t)dt, Res > c/q. 

Further, from (1, Theorem 3), for each x > c/q, 

lim(g) fT e,wf(x + iy)dy = {i"m' t > o, 
/ < o, 

almost everywhere, where lim(g) denotes the limit in mean of order q. This 
means that for each x > c/q, the Fourier transform of f(x + iy), which is in 
Lp(— oo, oo ) relative to y, is equal a.e. to e~xtF{i) if / > 0 and to zero if t < 0. 
Hence by (7, Theorem 74), if x > c/q, 

U œ ) 1/(7 ( 1 /»co ) 1/p 

( e-nnWtf < \± J |/(* + *y)|"dy}- = Mp(/, *). Thus 

J»co /»oo /»oo /»co 

\F(t)\* e-'xda(x) = c-"|f(0| l<ftda(*) 
0 J c+ t/ c+ •/ 0 

/»oo 

< I (vP(f,x/q))qda(x). 
J c+ 

If a ( c+ ) = 0, this says that 

J»oo 

«(01^)1** < (I l/lI.,)*. 
0 

Ua(c+) 5* 0, then 

suppp(ftx/q) < oo 

and hence from Fatou's Lemma 

r ^ c f | F ( 0 r ^ < Hm C e~xt\F(t)\vdt < jim (»p(f, x/q))Q 

Jo r^,, Jo „_ , 

= sup (»P(f,x/q))q, 
x>c 

so that 
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r ^(01^(01** = r 1^(01* f " e-'xda{x)dt + a(c+) f°° e~ct\F(tWdt 
Jo t/o J c+ «Jo 

J»oo 

(jh(f> x/q))qda(x) + sup (a(c+) • (JUP(/, x/q))Q) 
c+ x>c 

= (Il/Il.,)*. 
The reader has undoubtedly noticed that Theorem 2 does not cover the case 

p = 1. Here the results are slightly different. From (8, Chapter 2, Theorem 
2.2a) it follows that a(x) = 0(etx) for any t > 0. Then clearly 

^ (0 = supe~txa(x) 
x>c 

is finite for all positive t. 

THEOREM 3. If f 6 $ i a , /&ew £/&ere is a function F with \j/F £ Lœ(0, <»), 5 ^ ^ 

J»oo 

e~stF(t)dt, Res> c, and ess. sup ^(01^(01 < ll/||«.i. 
0 t>o 

Proof. Since / (E §1(0") for all 0- > c, then, as in the previous theorem, F 
exists with e~fftF(t) G £00(0, °°), 0- > £, so that 

J»co 

e~8tF(t)dt, Res> c, 
0 

and if x > c, t > 0, 

almost everywhere. Hence if x > c, then for almost all / > 0 

e~xt\F{t)\<~ \ \f(x + iy)\dy = Mi(/,*) 

Hence for almost all t > 0, 

a(x)e-"\F(f)\ < | | / | |a.i, 

so that taking suprema with respect to x, for almost all t > 0, 

iKOWOK ll/lki. 
that is \}/F € Lœ, and 

ess. sup ^ (0FW < ll/IU.i. 

It is worth noting that from (*), jf/(i) < 0(0 for all t. 
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4. The case p = 2. Theorems 1 and 2 deal with the same $p
a space 

only for p = 2. Together they then yield the following theorem. 

THEOREM 4. / € ^p2
a if #ftd 0w/;y if there is a function F, with 

J»oo 

4,(t)\F(t)\2dt<c°, 
0 

such that 

f(s) = f °° e~
stF(t)dt, Re 5 > Jc. 

Jo 

However, in the case of §2(0), another condition, originally due to Shohat 
(6), is known fo r / to lie in §2(0) and thus to be the Laplace transform of a 
function in L2(0, °°). This is that 

00 

n=0 

where 

«. - ± (:) >•<». 
Shohat's proof makes use of the Laguerre polynomials 

i>(o=± (:) £ (-^. 
Here we propose to find a similar condition t h a t / b e in § 2

a . 
From Lemma 2 it follows that 

J»oo 

(4>{t)yle-u+l),t2ndt<*> 
0 

so that the members of the sequence {(<j>(t))~*e~^c+1)Hn] are in L2(0, °°). Let 
{$n(t)} be the sequence obtained from this sequence by the Gram-Schmidt 
process. Clearly {$„(/)} is a complete orthonormal sequence in L2(0, 00) and 

*»(o = (<KorV-*(c+i),p„(/), 

where Pn(£) is a real polynomial of degree exactly n, say 

Let 

*.(*) = r worV'p.co*, 
Jo 

the integral existing for Re 5 > c, by Lemma 2. 
THEOREM 5. G%ew a function f {s) holomorphic for Re 5 > \c, then a necessary 

and sufficient condition that a function F exist, with 
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r*(OTOi**<», 
*/o 

so that 

f(s) = PVs^(/)<ft, Res>±c, 

oo 

E kl2<~. 

<Z»= E a K r /
( , ) ( | c + i ) . 

7=0 

WTztf/z //m condition holds, 

Fit) = (*«))-*lim (2)(^>«))-Vè(c+1)' t , qmPm(t) 
n-*x> ra=0 

almost everywhere, 

r <f>{t)\F{t)\2dt = f ) \qn\\ 

oo 

fis) = L « » ¥„(* + le + h). 
TC=0 

Proof of necessity. Suppose 

f(s)= re-
stF(t)dt, Res>±c, 

where 

J»oo 

4>(t)\F(f)\*dt < » . 
0 

Let G(0 = (*(*))*F(*). Then G € £,,(0, ») , and 

J»oo /»oo 

G(f)*%{t)dt= e*"mPn(f)F(f)dt 
0 «/O 

= E o»r r e-iu+1)'(-t)TF(t)dt = è «Br/
( r )(èc+ 4) = ft, 

r = 0 t / 0 r=0 

Hence from the Parseval equality 
CO OO /•OO /»00 

n = 0 n = 0 * / 0 «7 0 

Also, 

(« (0)^ (0 = G(/) = lim (2) S (G, *m)*w(0, 
n-^oo ra=0 
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almost everywhere. In other words 

F(t) = (*(*))"* lim (2) (0 (O)-V | ( c + 1 ) t £, QmPm(t). 

Further, if Re 5 > \c, 

J»oo /»oo 

e~s'F(t)dt = (<j>(t))-^e-s,G(t)dL 
o «/o 

But from Lemma 2, if Re 5 > \c, {4>{t))-^e~st 6 L2(0, «>). Hence 

f(s) = f" (0(O)-*«- l(lim(2)(0(O)- |«" | (<H"1) l E 2 » P * ( 0 ) 
» / 0 \rc->co ra=0 / 

= lim É 2» P MO)""1^"*"*'.?„,(*)<« 
n->oo m=0 */ 0 

00 

= Z) ?A(^ + he + i). 
Proof of sufficiency. Suppose 

00 

Then by the Riesz-Fischer theorem, G exists in 1/2(0, °°) such that 

(G, $B) = g„. 

Let F{t) = (ct>(t))-^G(t)7 and 

<ft 

J»oo 

e-slF(t)dt, Res> 
0 

fc. 
We shall show that /1 = / . 

Note that 

Z Onr tir\hc + i ) = fV* ( c + 1 ) < E anr{-t)TF{t)dt 
r = 0 */ 0 r = 0 

= f" (0(O)~V i ( c + 1 ) 'P B «)G(i)^ = (G, *!) = 2 a i 

so that if / 2 = / — fu 

But since Pn( — t) is a polynomial of degree exactly n, there are numbers bn 

such that 

This yields 
n m w n 

t = .Z - , ^ K W 2-J ^ w r * = = ^L-, t /-J ®nm &mn 
m=0 r = 0 r = 0 m=r 
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and hence 
n 

Z ) Km dmr = 0, f < n, 

and 

Consequently, 
n m n n 

o = S &„m E o» / A i * + i) = Z /iw(*c + I) E &n»am 
7^=0 /-=0 r=0 wi==r 

and hence / 2 = 0, and / i = / . 

COROLLARY. A necessary and sufficient condition that a function / , holomorphic 
for Re s > \c, lie in § 2

a w /fta/ 
CO 

n=0 

2n= É <W(r)(èc+|). 

5. Inversion for p = 2. If / £ $2(0), then the function F, of which / is 
the Laplace transform, is given by 

F(t) = lim(2) - fœf(s)E(st, y)ds, 

where, for x > 0, 

£(*, 7) = T Re(*~ H *T(i + *y))dy. 
Jo 

This formula is due to Paley and Wiener (4, p. 39). Here we shall generalize 
this to a formula appropriate for §2

a , under a special condition. This condition 
is that there should be a non-decreasing function 0 on (0, œ), with /3(0) = 0, 
such that 

(*(/))*= j ^ e'tadfi{x)t t>0. 

It follows from (8, Chapter 2, Theorem 11.5) that at every point of continuity 
of a, 

a(fi) = j 0(* - u)dp(u), 

so that /3 is a square root of a relative to Stieltjes convolution. 
Note that d = c(fi) > %c(a). For if d < ic(a)f and 2d < x < c(a), then 

nx n(x-c')+ 
0 = a(x) = I p(x - u)dp(u) = I p(x - u)dp(u) > 0. 
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THEOREM 6. If f € Hf, then the function F whose Laplace transform is f is 
given by 

F{t) = ( < K 0 r è l i m ( 2 ) - rf(s)Ea(s,t,y)ds, 

where 

Ea(s, t,y)= f E((s - u)t, y)dp(u). 
Jo 

Proof. Let G(t) = (<t>(t)f*F(t). Then G € Lt(0, » ) , and 

/ ( , ) = r e-s\<j>{t))^G{t)dt. 
Jo 

Hence, if 5 > 0, 

J•(» /»00 /*0O 

/ ( « + s)dj8(«) = dj8(«) e - ( w + s ) ' ( 0 ( O ) _ è G ( ^ 
o •/o «/o 

= f" (<t>(t))~he~stG(t)dt C éf*'dj8(«) = f"e_,,G(0<ft, 
*/o */o t/o 

provided we justify the interchange of the order of the integrations. For this, 
by (8, Chapter 1, Theorem 15c), it suffices to show that 

J»co /»oo 

dp(u) e-{u+s)X4>{t))*\G(t)\dt<°>. 
o J o 

But this integral is equal to 

{œ {<t>it))-'e-st\G{t)\dt r e~utd(3(u) = f °° e~st\G{t)\dt < oo 
Jo Jo Jo 

since G G £2(0, <»). 
Hence, by the result of Paley and Wiener quoted above, 

- £((7/, 7) / ( « + a)dp(u)da 
T Jo Jo 
1 / *oo /»co 

£(crf, 7)/(w + a)dadl3(u) 
IT J 0 Jo 

E«s - u)t, y)f{s)dsd!3(u) 
Î t / 0 Ju 

1 (*°° Cs 

f(s) E((s - u)t, y)dp(u)ds, 
TT t / 0 JO 

1 f°° 

- I f(s)Ea(s,t,y)ds, 

the order of the integrations are justified. 

( 0 ( 0 ) ^ ( 0 = G(0 = Hm(2 

- lim(2 
7->co 

= lim(2 
7-^00 

= lim(2 
7->oo 

= Km (2 
7-*» 

again provided the interchanges o 
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For this, we first note that by the Paley and Wiener result above, if g is the 
Laplace transform of a function in L2(0, «»)> then 

i™ \E(st,y)g(s)\ds< co. 
Jo 

Also, as previously, 

f \f(u + <r)\d(3(u) < ^ d$(u) r e-{u+ff)t($(t))->\G(t)\dt 
*/o «/o i/o 

e-°l\G{t)\dt = g{«). 
Jo 

Hence 

J»oo /»oo /»oo 

|£(<rf, T) I \f(u + <x) \dp{u)da < | £ « 7)g(<r) |̂ <r < °° 
0 %/0 t / 0 

and the interchanges are justified. 
For example, if a(x) = [x], then an easy calculation shows that 

£«(M,7) = . Z 1 2 ^ 7 £ ( ( s - ^ + *))i-^-

and 
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